Zen vls

SQL Engine Reference

Using SQL with Zen

/A ACTIAN

Copyright © 2021 Actian Corporation. All Rights Reserved.

This Documentation is for the end user’s informational purposes only and may be subject to change or withdrawal by Actian
Corporation (“Actian”) at any time. This Documentation is the proprietary information of Actian and is protected by the
copyright laws of the United States and international treaties. The software is furnished under a license agreement and may be
used or copied only in accordance with the terms of that agreement. No part of this Documentation may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or for any purpose
without the express written permission of Actian. To the extent permitted by applicable law, ACTIAN PROVIDES THIS
DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND, AND ACTIAN DISCLAIMS ALL WARRANTIES
AND CONDITIONS, WHETHER EXPRESS OR IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION,
ANY IMPLIED WARRANTY OF MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OR OF NON-
INFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT WILL ACTIAN BE LIABLE TO THE END USER OR ANY
THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,
INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA,
EVEN IF ACTTAN IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The manufacturer of this Documentation is Actian Corporation.

For government users, the Documentation is delivered with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48
C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor provisions.

Actian, Actian DataCloud, Actian DataConnect, Actian X, Avalanche, Versant, PSQL, Actian Zen, Actian Director, Actian
Vector, DataFlow, Ingres, OpenROAD, and Vectorwise are trademarks or registered trademarks of Actian Corporation and its
subsidiaries. All other trademarks, trade names, service marks, and logos referenced herein belong to their respective
companies.

This product includes software developed by Powerdog Industries. © Copyright 1994 Powerdog Industries. All rights reserved.
This product includes software developed by KeyWorks Software. © Copyright 2002 KeyWorks Software. All rights reserved.
This product includes software developed by DUNDAS SOFTWARE. © Copyright 1997-2000 DUNDAS SOFTWARE LTD.,
all rights reserved. This product includes software developed by the Apache Software Foundation (www.apache.org).

This product uses the free unixODBC Driver Manager as written by Peter Harvey (pharvey@codebydesign.com), modified and
extended by Nick Gorham (nick@easysoft.com), with local modifications from Actian Corporation. Actian Corporation will
donate their code changes to the current maintainer of the unixODBC Driver Manager project, in accordance with the LGPL
license agreement of this project. The unixODBC Driver Manager home page is located at www.unixodbc.org. For further
information on this project, contact its current maintainer: Nick Gorham (nick@easysoft.com).

A copy of the GNU Lesser General Public License (LGPL) is included on the distribution media for this product. You may also
view the LGPL at www.fsf.org/licensing/licenses/Igpl.html.

SQL Engine Reference
July 2021

Contents

About ThisDocument i i i i i e s e e e e e e e e e e

1 SAQL Overview .

An Overview of the Structured Query Language (SQL) and Zen Support for SQL

Working with SQL in
Data Definition

/275 o Y
Statements. e e e e

Data Manipulation Statements.
Data Control Statements

Zen Metadata

Relational Engine Limits.
Fully Qualified Object Names

Delimited Ident

ifiers in SQL Statements

2 SQLSyntaxReference. i e e
A Reference to Zen Supported Syntax

Literal Values
String Values .
Number Values
Date Values. .
Time Values .

Time Stamp Values

SQL Grammar in Zen
ADD

ALTER (rename)
ALTER GROUP .
ALTER TABLE .

INDICTIONARY o e e e

USING

WITHREPLACE e e
MODIFY COLUMN and ALTER COLUMN.

PSQL_MOVE

RENAME COLUMN e e
ONDELETECASCADE e

ALTER USER . .
ANY

CALL
CASCADE
CASE (expression)
CASE (string) . .
CLOSE
COALESCE . . .
COMMIT

CREATEDATABASE

Database Name
Dictionary Path

and IFNOTEXISTSClause i i

Xi

S O O U1 NN

12

13

14
14
14
14
15
15
16
17
18
19
21
23
25
26
28
28
29
30
30
34
36
37
38
39
40
41
45
46
47
50
51
51
51

iii

iv

Referential Integrity 52
BOUND. . . . e 52
Dictionary Files. e 52
Security 52
Metadata Versiono 53
Encoding 53
CREATE FUNCTION e e 56
Supported Scalar Input Parameters and Returned Data Types 57
Invoking a Scalar User-Defined Function. 58
CREATEGROUP e 62
CREATEINDEX e e 63
Index Segments. 64
UNIQUE . . . e 65
PARTIAL . . . o e 65
NOT MODIFIABLE. e e 67
USING . . e 67
INDICTIONARY e 67
CREATEPROCEDURE e 69
Trusted and Non-Trusted Stored Procedures. 71
Memory Caching. 71
CREATETABLE e 80
Limitationson Record Size 82
DeleteRule 83
Update Rule. e 83
INDICTIONARY o e 83
USING . . e 83
WITHREPLACE e e e e e e e 85
DCOMPRESS . . . e 85
PCOMPRESS. . . . e 85
PAGESIZE 85
LINKDUP. . . . e 86
CREATE (temporary) TABLE 91
Compatibility with PreviousReleases 94
TEMPDB Database 94
Table Names of Local Temporary Tables 95
Transactions 95
SELECTINTO o o e e e e 95
Restrictions on SELECTINTO. e 95
Caching of Stored Procedures 95
CREATE TRIGGER e e e e e 98
CREATE USER e e e 100
CREATE VIEW . . . o o e e e e e 102
ORDERBY e 102
Trusted and Non-Trusted Views. o i e 103
DECLARE e 106
DECLARE CURSOR e e e e 107
DEFAULT e 108
DELETE (positioned) 112
DELETE o e 113
FROM Clause. ot e e e e e e e e e e e e e e 114
DISTINCT e e e e e e e e e e e e e e e e e 115
DROP DATABASE e 116
Secured Databases 116

DELETE FILES. e 116

DROP FUNCTION e e e e s e e e s e s 118
DROP GROUP . . . e e e 119
DROP INDEX o e 120

Partial Indexes e 120
DROPPROCEDURE. e e s e e e e e s 121
DROP TABLE e 122
DROP TRIGGER e e 123
DROP USER o e 124
DROP VIEW . . e 125
END . e e e 126
EXECUTE e 127
EXISTS . o e 128
FETCH e 129
FOREIGN KEY e e e e e e e e 130
GRANT . . e 132

GRANTLOGIN TO. o e e e e e s s e s e 133

Constraints on Permissions. e e e e e 133

GRANT and Data Security i 135

Permissions on Views and Stored Procedures 136
GROUP BY . . o e 141
HAVING . . . e 142
TE e e e e e 143
IN L e e 145
INSERT . . e 146

INSERT ON DUPLICATEKEY UPDATE e e 146

Errors When Using DEFAULT. 150
JOIN o o e e 152
LEAVE . e e e e e 157
LIKE . . e e e e 158
LOOP . . o e 160
NOT . e 161
OPEN . . e 162
PARTIAL e 163
PRIMARY KEY . . . o e 164
PRINT . . e 166
PUBLIC . . . e 167
RELEASE SAVEPOINT e s e e e e e s e 168
RESTRICT e e 169
REVOKE . . . e 170
ROLLBACK . . . o e e e 173
SAVEPOINT . . . e 174
SELECT . . . o o e 175
SELECT (With INTO) .« « « + o o e e e e e e e e, 196
SET . e 198
SET ANSI_PADDING o e e e 199
SET CACHED_PROCEDURES e e e e e e s e 201
SET DECIMALSEPARATORCOMMA e e e e e e e 204
SET DEFAULTCOLLATE e e e e e e e e s s e e e 206
SET LEGACYTYPESALLOWED e e e e e e s s e 209
SET OWNER e 210
SET PASSWORD e 212
SET PROCEDURES_CACHE e e e e s e e 214
SET ROWCOUNT e e e e e e s s s e 217

SET SECURITY e e 218

SETTIMEZONE e 220
SET TRUEBITCREATE e 225
SET TRUENULLCREATE e e 226
SIGNAL . . o e 227
SQLSTATE 229
START TRANSACTION e e 230
UNION . e 231
UNIQUE . . . e 233
UPDATE e 234
UPDATE (positioned) 239
USER . . e 240
WHILE e 241
Grammar Element Definitions 242
Global Variables. 250
Other Characteristics. o i ittt e e e 253
Temporary Files L 253
Working with NULL Values e e e 254
Working with Binary Data 254
CreatingIndexes 255
Comma as Decimal Separator 255
3 ScalarFunctions. e e 257
A Reference to Zen Scalar Functions
Bitwise Operators. 258
Truth Table. 259
Arithmetic Operators. 260
Date Arithmetic 260
Example. 260
String Functions. L 261
Examples 263
Numeric Functions e 266
Examples 267
Timeand Date Functions 268
Time and Date Function Examples 274
System Functions e 276
System Function Examples 276
Logical Functions 277
Logical Function Examples 277
Conversion Functions L 279
Conversion Function Examples L 279
4 SystemStoredProcedures 0000 283
A Reference to Zen System Stored Procedures
Zen System Stored Procedures 284
psp_columns L 284
psp_column_attributes 287
psp_column_rights 289
PSP_tkeys . . L 292
PSP_SIOUPS . . . o ot it e e e 294
psp_help sp. . . . 295
psp_help_trigger 297

vi

psp_help_udf. 298

psp_help_view 300
PSP_INdeXes. 301
PSP _PKEYS . . o o o 303
psp_procedure rights 305
PSP_TENAME. o ottt it e e e e e e e 308
psp_stored_procedures e 308
pSp_tables. 310
psp_table_rights L 313
PSP_tIIgEErS. o e 315
PSP udfs. . .o 317
PSP_USEIS .« o v it o e e e e e 318
PSP_VIEW_Tights o e 320
PSP_VIEWS . . o . o e 323
5 PerformanceReference, 325
An Examination of the Performance Features in the Database Engine
Restriction Analysis. e 326
Modified CNF Conversiono v it e e e 326
Restrictions that Cannotbe Converted 326
Conditions Under Which Conversionis Avoided 326
Restriction Optimization. 328
Single Predicate Optimization 328
Closed Range Optimization. 328
Modified Disjunct Optimization. 328
Conjunct Optimization 329
Disjunctive Normal Form Optimization 329
Modified Conjunctive Normal Form Optimization 330
Closing Open Ended Ranges through Modified CNF Optimization. 330
Single Join Condition Optimization. 330
Conjunct with Join Conditions Optimization 331
Modified Conjunctive Normal Form with Join Conditions Optimization 331
Closing Join Condition Open Ended Ranges through Modified CNF Optimization. 332
Multi-Index Modified Disjunct Optimization 332
Push-Down Filters 333
Efficient Useof Indexes 334
DISTINCT in Aggregate Functions 334
DISTINCT Preceding Selection List. 334
Relaxed Index Segment Order Sensitivity. 334
Relaxed Segment Ascending Attribute Sensitivity o o 0L 335
Search Update Optimization 335
Temporary Table Performance 337
Row Prefetch. 338
Terminology. 339
AggregateFunction L 339
ClosedRange. 339
Conjunct e 339
Conjunctive Normal Form (CNF) o o 339
Disjunct. e 339
Disjunctive Normal Form (DNF) 339
Expression 340
Index. e 340
Join Condition e e e e e 340

vii

Leading Segments oottt 340

Modified Conjunctive Normal Form (Modified CNF) 340
Modified Disjuncto e e 340
Open-Ended Range 341
Predicate 341
Restriction e 341
6 System CatalogFunctions 343
Retrieving Metadata with System Catalog Functions
Zen System Catalog Functions. 344
ReturnStatus. 344
Summary 345
dbo.fSQLCOIUMIS ot e e e e e e 346
Syntax 346
Arguments . .. L. 346
Returned ResultSet 346
Example. 348
dbo.fSQLForeignKeys 349
Syntax e 349
Arguments 349
Returned Result Set 349
Example. e 350
dbofSQLPrimaryKeys 351
Syntax e 351
Arguments e 351
Returned ResultSet 351
Example. L 351
dbo.fSQLProcedures o o v e e e e 353
Syntax e 353
Arguments 353
Returned ResultSet 353
Example. o e 354
dbo.fSQLProcedureColumms v it e e e e e e 356
Syntax e 356
Arguments 356
Returned ResultSet 356
Example. o 358
dbo.fSQLSpecialColumns 360
Syntax e 360
Arguments 360
Returned ResultSet 360
Example. 361
dbofSQLSAtIStICS. v o e e e e e e e e e 362
Syntax e 362
ATgUmENnts 362
Returned Result Set 362
Example. o 363
dbo.fSQLTables e 365
Syntax e 365
Arguments 365
Returned Result Set e 365
Example.o 365
dbo.fSQLDBTableStat e e e e e 367

viii

Syntax 367

Argument 367
Returned Result Set 367
Example. e 368
String Search Patterns 369
Examples 369
A DataTypes e 371
Zen Supported Data Types
Zen Supported Data Types. 372
DataTypeRanges 374
Operator Precedence 376
Data TypePrecedence. 377
Precision and Scale of Decimal Data Types. 378
Scale of Time Stamp Data Types and Returned Function Values 378
Truncation L 379
NotesonDataTypes 381
CHAR, NCHAR, VARCHAR, NVARCHAR, LONGVARCHAR, and NLONGVARCHAR. . . 381
BINARY and LONGVARBINARY 381
Limitations on LONGVARCHAR, NLONGVARCHAR and LONGVARBINARY 382
DATETIME. 382
UNIQUEIDENTIFIER e 384
Representation of Infinity. 385
Legacy Data Types 386
Btrieve Key Data Types. 387
AUTOINCREMENT 387
AUTOTIMESTAMP. 389
BELOAT . . . o 390
STRING. 391
CURRENCY 391
DATE . . . 391
DECIMAL 391
FLOAT . . . 392
GUID . . . 393
INTEGER. 393
LOGICAL. 394
LSTRING 394
MONEY. . . . 394
NUMERIC 394
NUMERICSA 396
NUMERICSLB. 396
NUMERICSLS 397
NUMERICSTB. 397
NUMERICSTS 397
TIME . . 398
TIMESTAMP. 398
TIMESTAMP2 399
UNSIGNED BINARYo 401
WSTRING . . . 401
WIZSTRING 401
ZSTRING 401
Non-KeyDataTypes 403
BLOB . . . 403

ix

B SQLReservedWords it 405
Supported Zen Reserved Words
Reserved Words.o o 406
Wordsto Avoid o 411
C SystemTables e 415
Zen System Tables Reference
OVEIVIEW o o e e 416
System Tables Structure 418
V1 Metadata System Tables. 418
V2 Metadata System Tables. 430
D SQL Access for COBOL Applications. 447
Providing SQL Access for COBOL Applications
Overview of Zen Support for COBOL e 448
Restrictions o o e e 448
SQL Statements. e e e e e e e e 448
ComPpoOnents. o vt e e e e e e 450
Using SQL ACCESS. o o o 452
Step 1: Modify the Sample XML Templates. 452
Step 2: Copy the Data File Specified in the XML Template 452
Step 3: Run the Schema Executor Utility 452
Step 4: Optionally, Deploy the System Tables. 458
Example of How to Execute a Sample XML File. 459
Additional Notes. oo 459
E QueryPlanViewer e e e 461
A Utility to Help You Optimize Queries
Query Plan Settings. 462
Graphical User Interface 463
Query Viewer. L e 463
Plan Viewer. 463
Query Plan Viewer Tasks o 467
Examining Query Plans and Evaluating Query Performance 472
Creating Example Query Plans for Comparison 472
Viewing the Example Query Plans. 472

About This Document

This documentation covers the scope and functionality of the Zen query language.

Xi

Who Should Read this Manual

This manual provides information for using Zen.

Actian Corporation would appreciate your comments and suggestions about this manual. As a user of
our documentation, you are in a unique position to provide ideas that can have a direct impact on future
releases of this and other manuals. If you have comments or suggestions for the product documentation,
post your request at the Community Forum on the Zen Web site.

Xxii

Conventions

Unless otherwise noted, command syntax, code, and examples use the following conventions:

Case

[]

< >

variable

Commands and reserved words typically appear in uppercase letters. Unless the manual states
otherwise, you can enter these items using uppercase, lowercase, or both. For example, you can type
MYPROG, myprog, or MYprog.

Square brackets enclose optional information, as in [log_name]. If information is not enclosed in square
brackets, it is required.

A vertical bar indicates a choice of information to enter, as in [file name | @file name].
Angle brackets enclose multiple choices for a required item, as in /D=<5]6]7>.
Words appearing in italics are variables that you must replace with appropriate values, as in file name.

An ellipsis following information indicates you can repeat the information more than one time, as in
[parameter ...].

The symbol ::= means one item is defined in terms of another. For example, a::=b means the item a is
defined in terms of b.

An asterisk is used as a wild card symbol to indicate a series of APIs with the same prefix.

Note Unless otherwise noted, all references in this book to the Zen product refer to the current

version.

For More Information

For complete information on the ODBC specification, see the Microsoft ODBC documentation.

Xiv

chapter

SQL Overview |
1

An Overview of the Structured Query Language (SQL) and Zen Support for SQL

The following topics present an overview of SQL and provide details on Zen support for SQL.

= Working with SQL in Zen
= Zen Metadata

= Relational Engine Limits

You can also go to SQL Syntax Reference to look up specific SQL grammar supported by Zen.

Working with SQL in Zen

Structured Query Language (SQL) uses Englishlike statements to perform database operations. Both the
American National Standards Institute (ANSI) and IBM have defined SQL standards. The IBM standard
is Systems Application Architecture (SAA). Zen implements most features of both ANSI SQL and IBM
SAA SQL and provides extensions that neither standard specifies. The following table lists the SQL
statements that you can create in Zen and the tasks you can accomplish using each type of statement.

Table 1 ~ SQL Statement Types and Related Tasks

SQL Statement Type Tasks

Data Definition Create, modify, and delete tables.

Create and delete views.

Create and delete indexes.

Create and delete stored SQL procedures.
Create and delete triggers.

Create and delete user-defined functions.

Data Manipulation Retrieve, insert, update, and delete data in tables.
Define transactions.

Define and delete views.

Execute stored SQL procedures.

Execute triggers.

Data Control Enable and disable security for a dictionary.
Create and delete users.

Add and drop users from groups.

Change user passwords.

Grant and revoke table access rights.

The rest of this topic gives general information about each type of SQL statement. For detailed
information about each statement, see SQL Syntax Reference.

m Data Definition Statements

» Data Manipulation Statements

m Data Control Statements

Note Most SQL editors do not use statement delimiters to execute multiple statements, but SQL
Editor in ZenCC requires them. To execute the examples here in other environments, you may need
to remove the pound sign or semicolon separators.

Data Definition Statements

Data definition statements let you specify the characteristics of your database. When you execute data
definition statements, Zen stores the description of your database in a data dictionary. You must define
your database in the dictionary before you can store or retrieve information.

Zen allows you to construct data definition statements to do the following:

m Create, modify, and delete tables.
m Create and delete views.

m Create and delete indexes.

m Create and delete triggers.
m Create and delete stored procedures.

m Create and delete user-defined functions.

The following topics briefly describe the SQL statements associated with each of these tasks. For general
information about defining the characteristics of your database, see Zen Programmer’s Guide.

Creating, Modifying, and Deleting Tables
You can create, modify, and delete tables from a database using the following SQL statements.

Table 2 Data Definition Statements — Tables

CREATE TABLE Defines a table and optionally creates the corresponding data file.

ALTER TABLE Changes a table definition. With an ALTER TABLE statement, you can perform such actions as
add a column to the table definition, remove a column from the table definition, change column
data type or length (or other characteristics), add or remove a primary key or a foreign key, and
associate the table definition with an different data file.

DROP TABLE Deletes a table from the data dictionary and optionally deletes the associated data file.

Creating and Deleting Views
You can create and delete views from a database using the following SQL statements.

Table 3 Data Definition Statements — Views

CREATE VIEW Defines a new view.

DROP VIEW Deletes a view.

Creating and Deleting Indexes
You can create and delete indexes from a database using the following SQL statements.

Table 4 Data Definition Statements - Indexes

CREATE INDEX Defines a new index (a named index) for an existing table.

DROP INDEX Deletes a named index.

Creating and Deleting Triggers
You can create and delete triggers from a database using the following SQL statements.

Table 5 Data Definition Statements — Triggers

CREATE TRIGGER Defines a trigger for an existing table.

DROP TRIGGER Deletes a trigger.

Zen provides additional SQL control statements, which you can only use in the body of a trigger. You
can use the following statements in triggers.

Table 6 Data Definition Statements — Trigger Control

BEFORE Defines the trigger execution before the INSERT,
UPDATE, or DELETE operation.

AFTER Defines the trigger execution after the INSERT, UPDATE,
or DELETE operation.

Creating and Deleting Stored Procedures

A stored procedure consists of statements you can precompile and save in the dictionary. To create and
delete stored procedures, use the following SQL statements.

Table 7 Data Definition Statements — Stored Procedure

CREATE PROCEDURE Stores a new procedure in the data dictionary.

DROP PROCEDURE Deletes a stored procedure from the data dictionary.

Zen provides additional SQL control statements, which you can only use in the body of a stored
procedure. You can use the following statements in stored procedures.

Table 8 Data Definition Statements — Stored Procedure Control

IF.. THEN...ELSE Provides conditional execution based on the truth value of a condition.

LEAVE Continues execution by leaving a block or loop statement.

LOOP Repeats the execution of a block of statements.

WHILE Repeats the execution of a block of statements while a specified
condition is true.

Creating and Deleting User-Defined Functions (UDF)

In addition to the built-in functions, Zen allows you to create your own user-defined functions (UDF)
and use them in SQL statements.

A user-defined function is a database object that encapsulates one or more SQL statements that can be
reused. A user-defined function takes zero or more input arguments and evaluates a return value, which
is a scalar value.

User-defined functions are always defined within the context of a database. Successful execution of this
statement results in the storing of the UDF definition in the specific database. Once stored, the UDF can
be modified, invoked, and deleted.

Zen supports scalar user-defined functions.

A scalar user-defined function returns a single value of the data type specified in the RETURNS clause
of the SQL statement. A scalar UDF can contain multiple SQL statements. You can specify any data type
value for the returned data except text, ntext, image, cursor, or timestamp.

To create and delete user-defined functions, use the following SQL statements.

Table 9 Data Definition Statements — User-Defined Function

CREATE FUNCTION Creates a scalar user-defined function in the database.

DROP FUNCTION Deletes a scalar user-defined function from the database.

Data Manipulation Statements

Data manipulation statements let you access and modify the contents of your database. Zen allows you
to construct data manipulation statements to do the following:

m Retrieve data from tables.
= Modify data in tables.

m Define transactions.

m Create and delete views.

m Execute stored procedures.

= Execute triggers.

The following sections briefly describe the SQL statements associated with each of these tasks.

Retrieving Data
All statements you use to retrieve information from a database are based on the SELECT statement.

Table 10 Data Manipulation Statements - Retrieving Data

SELECT Retrieves data from one or more tables in the database.

When you create a SELECT statement, you can use various clauses to specify different options. The types
of clauses you use in a SELECT statement are as follows:

Table 11 Data Manipulation Statements — Retrieving Data Options

FROM Specifies the tables or views from which to retrieve data.
WHERE Defines search criteria that qualify the data a SELECT statement retrieves.
GROUP BY Combines sets of rows according to the criteria you specify and allows you to determine aggregate

values for one or more columns in a group.

HAVING Allows you to limit a view by specifying criteria that the aggregate values of a group must meet.

ORDER BY Determines the order in which Zen returns selected rows.

In addition, you can use the UNION keyword to obtain a single result table from multiple SELECT
queries.

Modifying Data

You can add, change, or delete data from tables and views by issuing statements such as the following:

Table 12 Data Manipulation Statements - Modifying Data

INSERT Adds rows to one or more tables or a view.
UPDATE Changes data in a table or a view.
DELETE Deletes rows from a table or a view.

When you create a DELETE or UPDATE statement, you can use a WHERE clause to define search
criteria that restrict the data upon which the statement acts.

Creating and Deleting Views
You can create and delete views using the following SQL statements.

Table 13 Data Manipulation Statements — Views

CREATE VIEW Defines a database view and stores the definition in the dictionary.

DROP VIEW Deletes a view from the data dictionary.

Executing Stored Procedures

A stored procedure consists of statements that you can precompile and save in the dictionary. To execute
stored procedures, use the following SQL statements.

Table 14 Data Manipulation Statements- Stored Procedures

CALL or EXEC[UTE] | Recalls a previously compiled procedure and executes it.

Executing System Stored Procedures

A system stored procedure helps you accomplish those administrative and informative tasks that are not
covered by the Data Definition Language. The system stored procedures have a psp_ prefix. To execute
stored procedures, use the following SQL statements.

Table 15 Data Manipulation Statements — System Stored Procedures

CALL or EXEC[UTE] Recalls a system stored procedure and executes it.

For more details, see System Stored Procedures.

Executing Triggers

A trigger consists of statements you can precompile and save in the dictionary. Triggers are executed
automatically by the engine when the specified conditions occur.

Data Control Statements

Data control statements let you define security for your database. When you create a dictionary, no
security is defined for it until you explicitly enable security for that dictionary. Zen allows you to
construct data control statements to do the following:

Enable and disable security.
Create and delete users and groups.

Add and drop users from groups and change user passwords.

» Grant and revoke rights.

Note If you have a Btrieve owner name set on a file that is a table in a secure database, the Master
user of the database must include the owner name in any GRANT statement to give permissions on

the table to any user, including the Master user.

The following sections briefly describe the SQL statements associated with each of these tasks.

Enabling and Disabling Security

You can enable or disable security for a database by issuing statements using the following statement:

Table 16 Data Control Statements — Security

SET SECURITY

Enables or disables security for the database and sets the Master password.

Creating and Deleting Users and Groups

You can create or delete users and user groups for the database using the following SQL statements.

Table 17 Data Control Statements — Groups and Users

ALTER USER

Rename a user or change a password.

CREATE USER

Creates a new user with or without a password or membership in a group.

DROP USER

Delete a user.

ALTER GROUP

Adds users to a group. Drops users from a group.

CREATE GROUP

Creates a new group of users.

DROP GROUP

Deletes a group of users.

GRANT LOGIN TO

Creates users and passwords, or adds users to groups.

REVOKE LOGIN
FROM

Removes a user from the dictionary.

Granting and Revoking Rights

You can assign or remove rights from users or groups by issuing statements using the following:

Table 18 Data Control Statements - Rights

GRANT (access rights) Grants a specific type of rights to a user or a group. The rights you can grant with a
GRANT (access rights) statement are All, Insert, Delete, Alter, Select, Update, and
References.

GRANT CREATETAB TO Grants the right to create tables to a user or a group.

REVOKE (access rights) Revokes access rights from a user or a group.

REVOKE CREATETAB FROM Revokes the right to create tables from a user or a group.

Zen Metadata

The Zen relational interface supports two versions of metadata, referred to as version 1 or V1 and
version 2 or V2.

Metadata version is a property of the database that you specify when you create a database. V1 metadata
is the default. When you create a database, you must specify V2 metadata if you want that version.

Metadata version applies to all data dictionary files (DDFs) within that database. A single database
cannot use some DDFs with V1 metadata and others with V2 metadata. DDFs from the two versions
cannot interact.

The database engine can, however, concurrently access multiple databases and each database can use
either V1 metadata or V2 metadata.

All databases created with Zen versions before PSQL v10 use V1 metadata. A database created in PSQL
v10 or later may use either metadata version depending on the setting at the time of database creation.

Comparison of Metadata Versions

Version 2 metadata allows for many identifier names to be up to 128 bytes long. See Limits/Conditions
of Zen Features for additional information. In addition, V2 metadata allows for permissions on views
and stored procedures. See Permissions on Views and Stored Procedures.

DDF names for V2 metadata differ from those for V1. V2 DDFs contain additional fields and changes
to V1 fields. See System Tables.

Relational Engine Limits

The following table shows the limits or conditions that apply to features of the Relational Engine. A Zen
database may contain four billion objects in any valid combination. The objects are persisted in the data

dictionary files.

See also Naming Conventions in Zen Programmer’s Guide.

Table 19 Limits/Conditions of Zen Features

Zen Feature Limit or Condition Metadata
A% V2

Arguments in a parameter list for a stored 300 VAN 4
procedure
CHAR column size 8,000 bytes’ VAN 4
Character string literal See String Values. VAN 4
Columns in a table 1,536 J | /L
Columns allowed in a trigger or stored procedure | 300 J | L
Column name? 20 bytes V4

128 bytes V4
Column size 2GB VAN 4
Correlation name Limited by memory VAN 4
Cursor name 18 bytes J | /L
Database name? 20 bytes J | L
Database sessions Limited by memory J | L
Data file path name 64 bytes (the maximum length of the data file path name is a /

combination of Xf$Loc path and the data file path)

250 bytes (the maximum length of the data file path name is a /

combination of Xf§Loc path and the data file path)
Function (user-defined) name? 30 bytes /

128 bytes V4
Group name? 30 bytes 4

128 bytes V4
Index name? 20 bytes V4

128 bytes v

10

Table 19 Limits/Conditions of Zen Features

Zen Feature Limit or Condition Metadata
V1 V2
Key name? 20 bytes J
128 bytes V4
Label name limited by memory J | /L
NCHAR column size 4,000 UCS-2 units (8,000 bytes') J | /L
NVARCHAR column size 4,000 UCS-2 units (8,000 bytes1) ‘/ /
Number of ANDed and ORed predicates 3000 S | S
Number of database objects 65,536 J
4 billion v
Parameter name 126 bytes J | /L
Password? 8 bytes V4
128 bytes v
Procedure name? 30 bytes V4
128 bytes V4
Referential integrity (RI) constraint name 20 bytes 4
128 bytes V4
Representation of single quote Two consecutive single quotes (") J /
Result name Limited by memory J | L
Savepoint name Limited by memory J | L
SELECT list columns in a query 1,600 J | S
Size of a single term (quoted literal string) in a SQL| 14,997, excluding null terminator and quotations (15,000 total) " |
statement
SQL statement length 512 KB VAN 4
SQL statements per session Limited by memory VAN 4
Stored procedure size 64 KB J | /L
Table name? 20 bytes 4
128 bytes V4

11

Table 19 Limits/Conditions of Zen Features

Zen Feature Limit or Condition Metadata
\'%| V2

Table rows 13.0 file format: 9,223,372,036,854,775,807 (~9.2 quintillion) | o |

Older file formats: 2,147,483,647 (~2.1 billion)
Joined tables per query Limited by memory S | L
Trigger name? 20 bytes 4

128 bytes V4
User name? 30 bytes V4

128 bytes v
VARCHAR column size 8,000 bytes’ J | S
Variable name Limited by memory J | S
View name? 20 bytes 4

128 bytes V4

"The maximum size of a CHAR, NCHAR, VARCHAR or NVARCHAR column that may be fully indexed is 255 bytes

2See also Identifier Restrictions in Advanced Operations Guide.

Fully Qualified Object Names

A fully qualified object name uses dot notation to combine database and object names. For example, if
the database mydbase has a view myview, then its fully qualified object name is mydbase.myview.

Fully qualified object names must be unique within a database. For example, if database mydbase has
table acctpay and user-defined function acctpay, then Zen cannot resolve the name mydbase.acctpay.

Delimited Identifiers in SQL Statements

Table, column, and index names must be delimited if they contain spaces or nonstandard characters or
if the identifier is a keyword. The delimiter character is the double quotation mark.

Examples

SELECT "last-name' FROM ‘‘non-standard-tbl"

The hyphen is a nonstandard character.

SELECT "password”™ FROM my_pword_tbl

“Password” is a keyword in the SET PASSWORD statement.

12

SQL Syntax Reference

A Reference to Zen Supported Syntax

The following topics cover the SQL grammar supported by Zen:

Literal Values

SQL Grammar in Zen
Grammar Element Definitions
Global Variables

Other Characteristics

chapter

13

Literal Values

Zen supports the standard literal formats. This topic provides some of the most common examples.
m String Values

m Number Values

m Date Values

m Time Values

m Time Stamp Values

String Values

String constants may be expressed in SQL statements by surrounding the given string of characters with
single quotes. If the string itself contains a single-quote or apostrophe, the character must be preceded
by another single-quote.

String literals have type VARCHAR. Characters are encoded using the database code page. If the literal
is preceded by the letter N, the literal has type NVARCHAR and characters are encoded using UCS-2. A
literal embedded in a SQL query string may go through additional encoding conversions in the SQL
access methods before final conversion in the SQL engine. In particular, if the SQL text is converted to
an encoding that does not support all Unicode characters, characters in the SQL text may be lost before
the engine converts the string literal to NVARCHAR.

Examples

In the first example, the apostrophe or single quotation mark contained within the string must be
escaped by another single quotation mark.

SELECT * FROM tl1 WHERE cl = "Roberta”"s Restaurant”
SELECT STREET FROM address WHERE city LIKE "san%”

Number Values

Date Values

Date constants may be expressed in SQL statements as a character string or embedded in a vendor string.
The first case is treated as data type CHAR and the vendor string representation is treated as a value of
type DATE. This distinction becomes important when conversions are attempted.

Zen partially supports extended SQL grammar as outlined in this function.
Zen supports the date literal format 'YYYY-MM-DD'.
Dates may be in the range of year 0 to 9999.

Examples
The next two statements return all the classes whose start date is after 1995-06-05.

SELECT * FROM Class WHERE Start_Date > "1995-06-05"
SELECT * FROM Class WHERE Start_Date > {d "1995-06-05"}

14

Time Values
Zen supports the time literal format ' HH:MM:SS'.

Time constants may be expressed in SQL statements as a character string or embedded in a vendor
string. Character string representation is treated as a string of type CHAR and the vendor string
representation as a value of type TIME.

Zen partially supports extended SQL grammar as outlined in this function.

Examples

The following two statements retrieve records from the Class table where the class start time is 14:00:00:

SELECT * FROM Class WHERE Start_time
SELECT * FROM Class WHERE Start_time

*14:00:00"
{t "14:00:00"}

Time Stamp Values

Time stamp constants may be expressed in SQL statements as a character string or embedded in a vendor
string. Zen treats the character string representation as a string of type CHAR and the vendor string
representation as a value of type SQL_TIMESTAMP.

Zen supports the time stamp literal format 'YYYY-MM-DD HH:MM:SS.MMM'

Examples

The next two statements retrieve records from the Billing table where the start day and time for the log
is 1996-03-28 at 17:40:49.

SELECT * FROM Billing WHERE log
SELECT * FROM Billing WHERE log

"1996-03-28 17:40:49"
{ts "1996-03-28 17:40:49"}

15

SQL Grammar in Zen

The following topics cover the SQL grammar supported by Zen. Statements and keywords are listed in
alphabetical order.

16

Note You can use the SQL Editor in with Zen Control Center to test most of the SQL examples.
Exceptions are noted in the discussion of the grammar elements. For more information, see SQL
Editor in Zen User’s Guide.

Note Most popular SQL editors do not use statement delimiters to execute multiple statements.
However, SQL Editor in ZenCC requires them. If you wish to execute the examples in other
environments, you may need to remove the pound sign or semicolon separators.

ADD

Remarks

Use the ADD clause within the ALTER TABLE statement to specify one or more column definitions,
column constraints, or table constraints to be added.

See Also

ALTER TABLE
FOREIGN KEY
PRIMARY KEY

17

ALL

Remarks

When you specify the ALL keyword before a subquery, Zen performs the subquery and uses the result
to evaluate the condition in the outer query. If all the rows returned by the subquery meet the outer query
condition for a particular row, then Zen includes that row in the final result table generated by the
statement.

Generally, you can use the EXISTS or NOT EXISTS keyword instead of ALL.

Examples

The following SELECT statement compares the ID column from the Person table to the ID columns in
the result table of the subquery:

SELECT p.ID, p.Last_Name

FROM Person p

WHERE p.ID <> ALL

(SELECT f.ID FROM Faculty ¥ WHERE f.Dept_Name = "Chemistry®)

If the ID value from Person does not equal any of the ID values in the subquery result table, Zen includes
the row from Person in the final result table of the statement.

See Also

SELECT (with INTO)
SELECT

UNION

18

ALTER (rename)

The ALTER (rename) statement allows you to change the name of indexes, user-defined functions,
stored procedures, tables, triggers, or views.

Syntax
ALTER object-type RENAME qualified-object-name TO new-object-name

object-type - := INDEX
| FUNCTION
| PROCEDURE
| TABLE

| TRIGGER

| VIEW

qualified-object-name ::= database-name . table-name . object-name
| database-name . object-name
| table-name . object-name

| object-name
database-name, table-name, object-name, new-object-name ::= user-defined name

Remarks
You cannot rename the following objects if they were created with Zen versions before PSQL v9:

m Stored procedures
m Triggers
m Views

In these earlier releases, the system table index on the name of these objects was created as not
modifiable. The indexes for these objects became modifiable in PSQL v9.

You can use database-name to qualify any object-type. However, if it is used to qualify an INDEX or
TRIGGER object, you must also include table-name. You can use table-name to qualify only the objects
INDEX and TRIGGER.

The ALTER statement can rename an object in a database. You must use database-name to qualify object-
type if the object resides in a database to which your session is not currently connected. The renamed
object occurs in the same database as database-name.

If you omit database-name as a qualifier, the database to which your session is currently connected is
used to identify and rename the objects.

Note that new-object-name never uses a database name as a qualifier. The context of the new name
always matches the context of the original name.

Note The database engine does not check dependencies for renamed objects. Be sure that all objects
with a dependency on the previous name are revised as needed. For example, if a trigger refers to a
table named t1 and you rename table t1 to t5, the trigger now contains invalid SQL that will fail.

19

You can also use the psp_rename system stored procedure to rename objects.

Examples

The following statement alters the name of index suplid to vendor_id in the database to which your
session is currently connected. The index applies to table region5.

ALTER INDEX RENAME region5.suplid TO vendor_id

The following statement alters the name of the user-defined function calbrned to caloriesburned in
database foodforlife.

ALTER FUNCTION RENAME foodforlife.calbrned TO caloriesburned

The following statement alters the name of stored procedure checkstatus to isEligible in database
international.

ALTER PROCEDURE RENAME international.checkstatus TO isEligible

The following statement alters the name of table payouts to accts_payable in the database to which your
session is currently connected.

ALTER TABLE RENAME payouts TO accts_payable

The following statement alters the name of trigger testtrig3 to new_customer in table domestic and
database electronics.

ALTER TRIGGER RENAME electronics.domestic.testtrig3 TO new_customer

The following statement alters the name of view suplrcds to vendor_codes in the database to which your
session is currently connected.

ALTER VIEW RENAME suplrcds TO vendor_codes

See Also

CREATE FUNCTION
CREATE PROCEDURE
CREATE TABLE
CREATE TRIGGER
CREATE VIEW

psp_rename

20

ALTER GROUP

The ALTER GROUP statement adds or removes a user account from a group.

Syntax
ALTER GROUP group-name

<ADD USER user-name [, user-name]...

| DROP USER user-name [, user-name]...>

Remarks
Only the Master user can execute this statement.
This statement must be used with one of the two available keywords.

A user account cannot be added to a group if the group is not already created in the database. To create
users and add them to groups simultaneously, see GRANT.

Dropping a user account from a group does not remove the group from the database.

User accounts cannot belong to multiple groups simultaneously. A user account cannot be added to a
group if it is currently a member of another group. Such a user account must first be dropped from its
current group and then added to another group.

A user name must be enclosed in double quotes if it contains spaces or other nonalphanumeric
characters.

For further general information about users and groups, see Master User and Users and Groups in
Advanced Operations Guide, and Assigning Permissions Tasks in Zen User’s Guide.

Examples

The following examples show how to add a user account to a group:
ALTER GROUP developers ADD USER pgranger

The existing user account pgranger is added to the existing group developers.

ALTER GROUP developers ADD USER "polly granger™

The user account polly granger (containing nonalphanumeric characters) is added to the group
developers.

ALTER GROUP developers ADD USER "polly granger"™, bflat

The user accounts polly granger (containing nonalphanumeric characters) and bflat are added to the
group developers.

The following examples show how to drop a user account from a group.
ALTER GROUP developers DROP USER pgranger

The user account pgranger is removed from the group developers.

ALTER GROUP developers DROP USER *‘polly granger™

21

The user account polly granger (with a name containing nonalphanumeric characters) is removed from
the group developers.

ALTER GROUP developers DROP USER "polly granger™, bflat

The user accounts polly granger (containing nonalphanumeric characters) and bflat are removed from
the group developers.

See Also
ALTER USER
CREATE GROUP
CREATE USER
DROP GROUP
GRANT
REVOKE

SET SECURITY

22

ALTER TABLE
The ALTER TABLE statement modifies a table definition.

Syntax

ALTER TABLE table-name [IN DICTIONARY]
[USING “path_name™] [WITH REPLACE] alter-options

table-name ::= user-defined name

option -:= DCOMPRESS | PCOMPRESS | PAGESIZE = size | SYSDATA_KEY_2
path_name ::= a simple file name or relative path and file name
alter-options ::= alter-option-list] | alter-option-list2

alter-option-listl ::= alter-option | (alter-option [, alter-option]...)
alter-option z:= ADD [COLUMN] column-definition

| ADD table-constraint-definition

| ALTER [COLUMN] column-definition
| DROP [COLUMN] column-name

| DROP CONSTRAINT constraint-name

| DROP PRIMARY KEY

| MODIFY [COLUMN] column-definition

alter-option-list2 - := PSQL_MOVE [COLUMN] column-name TO [[PSQL_PHYSICAL] PSQL_POSITION
1 new-column-position | RENAME COLUMN column-name TO new-column-name

column-definition ::= column-name data-type [DEFAULT default-value-expression] [column-constraint [
column-constraint]... [CASE (string) | COLLATE collation-name 1]

column-name ::= user-defined name

new-column-position -:= new ordinal position (a positive integer value). The value must
be greater than zero and less than or equal to the total number of columns in the
table.

new-column-name ::= user-defined name

data-type ::= data-type-name [(precision [, scale]) 1]

precision I:I= integer
scale - := integer
default-value-expression - := default-value-expression + default-value-expression

default-value-expression - default-value-expression

default-value-expression * default-value-expression

default-value-expression & default-value-expression

|
|
| default-value-expression / default-value-expression
|
| default-value-expression | default-value-expression
|

default-value-expression ™ default-value-expression

23

(default-value-expression)
—default-value-expression
+default-value-expression
~default-value-expression

?

literal

scalar-function

{ fn scalar-function %}

USER
NULL

default-literal - := “string™ | N=string®

number

{ d “date-literal™ }

{ t “time-literal” }

{ ts “timestamp-literal™ }

default-scalar-function ::= USERQ)

NULLQO

NOWQ)

CURDATE(Q)

CURTIMEQ)
CURRENT_DATE(Q)
CURRENT_TIMEQ)
CURRENT_TIMESTAMPQ)
CONVERT(Q)

default-literal - := “string™ | N=string®

number

{ d “date-literal* }

{ t “time-literal™ }

{ ts “timestamp-literal™ }

default-scalar-function ::= USERQ)

NULLQO

NOWQ)

CURDATEQ)

CURTIMEQ)
CURRENT_DATEQ)
CURRENT_TIMEQ)
CURRENT_TIMESTAMPQ)

CONVERTQ)
column-constraint -:= [CONSTRAINT constraint-name | col-constraint
constraint-name ::= user-defined-name

24

col-constraint = NOT NULL
| NOT MODIFIABLE
| UNIQUE
| PRIMARY KEY
| REFERENCES table-name [(column-name) 1 [referential-actions]

referential-actions 1 == referential-update-action [referential-delete-action]

| referential-delete-action [referential-update-action]

referential-update-action -:= ON UPDATE RESTRICT

referential-delete-action -:= ON DELETE CASCADE
| ON DELETE RESTRICT

collation-name ::= “"string”
table-constraint-definition ::= [CONSTRAINT constraint-name] table-constraint
table-constraint - := UNIQUE (column-name [, column-name ...)

| PRIMARY KEY (column-name [, column-name]...)
| FOREIGN KEY (column-name [, column-name |)
REFERENCES table-name

[C column-name [, column-name ...)]

[referential-actions]

Remarks
See CREATE TABLE for information pertaining to primary and foreign keys and referential integrity.

Conversions between CHAR, VARCHAR, or LONGVARCHAR and NCHAR, NVARCHAR, or
NLONGVARCHAR assume that CHAR values are encoded using the database code page. A column of
type LONGVARCHAR cannot be altered to type NLONGVARCHAR nor NLONGVARCHAR to
LONGVARCHAR.

ALTER TABLE requires an exclusive lock on a table. If the same table is being held open with another
statement, ALTER TABLE fails and returns status code 88. Ensure that you execute all data definition
statements before executing data manipulation statements. For an example showing this, see PSQL_
MOVE.

An ALTER TABLE statement with the SYSDATA_KEY_2 keyword automatically changes the file to
version 13.0 if it is not already in that format. It then adds system data v2, which enables the sys$create
and sys$update virtual columns for use in queries.

Use of IN DICTIONARY with the SYSDATA_KEY_2 keyword causes the ALTER TABLE statement to
ignore SYSDATA_KEY_2, and the sys$create and sys$update virtual columns are not available for the
table.

IN DICTIONARY

The purpose of using this keyword is to notify the database engine that you wish to make modifications
to the DDFs, while leaving the underlying physical data unchanged. IN DICTIONARY is a powerful
feature for advanced users. It should only be used by system administrators, and only when absolutely

25

necessary. Normally, Zen keeps DDFs and data files totally synchronized, but this feature allows users
the flexibility to force table dictionary definitions to match an existing data file. This can be useful when
you want to create a definition in the dictionary to match an existing data file, or when you want to use
a USING clause to change the data file path name for a table.

You cannot use IN DICTIONARY on a bound database.

IN DICTIONARY is allowed on CREATE and DROP TABLE, in addition to ALTER TABLE. IN
DICTIONARY affects dictionary entries only, no matter what CREATE/ALTER options are specified.
Since Zen allows multiple options (any combination of ADD, DROP, ADD CONSTRAINT, and so on),
IN DICTIONARY is honored under all circumstances to guarantee only the DDFs are affected by the
schema changes.

The error “Table not found” results if you query a detached table or a table that does not exist. If you
determine that a table exists but you receive the “Table not found” error, the error resulted because the
data file could not be opened. This indicates a detached table. (Tables that exist in the DDFs only (the
data file does not exist) are called detached entries. These tables are inaccessible via queries or other
operations that attempt to open the physical underlying file.)

You can verify whether a table really exists by using the catalog functions (see System Catalog Functions)
or by directly querying the Xf$Name column of X$File:

SELECT * FROM X$File WHERE Xf$Name = "table_name"”

The SELECT statement returns the Xf$Loc value, which is the name of the physical file for the table.
Combine the name with a data path defined for the database to get the complete path to the file.

It is possible for a detached table to cause confusion, so the IN DICTIONARY feature must be used with
extreme care. It is crucial that it should be used to force table definitions to match physical files, not to
detach them. Consider the following examples, assuming that the file test123.btr does not exist. (USING
is explained below, in the next subtopic.)

CREATE TABLE t1 USING "tl.btr® (cl INT)
ALTER TABLE t1 IN DICTIONARY USING "testl23.btr*

Or, combining both statements:
CREATE TABLE t1 IN DICTIONARY USING "testl23.btr" (cl INT)

If you then attempt to SELECT from t1, you receive an error that the table was not found. Confusion can
arise, because you just created the table — how can it not be found? Likewise, if you attempt to DROP the
table without specifying IN DICTIONARY, you receive the same error. These errors are generated
because there is no data file associated with the table.

Whenever you create a relational index definition for an existing Btrieve data file (for example, by issuing
an ALTER TABLE statement to add a column definition of type IDENTITY), Zen automatically checks
the Btrieve indexes defined on the file to determine whether an existing Btrieve index offers the set of
parameters requested by the relational index definition. If an existing Btrieve index matches the new
definition being created, then an association is created between the relational index definition and the
existing Btrieve index. If there is no match, then Zen creates a new index definition and, if IN
DICTIONARY is not specified, a new index in the data file.

USING

The USING keyword allows you to associate a CREATE TABLE or ALTER TABLE action with a
particular data file.

26

Because Zen requires a named database to connect, the path name provided must always be a simple file
name or relative path and file name. Paths are always relative to the first data path specified for the
named database to which you are connected.

The path and file name passed are partially validated when the statement is prepared.
The following rules must be followed when specifying the path name:

m The text must be enclosed in single quotation marks, as shown in the grammar definition.

m Text must be 1 to 64 characters in length for V1 metadata and 1 to 250 characters for V2 metadata,
and is stored in Xf$Loc in X$File. The entry is stored exactly as typed (trailing spaces are truncated
and ignored).

m The path must be a simple, relative path. Paths that reference a server or volume are not allowed.

m Relative paths are allowed to contain a period (? - current directory), double period (", - parent
directory), slash ‘\, or any combination of the three. The path must contain a file name representing
the SQL table name (path_name cannot end in a slash °\’ or a directory name). When you create a file
with CREATE or ALTER TABLE, all file names, including those specified with relative paths, are
relative to the first Data Path as defined in the Named Database configuration. (If you use IN
DICTIONARY, the file name does not have to relative to the first data location.)

m Root-based relative paths are allowed. For example, assuming that the first data path is D:\mydata\
demodata, Zen interprets the path name in the following statement as D:\temp\test123.btr.

CREATE TABLE tl1 USING *\temp\testl23.btr" (cl int)

m Slash (V) characters in relative paths may be specified either Linux style (‘/’) or in the customary
back slash notation (*\’), depending on your preference. You may use a mixture of the two types, if
desired. This is a convenience feature since you may know the directory structure scheme, but not
necessarily know (or care) what type of server you are connected to. The path is stored in X$File
exactly as typed. Zen engine converts the slash characters to the appropriate platform type when
utilizing the path to open the file. Also, since data files share binary compatibility between all
supported platforms, this means that as long as the directory structure is the same between
platforms (and path-based file names are specified as relative paths), the database files and DDFs can
be moved from one platform to another with no modifications. This makes for a much simpler
cross-platform deployment with a standardized database schema.

m If specifying a relative path, the directory structure in the USING clause must first exist. Zen does
not create directories to satisfy the path specified in the USING clause.

Include a USING clause to specify the physical location and name of an existing data file to associate with
an existing table. A USING clause also allows you to create a new data file at a particular location using
an existing dictionary definition. (The string supplied in the USING clause is stored in the Xf$Loc
column of the dictionary file X$File.) The original data file must be available when you create the new
file since some of the file information must be obtained from the original.

In the Demodata sample database, the Person table is associated with the file PERSON.MKD. If you
create a new file named PERSON2.MKD, the statement in the following example changes the dictionary
definition of the Person table so that the table is associated with the new file.

ALTER TABLE Person IN DICTIONARY USING "person2.mkd*

You must use either a simple file name or a relative path in the USING clause. If you specify a relative
path, Zen interprets it relative to the first data file path associated with the database name.

The USING clause can be specified in addition to any other standard ALTER TABLE option. This means
columns can be manipulated in the same statement that specifies the USING path.

27

If you specify a data file name that differs from the data file name currently used to store the table data
and you do not specify IN DICTIONARY, Zen creates the new file and copies all of the data from the
existing file into the new file. For example, suppose person.mkd is the current data file that holds the
data for table Person. You then alter table Person using data file person2.mkd, as shown in the statement
above. The contents of person.mkd are copied into person2.mkd. Person2.mkd then becomes the data
file associated with table Person and database operations affect person2.mkd. Person.mkd is not deleted,
but it is not associated with the database any more.

The reason for copying the data is because Zen allows all other ALTER TABLE options at the same time
as USING. The new data file created needs to be fully populated with data from the existing table. The
file structure is not simply copied, but instead the entire contents are moved over, similar to a Btrieve
BUTIL -CREATE and BUTIL -COPY. This can be helpful for rebuilding a SQL table, or compressing a
file that once contained a large number of records but now contains only a few.

Note ALTER TABLE USING copies the contents of the existing data file into the newly specified
data file, leaving the old data file intact but unlinked.

WITH REPLACE

Whenever WITH REPLACE is specified with USING, Zen automatically overwrites any existing file
name with the specified file name. The file is always overwritten as long as the operating system allows it.

WITH REPLACE affects only the data file and not the DDFs.
The following rules apply when using WITH REPLACE:

» WITH REPLACE can only be used with USING.

= When used with IN DICTIONARY, WITH REPLACE is ignored because IN DICTIONARY
specifies that only the DDFs are affected.

Note No data is lost or discarded if WITH REPLACE is used with ALTER TABLE. The newly
created data file, even if overwriting an existing file, still contains all data from the previous file. You
cannot lose data by issuing an ALTER TABLE command.

Include WITH REPLACE in a USING clause to instruct Zen to replace an existing file (the file must
reside at the location you specified in the USING clause). If you include WITH REPLACE, Zen creates
a new file and copies all the data from the existing file into it. If you do not include WITH REPLACE
and a file exists at the specified location, Zen returns a status code and does not create the new file. The
status code is error -4940.

MODIFY COLUMN and ALTER COLUMN
The ability to modify the nullability or data type of a column is subject to the following restrictions:

m The target column cannot have a PRIMARY/FOREIGN KEY constraint defined on it.

m Ifconverting the old type to the new type causes an overflow (arithmetic or size), the ALTER TABLE
operation is aborted.

» Ifanullable column contains NULL values, the column cannot be changed to a nonnullable column.

28

If you must change the data type of a primary or foreign key column, you can do so by dropping the
constraint, changing the data type of the column, and adding back the constraint. Keep in mind that you
must ensure that all associated key columns remain synchronized. For example, if you have a primary
key in table T1 that is referenced by foreign keys in tables T2 and T3, you must first drop the foreign keys.
Then you can drop the primary key. Then you need to change all three columns to the same data type.
Finally, you must add back the primary key and then the foreign keys.

The ANSI standard includes the ALTER keyword. Zen also supports use of the keyword MODIFY in the
ALTER TABLE statement. The keyword COLUMN is optional. For example:

ALTER TABLE t1 MODIFY cl1 INTEGER
ALTER TABLE t1 ALTER cl INTEGER
ALTER TABLE t1 MODIFY COLUMN cl INTEGER
ALTER TABLE t1 ALTER COLUMN cl INTEGER

Zen allows altering a column to a smaller length if the actual data does not overflow the new, smaller
length of the column. This behavior is similar to that of Microsoft SQL Server.

You can add, drop, or modify multiple columns on a single ALTER TABLE statement. Although it
simplifies operations, this behavior is not considered ANSI-compliant. The following is a sample
multicolumn ALTER statement.

ALTER TABLE t1 (ALTER c2 INT, ADD D1 CHAR(20), DROP C4, ALTER C5 LONGVARCHAR, ADD D2
LONGVARCHAR NOT NULL)

You can convert legacy data types (Pervasive.SQL v7 or earlier) to data types natively supported by the
current Zen release. If you wish to convert new data types backward to legacy data types, contact Zen
Support.

To add a LONGVARCHAR/LONGVARBINARY column to a legacy table that contains a NOTE/LVAR
column, the NOTE/LVAR column first has to be converted to a LONGVARCHAR or
LONGVARBINARY column. After converting the NOTE/LVAR column to LONGVARCHAR/
LONGVARBINARY, you can add more LONGVARCHAR/LONGVARBINARY columns to the table.
Note that the legacy engine does not work with this new table because the legacy engine can work with
only one variable length column per table.

PSQL_MOVE

The PSQL_MOVE syntax allows you to keep the columns of a table at desired ordinal positions. You may
change the ordinal position of existing columns or for a new column after adding it. You can move a
column logically and physically.

Type of Move | Result

Logical Columns are rearranged when listed in a result set, but the physical order of the columns in the table does
not change. For example, you can rearrange how the columns are listed in a result set with a query such as
SELECT * FROM table-name. A logical move affects only queries that list the columns, such as SELECT *
FROM from table-name.

Physical A column is physically relocated from its current position to a new position in the file. A physical move affects
the data file of the table. To move a column physically, you must specify the PSQL_PHYSICAL keyword. If
the PSQL_PHYSICAL keyword is omitted, a logical move occurs by default.

Note that only column offsets in the DDFs are changed if IN DICTIONARY is used in the ALTER TABLE
statement. Columns in the data file are not physically moved because IN DICTIONARY overrides the MOVE
... PSQL_PHYSICAL syntax for the data file.

29

Note Once you move columns logically, that order becomes the default order for listing columns in
result sets. For instance, if you move columns physically after moving them logically, the logical
order is used for queries such as SELECT * FROM from table-name. Logical column changes are
stored in X$Attrib.

The PSQL_MOVE keyword must specify a column location greater than zero but less than the total
number of columns. For example, assume that table t1 has only two columns, coll and col2. Both of the
following statement return an error:

ALTER TABLE t1 PSQL_MOVE coll to O
ALTER TABLE t1 PSQL_MOVE coll to 3

The first statement attempts to move the column to position zero. The second statements attempts to
move the column to position three, which is a number greater than the total number of columns (two).

ALTER TABLE requires an exclusive lock on a table. If the same table is being help open by another
statement, ALTER TABLE fails and returns status code 88. Ensure that you execute all data definition
statements before executing data manipulation statements.

For example, the following stored procedure fails and returns status code 88 because the INSERT
statement has table t1 open, which prevents the ALTER TABLE statement from obtaining an exclusive
lock.

CREATE PROCEDURE procl() AS

BEGIN

CREATE TABLE t1(cl INT,c2 INT,c3 INT);
INSERT INTO t1 VALUES (123,345,678);
ALTER TABLE t1 PSQL_MOVE c3 to 1;

END;

A way to resolve this is to execute the statements pertaining first to the table creation and data insertion,
then call the procedure:
CREATE TABLE t1(cl INT,c2 INT,c3 INT);

INSERT INTO t1 VALUES (123,345,678);
CALL procil;

CREATE PROCEDURE procl() AS
BEGIN

ALTER TABLE t1 PSQL_MOVE c3 to 1;
END;

RENAME COLUMN

Rename column allows you to change the name of a column to a new name. You cannot rename a
column to the name of an existing column in the same table.

Renaming a column can invalidate objects that reference the previous name. For example, a trigger
might reference column cl in table t1. Renaming c1 to c5 results in the trigger being unable to execute
successfully.

You can also use the psp_rename system stored procedure to rename columns.

30

Note The database engine does not check dependencies for renamed columns. If you rename a
column, ensure that all objects with a dependency on the previous (changed from) name are revised
appropriately.

ON DELETE CASCADE
See Delete Rule for CREATE TABLE.

Examples

This section provides a number of examples of ALTER TABLE.

The following statement adds the Emergency_Phone column to the Person table
ALTER TABLE person ADD Emergency_Phone NUMERIC(10,0)

The following statement adds two integer columns coll and col2 to the Class table.

ALTER TABLE class(ADD coll INT, ADD col2 INT)

To drop a column from a table definition, specify the name of the column in a DROP clause. The
following statement drops the emergency phone column from the Person table.

ALTER TABLE person DROP Emergency_ Phone

The following statement drops coll and col2 from the Class table.
ALTER TABLE class(DROP coll, DROP col2)

The following statement drops the constraint c1 in the Faculty table.

ALTER TABLE Faculty(DROP CONSTRAINT c1)

This example adds an integer column col3 and drops column col2 to the Class table

ALTER TABLE class(ADD col3 INT, DROP col2)

The following example creates a primary key named c1 on the ID field in the Faculty table. Note that you
cannot create a primary key on a Nullable column. Doing so returns an error.

ALTER TABLE Faculty(ADD CONSTRAINT cl1 PRIMARY KEY(ID))
The following example creates a primary key using the default key name PK_ID on the Faculty table.
ALTER TABLE Faculty(ADD PRIMARY KEY(ID))

The following example adds the constraint UNIQUE to the columns coll and col2. The combined value
of coll and col2 in any row is unique within the table. Neither column needs to be unique individually.

ALTER TABLE Class(ADD UNIQUE(coll,col2))

31

The following example drops the primary key in the Faculty table. Because a table can have only one
primary key, you cannot add a primary key to a table that already has a primary key defined. To change
the primary key of a table, delete the existing key then add the new primary key.

ALTER TABLE Faculty(DROP PRIMARY KEY)

Before you can drop a primary key from a parent table, you must drop any corresponding foreign keys
from dependent tables.

The following example adds a new foreign key to the Class table. The Faculty_ID column is defined as a
column that does not include NULL values. You cannot create a foreign key on a Nullable column.

ALTER TABLE Class ADD CONSTRAINT Teacher FOREIGN KEY (Faculty_I1D) REFERENCES Faculty
(ID) ON DELETE RESTRICT

In this example, the restrict rule for deletions prevents someone from removing a faculty member from
the database without first either changing or deleting all of that member’s classes. Also note that the
column listed in the REFERENCES clause (ID) is optional. Columns listed in the REFERENCES clause
can be included, if you choose, to improve clarity of the statement. The only columns that can be
referenced in the REFERENCES clause are the primary keys of the referenced table.

The following statement shows how to drop the foreign key added in this example. Zen drops the foreign
key from the dependent table and eliminates the referential constraints between the dependent table and
the parent table.

ALTER TABLE Class DROP CONSTRAINT Teacher

The following example adds a foreign key to the Class table without using the CONSTRAINT clause. In
this case, a foreign key constraint is generated internally to reference the primary key (ID) of Faculty.
The column listed in the REFERENCES clause is optional. Columns listed in the REFERENCES clause
can be included, if you choose, to improve clarity of the statement. The only column that can be used in
the REFERENCES clause is the primary key of the referenced table.

ALTER TABLE Class ADD FOREIGN KEY (Faculty_ID) REFERENCES Faculty (ID) ON DELETE
RESTRICT

This creates foreign key FK_Faculty_ID. To drop the foreign key, specify the CONSTRAINT keyword:
ALTER TABLE Class DROP CONSTRAINT FK_Faculty_ ID

The following example shows adding and dropping of constraints and columns in a table. This statement
drops column salary, adds a column coll of type integer, and drops constraint c1 in the Faculty table.

ALTER TABLE Faculty(DROP salary, ADD coll INT, DROP CONSTRAINT cl)

The following examples both illustrate altering the data type of multiple columns.

ALTER TABLE t1 (ALTER c2 INT, ADD D1 CHAR(20), DROP C4, ALTER C5 LONGVARCHAR, ADD D2
LONGVARCHAR NOT NULL)

ALTER TABLE t2 (ALTER cl CHAR(50), DROP CONSTRAINT MY_KEY, DROP PRIMARY KEY, ADD
MYCOLUMN INT)

32

The following examples illustrate how the column default and alternate collating sequence can be set or
dropped with the ALTER or MODIFY column options.

CREATE TABLE t1 (cl INT DEFAULT 10, c2 CHAR(10))
ALTER TABLE t1 ALTER cl1 INT DEFAULT 20

- resets column c1 default to 20
ALTER TABLE t1 ALTER cl1 INT
— drops column c1 default

ALTER TABLE t1 ALTER c2 CHAR(10)
COLLATE ~file_path\upper.alt®

— sets alternate collating sequence on column c2
ALTER TABLE t1 ALTER c2 CHAR(10)
— drops alternate collating sequence on column c2

Upper.alt treats upper and lower case letters the same for sorting. For example, if a database has values
abc, ABC, DEF, and Def, inserted in that ordered, the sorting with upper.alt returns as abc, ABC, DEE,
and Def. (The values abc and ABC, and the values DEF and Def are considered duplicates and are
returned in the order in which they were inserted.) Normal ASCII sorting sequences upper case letters
before lower case, such that the sorting would return as ABC, DEF, Def, abc.

The following statement logically moves column Registrar_ID from its current position to the second
position when the columns are listed in a results set.

ALTER TABLE Billing PSQL_MOVE Registrar_ID TO 2

The following statement moves columns Amount_Owed and Amount_Paid from their current positions
to the second and third positions, respectively, when the columns are listed in a result set.

ALTER TABLE Billing (PSQL_MOVE Amount_Owed TO 2, PSQL_MOVE Amount_Paid TO 3)

The following statement physically moves column Registrar_ID from its current position to the second
column in the data file. This causes the data file to be rebuilt to reflect the change.

ALTER TABLE Billing PSQL_MOVE Registrar_ID TO PSQL_PHYSICAL 2

The following statement physically moves columns Amount_Owed and Amount_Paid from their
current positions to the second and third column positions, respectively, in the data file.

ALTER TABLE Billing (PSQL_MOVE Amount_Owed TO PSQL_PHYSICAL 2, PSQL_MOVE Amount_Paid
TO PSQL_PHYSICAL 3)

Assume that table t1 contains columns c1 and col2. The following statement renames column c1 to c2.

ALTER TABLE tl1 RENAME COLUMN c1 TO c2

Assume that table t1 contains columns c1 and col2. The following statement returns an error (duplicate
column name) because it attempts to rename a column (col2) to the name of an existing column (c1).

33

ALTER TABLE t1 (RENAME COLUMN cl TO c2, RENAME COLUMN col2 TO cl)

Instead, you must issue two separate ALTER statements. The first renames c1 to c2. The second renames
col2 to cl.

ALTER TABLE t1 (RENAME COLUMN c1 TO c2)
ALTER TABLE t1 (RENAME COLUMN col2 TO cl)
See Also

CREATE TABLE

DROP TABLE

CREATE INDEX

SET DEFAULTCOLLATE

34

ALTER USER

The ALTER USER statement changes the name or password of a user account.

Syntax
ALTER USER user-name < RENAME TO new-user-name | WITH PASSWORD user-password >

Remarks

Only the Master user can rename a user. Other users can change their passwords with the WITH
PASSWORD clause or by using SET PASSWORD. See SET PASSWORD.

Security must be turned on to perform this statement.
This statement must be used with either the RENAME TO option or the WITH PASSWORD keywords.
New-user-name must be unique in the database.

User-name and user-password must be enclosed in double quotes if they contain spaces or other
nonalphanumeric characters. See Granting Privileges to Users and Groups for more information on
created users.

Note For information on password restrictions, see Table 1, Identifier Restrictions by Identifier
Type, and the topic Database Security in Advanced Operations Guide.

For further general information about users and groups, see Master User and Users and Groups in
Advanced Operations Guide and Assigning Permissions Tasks in Zen User’s Guide.

Examples

The following examples show how to rename a user account.
ALTER USER pgranger RENAME TO grangerp

The name of the account pgranger is changed to grangerp.
ALTER USER pgranger RENAME TO "polly granger™

The name of the account pgranger is changed to polly granger containing nonalphanumeric characters.

The following examples show how to change the password for a user account.
ALTER USER pgranger WITH PASSWORD Prvsvel

The password for user account pgranger is changed to Prvsvel (case-sensitive).
ALTER USER pgranger WITH PASSWORD "'Nonalfa$"

The password for user account pgranger is changed to Nonal fa$ (case-sensitive) containing
nonalphanumeric characters.

See Also
ALTER (rename)
CREATE GROUP

35

CREATE USER
DROP USER
GRANT

SET PASSWORD

36

ANY

Remarks

The ANY keyword works similarly to the ALL keyword except that Zen includes the compared row in
the result table if the condition is true for any row in the subquery result table.

Examples

The following statement compares the ID column from Person to the ID columns in the result table of
the subquery. If the ID value from Person is equal to any of the ID values in the subquery result table,
Zen includes the row from Person in the result table of the SELECT statement.

SELECT p.ID, p.Last_Name

FROM Person p

WHERE p.ID = ANY

(SELECT f.ID FROM Faculty ¥ WHERE f.Dept_Name = "Chemistry®)
See Also

SELECT

37

AS

Remarks

Include an AS clause to assign a name to a select term or to a table name. You can use this name elsewhere
in the statement to reference the select term. The name is often referred to as an alias.

When you use the AS clause on a nonaggregate column, you can reference the name in WHERE,
ORDER BY, GROUP BY, and HAVING clauses. When you use the AS clause on an aggregate column,
you can reference the name only in an ORDER BY clause.

The name you define must be unique in the SELECT list.

Column aliases are returned as the column name. Computed columns, including group aggregates, that
do not have a column alias specified are assigned a system-generated column name such as EXPR-1,
EXPR-2, and so forth.

Examples

The AS clause in the following statement instructs Zen to assign the name Total to the select term SUM
(Amount_Paid) and order the results by the total for each student:

SELECT Student_ID, SUM (Amount_Paid) AS Total
FROM Billing

GROUP BY Student_ID

ORDER BY Total

The keyword AS is optional when used for table aliases as in this next example. When you use the AS
clause on a table name in a FROM clause, you can reference the name ina WHERE, ORDER BY, GROUP
BY, and HAVING clause.

SELECT DISTINCT c.Name, p.First_Name, c.Faculty_Id
FROM Person AS p, class AS c

WHERE p.ld = c.Faculty_Id

ORDER BY c.Faculty_Id

You can rewrite this query without using the AS clause in the FROM clause as follows.

SELECT DISTINCT c.Name, p.First_Name, c.Faculty_ lId
FROM Person p, class c

WHERE p.ld = c.Faculty_Id

ORDER BY c.Faculty_Id

Once you establish a table alias, do not intermix the table name and its alias in a WHERE clause. The
following does not work:

SELECT DISTINCT c.Name, p.First_Name, c.Faculty_Id
FROM Person p, class c

WHERE Person.ld = c.Faculty_Id

ORDER BY c.Faculty_Id

See Also

SELECT

38

BEGIN [ATOMIC]

Remarks

It is often convenient to group individual statements so that they can be treated as a single unit. The
BEGIN and END statements are used in compound statements to group the statements into a unit. You
can use a compound statement only in the body of a stored procedure, a user-defined function, or in a
trigger declaration.

ATOMIC specifies that the set of statements within the unit either all succeed or all fail. If one condition
within the BEGIN ATOMIC . .. END unit is not met, no records are affected. If the condition should
affect more than one row, all rows (or none) are affected. For any record to be affected, all the conditions
within a BEGIN ATOMIC . .. END unit must return true.

Examples

In the following example, two UPDATEs are grouped as an ATOMIC unit. The Perm_State column in
the Person table is updated only if all of the other conditions are true. That is, a record for Bill Andrew
exists with "TX' as the Perm_State, and a record for Yvette Lopez exists with 'OR' as the Perm_State. If
any of these conditions are not true, neither record is updated. Assume the BEGIN ... END unit is within
a procedure.

BEGIN ATOMIC

UPDATE Person SET Perm State = "MA®" WHERE Perm State = "TX" AND First Name = "Bill*
AND Last Name = "Andrew”;

UPDATE Person SET Perm_State = "WA" WHERE Perm_State = "OR" AND First_Name = "Yvette"
AND Last_Name = "Lopez-;

END

See Also

END

CREATE PROCEDURE

CREATE TRIGGER

39

CALL

Remarks

Use the CALL statement to invoke a stored procedure. The stored procedure may be a user-defined one
or a system stored procedure.

Examples

The following example calls a user-defined procedure without parameters:
CALL NoParms() or CALL NoParms

The following examples call a user-defined procedure with parameters:

CALL Parms(vParml, vParm2)
CALL CheckMax(N.Class_ID)

The following statement lists the column information for all columns in the Dept table by calling a
system stored procedure.

CALL psp_columns("Demodata®, "Dept*™)

See Also

CREATE PROCEDURE
CREATE TRIGGER
EXECUTE

System Stored Procedures

40

CASCADE

Remarks

If you specify CASCADE when creating a foreign key, Zen uses the DELETE CASCADE rule. When a
user deletes a row in the parent table, Zen deletes the corresponding rows in the dependent table.

Use caution with delete cascade. Zen allows a circular delete cascade on a table that references itself. See
examples in Delete Cascade in Advanced Operations Guide.

See Also
ALTER TABLE
CREATE TABLE

41

CASE (expression)
A CASE expression returns a value. CASE expression has two formats:

m Simple When/Then. This format compares a value expression to a set of value expressions to
determine a result. The value expressions are evaluated in their order listed. If a value expression
evaluates to TRUE, CASE returns the value expression for the THEN clause.

m Searched When/Then. This format evaluates a set of Boolean expressions to determine a result. The
Boolean expressions are evaluated in their order listed. If a Boolean expression evaluates to TRUE,
CASE returns the expression for the THEN clause.

Both formats support an optional ELSE argument. If no ELSE clause is used, then ELSE NULL is implied.

Syntax
Simple When/Then:

CASE case_value_expression
WHEN when_expression THEN then_expression [- . -]
[ELSE else_expression]

END

Searched When/Then:

CASE
WHEN search_expression THEN then_expression [- -.]
[ELSE else_expression]

END

Arguments

case_value_expression -:= the expression evaluated by the simple When/Then CASE format.

when_expression ::= The expression to which case_value_expression is compared. The data
types of case_value_expression and each when_expression must be the same or must
be an implicit conversion.

then_expression ::= the expression returned when case_value_expression equals when_
expression evaluates to TRUE.

else_expression ::= the expression returned if no comparison operation evaluates to TRUE.
IT this argument is omitted and no comparison operation evaluates to TRUE, CASE
returns NULL.

search_expression -:= the Boolean expression evaluated by the searched CASE format.
Search_expression may be any valid Boolean expression.

Remarks

A CASE expression must be used within a SELECT statement. The SELECT statement may be within a
stored procedure or within a view.

42

Examples

The following statement uses the simple When/Then format to report the prerequisites for the art
courses listed in the Course table.

SELECT name “Course ID", description “Course Title",
CASE name

WHEN "Art 101" THEN "None*

WHEN "Art 102" THEN "Art 101 or instructor approval*®
WHEN "Art 203" THEN "Art 102°

WHEN “Art 204" THEN "Art 203*

WHEN “"Art 305" THEN "Art 101"

WHEN "Art 406" THEN "None*

WHEN "Art 407" THEN "Art 305"

END

AS "Prerequisites™ FROM Course WHERE Dept_Name = "Art" ORDER BY name

The query returns the following:

Course ID Course Title Prerequisites

Art 101 Drawing | None

Art 102 Drawing Il Art 101 or instructor approval
Art 203 Drawing llI Art 102

Art 204 Drawing IV Art 203

Art 305 Sculpture Art 101

Art 406 Modern Art None

Art 407 Baroque Art Art 305

The previous statement can be changed to include an ELSE clause:

SELECT name “Course ID", description "Course Title",

CASE name

WHEN "Art 101" THEN "None*”

WHEN "Art 102° THEN "Art 101 or instructor approval”

WHEN “"Art 203" THEN “Art 102*

WHEN "Art 204" THEN “Art 203"

WHEN "Art 305" THEN "Art 101"

ELSE “Curriculum plan for Art History majors”

END

AS "Prerequisites”™ FROM Course WHERE Dept_Name = "Art" ORDER BY name

The query now returns the following:

Course ID Course Title Prerequisites
Art 101 Drawing | None
Art 102 Drawing Il Art 101 or instructor approval

Art 203 Drawing I Art 102

Art 204 Drawing IV Art 203

Art 305 Sculpture Art 101
Art 406 Modern Art Curriculum plan for Art History majors
Art 407 Baroque Art Curriculum plan for Art History majors

The following statement uses the searched When/Then format to report the funding program for which
a person may be eligible.

SELECT last_name, first_name,

CASE

WHEN scholarship = 1 THEN "Scholastic*

WHEN citizenship <> "United States®™ THEN "Foreign Study*

WHEN (date_of_birth >= "1960-01-01" AND date_of birth <= "1970-01-01") THEN “AJ-44
Funds*®

ELSE "NONE*

END

AS "Funding Program® FROM Person ORDER BY last_name

Here is a partial listing of what the query returns:

Last_Name First_Name Funding Program
Abad Alicia NONE
Abaecherli David Foreign Study
Abebe Marta Foreign Study
Abel James AJ-44 Funds
Abgoon Bahram Foreign Study
Abken Richard NONE

Abu Austin Foreign Study
Abuali Ibrahim AJ-44 Funds
Acabbo Joseph NONE

Acar Dennis Foreign Study

The following example shows how a CASE expression may be used within a stored procedure.

CREATE PROCEDURE pcasetest() RETURNS (d1 CHAR(10), d2 CHAR(10)):
BEGIN

SELECT c1, CASE WHEN c1 = 1 THEN c4

WHEN c1 = 2 THEN c¢5

ELSE

CASE WHEN c2 = 100.22 THEN c4

WHEN c2 = 101.22 THEN c5 END END

FROM tcasetest;

END

44

CALL pcasetest

The following example shows how a CASE expression may be used within a view.

CREATE VIEW vcasetest (vcl, vc2) AS
SELECT c1, CASE WHEN cl = 1 THEN c4
WHEN c1 = 2 THEN c5

ELSE

CASE WHEN c2 = 100.22 THEN c4

WHEN c2 = 101.22 THEN c5 END END
FROM TCASEWHEN

SELECT * FROM vcasetest

See Also
COALESCE, SELECT

45

CASE (string)

Remarks

The CASE keyword causes Zen to ignore case when evaluating restriction clauses involving a string
column. CASE can be specified as a column attribute in a CREATE TABLE or ALTER TABLE statement,
or in an ORDER BY clause of a SELECT statement.

For example, suppose you have a column called Name that is defined with the CASE attribute. If you
insert two rows with Name = ‘Smith’ and Name = ‘SMITH,, then a query with a restriction specifying
Name = ‘smith’ correctly returns both rows.

1%

Note CASE (string) does not support multiple-byte character strings and NCHAR strings. The
keyword assumes that the string data is single-byte ASCII. This means that the CASE attribute is not
supported for NVARCHAR and NCHAR data type columns. The string functions do support
multiple-byte character strings and NCHAR strings. See String Functions.

Examples

The following example shows how you add a column to the Student table with the CASE keyword.
ALTER TABLE Student ADD Name char(64) CASE

The following example shows how to use CASE in an ORDER BY clause of a SELECT statement.
SELECT Id, Last_Name+", "+First_Name AS Whole_Name, Phone FROM Person ORDER BY Whole_

Name CASE
See Also
ALTER TABLE
CREATE TABLE
SELECT

46

CLOSE

Syntax

CLOSE cursor-name

cursor-name - := user-defined-name
Remarks

The CLOSE statement closes an open SQL cursor.
The cursor that the cursor name specifies must be open.

This statement is allowed only inside of a stored procedure, user-defined functions, or a trigger. Cursors
and variables are only allowed inside of stored procedures, user-defined functions, and triggers.

Examples
The following example closes the cursor BTUCursor.

CLOSE BTUCursor;

CREATE PROCEDURE MyProc(OUT :CourseName CHAR(7)) AS
BEGIN

DECLARE cursorl CURSOR

FOR SELECT Degree, Residency, Cost _Per_Credit

FROM Tuition ORDER BY ID;

OPEN cursorl;

FETCH NEXT FROM cursorl INTO :CourseName;

CLOSE cursorl;

END

See Also

OPEN

CREATE PROCEDURE
CREATE TRIGGER

47

COALESCE
The COALESCE scalar function takes two or more arguments and returns the first nonnull argument,

starting from the left in the expression list.

Syntax
COALESCE (expression, expression[, .. -1)

expression ::= any valid expression

Returned Value Types

The COALESCE function returns the value of one of the expressions in the list. For a detailed list of
returned data types, see Supported Combination Types and Result Data Types.

Restrictions
The function takes a minimum of two arguments.
COALESCE(10, 20)

Invalid:

COALESCEQ)

Note An invalid instance results in a parse-time error:

COALESCE must have at least 2 arguments.

The expression list must contain at least one nonnull argument.
Valid:

COALESCE (NULL, NULL, 20)
Invalid:

COALESCE (NULL, NULL, NULL)

Note An invalid instance results in a parse-time error:

All arguments of COALESCE cannot be the NULL function

The function does not support some of the data type combinations in the expression list.

For example, COALESCE cannot have BINARY and VARCHAR types as arguments as neither of them
can be implicitly converted to the other.

Supported Combination Types and Result Data Types

The following figure details the various supported combination types and also helps you identify the
resultant data type for various combinations in a COALESCE function.

48

COALESCE Supported Combinations and Resultant Data Types

Figure 1

HYHON 105

“

YYHIHWAN 10S

HYHIHYADNOTIN 105

AHYNIBHYA 105

¥YHD 105

HYHIOHYA DS

ra
(_
e
L o

&«
Fa
e
“
“
“«
L o

=
&

&«

&

AHYNIBHYADNOT 105

HYHOHYADNOT 105

L8108

&=

ILAT WIS

S

ANIANIL DS

«|s|e

LINIANILS 27105

I|I|&«|«

LHOHSN 27108

Ilefele]e

-

1HOHSS D7 10S

e|l|le|e|le|e

1

ANMTIYWNG 105

B|B|&|B|B|&|€

ONOIN D 10s

Ble|e|e|e|e|e]|e

ONOTS D 108

clBlelele|le|e|e|e

HYIDILINITIOS

clel|e|ele|e]e]e|e]«

*

INI9I85 D105

M B|B|€|B|B|€|B|B|&|€

INIDIEN 27 10S

clele|e|e|e|e|ele|e|e]e

*

LNIDIE 105

clelele|e|e|ele|e|e|e|e]e

AJNIHHND WIS

cle|le|le|e|e|le|e|le|e|e|e|e|e

JIMIWNN 105

clel|ele|e|e|e|e|e|efelelele]e

IWWIDIQ 10S

rr|e|ele|e|e|e|e|e|e]|e|e]|e]e|e

ana wis

plofojofo|p|p|elele]ele]|ele]ele]e

W3IW 105

e|p|ofofp|o|p|D|e|e|e]|e|efelele]e]e

1v¥014 108

cle|e|ele|e|e|e|e|e|e|e|e|e]|e]e|e|e]e

41\

371800 10s

4+

+1D|D

T{D|D|[&
+{D|D|&|r

AlD|D|D| |2
S B L O O ol

ol ICH 0 KON Bl Kol ol Ko

clojo|r|rfefr]|r]€

B EN RS ENEN RS

gl ol I ol IRl ol ol R I ol

alr 22222][2]2]+]8]E

||| BB

ol Bl o IO Ko B ol ROl BN Rl Kol Kol B0 Ko

R R R N R R R N RN N B

afa{r|r|r[a[r]r]8]r][r][r]B]r[2]|I

rlalr{r]r[r[r]2r][B]r[r[r]B[r]|r]1]e

o Bl o ol Kol o o ol ol el Bl B B B B B R

Sl TR Il S ol ISl IRl Ml T ol ISl Bl Bl ol Rl Il Ml Bl

JWILTIOS

31v¥a oS

dWVLSIWIL DS

RN RN R BN R Y R Y N R BN RN N Y NN ENEN ENEAENENED

alr| o[[a]r| v a2][220][] r]|r|2[e]r]r]r][r]2]2]

o Boll Bodl Bod Boll Bod Boll Bod Bodl Bodl Bodl Bod Bod Bodl Bodl Bodl Boll Bodl Bodl Bodl Bos Bodl Bos Bodl Bos Bosl Boll Bosl Bos

ool RO Bl O ol Il O Il B ol Bl Rl Bl O Il R S I I IR IR R Il R Il B B B Bl I

Operand 2

Operand 1

SQL_TIMESTAMP
SQL_DATE

SOL_TIME

5QL_DOUBLE
SQL_FLOAT

SQL_REAL

SQL_DECIMAL

SIM_BCD

SQL_NUMERIC

SIM_CURRENCY
SQL_BIGINT

SQL_C_SBIGINT

5QL_C_UBIGINT

SQL_INTEGER

SOL_C_ULONG
SQL_SMALLINT

S5QL_C_SLONG

SOL_C_SSHORT

SQL_C_USHORT
SQL_C_STINYINT

SQL_TINYINT
SIM_BYTE

SQL_BIT

SQL_LONGVARCHAR

SOL_LONGVARBINARY
SQL_VARCHAR

SQL_CHAR

SQL_NLONGVARCHAR

SQL_VARBINARY
SOL_NVARCHAR

SQL_NCHAR

49

Chart Element Description

T Types can be used directly in COALESCE function. The result type is that of operand 2.
A Types can be used directly in COALESCE function. The result type is that of operand 1.
blank cell Types are not compatible. The operands cannot be used directly in COALESCE. An

explicit CONVERT is required.
D Result type is SQL_DOUBLE
B Result type is SIM_BCD

| Result type is SQL_INTEGER

S Result type is SQL_SMALLINT

Using any of the unsupported type combinations (those left blank in the chart) in COALESCE function
results in a parse-time error:

Error in row
Error in assignment
Expression evaluation error

Examples

In the following example, 10+2 is treated as a SMALLINT and ResultType (SMALLINT, SMALLINT) is
SMALLINT. Hence, the result type is SMALLINT.

SELECT COALESCE(NULL,10 + 2,15,NULL)

The first parameter is NULL. The second expression evaluates to 12, which is not NULL and can be
converted to result type SMALLINT. Therefore, the return value of this example is 12.

In the following example, ten is treated as a SMALLINT and ResultType (SMALLINT, VARCHAR) is
SMALLINT. Hence, the result type is SMALLINT.

SELECT COALESCE(10, "abc® + “def*)

The first parameter is 10, which can be converted to result type SMALLINT. Therefore, the return value
of this example is 10.

50

COMMIT

The COMMIT statement signals the end of a logical transaction and converts temporary data into

permanent data.

Syntax
coMmIT []

Examples

The following example, within a stored procedure, begins a transaction which updates the Amount_

Owed column in the Billing table. This work is committed. Another transaction updates the Amount_

Paid column and sets it to zero. The final COMMIT WORK statement ends the second transaction.

START TRANSACTION;

UPDATE Billing B

SET Amount_Owed = Amount_Owed - Amount_Paid
WHERE Student_ID IN

(SELECT DISTINCT E.Student_ID

FROM Enrolls E, Billing B

WHERE E.Student_ID = B.Student_ID);
COMMIT WORK;

START TRANSACTION;

UPDATE Billing B

SET Amount Paid = 0

WHERE Student_ID IN

(SELECT DISTINCT E.Student_ID

FROM Enrolls E, Billing B

WHERE E.Student_ID = B.Student_ID);
COMMIT WORK;

CREATE PROCEDURE UpdateBilling() AS
BEGIN

START TRANSACTION;

UPDATE Billing SET Amount_Owed
UPDATE Billing set Amount_Owed
COMMIT;

END;

See Also

CREATE PROCEDURE
ROLLBACK

START TRANSACTION

Amount_Owed + Amount_Owed;
Amount_Owed + 100 WHERE Student_ID = 10;

51

CREATE DATABASE

The CREATE DATABASE statement creates a new database. Any user logged in to a database can issue
the statement. The user must also have permission from the operating system to create files in the
specified location.

Syntax

CREATE DATABASE [IF NOT EXISTS] database-name DICTIONARY_PATH “dict-path-name™ [DATA_
PATH “data-path-name™] [; “data-path-name®]... 1 [NO_REFERENTIAL_INTEGRITY] [
BOUND] [REUSE_DDF] [DBSEC_AUTHENTICATION] [DBSEC_AUTHORIZATION] [Vi1_
METADATA | V2_METADATA] [ENCODING < *codepage-name® | “CPcodepage-number™ | DEFAULT

> 1]

database-name ::= a user-defined name for the database

dict-path-name ::= a user-defined name for the location of the data dictionary files
(DDFs)

data-path-name ::= a user-defined name for the location of the data files

codepage-name ::= the name of a valid code page

CPcodepage-number ::= a number of a valid code page preceded by "CP"

Remarks

If you are using ODBC, keep in mind that CREATE DATABASE creates only a database, not an
associated data source name (DSN). You will need to create a DSN separately if you want one. See Setting
Up ODBC Database Access in Zen User’s Guide.

The CREATE DATABASE statement cannot be used to create the first database on a server. The reason
is that a user must log on to a database before issuing the CREATE DATABASE statement. Therefore, at
least one database must already exist.

The CREATE DATABASE statement cannot be used in a stored procedure or in a user-defined function.

Database Name and IF NOT EXISTS Clause

Database-name specifies a name for the new database. The database names must be unique within a
server and conform to the rules for identifiers. See Identifier Restrictions by Identifier Type in Advanced
Operations Guide.

An error occurs if the database exists and you omit the IF NOT EXISTS clause (status code 2303). No
error returns if you include the IF NOT EXISTS clause.
Dictionary Path

Dict-path-name specifies where the dictionary files (DDFs) reside on physical storage. The data files are
also placed in this same location when you use the CREATE TABLE statement or create tables using Zen
Control Center (ZenCC). See Dictionary Location in Zen User’s Guide.

Data Path

Data-path-name specifies a possible location of the data files for the database (see note below). You can
specify multiple path names by delimiting them with a semicolon.

52

Data-path-name can be any path that is valid from the database engine point of view, but not from the
calling application perspective. The location specified must already exist. The CREATE DATABASE
statement does not create directories.

Omit data-path-name if you want to use the same location for the data files as for the dictionary files.
You may also specify the same location by passing an empty string for data-path-name. For example,
specifying DATA_PATH ** indicates an empty string for the data path.

Note If you create tables using the CREATE TABLE statement or with ZenCC, the data files are
placed in the first dict-path-name specified. If no dict-path-names are specified, data files are created
in the dict-path-name location.

Data-path-name is useful if you are creating tables through the Distributed Tuning Interface (DTI).
The DTI function PvAddTable allows you to specify where you want the data files located. See
PvAddTable() in Distributed Tuning Interface Guide.

Referential Integrity

By default, the database engine enforces referential integrity. If you specify the NO_REFERENTIAL
INTEGRITY clause, then any triggers and referential integrity defined in the database are not enforced.

See Setting Up Referential Integrity and Interactions Between Btrieve and Relational Constraints.

BOUND

If BOUND is specified, the DDFs are bound to the database. A bound database associates a database
name with a single set of DDFs, which refer to only one set of data files. The DDFs are bound whether
they already existed or are created through the execution of the CREATE DATABASE statement.

If DDFs are bound, you cannot use those DDFs for more than one database, nor can you refer to the data
files by more than one set of DDFs.

If BOUND is not specified then the DDFs are not bound to a database.

See Bound Database versus Integrity Enforced in Advanced Operations Guide.

Dictionary Files

The REUSE_DDF keyword associates any existing DDFs with the database. The existing DDFs must in
the dict-path-name location.

If REUSE_DDF is omitted, new DDFs are created unless DDFs already exists in the dict-path-name
location. If DDFs exists in the dict-path-name location, they are associated with the database instead of
new DDFs being created.

Security

The database engine supports three security models for the MicroKernel Engine:

m Classic. A user who successfully logs into the computer has access to the database contents at
whatever level of file system rights the user has been assigned to the data file. File system rights are
assigned through the operating system.

53

m Database. Database user accounts are unrelated to operating system user accounts. User access
rights to the data are governed by user permissions set up in the database.

» Mixed. This policy has aspects of both of the other policies. Users log in using their operating system
user names and passwords, but user access rights to the data are governed by user permissions set
up in the database.

See Zen Security in Advanced Operations Guide for a complete discussion of security.

The DBSEC_AUTHENTICATION and DBSEC_AUTHORIZATION keywords set the security policy
for the database:

Keyword Included or Omitted in Statement Security Model
DBSEC_AUTHENTICATION DBSEC_AUTHORIZATION Classic Database Mixed
omitted omitted V4

included included V4

omitted included V4

Metadata Version

The Relational Engine supports two versions of metadata, referred to as version 1 (V1) and version 2
(V2). Metadata version applies to all data dictionary files (DDFs) within that database. V1 metadata is
the default.

Among other features, V2 metadata allows for many identifier names to be up to 128 bytes long and for
permissions on views and stored procedures. See Zen Metadata for a complete discussion.

You may include or omit the V1_METADATA keyword to specify V1 metadata. You must include the
V2_METADATA keyword to specify V2 metadata.

Encoding

An encoding is a standard for representing character sets. Character data must be put in a standard
format, that is, encoded, so that a computer can process it digitally. An encoding must be established
between the Zen server engine and a Zen client application. A compatible encoding allows the server
and client to interpret data correctly.

Encoding support is divided into database code page and client encoding. The two types of encoding are
separate but interrelated. For more information, see Database Code Page and Client Encoding in
Advanced Operations Guide.

Database code page and client encoding apply only to the Relational Engine. The MicroKernel Engine
is not affected.

You specify a code page by using a name or by using the letters CP followed by a code page number. Both
must be quoted with single quotation marks. For example, a valid name is UTF-8 and a valid number is
CP1251.

Windows, Linux, and macOS operating systems have a default encoding referred to as the OS encoding.
The default OS encoding differs among the operating systems. The keyword DEFAULT allows you to
specify the OS encoding on the server.

If the ENCODING keyword is omitted, the database defaults to the server OS encoding.

54

An invalid code page number or name returns the error "Invalid code page."

Note that, for SQL statement that involve the use of more than one database, you need to ensure that the
database code page is the same for all of the databases. Otherwise, string data can be returned
incorrectly.

%

Note The database engine does not validate the encoding of the data and metadata that an
application inserts into a database. The engine assumes that all data was entered using the encoding
of the server or the client, as explained in Database Code Page and Client Encoding in Advanced
Operations Guide.

For SQL statements that involve the use of more than one database (such as a multidatabase join),
ensure that the database code page is the same for all of the databases. Otherwise, string data can be
returned incorrectly.

Valid Code Page Names and Numbers

You can view the list of supported code page names and numbers with ZenCC. Start ZenCC and access
the New Database dialog (see To create a new database in Zen User’s Guide). For the Database Code Page
option, click Change code page. In the dialog that opens, click Database code page to see a list of
available code pages.

On Linux and macOS, see the dbmaint utility man page to display a list of supported code page names
and numbers. See the Examples topic for dbmaint in Zen User’s Guide.

Examples
This section provides examples of CREATE DATABASE.

The following example creates a database named inventorydb and specifies its location for DDFs on
drive D: in the folder mydbfiles\ddf location. New DDFs are created because none exist in D:\
mydbfiles\ddf_location. The data files are placed in the same location as the DDFs. The database uses
V1 metadata.

CREATE DATABASE inventorydb DICTIONARY_PATH "D:\mydbfiles\ddf_location”

The following example creates a database named HRUSBenefits if it does not already exist, and specifies
its location for DDFs on drive C: in the folder HRDatabases\US. Possible locations for the data files
include the C: drive in a directory called HRDatabases\US\DataFiles and the E: drive in a directory
called Backups\HRUSData (see note under Data Path). Existing DDFs are used if they exist in the
DICTIONARY_ PATH. The database uses V1 metadata.

CREATE DATABASE IF NOT EXISTS HRUSBenefits DICTIONARY_PATH "C:\HRDatabases\US" DATA
PATH "C:\HRDatabases\US\DataFiles ; E:\Backups\HRUSData" REUSE_DDF

The following example creates a database named EastEurope, specifies its location for DDFs on drive C:
in the folder Europe\DbaseFiles, creates new DDFs and binds them to the database, sets the security
policy to mixed, and uses V2 metadata.

CREATE DATABASE EastEurope DICTIONARY_PATH "C:\Europe\DbaseFiles® BOUND DBSEC_
AUTHORIZATION V2_METADATA

55

The following example creates a database named Region5Acct, specifies its location for DDFs on drive
D: in the folder Canada\Region5\Accounting, and sets the database code page to the default code page
used on the server.

CREATE DATABASE Region5Acct DICTIONARY_PATH "D:\Canada\Region5\Accounting”™ ENCODING
DEFAULT

The following example creates a database named Region2Inventory, specifies its location for DDFs on
drive G: in the folder Japan\Region2, and sets the database code page to 932.

CREATE DATABASE Region2lInventory DICTIONARY_PATH *"G:\Japan\Region2® ENCODING "CP932*

The following example creates a database named VendorCodes, specifies its location for DDFs on drive
C: in the folder Capitol_Equipment\Milling, creates new DDFs and binds them to the database, sets the
security policy to mixed, uses V2 metadata, and sets the database code page to 1252.

CREATE DATABASE VendorCodes DICTIONARY_PATH "C:\Capitol_Equipment\Milling® BOUND
DBSEC_AUTHORIZATION V2_METADATA ENCODING "CP1252*

See Also
DROP DATABASE

56

CREATE FUNCTION

The CREATE FUNCTION statement creates a scalar user-defined function (UDF) in the database. You
can invoke the user-defined functions from a query.

Syntax

CREATE FUNCTION function-name ([[IN]
{ :parameter_name scalar_parameter_data_type [DEFAULT value | = value 1 } [---11)
RETURNS scalar_return_data_type
[AS]
BEGIN
body_of_function

RETURN scalar_expression
END;

function_name ::= name of the scalar UDF. UDF names must conform to the rules for
identifiers and must be unique within the database.

parameter_name >:= a parameter in the scalar UDF. A maximum of 300 parameters is
allowed. The value must be supplied when the function is invoked.

scalar_parameter_data_type ::= the data type for the specified parameter name.

scalar_return_data_type ::= the return value of a scalar UDF. Only scalar types are
supported.

value - := a value to assign to scalar_return_data_type, either with the DEFAULT keyword

or with the equals sign.

body_of function ::= the statements that compose the scalar function.
scalar_expression ::= specifies the scalar value that the scalar function returns.
Remarks

You must have the CREATE FUNCTION privilege when you create a function in a secured database.

Each fully qualified UDF name (database-name.function-name) must be unique within a database. The
UDF name cannot be the same as any of the following in the same database:

m a built-in function name
m any other UDF name

m astored procedure name

Restrictions

You cannot use the CREATE DATABASE or the DROP DATABASE statement in a user-defined
function. The table actions CREATE, ALTER, UPDATE, DELETE, and INSERT are not permitted
within a user-defined function.

Only scalar input parameters are supported. No OUTPUT and INOUT parameters are allowed. By
default, all parameters are input. You need not specify the IN keyword.

57

Limits

Observe the following limitations when you create user-defined functions.

Attribute Limit
Number of parameters 300
Size of the UDF body 64 KB

Maximum length of UDF name

See Table 1, Identifier Restrictions by Identifier Type, in Advanced Operations Guide

Maximum length of UDF variable name

128 characters

Supported Scalar Input Parameters and Returned Data Types

Zen supports the data types for input scalar parameters and returned values shown in the following

table.
Table 20 Supported Input Parameters and Returned Data Types
AUTOTIMESTAMP BIGDENTITY BIGINT
BINARY BIT BLOB
CHAR CHARACTER CLOB
CURRENCY DATE DATETIME
DEC DECIMAL DOUBLE
FLOAT IDENTITY INT
INTEGER LONG LONGVARBINARY
LONGVARCHAR NCHAR NLONGVARCHAR
NUMERIC NVARCHAR REAL
SMALLIDENTITY SMALLINT TIME
TIMESTAMP TIMESTAMP2 TINYINT
UBIGINT UINT UINTEGER
UNIQUEIDENTIFIER USMALLINT UTINYINT
VARBINARY VARCHAR
Examples

This topic provides a number of examples of CREATE FUNCTION.

The following example creates a function that calculates the area of a rectangular box whose details are

stored in the Box table:

CREATE FUNCTION CalculateBoxArea(:boxName char(20))

RETURNS REAL
AS
BEGIN
DECLARE :len REAL;

58

DECLARE :breadth REAL;
SELECT len, breadth INTO :len, :breadth FROM box
WHERE name = :boxName;
RETURN(:len * :breadth);
END;

The following example creates a function that compares two integers and returns the smaller of the two:

CREATE FUNCTION GetSmallest(:A integer, :B Integer)
RETURNS Integer

AS
BEGIN
DECLARE :smallest INTEGER
IF (:A < :B) THEN
SET :smallest = :A;
ELSE
SET :smallest = :B;
END IF;
RETURN :smallest;
END;

The following example creates a function that calculates simple interest using the formula SI = PTR/100,
where P is the Principle, T is the period, and R is the rate of interest.

CREATE FUNCTION Calculatelnterest(IN :principle float, IN :period real, IN :rate

double)
RETURNS DOUBLE
AS
BEGIN
DECLARE :interest DOUBLE;
SET :interest = ((:principle * :zperiod * :rate) / 100);
RETURN (:interest);
END;

Invoking a Scalar User-Defined Function

You can invoke a user-defined function wherever scalar expressions are supported, by specifying the
function name followed by a comma-separated list of arguments. The list of arguments is enclosed in
parentheses.

A UDF can be invoked with or without a database qualifier prefix. When a database qualifier is not
prefixed, the UDF is executed from the current database context. If a database qualifier is prefixed, the
UDF is executed in the context of the specified database. (In the examples below, some use a database
qualifier prefix and some do not.)

Limits
Parameter names cannot be specified in the arguments, when invoking a function.

The argument values for all parameters (also known as actual parameters) must be in the same sequence
in which the parameters are defined in the CREATE FUNCTION statement (also known as formal
parameters).

59

Examples of User-Defined Functions

UDF in Procedures

CREATE PROCEDURE procTestUdflnvoke() AS

BEGIN
DECLARE :a integer;
SET :ta = 99 + (222 + Demodata.GetSmallest(10, 9)) + 10;
PRINT :a;

END;

CALL procTestUdfinvoke()

The following example is similar to the previous one, except that the database qualifier is omitted.

CREATE PROCEDURE procTestUdfInvoke2() AS

BEGIN
DECLARE :a INTEGER;
SET :a = 99 + (222 + GetSmallest(10, 9)) +10;
PRINT :a;

END;

CALL procTestUdfInvoke2

UDF in SELECT list
SELECT GetSmallest(100,99)

UDF in WHERE clause
SELECT name FROM class WHERE id <= GetSmallest(10,20)

UDF within UDF

CREATE FUNCTION funcTestUdfInvoke() RETURNS INTEGER AS
BEGIN
DECLARE :a INTEGER;
SET :ta = 99 + (222 - Demodata.GetSmallest(10, 9));
RETURN :a;
END;

UDF in INSERT statement

CREATE TABLE tl1(coll integer, col2 integer, col3 float)
INSERT INTO t1 VALUES (GetSmallest(10,20), 20 , 2.0)
INSERT INTO t1 (SELECT * FROM t1 WHERE coll = getSmallest(10,20))

UDF in UPDATE statement

UPDATE tl1 SET col2
UPDATE tl1 SET coll

Demodata.GetSmallest(2,10) WHERE coll = 2
3 WHERE col2 = Demodata.GetSmallest(10, 5)

60

UDF in GROUP BY statement
SELECT col2 FROM t1 GROUP BY getSmallest(10,2), col2

UDF in ORDER BY statement
SELECT col2 FROM t1 ORDER BY Demodata.getSmallest(10,2), col2

Recursive UDF

CREATE FUNCTION factorial(IN :n integer) RETURNS double AS BEGIN
DECLARE :fact double;
IF (:n <= 0) THEN
SET :fact = 1;

ELSE
SET :fact = (:n * Demodata.factorial(:n - 1));
END IF;
RETURN :fact;
END;

SELECT Demodata.factorial(20) can be used to get the factorial value of 20.

UDF with default value

CREATE FUNCTION testUdfDefaultl(:z INTEGER DEFAULT 10) RETURNS INTEGER AS
BEGIN

RETURN :z-1;
END;

SELECT Demodata.testUdfDefault1(). This function uses the default value specified (10) if a parameter
is not provided.

CREATE FUNCTION testUdfDefault2(:a VARCHAR(20) = "Accounting Report®) RETURNS
VARCHAR(20) as

BEGIN
RETURN :a;

END;

SELECT Demodata.testUdfDefault2(). This function takes the default value specified (Accounting
Report) if a parameter is not provided

UDF with dynamic parameters

SELECT name FROM class WHERE id <= GetSmallest(?,?)

UDF as an expression

SELECT 10 + Demodata.Getsmallest(10,20) + 15

UDF used as parameters

61

SELECT demodata.calculateinterest (10+demodata.getsmallest(3000, 2000),
demodata. factorial (2), demodata.testUdfDefault(3))

See Also
DECLARE
DROP FUNCTION

62

CREATE GROUP

The CREATE GROUP statement creates one or more security groups.

Syntax

CREATE GROUP group-name [, group-name]J. ..
group-name 1= user-defined-name

Remarks

Only the Master user can perform this statement.

Security must be turned on to perform this statement.

Examples
The following example creates a group named zengroup.

CREATE GROUP zengroup

The next example uses a list to create several groups at once.

CREATE GROUP zen_dev, zen_marketing

See Also
ALTER USER
CREATE USER
DROP GROUP
GRANT

SET SECURITY
REVOKE

63

CREATE INDEX

Use the CREATE INDEX statement to create a named index for a specified table.

Syntax

CREATE [UNIQUE | PARTIAL] [NOT MODIFIABLE] INDEX index-name [USING index-number][
IN DICTIONARY] ON table-name [index-definition]

index-name - 1= user-defined-name

index-number - = user-defined-value (an integer between 0 and 118)
table-name I 1= user-defined-name

index-definition = >= (index-segment-definition [, index-segment-definition | ...)
index-segment-definition - -= column-name [ASC | DESC]

Remarks

VARCHAR columns differ from CHAR columns in that either the length byte (Btrieve Istring) or a zero
terminating byte (Btrieve zstring) are reserved, increasing the effective storage by 1 byte. In other words,
if you create a column that is CHAR (100), it occupies 100 bytes in the records. A VARCHAR (100)
occupies 101 bytes. NVARCHAR columns differ from NCHAR columns in that a zero terminating
character is reserved, increasing the effective storage by 2 bytes. In other words, if you create a column
that is NCHAR(50), it occupies 100 bytes in the records. A NVARCHAR(50) column occupies 102 bytes.

When Zen creates an index, its process varies depending on whether the statement includes IN
DICTIONARY, USING, or both. The following table summarizes the results.

Operation

Process and Results

Additional
Information

CREATE INDEX

When successful, an index is added to both the data file and X$Index.
» If the data file has no defined indexes, the index created is index 0.
» If the data file has one or more defined indexes, the index created is the

See X$Index for
V1 metadata or
X$Index for V2

The data file is examined to determine what index numbers are available.

» If the data file has no defined indexes, the index inserted into X$Index is
numbered 0.

« If the data file has one or more defined indexes, the database engine checks
to see if there is one that is not already defined in X$Index with column and
index attributes that match the index to be added.

If a match is found, this index number is used when the index is added to X$Index.

If no match is found, the index number used is <the largest data file index-
number> + 1.

An index in X$Index without a matching key in the data file is referred to as a
phantom index and is not used by the database engine.

- metadata.
smallest unused index number.
In both cases, a new index with the same number is inserted into X$Index also.
CREATE INDEX When successful, an index is added to X$Index only. Nothing is inserted into the | See IN
IN DICTIONARY data file. DICTIONARY

64

Operation Process and Results Additional
Information

CREATE INDEX When successful, an index with the specified index-number is added to both the | See USING
USING data file and X$Index.
index-number If the index-number is already in use in either the data file or X$Index, an error is

returned.
CREATE INDEX When successful, an index with the specified index-number is added to X$Index| See IN
USING only. Nothing is inserted into the data file. DICTIONARY
index-number If the specified index-number exists in the data file and not in X$Index, and the
IN DICTIONARY column and index attributes match the index to be added, the index with the

specified index-number is added to X$Index. Otherwise, an error is returned.

Index Segments

An index segment corresponds to a column specified in the index definition. A multiple segmented
index is one that was created as a combination of multiple columns.

The total number of segments that you may use in all indexes defined on a given file depends on the file

page size.

Page Size (bytes) | Maximum Key Segments by File Version

8.x and earlier 9.0 9.5 13.0
512 8 8 Rounded up2 Rounded up2
1,024 23 23 97 Rounded up2
1,536 24 24 Rounded up? Rounded up?
2,048 54 54 97 Rounded up2
2,560 54 54 Rounded up? Rounded up?
3,072 54 54 Rounded up? Rounded up?
3,584 54 54 Rounded up? Rounded up?
4,096 119 119 2043 1833
8,192 n/a’ 119 4203 3783
16,384 n/a’ n/a’ 4203 3783
""n/a” stands for “not applicable”
2"Rounded up” means that the page size is rounded up to the next size supported by the file version. For
example, 512 is rounded up to 1024, 2560 is rounded up to 4096, and so forth.
3While a 9.5 format or later file can have more than 119 segments, the number of indexes is limited to 119.

Note that nullable columns must also be considered. For example, a data file with 4096 byte page size
is limited to 119 index segments per file. Because each indexed nullable column with true null support
requires an index consisting of 2 segments, you cannot have more than 59 indexed nullable columns in
a table (or indexed nullable true null fields in a Btrieve file). This limit is smaller for smaller page sizes.

65

Files support true nulls if they are created as file version of 7.x or higher and have TRUENULLCREATE
set to on. Files created using an earlier file format, with Pervasive.SQL 7, or with TRUENULLCREATE
set to off do not have true null support and do not have this limitation.

UNIQUE

A UNIQUE index key guarantees that the combination of the columns defined in the index for a
particular row are unique in the file. It does not guarantee or require that each individual column be
unique, in the case of a multisegmented index.

Note All data types can be indexed except for the following:
BIT

BLOB

CLOB

LONGVARBINARY

LONGVARCHAR

NLONGVARCHAR

See also status code 6008: Too Many Segments in Status Codes and Messages.

PARTIAL

Use the PARTIAL keyword with a CREATE INDEX statement to create an index on a column, or group
of columns, totalling more than 255 bytes.

Partial indexes are created using a prefix of a wide column, or by combining multiple small columns, so
that searches using a prefix of the wide column will execute faster. Therefore, queries using WHERE
clause restrictions, for example 'WHERE column_name LIKE 'prefix%' would execute faster using the
partial index as opposed to not using any index.

If you include the PARTIAL keyword with a CREATE INDEX statement, and the index column(s) width
and overhead do not equal or exceed 255 bytes, the PARTIAL keyword is ignored and a normal index is
created instead.

Note Width refers to the actual size of the column, and overhead refers to NULL indicators, string
lengths, and the like.

Limitations of PARTIAL
The following limitations apply when using PARTIAL:
m Partial indexes may only be added to columns with the data type of CHAR or VARCHAR.

m Partial index columns should always be the last segment in the index definition, or should be the
only segment in the index definition.

When the partial index column is the only segment in the index, the column size can be up to 8,000
bytes, but the user-data index segment will be of size 255 bytes.

m Partial indexes are not used by the engine while executing queries with strict equality or collation
operations, such as ORDER BY, GROUP BY or JOINs involving the partial column.

66

m Partial indexes are used only while matching WHERE clause restrictions of the following form:

WHERE col = “literal”
WHERE col LIKE "literal%”
WHERE col = ?

WHERE col LIKE ?

where the literal or actual parameter value can be of any length. It could be shorter or wider than the
number of bytes indexed in the partial index column. Partial indexes won't be used if a LIKE clause
is not of the form "prefix%'.

If the WHERE clauses match the constraints listed previously, partial indexes will be used while creating
the execution plan.

Note If a partially indexed column length is altered using ALTER TABLE such that the new length
fits in 255 bytes of the index or when the new length overshoots 255 bytes, it is the responsibility of
the user to drop the index and recreate it according to his/her requirements.

Examples
This section provides a number of examples of CREATE PARTIAL INDEX.

The following example creates a table named Part_tbl with columns PartID, PartName, SerialNo and
Description, using the specified data types and sizes.

CREATE TABLE part_tbl (partid INT, partname CHAR(50), serialno VARCHAR(200),
description CHAR(300));

Next, the example creates a partial index named idx_01 using the Description column.
CREATE PARTIAL INDEX idx_01 on part_tbl (description);

Although the Description column used in the index is 300 bytes, using the PARTIAL keyword enables
the index to only use the first 255 bytes (including overhead) as the prefix.

The following example creates a partial index named idx_02 for the same table in the previous example.
Instead, this example uses the Partld, SerialNo, and Description columns collectively for the index.

CREATE PARTIAL INDEX idx_02 on part_tbl (partid, serialno, description);

The following table details the index columns so that you may understand how the wide column is
allocated in the index.

Column Name | Data Type Size Overhead Size in Index
PartID Integer 4 4

SerialNo Varchar 200 1 201
Description Char 300 50

Total Index Size 255

67

NOT MODIFIABLE

This attribute prevents the index from being changed. Note that, for a multisegmented index, this
attribute applies to all segments. Status code 10: The key field is not modifiable results if you attempt to
edit any of the segments.

The following example creates a nonmodifiable segmented index in the Person table.

CREATE NOT MODIFIABLE INDEX X_Person on Person(lD, Last_Name)

USING

Use this keyword to control the index number when you create an index. Controlling the index number
is important in cases where the data is being accessed through the Relational Engine as well as directly
from the data files through the MicroKernel Engine.

When you create an index, the specified index number is inserted into both the data file and the
X$Index.

If the index number you specify is already in use in either file, an error code is returned: status code 5:
The record has a key field containing a duplicate key value for the X$Index and status code 6: The key
number parameter is invalid for the data file.

CREATE INDEX "citizen-x" USING 3 On Person (citizenship)

IN DICTIONARY

This keyword notifies the database engine that you wish to make modifications to the DDFs while
leaving the underlying physical data unchanged. This feature allows you to correct any table dictionary
definitions that are not synchronized with their corresponding data files or to create a definition in the
dictionary to match an existing data file. This is most often needed when data files are created and used
by a Btrieve (transactional) application (which does not use DDFs), but ad-hoc queries or reports need
to access the data using the Relational Engine.

Normally, the database engine keeps DDFs and data files perfectly synchronized. When you create an
index without the IN DICTIONARY statement, the database engine assigns identical index numbers to
the X$Index and the data file. IN DICTIONARY enables you to add an index to the X$Index only.

Caution IN DICTIONARY is a powerful and advanced feature. It should only be used by system
administrators or when absolutely necessary. Modifying a DDF without performing parallel
modifications to the underlying data file can cause serious problems, such as incorrect results sets,
performance problems, or unexpected results.

If you have created a phantom index, one that exists only in the DDF and not in the data file, and you
attempt to drop the index without using IN DICTIONARY, you can encounter status code 6: The key
number parameter is invalid. This error occurs because the database engine attempts to delete the index
from the data file and cannot do so because no such index exists in the data file.

If you use both IN DICTIONARY and USING in the SQL statement when you create an index, a new
index using the number specified by the USING keyword is inserted into the DFF only if the segment at
the specified index number matches the SQL column. If the number specified by the USING keyword
either does not match the SQL column or does not exist in the data file, the SQL engine returns an error
message of “Btrieve key definition does not match the index definition”. This ensures that no phantom
indexes are created.

68

Note You cannot use the keyword IN DICTIONARY on a bound database.

Examples
This section provides a number of examples of IN DICTIONARY

The following example creates a detached table, one with no associated data file, then adds and drops an
index from the table definition. This index is a detached index because there is no underlying Btrieve
index associated with it.

CREATE TABLE t1 IN DICTIONARY (cl int, c2 int)
CREATE INDEX idx_1 IN DICTIONARY on tl(cl)
DROP INDEX tl.idx_1 IN DICTIONARY

The following example uses a table T1 that already exists. The data file has key1 defined and it is not
currently in X$Index.

CREATE INDEX idx_1 USING 1 IN DICTIONARY on T1 (C2)

See Also
DROP INDEX

69

CREATE PROCEDURE

The CREATE PROCEDURE statement creates a new stored procedure. Stored procedures are SQL
statements that are predefined and saved in the database dictionary.

Syntax

CREATE PROCEDURE procedure-name
C L[parameter [, parameter J... 1)
[RETURNS (result [, result]-..)] see Remarks

[WITH DEFAULT HANDLER | WITH EXECUTE AS "MASTER"™ | WITH DEFAULT HANDLER , EXECUTE
AS "MASTER™ | WITH EXECUTE AS "MASTER", DEFAULT HANDLER]

as-or-semicolon

proc-stmt
procedure-name - = user-defined-name
parameter - I= parameter-type-name data-type [DEFAULT proc-expr | = proc-expr 1 | SQLSTATE

parameter-type-name ::= parameter-name
| parameter-type parameter-name

| parameter-name parameter-type

parameter-type == IN | OUT | INOUT | IN_OUT

parameter-name - 1= user-defined-name

proc-expr - := same as normal expression but does not allow IF expression or ODBC-style scalar functions

result == user-defined-name data-type

as-or-semicolon -:= AS | ;

proc-stmt :]:: [label-name -] BEGIN [ATOMIC] [proc-stmt [; proc-stmt ...] END [label-
name

| CALL procedure-name (proc-expr [, proc-expr ...)

| CLOSE cursor-name

| DECLARE cursor-name CURSOR FOR select-statement [FOR UPDATE | FOR READ ONLY]

| DECLARE variable-name data-type [DEFAULT proc-expr | = proc-expr]

| DELETE WHERE CURRENT OF cursor-name

| delete-statement

| FETCH [fetch-orientation [FROM] Jcursor-name [INTO variable-name [, variable-name] 1]
|

IF proc-search-condition THEN proc-stmt [; proc-stmt ... [ELSE proc-stmt [; proc-stmt
1-..] END IF

IF proc-search-condition proc-stmt [ELSE proc-stmt]

insert-statement

LEAVE label-name

[label-name - 1 LOOP proc-stmt [; proc-stmt]... END LOOP [label-name]
OPEN cursor-name

PRINT proc-expr [, "string™] -- applies only to Windows platforms

RETURN [proc-expr]

70

transaction-statement
select-statement-with-into
select-statement

SET variable-name = proc-expr
SIGNAL [ABORT] sqistate-value
START TRANSACTION
update-statement

UPDATE SET column-name = proc-expr [, column-name = proc-expr |... WHERE CURRENT
OF cursor-name

| [label-name z] WHILE proc-search-condition DO [proc-stmt [; proc-stmt]]... END WHILE
[label-name 7]

[label-name = 1 WHILE proc-search-condition proc-stmt

alter-table-statement
create-index-statement
create-table-statement
create-view-statement
drop-index-statement
drop-table-statement
drop-view-statement
grant-statement

revoke-statement

set-statement

transaction-statement - 2= commit-statement
| rollback-statement

| release-statement

commit-statement -:= see COMMIT
rollback-statement ::= see ROLLBACK
release-statement - = see RELEASE SAVEPOINT
create-table-statement ::= see CREATE TABLE
alter-table-statement - := see ALTER TABLE
drop-table-statement ::= see DROP TABLE
create-index-statement - := see CREATE INDEX
drop-index-statement ::= see DROP INDEX
create-view-statement -:= see CREATE VIEW
drop-view-statement ::= see DROP VIEW
grant-statement - -= see GRANT
revoke-statement ::= see REVOKE

set-statement --:= see SET DECIMALSEPARATORCOMMA
label-name - I= user-defined-name

cursor-name - 1= user-defined-name

71

variable-name - = user-defined-name

proc-search-condition ::= same as search-condition but does not allow any expression that includes a subquery
fetch-orientation - I= NEXT

sqlstate-value - = "string"

Remarks

To execute stored procedures, use the CALL or EXECUTE statement.

Note that, in a procedure, the name of a variable and the name of a parameter must begin with a colon
(:), both in the definition and use of the variable or parameter.

The RETURNS clause is required if the stored procedure returns a result set or a scalar value.

The RETURNS clause, when present, causes the procedure to continue execution when an error occurs.
The default behavior (without this clause) is to abort the procedure with SQLSTATE set to the error state
generated by the statement.

The use of a StmtLabel at the beginning (and optionally at the end) of an IF statement is an extension to
ANSI SQL 3.

The PRINT statement applies only to Windows-based platforms. It is ignored on other operating system
platforms.

In SQL Editor, the only way to test a stored procedure by using variable parameters is to call the stored
procedure from another stored procedure. This technique is shown in the example for pdate (CREATE
PROCEDURE pdate();).

You may use variables as SELECT items only within stored procedures. This technique is shown in the
example for varsubl (CREATE PROCEDURE varsubl1();).

You cannot use the CREATE DATABASE or the DROP DATABASE statement in a stored procedure.

Trusted and Non-Trusted Stored Procedures

A trusted stored procedure includes the WITH EXECUTE AS ‘MASTER clause. See Trusted and Non-
Trusted Objects.

Memory Caching

By default, the database engine creates a memory cache in which to store multiple stored procedures for
the duration of the SQL session. Once a stored procedure is executed, its compiled version is then
retained in the memory cache. Typically, caching results in improved performance for each subsequent
call to a cached procedure. The cache provides no performance improvement the first time that a stored
procedure is executed since the procedure has not yet been loaded into memory.

Two SET statements apply to the memory cache:

m SET CACHED_PROCEDURES - specifies the number of procedures to cache. The default is 50.
m SET PROCEDURES_CACHE - specifies the amount of memory for the cache. The default is 5 MB.

Note that excessive memory swapping, or thrashing, could occur depending on the cache settings and
the SQL being executed by your application. Thrashing can cause a decrease in performance.

72

Caching Exclusions
A stored procedure is not cached, regardless of the cache setting(s), for any of the following:

m The stored procedure references a local or a global temporary table. A local temporary table has a
name that begins with the pound sign (#). A global temporary table has a name that begins with two
pound signs (##). See CREATE (temporary) TABLE.

m The stored procedure contains any data definition language (DDL) statements. See Data Definition
Statements.

m The stored procedure contains an EXEC[UTE] statement used to execute a character string, or an
expression that returns a character string. For example: EXEC ("SELECT Student_ID FROM " +
myinputvar).

Data Type Restrictions

The following data types cannot be passed as parameters or declared as variables in a stored procedure
or trigger:

Table 21 Data Types Prohibited in Stored Procedures and Triggers

BFLOAT4 BFLOAT8
MONEY NUMERICSA
NUMERICSLB NUMERICSLS
NUMERICSTB NUMERICSTS

See Examples for how Zen data types that do not have a direct ODBC equivalent can be correctly
mapped to be used by a procedure.

Limits

The following limitations must be observed when creating stored procedures.

Attribute Limit

Number of columns allowed in a trigger or stored procedure 300

Number of arguments in a parameter list for a stored procedure | 300

Size of a stored procedure 64 KB

Examples
This section provides a number of examples of CREATE PROCEDURE.

The following example creates stored procedure Enrollstudent, which inserts a record into the Enrolls
table, given the Student ID and the Class ID.

CREATE PROCEDURE Enrollstudent(IN :Stud_id INTEGER, IN :Class_Ild INTEGER, IN :GPA
REAL) ;

BEGIN
INSERT INTO Enrolls VALUES(:Stud_id, :Class_id, :GPA);

END;

73

Use the following statement to call the stored procedure.
CALL Enrollstudent(1023456781, 146, 3.2)
Use the following statement to retrieve the newly inserted record.

SELECT * FROM Enrolls WHERE Student_id = 1023456781

The CALL and SELECT statements, respectively, call the procedure by passing arguments, then display
the row that was added.

This example shows how to assign a default value to a parameter.

CREATE PROCEDURE ReportTitlel (:rpttitlel VARCHAR(20) = "Finance Department®);
BEGIN
PRINT :rpttitlel;
END;
CALL ReportTitlel

CREATE PROCEDURE ReportTitle2 (:rpttitle2 VARCHAR(20) DEFAULT "Finance Department®);
BEGIN
PRINT :rpttitle2;
END;
CALL ReportTitle2

These procedures use the default value specified (Finance Department) if a parameter is not provided
with the CALL.

The following procedure reads the Class table, using the classId parameter passed in by the caller and
validates that the course enrollment is not already at its limit.

CREATE PROCEDURE Checkmax(in :classid integer);
BEGIN
DECLARE :numenrolled integer;
DECLARE :maxenrolled integer;
SELECT COUNT(*) INTO :numenrolled FROM Enrolls WHERE class_ID = :classid;
SELECT Max_size INTO :maxenrolled FROM Class WHERE id = :classid;
IF (znumenrolled >= :maxenrolled) THEN
PRINT "Enrollment Failed. Number of students enrolled reached maximum allowed
for this class” ;
ELSE
PRINT "Enrollment Possible. Number of students enrolled has not reached maximum
allowed for this class”;
END IF;
END;
CALL Checkmax(101)

Note that COUNT (expression) counts all nonnull values for an expression across a predicate.
COUNT(*) counts all values, including null values.

The following is an example of using the OUT parameter when creating stored procedures. Calling this
procedure returns the number of students into the variable :outval that satisfies the WHERE clause.
CREATE PROCEDURE PROCOUT (out :outval INTEGER)

AS BEGIN

SELECT COUNT(*) INTO :outval FROM Enrolls WHERE Class_Id = 101;
END;

74

The following is an example of using the INOUT parameter when creating stored procedures. Calling
this procedure requires an INPUT parameter :IOVAL and returns the value of the output in the variable
:IOVAL. The procedure sets the value of this variable based on the input and the IF condition.

CREATE PROCEDURE ProclODate (INOUT :ioval DATE)
AS BEGIN
IF zioval = "1982-03-03" THEN
SET :ioval ="1982-05-05";
ELSE
SET :ioval = "1982-03-03";
END 1F;
END;

You cannot call the above procedure using a literal value (as in call prociodate(*1982-03-03")),
because it requires an output parameter. You must first bind the parameter using ODBC calls, or you can
test the procedure by creating another procedure to call it, as shown here:

CREATE PROCEDURE pdate();
BEGIN
DECLARE :a DATE;
CALL prociodate(:a);
PRINT :a;
END
CALL pdate

The following example illustrates using the RETURNS clause in a procedure. This sample returns all of
the data from the Class table where the Start Date is equal to the date passed in on the CALL statement.

CREATE PROCEDURE DateReturnProc(IN :pdate DATE)
RETURNS(

DateProc_ID INTEGER,
DateProc_Name CHAR(7),
DateProc_Section CHAR(3),
DateProc_Max_Size USMALLINT,
DateProc_Start_Date DATE,
DateProc_Start_Time TIME,
DateProc_Finish_Time TIME,
DateProc_Building_Name CHAR(25),
DateProc_Room_Number UINTEGER,
DateProc_Faculty ID UBIGINT

);
BEGIN
SELECT ID, Name, Section, Max_Size, Start_Date, Start_Time, Finish_Time, Building_
Name, Room_Number, Faculty ID FROM class WHERE Start_Date = :pdate;
END;

CALL DateReturnProc("1995-06-05%)

Note that the user-defined names in the RETURNS clause do not have to be named identically to the
column names that appear in the selection list, as this example shows.

The following example shows the use of the WHERE CURRENT OF clause, which applies to positioned
deletes.

75

CREATE PROCEDURE MyProc(IN :CourseName CHAR(7)) AS
BEGIN
DECLARE c1 CURSOR FOR SELECT name FROM course WHERE name = :CourseName FOR UPDATE;
OPEN c1;
FETCH NEXT FROM cl1 INTO :CourseName;
DELETE WHERE CURRENT OF c1;
CLOSE c1;
END;
CALL MyProc("HIS 305%)

(Note that if you use a SELECT inside of a WHERE clause of a DELETE, it is a searched DELETE not a
positioned DELETE.)

The following example shows the use of a variable (:i) as a SELECT item. The example assumes that
tablel does not already exist. All records in the person table with an ID greater than 950000000 are
selected, then inserted into col2 of table1. Col1l contains the value 0, 1, 2, 3, or 4 as defined by the WHILE
loop.

CREATE TABLE tablel (coll CHAR(10), col2 BIGINT);

CREATE PROCEDURE varsubl();

BEGIN
DECLARE :i INT;
SET :i = O;

WHILE :i < 5 DO
INSERT INTO tablel (coll, col2) SELECT :i , A.ID FROM PERSON A WHERE A.ID >
950000000;

SET i = i + 1;

END WHILE;
END
CALL varsubl
SELECT * FROM tablel
--returns 110 rows

The following is an example of using ATOMIC, which groups a set of statements so that either all
succeed or all fail. ATOMIC can be used only within the body of a stored procedure or trigger.

The first procedure does not specify ATOMIC, the second does.

CREATE TABLE t1 (cl INTEGER)
CREATE UNIQUE INDEX tlil ON t1 (cl)
CREATE PROCEDURE p1();
BEGIN
INSERT INTO t1 VALUES (1);
INSERT INTO t1 VALUES (1);
END;
CREATE PROCEDURE p2();
BEGIN ATOMIC
INSERT INTO t1 VALUES (2);
INSERT INTO t1 VALUES (2);
END;
CALL p1Q)
CALL p2Q)
SELECT * FROM t1

Both procedures return an error because they attempt to insert duplicate values into a unique index.

76

The result is that t1 contains only one record because the first INSERT statement in procedure p1l
succeeds even though the second fails. Likewise, the first INSERT statement in procedure p2 succeeds
but the second fails. However, since ATOMIC is in procedure p2, all of the work done inside procedure
p2 is rolled back when the error is encountered.

This example uses a stored procedure to create two tables and insert one row of default values into each.
It then turns on security and grants privileges to userl.

CREATE PROCEDURE p1(Q);
BEGIN
CREATE TABLE t1 (cl INT DEFAULT 10, c2 INT DEFAULT 100);
CREATE TABLE t2 (cl1 INT DEFAULT 1 , c2 INT DEFAULT 2);
INSERT INTO t1 DEFAULT VALUES;
INSERT INTO t2 DEFAULT VALUES;
SET SECURITY = larry;
GRANT LOGIN TO userl ulpword;
GRANT ALL ON * TO userl;
END;
CALL p1
SELECT * FROM t1
-- returns 10, 100
SELECT * FROM t2
-- returns 1, 2

Note When you use the GRANT LOGIN statement in a stored procedure, you must separate the
user name and password with a space character rather than a colon character. The colon character
is reserved to identify local variables in a stored procedure.

This example uses a stored procedure to revoke privileges from userl, drop the two tables created in
Example A, and turn off database security.

CREATE PROCEDURE p3Q);
BEGIN
REVOKE ALL ON t1 FROM useril;
REVOKE ALL ON t2 FROM useril;
DROP TABLE t1;
DROP TABLE t2;
SET SECURITY = NULL;
END;
CALL p3
SELECT * FROM tl1 -- returns an errot, table not found
SELECT * FROM t2 -- returns an errot; table not found

The following example shows how to loop through a cursor.

CREATE TABLE atable (cl INT, c2 INT)
INSERT INTO atable VALUES (1,1)
INSERT INTO atable VALUES (1,2)
INSERT INTO atable VALUES (2,2)
INSERT INTO atable VALUES (2,3)
INSERT INTO atable VALUES (3,3)
INSERT INTO atable VALUES (3,4)

77

CREATE PROCEDURE ppQ);
BEGIN
DECLARE :i INTEGER;
DECLARE c1Bulk CURSOR FOR SELECT cl1 FROM atable ORDER BY cl1 FOR UPDATE;
OPEN c1Bulk;
BulkLinesLoop:
LOOP
FETCH NEXT FROM c1Bulk INTO :i;
IF SQLSTATE = "02000" THEN
LEAVE BulkLinesLoop;
END IF;
UPDATE SET cl1 = 10 WHERE CURRENT OF clBulk;
END LOOP;
CLOSE c1Bulk;
END

CALL pp
—— Succeeds

SELECT * FROM atable
—— Returns 6 rows

This example creates a trusted stored procedure named InParam. User Master then grants Userl
EXECUTE and ALTER permissions on InParam. This example assumes that table t99 exists and
contains two columns of type INTEGER.

CREATE PROCEDURE InParam(IN :inparaml INTEGER, IN :inparam2 INTEGER) WITH DEFAULT
HANDLER, EXECUTE AS "Master®™ AS

BEGIN
INSERT INTO t99 VALUES(:inparaml , :inparam2);

END;

GRANT ALL ON PROCEDURE InParam TO Userl

Master and Userl can now call this procedure (for example, CALL InParam(2,4)).

This example shows how Zen data types that do not have a direct ODBC equivalent can be correctly
mapped to be used by a procedure. The data types NUMERICSA and NUMERICSTS are the ones
without direct equivalents so they are mapped to NUMERIC instead.

CREATE TABLE testl (id identity, amountl numeric(5,2), amount2 numericsa(5,2),
amount3 numericsts(5,2))

CREATE PROCEDURE ptest2 (IN :numvall numeric(5,2), IN :numval2 numeric(5,2), IN
:numval3 numeric(5,2))

AS

BEGIN

Insert into testl values(0O, :numvall, :numval2, :numval3);

END;

CALL ptest2(100.10, 200.20, 300.30)
SELECT * FROM testl

The procedure correctly formats all the amount values according to the Zen data types defined in the
CREATE TABLE statement, despite the fact that they are all passed to the procedure as NUMERIC. See
also Zen Transactional and Relational Data Types for the mappings of data types.

78

Using Stored Procedures

As an example, CALL foo(a, b, ¢) executes the stored procedure foo with parameters a, b, and c. Any of
the parameters may be a dynamic parameter (‘?’), which is necessary for retrieving the values of output
and inout parameters. For example: {CALL foo (3, ?, “TX’)}. The curly braces are optional in your source
code.

This is how stored procedures work in the current version of Zen.

m Triggers (CREATE TRIGGER, DROP TRIGGER) are supported as a form of stored procedure. This
support includes tracking dependencies that the trigger has on tables, and procedures, in the
database. You cannot use CREATE PROCEDURE or CREATE TRIGGER in the body of a stored
procedure or a trigger.

m CONTAINS, NOT CONTAINS, BEGINS WITH are not supported.
m LOOP: post conditional loops are not supported (REPEAT...UNTIL).
m ELSEIF: The conditional format uses IF ... THEN ... ELSE. There is no ELSEIF support.

General Stored Procedure Engine Limitations

You should be aware of the following limitations before using stored procedures.

m There is no qualifier support in CREATE PROCEDURE or CREATE TRIGGER.
= Maximum length of a stored procedure variable name is 128 characters.

m See Table 1, Identifier Restrictions by Identifier Type in Advanced Operations Guide for the
maximum length of a stored procedure name.

m Only partial syntactical validation occurs at CREATE PROCEDURE or CREATE TRIGGER time.
Column names are not validated until run time.

m There is currently no support for using subqueries everywhere expressions are used. For example an
UPDATE statement with set :arg = SELECT MIN(sal) FROM emp is not supported. However, you
could rewrite the subquery as SELECT min(sal) INTO :arg FROM emp.

m Only the default error handler is supported.

Limits to SQL Variables and Parameters

m Variable names must be preceded with a colon (:). This allows the stored procedure parser to
differentiate between variables and column names.

m Variable names are case insensitive.

m No session variables are supported. Variables are local to the procedure.

Limits to Cursors
m Positioned UPDATE does not accept a table name.

m Global cursors are not supported.

Limits when using Long Data

m When you pass long data as arguments to an embedded procedure, (that is, a procedure calling
another procedure), the data is truncated to 65500 bytes.

» Long data arguments to and from procedures are limited to a total of 2 MB.

79

Internally long data may be copied between cursors with no limit on data length. If a long data column
is fetched from one statement and inserted into another, no limit is imposed. If, however, more than one
destination is required for a single long data variable, only the first destination table receives multiple
calls to PutData. The remaining columns are truncated to the first 65500 bytes. This is a limitation of the
ODBC GetData mechanism.

See Also
DROP PROCEDURE
SET CACHED PROCEDURES

SET PROCEDURES_CACHE
Trusted and Non-Trusted Objects

80

CREATE TABLE
The CREATE TABLE statement creates a new table in a database.

CREATE TABLE contains functionality that goes beyond minimal or core SQL conformance. CREATE
TABLE supports Referential Integrity features. Zen conforms closely to SQL 92 with the exception of
ColIDList support.

You can also create temporary tables with the CREATE TABLE statement. See CREATE (temporary)
TABLE.

Caution In the same directory, no two files should share the same file name and differ only in their
file name extension. For example, do not create a table (data file) Invoice.btr and another one
Invoice.mkd in the same directory. This restriction applies because the database engine uses the file
name for various areas of functionality while ignoring the file name extension. Since only the file
name is used to differentiate files, files that differ only in their file name extension look identical to
the database engine.

Syntax

CREATE TABLE table-name [option] [IN DICTIONARY]
[USING *path_name"] [WITH REPLACE]
(table-element [, table-element]...)

table-name ::= user-defined-name
option ::= DCOMPRESS | PCOMPRESS | PAGESIZE = size | LINKDUP = number | SYSDATA_KEY_2
number ::= user-defined value (sets the number of pointers to reserve for the addition of

linked duplicates index keys)
table-element - := column-definition | table-constraint-definition

column-definition ::= column-name data-type [DEFAULT default-value-expression] [column-constraint [
column-constraint]... [CASE (string) | COLLATE collation-name 1]

column-name ::= user-defined-name

data-type ::= data-type-name [(precision [, scale]) 1]

precision I:I= integer
scale - := integer
default-value-expression - := default-value-expression + default-value-expression

default-value-expression - default-value-expression
default-value-expression * default-value-expression
default-value-expression / default-value-expression

default-value-expression

/
default-value-expression & default-value-expression

| default-value-expression

N

default-value-expression ™ default-value-expression

(default-value-expression)

81

| -default-value-expression
| +default-value-expression
| ~default-value-expression
| »

| literal

| scalar-function

| { fn scalar-function }
| USER

| NULL

literal - := “string™ | N<string™
| number
| { d “date-literal* }
| { t "time-literal™ }
| { ts “timestamp-literal™ }

scalar-function ::= see Scalar Functions
column-constraint -:= [CONSTRAINT constraint-name | col-constraint
constraint-name ::= user-defined-name
col-constraint - := NOT NULL
| NOT MODIFIABLE
| UNIQUE

| PRIMARY KEY
| REFERENCES table-name [(column-name) 1 [referential-actions]

table-constraint-definition : 2= [CONSTRAINT constraint-name] table-constraint

table-constraint = := UNIQUE (column-name [, column-name]...)
| PRIMARY KEY (column-name [, column-name]...)
| FOREIGN KEY (column-name [, column-name |)
REFERENCES table-name [(column-name [, column-name §...) 1 [referential-actions]

referential-actions 1 == referential-update-action [referential-delete-action]

| referential-delete-action [referential-update-action]

referential-update-action -:= ON UPDATE RESTRICT

referential-delete-action - := ON DELETE CASCADE
| ON DELETE RESTRICT

collation-name -:= “"string”

82

Remarks

The only indexes that can be created with the CREATE TABLE statement are IDENTITY,
SMALLIDENTITY, or BIGIDENTITY, primary keys, and foreign keys. All other indexes must be
created with the CREATE INDEX statement.

Foreign key constraint names must be unique in the dictionary. All other constraint names must be
unique within the table in which they reside and must not have the same name as a column.

If the primary key name is omitted, the name of the first column in the key prefixed by “PK_" is used as
the name of the constraint.

If a reference column is not listed, the reference becomes, by default, the primary key of the table
referenced. If a primary key is unavailable, a “Key not found” error returns. You can avoid this situation
by enumerating the target column.

If the foreign key name is omitted, the name of the first column in the key prefixed by “FK_" is used as
the name of the constraint.

If the UNIQUE constraint is omitted, the name of the first column in the key prefixed by “UK_" is used
as the name of the constraint.

If the NOT MODIFIABLE constraint is omitted, the name of the first column in the key prefixed by
“NM_” is used as the name of the constraint. (If NOT MODIFIABLE is used, a not-unique, not-
modifiable index is created on the column. The index is named NM_ column_name.)

If the NOT NULL constraint is omitted, the name of the first column in the key prefixed by “NN_" is
used as the name of the constraint.

A foreign key may reference the primary key of the same table (known as a self-referencing key).

If CREATE TABLE succeeds and a USING clause was not specified, the data file name for the created
table is xxx.mkd, where xxx is the specified table name. If the physical file, xxx.mkd, already exists, a new
file names xxxnnn.mkd is created, where nnn is a unique number. If the table already exists, it is not
replaced, and error -1303, “Table already exists” is returned. You must drop the table before replacing it.

A CREATE TABLE statement with the SYSDATA_KEY_2 keyword automatically creates the file in the
13.0 file format. It then adds system data v2, which enables the sys$create and sys$update virtual
columns for use in queries.

Use of IN DICTIONARY with the SYSDATA_KEY_2 keyword causes the CREATE TABLE statement to
ignore SYSDATA_KEY_2, and the sys$create and sys$update virtual columns are not available for the
new table.

Limitations on Record Size

The total size of the fixed-length portion of any data record may not exceed 65535 bytes. The fixed-
length portion of any data record is made up of the following:

m all the columns that have a fixed sized (all columns except for LONGVARCHAR,
LONGVARBINARY and NLONGVARCHAR)
= one byte for each column that allows null values

m 8 bytes for each variable-length column (column of type LONGVARCHAR, LONGVARBINARY or
NLONGVARCHAR).

83

If you attempt to create a table that exceeds this limit, or if you attempt modifications that would cause
a table to exceed the limit, Zen returns status code -3016, “The maximum fixed-length rowsize for the
table has been exceeded.”

To determine the size in bytes of the fixed-length portion of a record before you attempt to create a new
table, you can use the following calculation:

(sum of the storage sizes in bytes for the fixed-length column) + (number of nullable columns) + (8 *
number of variable-length columns) = record size in bytes

If you want to determine the size of the fixed-length portion of the record for an existing data file, you
can use the BUTIL -STAT command to display a report that includes this information.

Example of Limitation on Record Size

Assume you have a table with the following columns defined:

Type Number of Columns of This Type Nullable?
VARCHAR(216) 1 Yes
VARCHAR(213) 5 All columns
CHAR(42) 1494 All columns

Each VARCHAR has two extra bytes reserved for it. One bite for the preceding NULL indicator and one
trailing byte because VARCHAR is implemented as a ZSTRING. Each CHAR has a preceding byte
reserved for the NULL indicator.

Therefore, the record size is 1 x 218 + 5 x 215 + 1494 x 43 = 65535 bytes

In this example, you could not add another column of any length without exceeding the fixed-length
limit.

Delete Rule

You can include an ON DELETE clause with a foreign key constraint to define the delete rule Zen
enforces for an attempt to delete the parent row to which a foreign key value refers. The delete rules you
can choose are as follows:

n If you specify CASCADE, Zen uses the delete cascade rule. When a user deletes a row in the parent
table, the database engine deletes the corresponding rows in the dependent table.

m If you specify RESTRICT, Zen enforces the delete restrict rule. A user cannot delete a row in the
parent table if a foreign key value refers to it.

If you do not specify a delete rule, Zen applies the restrict rule by default.

Use caution with delete cascade. Zen allows a circular delete cascade on a table that references itself. See
examples in Delete Cascade in Advanced Operations Guide.

Update Rule

Zen enforces the update restrict rule. This rule prevents the addition of a row containing a foreign key
value if the parent table does not contain the corresponding primary key value. This rule is enforced
whether or not you use the optional ON UPDATE clause, which allows you to specify the update rule
explicitly.

84

IN DICTIONARY
See the discussion of IN DICTIONARY forALTER TABLE.

USING

The USING keyword allows you to associate a CREATE TABLE or ALTER TABLE action with a
particular data file.

Because Zen requires a Named Database to connect, the path_name provided must always be a simple
file name or relative path and file name. Paths are always relative to the first Data Path specified for the
Named Database to which you are connected.

The path/file name passed is partially validated when the statement is prepared.

You must follow these rules when specifying the path name:

The text must be enclosed in single quotes, as shown in the grammar definition.

Text must not exceed the length limit for the version of metadata being used. The entry is stored in
Xf$Loc in exactly as typed (trailing spaces are truncated and ignored). See Xf$Loc (for V1 metadata)
and Xf$Loc (for V2 metadata).

The path must be a simple relative path. Paths that reference a server or volume are not allowed.

Relative paths are allowed to include a period for current directory, a double-period for parent
directory, a slash, or any combination of the three. However, the path must contain a file name
representing the SQL table name, meaning path_name cannot end in a slash or a directory name. All
file names, including those specified with relative paths, are relative to the first Data Path as defined
in the Named Database configuration.

The following features provide convenience and ease of use:

Root-based relative paths are allowed. For example, assuming that the first data path is D:\mydata\
demodata, Zen interprets the path name in the following statement as D:\temp\test123.btr.

CREATE TABLE tl1 USING "\temp\testl23.btr" (cl int)

Slash characters in relative paths may be either Unix style (/) or Windows backslash (\). You may use
a mixture of the two types, if desired. This is a convenience feature, since you may know the
directory structure scheme but not necessarily know (or care) what type of server you are connected
to. The path is stored in X$File exactly as typed. The Zen engine converts the slash characters to the
appropriate platform type when utilizing the path to open the file. Also, since data files share binary
compatibility between all supported platforms, this means that as long as the directory structure is
the same between platforms (and path-based file names are specified as relative paths), then
database files and DDFs can be moved from one platform to another without modification. This
enables cross-platform deployment using a standardized database schema.

When you specify a relative path, the directory structure in the USING clause does not need to
already exist. When needed, Zen creates directories for the path in the USING clause.

Include a USING clause to specify the physical location of the data file associated with the table. This is
necessary when you are creating a table definition for an existing data file, or when you want to specify
explicitly the name or physical location of a new data file.

If you do not include a USING clause, Zen generates a unique file name from the table name with an
.mkd extension and creates the file in the first directory specified in the data file path for the database.

85

If the USING clause points to an existing data file, Zen creates the table in the DDFs and returns SQL_
SUCCESS_WITH_INFO. The informational message returned indicates that the dictionary entry now
points to an existing data file. If you want CREATE TABLE to return only SQL_SUCCESS, specify IN
DICTIONARY on the CREATE statement. If WITH REPLACE is specified (see below), then any
existing data file with the same name is destroyed and overwritten with a newly created file.

Note Zen returns a successful status code if you specify an existing data file.

Whenever you create a relational index definition for an existing data file (for example, CREATE TABLE
USING with a column definition of type IDENTITY), Zen automatically checks the Btrieve indexes
defined on the file to determine whether an existing Btrieve index offers the set of parameters in the
relational index definition. If an existing Btrieve index matches the new definition, then an association
is created between the relational index definition and the existing Btrieve index. If there is no match,
then Zen creates a new index definition and, if IN DICTIONARY is not used, a new index in the file.

WITH REPLACE

Whenever WITH REPLACE is specified with the USING keyword, Zen automatically overwrites any
existing file name with the specified file name. The file is always overwritten if the operating system
allows it. WITH REPLACE affects only the data file. It does not affect the DDFs.

The following rules apply when using WITH REPLACE:

= WITH REPLACE can only be used with USING.

m When used with IN DICTIONARY, WITH REPLACE is ignored because IN DICTIONARY
specifies that only the DDFs are affected.

If you include WITH REPLACE in your CREATE TABLE statement, Zen creates a new data file to
replace the existing file (if the file exists at the location you specified in the USING clause). Zen discards
any data stored in the original file with the same name. If you do not include WITH REPLACE and a file
exists at the specified location, Zen returns a status code and does not create a new file. The table
definition is added to the DDFs, however.

WITH REPLACE affects only the data file. It does not affect the table definition in the dictionary.

DCOMPRESS

The DCOMPRESS option specifies that the data file for a table use record compression to reduce the file
size on disk. The following example creates a table with record compression and page size 1024 bytes:

CREATE TABLE t1 DCOMPRESS PAGESI1ZE=1024 (cl INT DEFAULT 10, c2 CHAR(10) DEFAULT “abc™)

For details, see Record and Page Compression in Advanced Operations Guide.

PCOMPRESS

The PCOMPRESS option specifies that the data file for the specified table should use page compression.
The following example creates a table with page compression and page size 1024 bytes:

CREATE TABLE t1 PCOMPRESS PAGES1ZE=1024 (cl INT DEFAULT 10, c2 CHAR(10) DEFAULT "abc™)

For details, see Record and Page Compression in Advanced Operations Guide.

86

PAGESIZE
The PAGESIZE option specifies that the data file for the specified table should use pages of size bytes.

The value of size can be any of the following depending on file version:

= 512-4096 for file versions prior to 9.0 (a multiple of 512 bytes up to 4096)
m 512,1024, 1536, 2048, 2560, 3072, 3584, 4096, or 8192 for file version 9.0
m 1024, 2048, 4096, 8192, or 16384 for file version 9.5

m 4096, 8192, or 16384 for file version 13.0

The following example creates a table with file compression and page size 8192 bytes, specifying creation
of the particular data file identified by the relative path, ..\datal.mkd:

CREATE TABLE t1 DCOMPRESS PAGESIZE=8192 USING "..\datal.mkd" (cl INT DEFAULT 10, c2
CHAR(10) DEFAULT "abc")

LINKDUP

Multiple records may carry the same duplicated value for index keys. The two methods to keep track of
the records with duplicate key values are called linked duplicates (linkdup) and repeating duplicates. For
a detailed discussion of linked duplicates and repeating duplicates, see Methods for Handling Duplicate
Keys in Advanced Operations Guide.

If the LINKDUP keyword is not specified, a CREATE INDEX statement uses the repeating duplicates
method.

Each linked duplicate index requires 8 extra bytes in the physical record. The LINKDUP keyword allows
you to reserve these extra bytes for use in linked duplicated indexes that are subsequently created.

Thus, if the LINKDUP keyword is specified, the following applies:

m A CREATE INDEX statement uses the linked duplicates method up to the value specified for the
number of pointers

m Once the value specified for the number of pointers is reached, a CREATE INDEX statement uses
the repeating duplicates method

m If the value specified for the number of pointers has been reached and a linked-duplicate index is
dropped, a CREATE INDEX statement uses the linked duplicates method for the next key

= A CREATE INDEX statement cannot create a repeating-duplicate key if pointers are still reserved
for linked-duplicate keys.

Examples
The following examples demonstrate various uses of CREATE TABLE.

Syntax like the following creates a table named Billing with columns Student_ID, Transaction_Number,
Log, Amount_Owed, Amount_Paid, Registrar_ID and Comments, using the specified data types.

CREATE TABLE Billing
(Student_ID UBIGINT,
Transaction_Number USMALLINT,
Log TIMESTAMP,

Amount_Owed DECIMAL(6,2),
Amount_Paid DECIMAL(6,2),
Registrar_ID DECIMAL(10,0),
Comments LONGVARCHAR)

87

This example creates a table named Faculty in the database with columns ID, Dept_Name, Designation,
Salary, Building Name, Room_Number, Rsch_Grant_Amount, and a primary key based on column ID.

CREATE TABLE Faculty

(1D UBIGINT,

Dept_Name CHAR(20) CASE,
Designation CHAR(10) CASE,
Salary CURRENCY,
Building_Name CHAR(25) CASE,
Room_Number UINTEGER,
Rsch_Grant_Amount DOUBLE,
PRIMARY KEY (ID))

The following example creates an index on the Name column and designates that index as not
modifiable. Data in the Name column cannot be changed.

CREATE TABLE organizations
(Name LONGVARCHAR NOT MODIFIABLE,
Advisor CHAR(30),
Number_of_people INTEGER,
Date_started DATE,
Time_started TIME,
Date_modified TIMESTAMP,
Total_funds DOUBLE,

Budget DECIMAL(2,2),

Avg_funds REAL,

President VARCHAR(20) CASE,
Number_of_executives SMALLINT,
Number_of_meetings TINYINT,
Office UTINYINT,

Active BIT,)

In the next example, assume that you need a table called StudentAddress to contain student addresses.
You need to alter the Student table id column to be a primary key and then create a StudentAddress table
that references Student as the primary table. (The Student table is part of the Demodata sample
database.) Four ways are shown to create the StudentAddress table.

First, make the id column of table Student a primary key.
ALTER TABLE Student ADD PRIMARY KEY (id)

This next statement creates a StudentAddress table to have a foreign key referencing the id column of
table Student with the DELETE CASCADE rule. This means that whenever a row is deleted from the
Student table (Student is the parent table in this case), all rows in the StudentAddress table with that
same id are also deleted.

CREATE TABLE StudentAddress (id UBIGINT REFERENCES Student (id) ON DELETE CASCADE,
addr CHAR(128))

This next statement creates a StudentAddress table to have a foreign key referencing the id column of
table Student with the DELETE RESTRICT rule. This means that whenever a row is deleted from the
Student table and there are rows in the StudentAddress table with that same id, an error occurs. You need
to explicitly delete all the rows in StudentAddress with that id before the row in the Student table, the
parent table, can be deleted.

CREATE TABLE StudentAddress (id UBIGINT REFERENCES Student (id) ON DELETE RESTRICT,
addr CHAR(128))

88

This next statement creates a StudentAddress table to have a foreign key referencing the id column of
table Student with the UPDATE RESTRICT rule. This means that an error occurs if a row is added to
the StudentAddress table with an ID that does not occur in the Student table. In other words, you must
have a parent row before you can have foreign keys refer to that row. This is the default behavior of Zen.

Moreover, Zen does not support any other UPDATE rules. Thus, whether this rule is stated explicitly
makes no difference. Also, since a DELETE rule is not explicitly stated, DELETE RESTRICT is assumed.

CREATE TABLE StudentAddress (id UBIGINT REFERENCES Student (id) ON UPDATE RESTRICT,
addr CHAR(128))

This example shows how to use an alternate collating sequence (ACS) when you create a table. The ACS
file used is the sample one provided with Zen.

CREATE TABLE t5 (cl CHAR(20) COLLATE "File_path\upper.alt")

Upper.alt treats upper and lower case letters the same for sorting. For example, if a database has values
abc, ABC, DEF, and Def, inserted in that order, then the sorting with upper.alt returns as abc, ABC, DEF,
and Def.

The values abc and ABC, and the values DEF and Def are considered duplicates and are returned in the
order in which they were inserted. Normal ASCII sorting sequences upper case letters before lower case,
such that the sorting would return as ABC, DEF, Def, abc. Also, the statement SELECT c1 FROM t5
WHERE c1 = 'Abc' returns both abc and ABC.

The following example creates a table, t1, and reserves the number of pointers to use for linked duplicate
keys to four. The CREATE INDEX statements create index keys for the table.

DROP table t1

CREATE table t1 LINKDUP=4 (cl int, c2 int, c3 int)
CREATE INDEX link_1 on tl1l(cl,c2)

CREATE INDEX link_2 on tl1(cl,c3)

CREATE UNIQUE INDEX link_3 on tl1(c3)

CREATE INDEX link_4 on ti1(cl)

CREATE INDEX link_5 on t1(c2)

CREATE INDEX link_6 on t1(c2,c3)

The results of the CREATE INDEX statements are the following:

m Linked duplicate keys: link_1, link_2, link_4, link_5

m Repeating duplicate keys: link_6 (because the number of pointers to use for linked duplicate keys
reached the specified value, four)

DROP INDEX link_2

CREATE INDEX link_7 on t1(c3,cl)

These two statements result in the following:

m Linked duplicate keys: link_1, link_4, link_5, link_7 (because the DROP INDEX statement reduced
the number of pointers to use for linked duplicate keys to three, which allowed link_7 to become the
fourth linked duplicates index key)

m Repeating duplicate keys: link_6

89

The following statement creates a table and specifies that the columns should not allow NULL values
(that is, null indicator bytes are not added).

CREATE TABLE NoNulls

(1D UBIGINT NOT NULL,

Name CHAR(20) NOT NULL CASE,
Amount DOUBLE NOT NULL)

If you need to create all columns as NOT NULL, you can first use the SET TRUENULLCREATE
statement to disable the creation of true nulls, then create the table. This allows you to avoid specifying
the NOT NULL attribute on each column. (See SET TRUENULLCREATE.) Note, however, that the
resulting legacy table does not enforce a NOT NULL attribute on any columns. NULL is allowed even if
NOT NULL is explicitly specified for the column. The following statements create the same table as in
the previous example.

SET TRUENULLCREATE=O0FF
CREATE TABLE NoNulls2
(ID BIGINT,

Name CHAR(20) CASE,
Amount DOUBLE)

SET TRUENULLCREATE=ON

CREATE TABLE supports the specification of a DEFAULT value for columns. This is used when rows
are inserted without an explicitly specified value for that column. The next statement creates a table with
defaults matching the column data types. Note that IDENTITY columns have an implied default of zero,
which automatically generates the next highest value.

CREATE TABLE Defaults

(ID IDENTITY,

Name CHAR(20) DEFAULT "none-,

Amount DOUBLE DEFAULT 0.00,

EntryDay DATE DEFAULT CURDATE(),

EntryTime TIME DEFAULT CURTIMEQ))

The next statements insert two rows using the defaults.

INSERT INTO Defaults (ID) VALUES (0)
INSERT INTO Defaults (ID, Name, Amount) VALUES (0, “Joquin®, "100%)

A SELECT statement returns the results, containing default values.

SELECT * FROM Defaults

ID Name Amount EntryDay EntryTime
1 none 0.0 curdate curtime
2 Joquin 100.0 curdate curtime

The following example assumes that you have a table Legacydata that contains columns with legacy data
types in data file olddata.dat. New databases cannot create tables with the legacy data types. You could,
however, create a DDF definition in a new database for Legacydata with the IN DICTIONARY clause.

CREATE TABLE "Legacydata™ IN DICTIONARY USING "olddata.dat®™ (
"coll™ LSTRING(10) NOT NULL,

90

""col2" VARCHAR(9) NOT NULL,
""col3" LOGICAL NOT NULL,
"col4" LOGICAL2 NOT NULL,
""col5" NOTE(100) NOT NULL);

This example demonstrates the default creation of a Btrieve data file if a table is created without
specifying either a USING clause or REPLACE. The default name of the file is the table name with the
extension .mkd. If that file name already exists, a different name is generated using the table name
followed by a number and then the .mkd extension.

To create the table xyz, which generates the data file xyz.mkd:

CREATE TABLE xyz (cl int, c2 char(5))

Now, delete the table using IN DICTIONARY, so the data file is not deleted:
DROP TABLE xyz in dictionary

Finally, if you create table xyz again:

CREATE TABLE xyz (cl int, c2 char(5))

It creates the table xyz and the data file xyz000.mkd.

See Also

ALTER TABLE

DROP TABLE

CREATE INDEX

SET DEFAULTCOLLATE

91

CREATE (temporary) TABLE

You can also use the CREATE TABLE statement to create a temporary table. The CREATE TABLE
syntax for temporary tables is more restrictive than for permanent tables. For this reason, and because
of other characteristics, temporary tables are discussed separately. See Other Characteristics.

Syntax

CREATE TABLE <# | ##>table-name (table-element [, table-element ...)

table-name : := user-defined-name

table-element - := column-definition | table-constraint-definition

column-definition ::= column-name data-type [DEFAULT default-value-expression] [column-constraint [

column-constraint]... [CASE (string) | COLLATE collation-name]
column-name ::= user-defined-name

data-type ::= data-type-name [(precision [, scale]) 1]

precision I:= integer
scale = integer
default-value-expression - := default-value-expression + default-value-expression

default-value-expression - default-value-expression
default-value-expression * default-value-expression
default-value-expression / default-value-expression
default-value-expression & default-value-expression
default-value-expression | default-value-expression
default-value-expression ™ default-value-expression
(default-value-expression)

—default-value-expression

~default-value-expression
?

literal

scalar-function

{ fn scalar-function %}
USER

|

|

|

|

|

|

|

|

| +default-value-expression
|

|

|

|

|

|

| NULL

literal - := “string® | N-string”
| number
| { d “date-literal™ }
| { t “time-literal™ %}
| { ts “timestamp-literal™ }

column-constraint -:= [CONSTRAINT constraint-name | col-constraint

92

constraint-name ::= user-defined-name

col-constraint ::= NOT NULL
| NOT MODIFIABLE
| UNIQUE
| PRIMARY KEY
| REFERENCES table-name [(column-name) 1 [referential-actions]

table-constraint-definition : 2= [CONSTRAINT constraint-name] table-constraint

table-constraint z:= UNIQUE (column-name [, column-name]...)
| PRIMARY KEY (column-name [, column-name]...)
REFERENCES table-name [(column-name [, column-name 1...)] [referential-actions]

referential-actions = 1= referential-update-action [referential-delete-action]

| referential-delete-action [referential-update-action]

referential-update-action ::= ON UPDATE RESTRICT

referential-delete-action -:= ON DELETE CASCADE
| ON DELETE RESTRICT

collation-name -:= “"string”

Remarks

A temporary table is used for intermediate results or working storage. Unlike in permanent tables, data
in a temporary table is destroyed at some point during the SQL session or at the end of the SQL session.
The data is not saved in the database.

Temporary tables are useful to narrow down intermediate results by continuing to operate on
intermediate tables. Complex data operations are often easier if split into a sequence of simpler steps,
which each step operating on the table result of a previous step. A temporary table is a base table. That
is, the data it contains is its own. Contrast this with a view, which is an indirect representation of data in
other tables.

Zen supports two types of temporary tables:

m Local
= Global

Both types can be used within a stored procedure.

The following table summarizes characteristics of temporary tables contrasted with where the table is
created or used. Characteristics can vary depending on whether the table is created or used within or
outside of a stored procedure. Additional remarks are discussed as footnotes at the end of the table.

93

Except for permissible length of the temporary table name, the characteristics are the same for both V1
and V2 metadata.

Table 22 Characteristics of Temporary Tables

Table Characteristic Local Temporary Table | Global Temporary
Table
Outside of | Within SP | Outside of| Within SP
spP! SP
First character of table name must be # (see also Compatibility with yes yes no no
Previous Releases below)
First character of table name must be ## (see also Compatibility with no no yes yes
Previous Releases below)
Context of table same as database in which table is created yes yes yes yes
Two or more sessions can create table with same name? yes yes no no
For V1 metadata, see Identifier Restrictions by Identifier Type in yes® yes? yes® yes?
Advanced Operations Guide for the maximum length of a table name (the
length includes #, ##, underscores, and ID).
For V2 metadata, see Identifier Restrictions by Identifier Type in yes3 yes4 yes3 yes4
Advanced Operations Guide for the maximum length of a table name (the
length includes #, ##, underscores, and ID).
Table in another database can be accessed by qualifying table name with| no no yes yes
other database name
SELECT, INSERT, UPDATE, and DELETE statements permitted on tablel yes yes yes yes
ALTER TABLE and DROP TABLE statements permitted on table yes yes yes yes
Can create view on table no no no no
Can create user-defined function on table no no no no
Can create trigger on table no no no no
Can grant or revoke permissions on table no no no no
FOREIGN KEY constraint allowed with CREATE TABLE statement® no no no no
SELECT INTO statement can populate table with data yes yes yes yes
SELECT INTO statement can create table® yes yes yes yes
Table created in one SQL session can be accessed by other SQL no no yes yes
sessions
Table created in procedure can be accessed outside of that procedure | not no not yes
applicable applicable
Table created in topmost procedure can be accessed by nested not no not no
procedures applicable applicable
CREATE TABLE statement in a recursive stored procedure returns table | not yes7 not yes9
name error on recursive call applicable applicable
Table dropped when explicitly dropped yes yes yes yes

94

Table 22 Characteristics of Temporary Tables (Continued)

Table Characteristic Local Temporary Table | Global Temporary
Table

Outside of | Within SP | Outside of| Within SP
sp! SP

Table dropped at end of session in which table created yes yes8 yes yes

Table dropped at end of procedure in which table created not yes not no
applicable applicable

Table dropped at end of transaction in another session not not yes yes
applicable | applicable

SP stands for stored procedure

2The database engine automatically appends the name of the stored procedure and a session-specific ID to the user-defined
name to ensure a unique table name. This functionality is transparent to the user.

3The total length of the table name includes # or ##, plus an underscore, plus a session ID. The session ID can be 8, 9, or 10
bytes depending on the operating system. See Identifier Restrictions by Identifier Type in Advanced Operations Guide.

4The total length of the table name includes # or ##, plus an underscore, plus the name of the stored procedure, plus an
underscore, plus a session ID. The session ID can be 8, 9, or 10 bytes depending on the operating system. See Identifier
Restrictions by Identifier Type in Advanced Operations Guide.

5Constraint returns a warning but table is created.
6A table can be created and populated with data with a single SELECT INTO statement.
"The table name already exists from the first execution of the stored procedure.

8if end of session occurs before the execution of the procedure ends.

Compatibility with Previous Releases

Releases of Zen before PSQL v9 Service Pack 2 permitted the naming of permanent tables starting with
or ##. Permanent tables starting with # or ## cannot be used with PSQL v9 Service Pack 2 or later
releases. Tables starting with # or ## are temporary tables and are created in the TEMPDB database.

A “table not found” error is returned if you attempt to access a permanent table starting with # or ## that
was created with a version of Zen earlier than the version you are using.

See also Statement Separators in Zen User’s Guide.

TEMPDB Database

The installation of Zen creates a system database named TEMPDB. TEMPDB holds all temporary tables.
Never delete the TEMPDB database. If you remove it, you will be unable to create temporary tables.

TEMPDB is created in the install directory of the Zen product. See Where are the files installed? in
Getting Started with Zen.

If you prefer, after installation, you may change the location of the dictionary files and data files for
TEMPDB. See Database Properties in Zen User’s Guide.

Caution TEMPDB is a system database for exclusive use by the database engine. Do not use
TEMPDB as a repository of your permanent tables, views, stored procedures, and so forth.

95

Table Names of Local Temporary Tables

The database engine automatically appends information to the names of local temporary tables to
differentiate between temporary tables created across multiple sessions. The length of the appended
information varies depending on the operating system.

The name of a local temporary table can be at least 10 bytes provided the number of stored procedures
that create local temporary tables does not exceed 1296. The 10 bytes include the # character. The 1296
limit applies to stored procedures within the same session.

The maximum name length is 20 bytes, including the # character, the table name, and the appended
information.

Transactions

A global temporary table can be explicitly dropped or is automatically dropped when the session in
which the table was created ends. If a session other than the one that created the table uses the table in a
transaction, the table is dropped when the transaction completes.

SELECT INTO

You can create a temporary table and populate it with data by using a single SELECT INTO statement.
For example, SELECT * INTO #mytmptbl FROM Billing creates a local temporary table named
#mytmptbl (provided #mytmptbl does not already exist). The temporary table contains the same data as
the Billing table in the Demodata sample database.

If the SELECT INTO statement is executed a second time with the same temporary table name, an error
returns because the temporary table already exists.

The SELECT INTO statement can create a temporary table from two or more tables. However, the
column names must be unique in each of the tables from which the temporary table is created or an error
returns.

The error can be avoided if you qualify the column names with the table names and provide an alias for
each column. For example, suppose that table t1 and t2 both contain columns coll and col2. The
following statement returns an error: SELECT tl.col, tl.col2, t2_.coll, t2.col2 INTO #mytmptbl
FROM t1, t2.Instead, use a statement such as this: SELECT tl1.col cl, tl.col2 c2, t2.coll c3,
t2.col2 c4 INTO #mytmptbl FROM t1, t2.

Restrictions on SELECT INTO

m Alocal temporary table created within a stored procedure is inside the scope of the stored procedure.
The local temporary table is destroyed after the stored procedure executes.

s The UNION and UNION ALL keywords are not permitted with a SELECT INTO statement.

m Only one temporary table can receive the results of the SELECT INTO statement. You cannot
SELECT data into multiple temporary table with a single SELECT INTO statement.

Caching of Stored Procedures

Any stored procedure that references a local or a global temporary table is not cached, regardless of the
cache settings. See SET CACHED_PROCEDURES and SET PROCEDURES_CACHE.

96

Examples of Temporary Tables

The following example creates a local temporary table named #b_temp and populates it with the data
from the Billing table in the Demodata sample database.

SELECT * INTO "#b_temp'™ FROM Billing

The following example creates a global temporary table named ##tenurefac with columns ID, Dept_
Name, Building Name, Room_Number, and a primary key based on column ID.

CREATE TABLE ##tenurefac

(1D UBIGINT,

Dept_Name CHAR(20) CASE,

Building_Name CHAR(25) CASE,

Room_Number UINTEGER,
PRIMARY KEY (1D))

The following example alters temporary table ##tenurefac and adds the column Research_Grant_Amt.

ALTER TABLE ##tenurefac ADD Research_Grant_Amt DOUBLE

The following example drops temporary table ##tenurefac.

DROP TABLE ##tenurefac

The following example creates two temporary tables within a stored procedure, populates them with
data, then assigns values to variables. The values are selected from the temporary tables.

Note SELECT INTO is permitted within a stored procedure if used to assigned values to variables.

CREATE PROCEDURE "'p11"()

AS BEGIN
DECLARE :vall_int INTEGER;
DECLARE :val2_char VARCHAR(20);
CREATE TABLE #t11 (coll INT, col2 VARCHAR(20));
CREATE TABLE #t12 (coll INT, col2 VARCHAR(20));
INSERT INTO #t11l VALUES (1,"tl col2 text");
INSERT INTO #t12 VALUES (2,"t2 col2 text");
SELECT coll INTO :vall_int FROM #tl11l WHERE coll = 1;
SELECT col2 INTO :val2 char FROM #t12 WHERE coll = 2;
PRINT :vall_int;
PRINT :val2_char;
COMMIT;

END;

CALL P110O

The following example creates global temporary table ##enroll_student_global_temp_tbl and then
creates stored procedure Enrollstudent. When called, the procedure inserts a record into ##enroll_
student_global_temp_tbl, given the Student ID, Class ID, and a grade point average (GPA). A SELECT

97

selects all records in the temporary table and displays the result. The length of the name for the global
temporary table is permissible only for V2 metadata.

CREATE TABLE ##enroll_student_global_temp_tbl (student_id INTEGER, class_id INTEGER,
GPA REAL);

CREATE PROCEDURE Enrollstudent(in :Stud_id integer, in :Class_Id integer, IN :GPA
REAL) ;

BEGIN
INSERT INTO ##enroll_student_global_temp_tbl VALUES(:Stud_id, :Class_id, :GPA);

END;

CALL Enrollstudent(1023456781, 146, 3.2)

SELECT * FROM ##enroll_student_global_temp_tbl

The following example creates two temporary tables within a stored procedure, populates them with
data, then assigns values to variables. The values are selected from the temporary tables.

CREATE PROCEDURE "'p11"()

AS BEGIN
DECLARE :vall_int INTEGER;
DECLARE :val2_char VARCHAR(20);
CREATE TABLE #t11 (coll INT, col2 VARCHAR(20));
CREATE TABLE #t12 (coll INT, col2 VARCHAR(20));
INSERT INTO #t11 VALUES (1,"tl col2 text");
INSERT INTO #t12 VALUES (2,"t2 col2 text");
SELECT coll INTO :vall_int FROM #tl11l WHERE coll = 1;
SELECT col2 INTO :val2 char FROM #t12 WHERE coll = 2;
PRINT :vall int;
PRINT :val2_char;
COMMIT;

END;

CALL P110O

See Also

ALTER TABLE
DROP TABLE
SELECT (with INTO)

98

CREATE TRIGGER

The CREATE TRIGGER statement creates a new trigger in a database. Triggers are a type of stored
procedure that is automatically executed when table data is modified with an INSERT, UPDATE, or
DELETE.

Unlike a regular stored procedure, a trigger cannot be executed directly, nor can it have parameters.
Triggers do not return a result set, nor can they be defined on views.

Syntax

CREATE TRIGGER trigger-name before-or-after ins-upd-del ON table-name
[ORDER number]
[REFERENCING referencing-alias 7 FOR EACH ROW
[WHEN proc-search-condition] proc-stmt

trigger-name - 1= user-defined-name

before-or-after -:= BEFORE | AFTER

ins-upd-del ::= INSERT | UPDATE | DELETE

referencing-alias -:= OLD [AS] correlation-name [NEW [AS] correlation-name]

| NEW [AS] correlation-name [OLD [AS] correlation-name]

correlation-name ::= user-defined-name

Remarks

Note In a trigger, the name of a variable must begin with a colon (:).

OLD (OLD correlation-name) and NEW (NEW correlation-name) can be used inside triggers, not in a
regular stored procedure.

In a DELETE or UPDATE trigger, the letters “OLD” or an OLD correlation-name must be prepended to a
column name to reference a column in the row of data prior to the update or delete operation.

In an INSERT or UPDATE trigger, the letters “NEW” or a NEW correlation-name must be prepended to
a column name to reference a column in the row about to be inserted or updated.

Trigger names must be unique in the dictionary.

Triggers are executed either before or after an UPDATE, INSERT, or DELETE statement is executed,
depending on the type of trigger.

Note CREATE TRIGGER statements are subject to the same length and other limitations as
CREATE PROCEDURE. For more information, see Limits and Data Type Restrictions.

99

Examples

The following example creates a trigger that records any new values inserted into the Tuition table into
TuitionIDTable.

CREATE TABLE Tuitionidtable (PRIMARY KEY(id), id UBIGINT);
CREATE TRIGGER InsTrig

BEFORE INSERT ON Tuition

REFERENCING NEW AS Indata

FOR EACH ROW

INSERT INTO Tuitionidtable VALUES(Indata.ID);

An INSERT on Tuition calls the trigger.

The following example shows how to keep two tables, A and B, synchronized with triggers. Both tables
have the same structure.

CREATE TABLE A (coll INTEGER, col2 CHAR(10));

CREATE TABLE B (coll INTEGER, col2 CHAR(10));

CREATE TRIGGER Mylnsert

AFTER INSERT ON A FOR EACH ROW

INSERT INTO B VALUES (NEW.coll, NEW.col2);

CREATE TRIGGER MyDelete

AFTER DELETE ON A FOR EACH ROW

DELETE FROM B WHERE B.coll = OLD.coll AND B.col2 = OLD.col2;

CREATE TRIGGER MyUpdate

AFTER UPDATE ON A FOR EACH ROW

UPDATE B SET coll = NEW.coll, col2 = NEW.col2 WHERE B.coll = OLD.coll AND B.col2 =
OLD.col2;

Note that OLD and NEW in the example keep the tables synchronized only if table A is altered with
nonpositional SQL statements. If the SQLSetPOS API or a positioned update or delete is used, then the
tables stay synchronized only if table A does not contain any duplicate records. A SQL statement cannot
be constructed to alter one record but leave another duplicate record unaltered.

See Also
DROP TRIGGER

100

CREATE USER
The CREATE USER statement creates a new user account in a database.

This function can be used to create a user account in a database with a password, without a password, or
as member of a group.

Syntax
CREATE USER user-name [WITH PASSWORD user-password J[IN GROUP referencing-alias]

Remarks

Note This statement creates a user with the same rights as those of a user created using the Zen
Control Center (ZenCC). For example, the created user is not restricted by default from creating a
database even if the user is not logged in as Master.

Only the Master user can execute this statement.
Security must be turned on to perform this statement.

User-name and user-password here only refer to Zen databases and are not related to user names and
passwords set at the operating system level. Zen user names, groups, and passwords can also be
configured through the Zen Control Center (ZenCC).

User name must be unique in the dictionary.

The user name and password must be enclosed in double quotes if they contain spaces or other
nonalphanumeric characters.

If you create a user as the member of a group, you must set up the group before creating the user.

For further general information about users and groups, see Master User and Users and Groups in
Advanced Operations Guide, and Assigning Permissions Tasks in Zen User’s Guide.

Examples

The following examples show how to create a new user account without any login privileges and without
a membership in any group.

CREATE USER pgranger

The new user name is pgranger. The user password is NULL and the user account is not a member of any
group.

CREATE USER "‘polly granger™

The new user name is polly granger with nonalphanumeric characters. The user password is NULL and
the user account is not a member of any group.

The following examples show how to create a new user account with login privileges that is not a
member of any group.

CREATE USER pgranger WITH PASSWORD Prvsvel

The new user name is pgranger. The user password is Prsvel (case-sensitive).

101

CREATE USER pgranger WITH PASSWORD "Nonalfa$"

The new user name is pgranger. The user password is Nonalfa$ (case-sensitive) with nonalphanumeric
characters.

The following example shows how create a new user as a member of a group without login privileges.
CREATE USER pgranger IN GROUP developers

The new user name is pgranger. The new user account is a assigned to the group developers.

The following example shows how create a new user as a member of a group with login privileges.
CREATE USER pgranger WITH PASSWORD Prvsvel IN GROUP developers

The new user name is pgranger. The new user account is assigned to the group developers and has the
case-sensitive password Prvsvel. The order of this syntax (CREATE USER. .WITH PASSWORD. . . IN GROUP)
is absolutely necessary.

See Also
ALTER USER, DROP USER, GRANT

102

CREATE VIEW
The CREATE VIEW statement defines a stored view or virtual table.

Syntax

CREATE VIEW view-name [(column-name [, column-name]...)]
[WITH EXECUTE AS "MASTER™] AS query-specification
[ORDER BY order-by-expression [., order-by-expression ...]

view-name ::= user-defined-name
column-name ::= user-defined-name

order-by-expression ::= expression [CASE (string) | COLLATE collation-name] [ASC | DESC] (see
SELECT syntax)

Remarks

A view is a database object that stores a query and behaves like a table. Data returned by a view is stored
in one or more tables, referenced by SELECT statements. Rows and columns in the view are refreshed
each time it is referenced.

See Identifier Restrictions in Advanced Operations Guide for the maximum length of a view name. The
maximum number of columns in a view is 256. View definitions have a 64 KB limit.

Zen supports grouped views, defined as views using any of the following in the SELECT statement:

s DISTINCT

= GROUP BY

= ORDERBY

m Scalar Functions
m Scalar Subqueries
m TOP or LIMIT

= UNION

Grouped views may be used in a subquery provided that the subquery is an expression. A subquery is
not considered an expression if it is connected with the operators IN, EXISTS, ALL, or ANY.

View definitions cannot contain procedures.

ORDER BY
ORDER BY in a view works the same way as in a SELECT statement. Note especially the following:

= You may use aliases in an ORDER BY clause.
= You may use scalar subqueries in an ORDER BY clause.
m The use of TOP or LIMIT is recommended in views that use ORDER BY.

m Ifthe engine uses a temporary table to return the ordered result of ORDER BY and the query uses a
dynamic cursor, then the cursor is converted to static. For example, temporary tables are always
required when ORDER BY is used on an unindexed column. Forward-only and static cursors are
not affected.

103

Trusted and Non-Trusted Views
A trusted view includes WITH EXECUTE AS ‘MASTER’. See Trusted and Non-Trusted Objects.

Examples of Trusted and Non-Trusted Views

The following statement creates a non-trusted view named vw_Person, which creates a phone list of all
the people enrolled in a university. This view lists the last names, first names and telephone numbers
with a heading for each column. The Person table is part of the Demodata sample database.

CREATE VIEW vw_Person (lastn,firstn,phone) AS SELECT Last_Name, First_Name,Phone FROM
Person

In a subsequent query on the view, you may use the column headings in your SELECT statement:
SELECT lastn, firstn FROM vw_Person

The user executing the view must have SELECT permissions on the Person table.

The following example creates a similar view, but a trusted one.

CREATE VIEW vw_trusted_Person (lastn,firstn,phone) WITH EXECUTE AS "MASTER® AS SELECT
Last Name, First _Name,Phone FROM Person

Now assume that to userl you grant SELECT permissions on vw_Person. Userl can use the column
headings in a SELECT statement:

SELECT lastn, firstn FROM vw_trusted Person

Userl is not required to have SELECT permissions on the Person table because the permissions were
granted to the trusted view.

The following statement creates a view named vw_Person, which creates a phone list of all the people
enrolled in a university. This view lists the last names, first names and telephone numbers with a heading
for each column. The Person table is part of the Demodata sample database.

CREATE VIEW vw_Person (lastn, firstn, telphone) AS SELECT Last Name, First_Name,
Phone FROM Person

In a subsequent query on the view, you may use the column headings in your SELECT statement, as
shown in the next example.

SELECT lastn, firstn FROM vw_Person

The example above can be changed to include an ORDER BY clause.

CREATE VIEW vw_Person_ordby (lastn, firstn, telphone) AS SELECT Last_Name, First_
Name, Phone FROM Person ORDER BY phone

The view returns the following (for brevity, not all records are shown).

Last Name First_Name Phone
Vagyles Rex 2105551871
Qulizada Ahmad 2105552233
Ragadio Ernest 2105554654
Luckey Anthony 2105557628

104

The following example creates a view that returns the grade point average (GPA) of students in
descending order, and, for each GPA ordering, lists the students by last name descending.

CREATE VIEW vw_gpa AS SELECT Last _Name,Left(First_Name,1l) AS First_
Initial,Cumulative_GPA AS GPA FROM Person LEFT OUTER JOIN Student ON
Person.I1D=Student.ID ORDER BY Cumulative_GPA DESC, Last_Name

The view returns the following (for brevity, not all records are shown).

Last_Name First_Initial GPA
Abuali | 4.000
Adachi K 4.000
Badia S 4.000
Rowan A 4.000
Ujazdowski T 4._.000
Wotanowski H 4.000
Gnat M 3.998
Titus A 3.998
Mugaas M 3.995

This example creates a view that returns the top 10 records from the Person table, ordered by ID.
CREATE VIEW vw_topl0 AS SELECT TOP 10 * FROM person ORDER BY id;

The view returns the following (for brevity, not all columns are shown).

ID First_Name Last Name
100062607 Janis Nipart
100285859 Lisa Tumbleson
100371731 Robert Mazza
100592056 Andrew Sugar
100647633 Robert Reagen
100822381 Roosevelt Bora
101042707 Avram Japadjief

10 rows were affected.

The following example creates a view to demonstrate that ORDER BY can be used with UNION.

CREATE VIEW vw_union_ordby_desc AS SELECT Ffirst_name FROM person UNION SELECT last_
name FROM PERSON ORDER BY first_name DESC

The view returns the following (for brevity, not all records are shown).

First_Name

Zyrowski
Zynda
Zydanowicz
Yzaguirre
Yyounce
Xystros
Xyois

Xu

Wyont

105

Wynalda

Wykes

See Also

DROP VIEW

SELECT

SET ROWCOUNT

Trusted and Non-Trusted Objects

106

DECLARE

Remarks

Use the DECLARE statement to define a SQL variable.

This statement is allowed only inside of a stored procedure, a user-defined function, or a trigger.

The name of a variable must begin with a colon (:), both in the definition and use of the variable or

parameter. A variable must be declared before it can be set to a value with SET.

Use a separate DECLARE statement for each variable (you cannot declare multiple variables with a

single statement). Specify a value or values for data types that require a size, precision, or scale, such as
CHAR, DECIMAL, NUMERIC, and VARCHAR.

Examples

The following examples show how to declare variables, including ones that require a value for size,

precision, or scale.

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

:Saleltem CHAR(15);

:CruiseLine CHAR(25) DEFAULT "Open Seas Tours"

:UnitWeight DECIMAL(10,3);

cTitration NUMERIC(12,3);

:ReasonForReturn VARCHAR(200);

:Counter INTEGER = O;

:CurrentCapacity INTEGER = 9;

:Cust_ID UNIQUEIDENTIFIER = NEWID(Q)

1SO_ID UNIQUEIDENTIFIER = "1129619D-772C-AAAB-B221-00FFO0FF0099*"

See Also

CREATE FUNCTION
CREATE PROCEDURE
CREATE TRIGGER

SET

107

DECLARE CURSOR
The DECLARE CURSOR statement defines a SQL cursor.

Syntax

DECLARE cursor-name CURSOR FOR select-statement [FOR UPDATE | FOR READ ONLY]
cursor-name - := user-defined-name

Remarks

The DECLARE statement is only allowed inside of a stored procedure or a trigger, since cursors and
variables are only allowed inside of stored procedures and triggers.

The default behavior for cursors is read-only. Therefore, you must use FOR UPDATE to explicitly
designate an update (write or delete).

Examples

The following example creates a cursor that selects values from the Degree, Residency, and Cost_Per_
Credit columns in the Tuition table and orders them by ID number.

DECLARE BTUCursor CURSOR

FOR SELECT Degree, Residency, Cost Per_Credit
FROM Tuition

ORDER BY 1D;

The following example uses FOR UPDATE to ensure a delete.

CREATE PROCEDURE MyProc(IN :CourseName CHAR(7)) AS
BEGIN
DECLARE c1 CURSOR FOR SELECT name FROM course WHERE name = :CourseName FOR UPDATE;
OPEN c1;
FETCH NEXT FROM cl1 INTO :CourseName;
DELETE WHERE CURRENT OF c1;
CLOSE c1;
END;
CALL MyProc("HIS 305%)

DECLARE cursorl CURSOR

FOR SELECT Degree, Residency, Cost_Per_Credit
FROM Tuition ORDER BY ID

FOR UPDATE;

See Also

CREATE PROCEDURE, CREATE TRIGGER

108

DEFAULT
The keyword DEFAULT is used to

A When you add a row without a specific value for one of its columns, you can use the DEFAULT
keyword to provide the value. DEFAULT can be used in the following instances:

m Column definition of CREATE TABLE

m Column definition of ALTER TABLE

m VALUES clause of INSERT

m VALUES clause of UPDATE

The default value is a literal or an expression. In a CREATE TABLE or ALTER TABLE statement it must:

m Match the data type of the column

m Conform to any other constraint imposed on the column, such as range or length

In INSERT and UPDATE statements, for columns with a DEFAULT expression defined, Zen runs the
expression and writes the result while inserting or updating.

Syntax

See the syntax for the following statements for use of the DEFAULT keyword:

s ALTER TABLE
s CREATE TABLE

s INSERT
s UPDATE
Remarks

You can specify literals or expressions as DEFAULT values as explained in the following topics:

m Data Types Compatible with the DEFAULT Keyword

m Scalar Functions as Default Column Values

Data Types Compatible with the DEFAULT Keyword

s AUTOTIMESTAMP
m BFLOAT4, BFLOATS
s BIGIDENTITY

s BIGINT, UBIGINT

= BINARY

s BIT

s CHAR

s CURRENCY
m DATE

s DATETIME
= DECIMAL

= DOUBLE

109

IDENTITY

INTEGER, UINTEGER
LONGVARBINARY
LONGVARCHAR
NLONGVARCHAR
NUMERIC
NUMERICSA
NUMERICSTS

REAL
SMALLIDENTITY
SMALLINT, USMALLINT
TIME

TIMESTAMP
TIMESTAMP2
TINYINT, UTINYINT
UNIQUEIDENTIFIER
VARCHAR

Note For an IDENTITY, SMALLIDENTITY, or BIGIDENTITY data type column in a CREATE
TABLE or ALTER TABLE statement, you may set a default value of zero (DEFAULT 0 or DEFAULT

"0"). No other default value is permissible for these data types.

Scalar Functions as Default Column Values

In addition to literals and NULL values, Zen supports certain scalar functions for default column values.
CURRENT_USER() can give a default value for string columns CHAR and VARCHAR. The following
table lists date and time scalar functions that can be used with DEFAULT.

Date or Time Scalar Function

Default for

CURDATE()

Date columns only

CURRENT_DATE()

Date columns only

CURRENT_TIME()

Time columns only

CURTIME()

Time columns only

CURRENT_TIMESTAMP()

Time stamp or date time columns

NOW()

Time stamp or date time columns

CURRENT_TIME()
CURRENT_TIMESTAMP
CURRTIMEY()

110

In CREATE, INSERT, and UPDATE statements, the column default is the returned value. For ALTER,
however, adding a column using the following date and time scalar functions works slightly differently:

= NOW()

At the time a column is added by an ALTER statement, these particular functions cannot be evaluated
for the default value, so Zen assigns the new field in all existing records a "zero" value based on 1/1/1900
00:00:00.000. Later INSERT and UPDATE operations will use these functions as expected.

You can use UPDATE statements to replace the zero value in existing records. For an example, see this
knowledge base article.

Examples

The following statement creates table Tab5. The default value of the col5 column is 200.

CREATE TABLE Tab5
(col5 INT DEFAULT 200)

This statement creates table Tab1l where column coll is the DATE part of the result returned by NOW().

CREATE TABLE Tabl
(coll DATE DEFAULT NOW())

This statement creates table Tab8 where column col8 is the time of the INSERT or UPDATE.

CREATE TABLE Tab8
(col8 TIMESTAMP DEFAULT CURRENT_TIMESTAMP)

The following statement creates table Tab6 where column col6 is the user name after an INSERT or
UPDATE. DEFAULT USER is practical only with security enabled. Otherwise USER is always NULL.

CREATE TABLE Tab6
(col6 VARCHAR(20) DEFAULT USER)

The following statement shows an invalid example. It results in a parse-time error because TIME is not
an allowed data type for a DATE column.

CREATE TABLE Tab
(col DATE DEFAULT CURTIMEQ))

The following statement shows an invalid example. It results in a parse-time error because although '3.1'
is convertible to a number, it is not a valid integer.

CREATE TABLE Tab
(col SMALLINT DEFAULT "3.1%)

The following statement shows an invalid example. The CREATE TABLE statement succeeds, but the
INSERT statement fails because -60000 is outside of the range supported by SMALLINT.

CREATE TABLE Tab
(col SMALLINT DEFAULT 3 * -20000)
INSERT INTO Tab values(DEFAULT)

111

https://communities.actian.com/s/article/ALTER-TABLE-ADD-COLUMN-does-not-use-its-own-DEFAULT-expression
https://communities.actian.com/s/article/ALTER-TABLE-ADD-COLUMN-does-not-use-its-own-DEFAULT-expression

The following statements show valid examples of setting a default value of zero for an IDENTITY and a
SMALLIDENTITY data type.

CREATE TABLE t1 (cl IDENTITY DEFAULT "0°)
ALTER TABLE t1 ALTER cl1l SMALLIDENTITY DEFAULT O

The following statements show invalid examples of setting a default value for an IDENTITY and a
SMALLIDENTITY data type.

CREATE TABLE t1 (cl IDENTITY DEFAULT 3)
ALTER TABLE t1 ALTER cl1 SMALLIDENTITY DEFAULT 1
See Also

ALTER TABLE

CREATE TABLE

INSERT

UPDATE

112

DELETE (positioned)

Use the positioned DELETE statement to remove the current row of a view associated with a SQL cursor.

Syntax

DELETE WHERE CURRENT OF cursor-name
cursor-name ::= user-defined-name
Remarks

This statement is allowed in stored procedures, triggers, and at the session level.

Note Even though positioned DELETE is allowed at the session level, the DECLARE CURSOR
statement is not. The method to obtain the cursor name of the active result set depends on the Zen
access method your application uses. See the Zen documentation for that access method.

Examples

The following sequence of statements provide the setting for the positioned DELETE statement. The
required statements for the positioned DELETE statement are DECLARE CURSOR, OPEN CURSOR,
and FETCH FROM cursorname.

The Modern European History class has been dropped from the schedule, so this example deletes the
row for Modern European History (HIS 305) from the Course table in the sample database:

CREATE PROCEDURE DropClass();
DECLARE :CourseName CHAR(7);
DECLARE cl1 CURSOR
FOR SELECT name FROM COURSE WHERE name = :CourseName;
BEGIN
SET :CourseName = "HIS 3057;
OPEN c1;
FETCH NEXT FROM c1 INTO :CourseName;
DELETE WHERE CURRENT OF c1;
END;

See Also
CREATE PROCEDURE
CREATE TRIGGER

113

DELETE

This statement deletes specified rows from a database table or view.

Syntax

DELETE [FROM] < table-name | view-name > [alias-name]
[FROM table-reference [, table-reference]
[WHERE search-condition]

table-name : := user-defined-name

view-name ::= user-defined-name

alias-name ::= user-defined-name (Alias-name is not allowed if a second FROM clause is used. See FROM
Clause.)

table-reference z:= { 0J outer-join-definition }

| [db-name.]table-name [[AS] alias-name]
| [db-name.]view-name [[AS] alias-name 7]
| join-definition

| (join-definition)

| (table-subquery)[AS] alias-name [(column-name [, column-name J...)]
outer-join-definition : = table-reference outer-join-type JOIN table-reference ON search-condition
outer-join-type = LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]
search-condition ::= search-condition AND search-condition

| search-condition OR search-condition
| NOT search-condition
| (search-condition)

| predicate

db-name ::= user-defined-name
view-name ::= user-defined-name
join-definition : = table-reference [join-type] JOIN table-reference ON search-condition

| table-reference CROSS JOIN table-reference

| outer-join-definition
join-type z= INNER | LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]

table-subquery ::= query-specification [[UNION [ALL]
query-specification] . . .]

Remarks

DELETE statements, as with INSERT and UPDATE, behave in an atomic manner. That is, if a deletion
of more than one row fails, then all deletions of previous rows by the same statement are rolled back.

114

FROM Clause

Some confusion may arise pertaining to the second optional FROM clause and references to the table
whose rows are being deleted (referred to as the “delete table”). If the delete table occurs in the second
FROM clause, then one of the occurrences is the same instance of the table whose rows are being deleted.

For example, in the statement DELETE t1 FROM tl, t2 WHERE tl.cl = t2.cl, the t] immediately
after DELETE is the same instance of table t1 as the t1 after FROM. Therefore, the statement is identical
to DELETE t1 FROM t2 WHERE tl.cl = t2.cl.

If the delete table occurs in the second FROM clause multiple times, one occurrence must be identified
as the same instance as the delete table. The second FROM clause reference that is identified as the same
instance as the delete table is the one that does not have a specified alias.

Therefore, the statement DELETE t1 FROM t1 a, t1 b WHERE a.cl = b.cl is invalid because both
instances of t1 in the second FROM clause contain an alias. The following version is valid: DELETE t1
FROM t1, t1 b WHERE tl.cl = b.cl

The following conditions apply to the second FROM clause:

m Ifthe DELETE statement contains an optional second FROM clause, the table reference prior to the
FROM clause cannot have an alias specified. For example, DELETE t1 a FROM t2 WHERE a.cl =
t2.cl returns the following error:

SQL_ERROR (-1)
SQLSTATE of **37000"
"Table alias not allowed in UPDATE/DELETE statement with optional FROM."

A valid version of the statement is DELETE t1 FROM t2 WHERE tl.cl = t2.clor DELETE t1 FROM
tl a, t2 WHERE a.cl = t2.cl.

m If more than one reference to the delete table appears in the second FROM clause, then only one of
the references can have a specified alias. For example, DELETE t1 FROM t1 a, t1 b WHERE a.cl
= b.cl returns the following error:

SQL_ERROR (-1)
SQLSTATE of 37000
"The table t1 is ambiguous."

«_»

In the erroneous statement, assume that you want table t1 with alias “a” to be the same instance of
the delete table. A valid version of the statement is DELETE t1 FROM t1, t1 b WHERE tl.cl =
b.cl.

m The second FROM clause is supported in a DELETE statement only at the session level. The FROM
clause is not supported if the DELETE statement occurs within a stored procedure.

Examples

The following statement deletes the row for first name Ellen from the person table in the sample
database.

DELETE FROM person WHERE First_Name = “Ellen”

The following statement deletes the row for Modern European History (HIS 305) from the course table
in the sample database:

DELETE FROM Course WHERE Name = "HIS 305°

115

DISTINCT

Include the DISTINCT keyword in your SELECT statement to remove duplicate values from the result.
By using DISTINCT, you can retrieve all unique rows that match the selection.

The following rules apply:

m Zen supports DISTINCT in subqueries.

m DISTINCT is ignored if the selection list contains an aggregate. Aggregation already guarantees no
duplicate result rows.

Examples

The following statements retrieve all courses taught by faculty ID 111191115. The second statement uses
DISTINCT to eliminate rows with duplicate column values.

SELECT c.Name, c.Description
FROM Course c, class cl
WHERE c.name = cl.name AND cl.faculty_id = "111191115°";

Name Description

CHE 203 Chemical Concepts and Properties 1
CHE 203 Chemical Concepts and Properties 1
CHE 205 Chemical Concepts and Properties 11
CHE 205 Chemical Concepts and Properties |1

SELECT DISTINCT c.Name, c.Description
FROM Course c, class cl
WHERE c.name = cl.name AND cl.faculty_id = "111191115°";

Name Description

CHE 203 Chemical Concepts and Properties 1
CHE 205 Chemical Concepts and Properties 11

Note The following use of DISTINCT is not allowed:
SELECT DISTINCT columnl, DISTINCT column2

See Also
SELECT
For other uses of DISTINCT, see DISTINCT in Aggregate Functions.

116

DROP DATABASE
The DROP DATABASE statement deletes a database. Only the Master user can issue this statement.

Syntax

DROP DATABASE [IF EXISTS] database-name [DELETE FILES]
database-name ::= user-defined-name

Remarks

As Master user, you must be logged on to a database to issue the statement. The DROP DATABASE
statement can be used to drop any database, including the one to which you are currently logged on,
provided the security setting permits deletion. See Secured Databases below.

DROP DATABASE cannot be used to delete system databases such as defaultdb and tempdb. The
statement can be used to delete the last remaining user-defined database if you choose, security
permitting.

The DROP DATABASE statement cannot be used in a stored procedure or in a user-defined function.

The expression IF EXISTS causes the statement to return success instead of an error if a database does
not exist. IF EXISTS does not suppress other errors.

Secured Databases

You cannot delete a database secured with the Database security model. You can delete a database
secured with any of the following ways:

m Classic security
m Mixed security

m Relational security (Master password) in combination with Classic or Mixed security

For more information, see Zen Security in Advanced Operations Guide.

DELETE FILES
The DELETE FILES clause is for deleting data dictionary files (DDFs). Data files are not deleted.

If DELETE FILES is omitted, the DDFs remain on physical storage, but the database name is deleted
from dbnames.cfg. Once the name is removed from dbnames.cfg, the database no longer exists to the
database engine. Retaining the DDFs allows you to recreate the database should you so choose.

Note that the DDFs must not be in use to delete them. If you have Zen Control Center open, for example,
a “file is locked” error returns if you use the DELETE FILES clause. While ZenCC is open, the DDFs are
considered to be in use, which prevents their deletion.

Examples

The following example deletes a database named inventorydb from dbnames.cfg, but it retains the
database DDFs (and data files) in physical storage.

DROP DATABASE inventorydb

117

The following example deletes a database named HRUSBenefits and its DDFs. Data files are retained for
HRUSBenefits.

DROP DATABASE HRUSBenefits DELETE FILES

See Also
CREATE DATABASE

118

DROP FUNCTION
The DROP FUNCTION statement removes an existing user-defined function (UDF) from the database.

Note An error message appears if you attempt to delete a UDF that does not exist.

Syntax

DROP FUNCTION [IF EXISTS] { function_name }
function_name ::= Name of the user-defined function to be removed.
Remarks

The expression IF EXISTS causes the statement to return success instead of an error if a function does
not exist. IF EXISTS does not suppress other errors.

Examples
The following statement drops UDF fn_MyFunc from the database.
DROP FUNCTION fn_MyFunc

See Also
CREATE FUNCTION

119

DROP GROUP

This statement removes one or more groups in a secured database.

Syntax
DROP GROUP [IF EXISTS] group-name [, group-name]...

Remarks

Only the Master user can perform this statement. Separate multiple group names with a comma. A
group must be empty to be dropped.

Security must be turned on to perform this statement.

The expression IF EXISTS causes the statement to return success instead of an error if a group does not
exist. [F EXISTS does not suppress other errors.

Examples

The following example drops the group zengroup.
DROP GROUP zengroup

The following example uses a list to drop groups.

DROP GROUP zen_dev, zen_marketing

See Also
ALTER GROUP
CREATE GROUP

120

DROP INDEX

This statement drops a specific index from a designated table.

Syntax

DROP INDEX [IF EXISTS] [table-name.]index-name [IN DICTIONARY]
table-name - = user-defined-name

index-name ::= user-defined-name

Remarks

IN DICTIONARY is an advanced feature that should be used only by system administrators and when
absolutely necessary. The IN DICTIONARY keyword allows you to drop an index from a DDF without
removing the index from the underlying data file. Normally, Zen keeps DDFs and data files tightly
synchronized, but this feature allows users the flexibility to force out-of-sync table dictionary definitions
to match an existing data file. This can be useful when you want to create a new definition in the
dictionary to match an existing data file.

Caution Modifying a DDF without performing corresponding modifications to the underlying data
file can cause serious problems.

The expression IF EXISTS causes the statement to return success instead of an error if an index does not
exist. IF EXISTS does not suppress other errors.

For more information on this feature, see the discussion under IN DICTIONARY.

Partial Indexes

When dropping partial indexes, the PARTIAL modifier is not required.

Examples

The following statement drops the named index from the Faculty table.

DROP INDEX Faculty.Dept

The following examples create a detached table, one with no associated data file, then add and drop an
index from the table definition. The index is a detached index because there is no underlying Btrieve
index associated with it.

CREATE TABLE t1 IN DICTIONARY (cl int, c2 int)
CREATE INDEX idx_1 IN DICTIONARY on tl1(cl)
DROP INDEX tl1.idx_1 IN DICTIONARY

See Also
CREATE INDEX

121

DROP PROCEDURE

This statement removes one or more stored procedures from the current database.

Syntax
DROP PROCEDURE [IF EXISTS] procedure-name

Remarks

The expression IF EXISTS causes the statement to return success instead of an error if a procedure does
not exist. IF EXISTS does not suppress other errors.

Examples
The following statement drops the stored procedure myproc from the dictionary:

DROP PROCEDURE myproc

See Also
CREATE PROCEDURE

122

DROP TABLE

This statement removes a table from a designated database.

Syntax
DROP TABLE [IF EXISTS] table-name [IN DICTIONARY]

table-name - = user-defined-name for the table to be removed.

IN DICTIONARY
See the discussion of IN DICTIONARY for ALTER TABLE.

Remarks

CASCADE and RESTRICT are not supported.

If any triggers depend on the table, the table is not dropped.

If a transaction is in progress and refers to the table, then an error is signaled and the table is not dropped.
The drop of table fails if other tables depend on the table to be dropped.

If a primary key exists, it is dropped. The user need not drop the primary key before dropping the table.
If the primary key of the table is referenced by a constraint belonging to another table, then the table is
not dropped and an error is signaled.

If the table has any foreign keys, then those foreign keys are dropped.

If the table has any other constraints (for example, NOT NULL, CHECK, UNIQUE, or NOT
MODIFIABLE), then those constraints are dropped when the table is dropped.

The expression IF EXISTS causes the statement to return success instead of an error if a table does not
exist. [F EXISTS does not suppress other errors.
Examples

The following statement drops the class table definition from the dictionary.

DROP TABLE Class

See Also
ALTER TABLE
CREATE TABLE

123

DROP TRIGGER

This statement removes a trigger from the current database.

Syntax
DROP TRIGGER [IF EXISTS] trigger-name

Remarks

The expression IF EXISTS causes the statement to return success instead of an error if a trigger does not
exist. IF EXISTS does not suppress other errors.

Examples
The following example drops the trigger named InsTrig.
DROP TRIGGER InsTrig

See Also
CREATE TRIGGER

124

DROP USER

The DROP USER statement removes user accounts from a database.

Syntax
DROP USER [IF EXISTS] user-name [, user-name]- ..

Remarks

Only the Master user can execute this statement.
Security must be turned on to perform this statement.
Separate multiple user names with a comma.

If the user name contains spaces or other nonalphanumeric characters, it must be enclosed in double
quotation marks.

Dropping a user account does not delete the tables, views, or other database objects created by the user.

The expression IF EXISTS causes the statement to return success instead of an error if a user does not
exist. IF EXISTS does not suppress other errors.

For further general information about users and groups, see Master User and Users and Groups in
Advanced Operations Guide, and Assigning Permissions Tasks in Zen User’s Guide.

Examples

The following example removes the user account pgranger.

DROP USER pgranger

The following example removes multiple user accounts.

DROP USER pgranger, "lester pelling”

See Also
ALTER USER
CREATE USER

125

DROP VIEW

This statement removes a specified view from the database.

Syntax

DROP VIEW [IF EXISTS] view-name
view-name ::= user-defined name
Remarks

[CASCADE | RESTRICT] is not supported.

The expression IF EXISTS causes the statement to return success instead of an error if a view does not
exist. IF EXISTS does not suppress other errors.

Examples
The following statement drops the vw_person view definition from the dictionary.

DROP VIEW vw_person

See Also
CREATE VIEW

126

END

Remarks
See the discussion for BEGIN [ATOMIC].

127

EXECUTE
The EXECUTE statement has two uses:

» To invoke a user-defined procedure or a system stored procedure. You may use EXECUTE in place
of the CALL statement

m To execute a character string, or an expression that returns a character string, within a stored
procedure.

Syntax
To invoke a stored procedure:
EXEC[UTE] stored-procedure [([procedure-parameter [, procedure-parameter J... 1)]

stored-procedure ::= the name of a stored procedure

procedure-parameter ::= the input parameter(s) required by the stored procedure

Within a user-defined stored procedure:

EXECLUTE] (string [+ string 1...)

string = a string, string variable, or an expression that returns a character string

Remarks

The stored procedure syntax EXEC[UTE] (string...) does not support NCHAR values for literals and
variables. Values used in constructing the string are converted to CHAR values before execution.

Examples

The following example executes a procedure without parameters:
EXEC NoParms() or CALL NoParms
The following examples execute a procedure with parameters:

EXEC Parms(vParml, vParm2)
EXECUTE CheckMax(N.Class_ID)

The following procedure selects the student ID from the Billing table.

CREATE PROCEDURE tmpProc(IN :vTable CHAR(25)) RETURNS (sID INTEGER) AS
BEGIN
EXEC ("SELECT Student_ID FROM * + :vtable);
END;
EXECUTE tmpProc("Billing")
See Also
CALL
CREATE PROCEDURE

System Stored Procedures

128

EXISTS

The EXISTS keyword tests whether rows exist in the result of a subquery. True is returned if the subquery
contains any rows.

Syntax
EXISTS (subquery)

Remarks

For every row the outer query evaluates, Zen tests for the existence of a related row from the subquery.
Zen includes in the statement's result table each row from the outer query that corresponds to a related
row from the subquery.

You may use EXISTS for a subquery within a stored procedure. However, the subquery SELECT
statement within the stored procedure may not contain a COMPUTE clause or the INTO keyword.

In most cases, a subquery with EXISTS can be rewritten to use IN. Zen can process the query more
efficiently if the query uses IN.

Examples

The following statement returns a list containing only persons who have a 4.0 grade point average:

SELECT * FROM Person p WHERE EXISTS
(SELECT * FROM Enrolls e WHERE e.Student ID = p.id
AND Grade = 4.0)

This statement can be rewritten to use IN:

SELECT * FROM Person p WHERE p.id IN
(SELECT e.Student_ID FROM Enrolls WHERE Grade = 4.0)

The following procedure selects the ID from the Person table using a value as an input parameter. The
tirst EXEC of the procedure returns “Exists returned true.” The second EXEC returns “Exists returned
false.”

CREATE PROCEDURE ex1(IN :vID INTEGER) AS
BEGIN
IF EXISTS ("SELECT id FROM person WHERE id < :vID)
THEN PRINT "Exists returned true-;
ELSE PRINT "Exists returned false”;
END IF;
END;
EXEC ex1(222222222)
EXEC ex1(1)

See Also
SELECT

129

FETCH

Syntax

FETCH [[NEXT] FROM Jcursor-name INTO variable-name
cursor-name 1= user-defined-name

Remarks

A FETCH statement positions a SQL cursor on a specified row of a table and retrieves values from that
row by placing them into the variables in a target list.

You may choose to omit the NEXT and FROM keywords while fetching data from any cursor.

Note Zen supports only the forward-only cursor. So, you will not be able to control the flow of the
cursor records even by omitting NEXT FROM.

Examples

The FETCH statement in this example retrieves values from cursor c1 into the CourseName variable.
The Positioned UPDATE statement in this example updates the row for Modern European History (HIS
305) in the Course table in the Demodata sample database:

CREATE PROCEDURE UpdateClass();
BEGIN
DECLARE :CourseName CHAR(7);
DECLARE :OldName CHAR(7);
DECLARE c1 CURSOR FOR SELECT name FROM course WHERE name = :CourseName;
OPEN c1;
SET :CourseName = "HIS 305°;
FETCH NEXT FROM c1 INTO :OldName;
UPDATE SET name = "HIS 306" WHERE CURRENT OF ci1;
END;

CREATE PROCEDURE MyProc(OUT :CourseName CHAR(7)) AS
BEGIN
DECLARE cursorl CURSOR
FOR SELECT Degree, Residency, Cost_Per_Credit FROM Tuition ORDER BY ID;
OPEN cursorl;
FETCH NEXT FROM cursorl INTO :CourseName;
CLOSE cursorl;
END

See Also
CREATE PROCEDURE

130

FOREIGN KEY

Remarks
Include the FOREIGN KEY keywords in the ADD clause to add a foreign key to a table definition.

Note You must be logged in to the database using a database name before you can add a foreign key
or conduct any other referential integrity (RI) operation. Also, when security is enabled, you must
have the Reference right on the table to which the foreign key refers before you can add the key.

Include a FOREIGN KEY clause in your CREATE TABLE statement to define a foreign key on a
dependent table. In addition to specifying a list of columns for the key, you can define a name for the key.

The columns in the foreign key column may be nullable. However, ensure that pseudo-null columns do
not exist in an index that does not index pseudo-null values.

The foreign key name must be unique in the dictionary. If you omit the foreign key name, Zen uses the
name of the first column in the key as the foreign key name. This can cause a duplicate foreign key name
error if your dictionary already contains a foreign key with that name.

When you specify a foreign key, Zen creates an index on the columns that make up the key. This index
has the same attributes as the index on the corresponding primary key except that it allows duplicate
values. To assign other attributes to the index, create it explicitly using a CREATE INDEX statement.
Then, define the foreign key with an ALTER TABLE statement. When you create the index, ensure that
it does not allow null values and that its case and collating sequence attributes match those of the index
on the corresponding primary key column.

The columns in a foreign key must be the same data types and lengths and in the same order as the
referenced columns in the primary key. The only exception is that you can use an integer column in the
foreign key to refer to an IDENTITY, SMALLIDENTITY, or BIGIDENTITY column in the primary key.
In this case, the two columns must be the same length.

Zen checks for anomalies in the foreign keys before it creates the table. If it finds conditions that violate
previously defined referential integrity (RI) constraints, it generates a status code and does not create the
table.

Note When you create a foreign key on a table that already contains data, Zen does not validate the
data values already present in the foreign key columns and those in the primary key columns. This
constraint applies to an INSERT, UPDATE, or DELETE action made after the foreign key is created.

When you define a foreign key, you must include a REFERENCES clause indicating the name of the table
that contains the corresponding primary key. The primary key in the parent table must already be
defined. In addition, if security is enabled on the database, you must have the Reference right on the table
that contains the primary key.

You cannot create a self-referencing foreign key with the CREATE TABLE statement. Use an ALTER
TABLE statement to create a foreign key that references the primary key in the same table.

Also, you cannot create a primary key and a foreign key on the same set of columns in a single statement.
Therefore, if the primary key of the table you are creating is also a foreign key on another table, you must
use an ALTER TABLE statement to create the foreign key.

131

Examples

The following statement adds a new foreign key to the Class table. (The Faculty column is defined as an
index that does not include null values.)

ALTER TABLE Class ADD CONSTRAINT Teacher FOREIGN KEY (Faculty_ID) REFERENCES Faculty
ON DELETE RESTRICT

In this example, the restrict rule for deletions prevents someone from removing a faculty member from
the database without first either changing or deleting all of that faculty's classes.

See Also
ALTER TABLE
CREATE TABLE

132

GRANT

In a secured database, use the GRANT statement to manage access permissions for tables, views, and
stored procedures. GRANT can give users rights to these permissions, can create new users, and can
assign the users to existing user groups. If needed, use CREATE GROUP to create a new group before
using GRANT.

The following topics cover use of GRANT statements:
= GRANT LOGIN TO

m Constraints on Permissions
= GRANT and Data Security

Syntax

GRANT CREATETAB | CREATEVIEW | CREATESP TO public-or-user-or-group-name [, user-or-group-name
1---

GRANT LOGIN TO user_and_password [, user_and_password J... [IN GROUP group-name]

GRANT permission ON < * | [TABLE] table-name [owner-name] | VIEW view-name | PROCEDURE
stored_procedure-name >
TO user-or-group-name [, user-or-group-name J. ..

* = all of the objects (that is, all tables, views, and stored procedures)

permission -:= ALL
| ALTER
| DELETE
| INSERT [(table-column-name [, table-column-name |...)]
| REFERENCES
| SELECT [(table-column-name [, table-column-name |...)]
| UPDATE [(table-column-name [, table-column-name ...) 1]
|

EXECUTE
table-name ::= user-defined table-name
owner-name :-:= user-defined owner name
view-name :-:= user-defined view-name
stored-procedure-name ::= user-defined stored_procedure-name
user_and_password - := user-name [: 1 password
public-or-user-or-group-name ::= PUBLIC | user-or-group-name
user-or-group-name - := user-name | group-name
user-name ::= user-defined user name
table-column-name ::= user-defined column name (tables only)

133

Remarks

CREATETAB, CREATESP, CREATEVIEW, and LOGIN TO keywords are extensions to the SQL
grammar. You can use the GRANT statement to grant privileges for CREATE TABLE, CREATE VIEW,
and CREATE PROCEDURE. The following table lists the syntax for a given action.

To GRANT Privileges for This Action

Use This Keyword with GRANT

CREATE TABLE CREATETAB
CREATE VIEW CREATEVIEW
CREATE PROCEDURE CREATESP
LOGIN AS GROUP MEMBER LOGINTO

CREATETAB, CREATEVIEW, and CREATESP must be explicitly granted. These privileges are not

included as part of a GRANT ALL statement.

GRANT LOGIN TO

GRANT LOGIN TO creates a user and allows that user to access the secured database. You must specify
a user name and password to create a user. Optionally, you may specify an existing group for the new
user. If needed, use CREATE GROUP to create a new group before using GRANT LOGIN TO.

Constraints on Permissions

The following constraints apply to permissions on objects:

= By Object Type
m ALL Keyword

134

By Object Type

Table 23 Permissions Applicable To Object Type

Permission Table' View' Stored Procedure
CREATETAB V4

CREATEVIEW V4

CREATESP V4

ALTER? V4 V4 V4
DELETE V4 V4

INSERT V4 V4

REFERENCES V4

SELECT V4 V4

UPDATE V4 V4

EXECUTE? V4

" Columns can be specified only for tables. Permissions for a view can be granted only to the entire view, not to single columns,
270 drop a table, view, or stored procedure, a user must have ALTER permission on that object. Trusted views and stored
procedures can be dropped only by the Master user.

3 EXECUTE applies only to stored procedures. A stored procedure can be executed with either a CALL or an EXECUTE
statement. The procedure can be trusted or non-trusted. See Trusted and Non-Trusted Objects.

ALL Keyword

Table 24 Permissions Granted with ALL by Object Type

Permission Included by ALL Table View Stored Procedure
ALTER! v v v

DELETE V4 V4

INSERT V4 V4

REFERENCES v

SELECT v v

UPDATE V4 V4

EXECUTE V4

To drop a table, view, or stored procedure, a user must have ALTER permission on that object. Trusted views and stored
procedures can be dropped only by the Master user.

135

For example, if you issue GRANT ALL ON * to User1, then User] has all permissions listed in the table.

If you issue GRANT ALL ON VIEW myviewl TO User2, then User2 has ALTER, DELETE, INSERT,
UPDATE, and SELECT permissions on myviewl.

GRANT and Data Security
The following topics provide cover particular uses of GRANT to manage data security:

m Granting Privileges to Users and Groups

m Granting Access Using Owner Names

Granting Privileges to Users and Groups

Relational security is based on the existence of a default user named Master who has full access to the
database when security is turned on. When you turn security on, you will be required to specify a
password for the Master user.

Security must be turned on to perform this statement.

The Master user can create groups and other users using the GRANT LOGIN TO, CREATE USER, or
CREATE GROUP commands and manage data access for these groups and users.

If you want to grant the same privileges to all users, you can grant them to the PUBLIC group. All users
inherit the default privileges assigned to the PUBLIC group.

Note If you wish to use groups, you must set up the groups before creating users.

User name and password must be enclosed in double quotes if they contain spaces or other
nonalphanumeric characters.

For further general information about users and groups, see Master User and Users and Groups in
Advanced Operations Guide, and Assigning Permissions Tasks in Zen User’s Guide.

Granting Access Using Owner Names

An owner name is a string of bytes that unlocks access to a Btrieve file. Btrieve owner names have no
connection with any operating system or database user name but rather serve as a file access password.
For more information, see Owner Names.

If a Btrieve file that serves as a table in a secure SQL database has an owner name, the database Master
user must provide that owner name in a GRANT statement to authorize access to the table, including for
the Master user itself.

After the Master user has executed a GRANT statement for a user, that user can access the table, without
having to give the owner name, simply by logging into the database. This authorization lasts for the
duration of the current database connection. Also note that the SET OWNER statement allows you to
specify one or more owner names for the connection session. See SET OWNER.

If a user tries to run SQL commands on a table that has an owner name, access is refused unless the
Master user has granted rights to the table for that user by using the owner name in a GRANT statement.

If a table has an owner name with the read-only setting chosen, all users have SELECT rights on the table.

136

Permissions on Views and Stored Procedures

Views and stored procedures can be trusted or non-trusted, depending on how you want to handle the
permissions for the objects referenced by the view or stored procedure.

Trusted and Non-Trusted Objects

Views and stored procedures reference objects, such as tables, other views or other stored procedures.
Granting permissions on every referenced object could become highly time consuming depending on
the number of objects and users. A simpler approach for many situations is the concept of a trusted view
or stored procedure.

A trusted view or stored procedure is one that can be executed without having to explicitly set
permissions for each referenced object. For example, if trusted view myview1 references tables t1 and t2,
the Master user can grant permissions for myview1 without having to grant them for t1 and t2.

A non-trusted view or stored procedure is one that cannot be executed without having to explicitly set
permissions for each referenced object.

The following table compares characteristics between trusted and non-trusted objects.

Table 25 Characteristics of Trusted and Non-trusted Views and Stored Procedures

Object Characteristic Notes

Trusted view or trusted| Requires V2 metadata See Zen Metadata.
stored procedure

Requires WITH EXECUTE AS ‘MASTER’| See CREATE VIEW and CREATE PROCEDURE.
clause in CREATE statement

Only Master user can create the object | See Master User in Advanced Operations Guide.

Only Master user can delete the object | See DROP VIEW and DROP PROCEDURE

Master user must grant object By default, only the Master user can access trusted views
permissions to other users or stored procedures and must grant permissions to them.
GRANT and REVOKE statements See also REVOKE.

applicable to object

Object can exist in a secured or in an See Zen Security in Advanced Operations Guide.
unsecured database

Changing a trusted object to a non- The ALTER statement for a view or stored procedure
trusted one (or vice versa) requires cannot be used to add or remove the trusted characteristic
deletion then recreation of object of the object. If you need to change a trusted object to a

non-trusted one, you must first delete the object then
recreate it without the WITH EXECUTE AS ‘MASTER’
clause. Similarly, if you need to change a non-trusted
object to a trusted one, you must first delete the object then
recreate it with the WITH EXECUTE AS ‘MASTER ' clause,

137

Table 25 Characteristics of Trusted and Non-trusted Views and Stored Procedures (Continued)

Object Characteristic Notes
Non-trusted view or Any user can create the object User must be granted CREATEVIEW or CREATESP
non-trusted stored privilege. See Remarks.
procedures
Any user can delete the object User must be granted ALTER permission on the view or

stored procedure. See GRANT.

ALTER permission required to delete the | ALTER permission is also required to delete a table. Note
object that, by default, only the Master user can delete trusted
objects. Users (other than Master) who did not create the
view or stored procedure must be granted ALTER
permissions to delete the view or stored procedure.

All users, by default, have all permissions | For V2 metadata, if an unsecured database contains non-
for the object trusted objects, all permissions for the non-trusted objects
are automatically granted to PUBLIC if security is enabled
on the database.

User executing the view or stored The user must also have permissions on the top-most
procedure needs permissions for the object. That is, on the view or stored procedure that
objects referenced by the view or stored | references the other objects.

procedure

GRANT and REVOKE statements See GRANT and REVOKE.

applicable to object

Object can exist in a secured or in an See Zen Security in Advanced Operations Guide.
unsecured database

Changing a trusted object to a non- Same as above for trusted view or trusted stored
trusted one (or vice versa) requires procedure.
deletion then recreation of object

Examples
This section provides a number of examples of GRANT.

A GRANT ALL statement grants the INSERT, UPDATE, ALTER, SELECT, DELETE and REFERENCES
privileges to the specified user or group. In addition, the user or group is granted the CREATE TABLE
right for the dictionary. The following statement grants all of these permissions to user dannyd for table
Class.

GRANT ALL ON Class TO dannyd

The following statement grants ALTER permission to user debieq for table Class.

GRANT ALTER ON Class TO debieq

The following statement gives INSERT permission to keithv and miked for table Class. The table has an
owner name of winsvr644AdminGrp.

GRANT INSERT ON Class winsvr644AdminGrp TO keithv, miked

The following statement gives INSERT permission to keithv and miked for table Class.

138

GRANT INSERT ON Class TO keithv, miked

The following statement grants INSERT permission on two columns, First_name and Last_name, in the
Person table to users keithv and brendanb

GRANT INSERT(First_name, last_name) ON Person to keithv,brendanb

The following statement grants CREATE TABLE rights to users aideenw and punitas
GRANT CREATETAB TO aideenw, punitas

The following GRANT LOGIN TO statement grants login rights to a user named ravi and specifies his
password as password.

GRANT LOGIN TO ravi:password

1%

Note If the a user account that is granted login rights using the GRANT LOGIN TO statement does
not currently exist, then it is created.

If GRANT LOGIN is used in a stored procedure, you must separate the user name and password
with a space character and not with the colon character. The colon character is used to identify local
variables in a stored procedure.

The user name and password here refer only to Zen databases and are not related to user names and
passwords used for operating system or network authentication. Zen user names, groups, and passwords
can also be set through Zen Control Center (ZenCC).

The following example grants login rights to users named dannyd and rgarcia and specifies their
passwords as password and 1234567 respectively.
GRANT LOGIN TO dannyd:password,rgarcia:1234567

If there are spaces in a name you may use double quotes as in the following example. This statement
grants login rights to user named Jerry Gentry and Punita and specifies their password as sun and moon
respectively

GRANT LOGIN TO "Jerry Gentry":sun, Punita:moon

The following example grants the login rights to a user named Jerry Gentry with password 123456 and
a user named rgarcia with password abcdef. It also adds them to the group zen_dev

GRANT LOGIN TO *"Jerry Gentry':123456, rgarcia:abcdef IN GROUP zen_dev

The Master user has all rights on a table that does not have an owner name. To grant permissions on a
table that has a Btrieve owner name, the Master user must supply the correct owner name in the GRANT
statement.

The following example grants the SELECT right to the user Master on table t1 that has a Btrieve owner
name of abcd.

GRANT SELECT ON t1 "abcd®™ TO Master

139

You can set an owner name on a table using Function Executor or the Maintenance utility under the
Tools menu in ZenCC. For more information, see Owner Names in Advanced Operations Guide.

After the Master user performs the following set of SQL statements, the user jsmith has SELECT access
to all tables in the current database. The user also has DELETE access to tabl and UPDATE access to
tab2.

GRANT DELETE ON tabl TO jsmith
GRANT SELECT ON * TO jsmith
GRANT UPDATE ON tab2 TO jsmith

If the following statement is performed later by any user with CREATE TABLE privileges, the user jsmith
will have SELECT access to the newly created table.

CREATE TABLE tab3 (coll INT)

GRANT CREATETAB TO userl

GRANT CREATESP TO userl

The following example grants EXECUTE permissions on stored procedure cal_rtrn_rate to all users.

GRANT EXECUTE ON PROCEDURE cal_rtrn_rate TO PUBLIC

The following example shows how members of the group Accounting can update only the salary column
in the employee table (employee is part of the Demodata sample database).

Assume that the following stored procedure exists:

CREATE PROCEDURE employee_proc_upd(in :EmpID integer, in :Salary money) WITH EXECUTE
AS "Master”;

BEGIN
UPDATE employee SET Salary = :Salary WHERE EmployeelD = :Empid;

END

GRANT EXECUTE ON PROCEDURE employee_proc_upd TO Accounting

Note that users belonging to group Accounting cannot update other columns in the Employee table
because permissions were granted only for the stored procedure and the stored procedure updates only
the salary column.

The following example assumes that you have enabled security on the Demodata sample database and
added a user named USAcctsMgr. You now want to grant SELECT rights to the ID column in table
Person to that user. Use the following statement.

GRANT SELECT (ID) ON Person TO *USAcctsMmgr®

140

See Also

CREATE GROUP
CREATE PROCEDURE
CREATE VIEW

DROP GROUP

REVOKE
SET OWNER
SET SECURITY

System Stored Procedures

141

GROUP BY

In addition to the GROUP BY syntax in a SELECT statement, Zen supports an extended GROUP BY
syntax that can include vendor strings.

A GROUP BY query returns a result set which contains one row of the select list for every group
encountered. (See SELECT for the syntax of a select list.)

The following example shows an extended GROUP BY that includes vendor strings in an escape
sequence.

create table atl (coll integer, col2 char(10));
insert into atl values (1, "abc®);
insert into atl values (2, "def");
insert into atl values (3, "aaa”);

SELECT (--(*vendor(Microsoft), product(ODBC) fn left(atl.col2, 1) *)--) atv, count(*)
Total FROM atl

GROUP BY atv

ORDER BY atv DESC

Returns:
atv Total

d 1
a 2

See Also
SELECT

142

HAVING

Use a HAVING clause in conjunction with a GROUP BY keyword within SELECT statements to limit a
view to groups whose aggregate values meet specific criteria.

The expressions in a HAVING clause may contain constants, set functions, or an exact replica of one of
the expressions in the GROUP BY expression list.

The Zen database engine does not support the HAVING keyword without GROUP BY.

The HAVING keyword supports the use of aliases. The aliases must differ from any column names
within the table.

Examples

The following example returns department names where the count of course names is greater than 5.
SELECT Dept_Name, COUNT(*) FROM Course GROUP BY Dept_Name HAVING COUNT(*) > 5

This same example could use aliases, in this case dn and ct, to produce the same result:

SELECT Dept_Name dn, COUNT(*) ct FROM Course GROUP BY dn HAVING ct > 5

Note that COUNT (expression) counts all nonnull values for an expression across a predicate.
COUNT(*) counts all values, including NULL values.

The next example returns department name that matches Accounting and has a number of courses
greater than 5.

SELECT Dept_Name, COUNT(*) FROM Course GROUP BY Dept_Name HAVING COUNT(*) > 5 AND
Dept_Name = "Accounting”

See Also
SELECT

143

IF

Syntax

IF (Boolean_condition)
BEGIN
Sql-statements

END
ELSE

BEGIN
Sql-statements
END

Remarks

IF statements provide conditional execution based on the value of a condition. The IF... THEN ... ELSE
... END IF construct controls flow based on which of two statement blocks will be executed. You may
also use the IF . . . ELSE syntax.

You may use IF statements in the body of both stored procedures and triggers.

There is no limit to the number of nested IF statements allowed, although the query remains subject to
the usual total length limitation and other applicable limitations.

Note You cannot use a mixed syntax containing Zen and T.SQL. You may use either the
IE..THEN...ELSE... END IF syntax or the IF...ELSE syntax.

If you are using multiple statements with IF or ELSE conditions, you must use BEGIN and END to
indicate the beginning and ending of the statement blocks.

Examples

The following example uses the IF statement to set the variable Negative to either 1 or 0, depending on
whether the value of vInteger is positive or negative.

IF (:vinteger < 0) THEN
SET :Negative = "1°;
ELSE
SET :Negative = "0%;
END IF;

The following example uses the IF statement to test the loop for a defined condition (SQLSTATE =
'02000'). If it meets this condition, then the WHILE loop is terminated.

FETCH_LOOP:
WHILE (:counter < :NumRooms) DO
FETCH NEXT FROM cRooms INTO :CurrentCapacity;
IF (SQLSTATE = "02000") THEN
LEAVE FETCH_LOOP;
END IF;

144

SET :counter = :counter + 1;
SET :TotalCapacity = :TotalCapacity +
:CurrentCapacity;

END WHILE;

IF(:vinteger >50)
BEGIN
SET :vinteger = :vinteger + 1;
INSERT INTO test VALUES("Test");
END;
ELSE
SET :vinteger = :vinteger - 1;

See Also
CREATE PROCEDURE
CREATE TRIGGER

145

IN

Remarks

Use the IN operator to test whether the result of the outer query is included in the result of the subquery.
The result table for the statement includes only rows the outer query returns that have a related row from
the subquery.

Examples

The following example lists the names of all students who have taken Chemistry 408:

SELECT p.First_Name + * " + p.Last_Name FROM Person p, Enrolls e WHERE (p.id =
e.student_id) AND (e.class_id IN
(SELECT c.ID FROM Class ¢ WHERE c.Name = "CHE 408"))

Zen first evaluates the subquery to retrieve the ID for Chemistry 408 from the Class table. It then
performs the outer query, restricting the results to only those students who have an entry in the Enrolls
table for that course.

Often, you can perform IN queries more efficiently using either the EXISTS keyword or a simple join
condition with a restriction clause. Unless the purpose of the query is to determine the existence of a
value in a subset of the database, it is more efficient to use the simple join condition because Zen
optimizes joins more efficiently than it does subqueries.

See Also
SELECT

146

INSERT

This statement inserts column values into one table.

Syntax
INSERT INTO table-name

[(column-name [, column-name]...)] insert-values

[ON DUPLICATE KEY UPDATE column-name = < NULL | DEFAULT | expression | subquery-expression
[. column-name = ...] >

[[UNION [ALL] query-specification]. . .
[ORDER BY order-by-expression [., order-by-expression ...]

table-name : := user-defined name

column-name ::= user-defined name

insert-values - := values-clause | query-specification

values-clause - := VALUES (expression [, expression]...) | DEFAULT VALUES
expression ::1= expression - expression | expression + expression

subquery-expression -:= (query-specification) [ORDER BY order-by-expression

[. order-by-expression 1... 1 [limit-clause]

query-specification ::= (query-specification)
| SELECT [ALL | DISTINCT] [top-clause] select-list
FROM table-reference [, table-reference] . ..
[WHERE search-condition]
[GROUP BY expression [, expression]...
[HAVING search-condition |]

order-by-expression ::= expression [CASE (string) | COLLATE collation-name] [ASC | DESC]

Remarks

INSERT statements, as with DELETE and UPDATE, behave in an atomic manner. That is, if an insert of
more than one row fails, then all insertions of previous rows by the same statement are rolled back.

INSERT ON DUPLICATE KEY UPDATE

Zen v13 R2 extends INSERT with INSERT ON DUPLICATE KEY UPDATE. This insert capability
automatically compares unique keys for values to be inserted or updated with those in the target table.
If either a duplicate primary or an index key is found, then for those rows the values are updated. If no
duplicate primary or index key is found, then new rows are inserted. In popular jargon, this behavior is
called an “upsert.”

The INSERT can use either a values list or a SELECT query. As with all INSERT commands, the behavior
is atomic.

For illustrations of this feature, see Examples for INSERT ON DUPLICATE KEY UPDATE.

147

Inserting Data Longer Than the Maximum Literal String

The maximum literal string supported by Zen is 15,000 bytes. You can handle data longer than this using
direct SQL statements, breaking the insert into multiple calls. Start with a statement like this:

INSERT INTO tablel SET longfield = "15000 bytes of text"™ WHERE restriction

Then issue the following statement to add more data:

INSERT INTO tablel SET longfield = notefield + "15000 more bytes of text® WHERE
restriction

Examples

» Examples for INSERT
m Examples for INSERT ON DUPLICATE KEY UPDATE
m Errors When Using DEFAULT

Examples for INSERT

This topic illustrates simple INSERT. For the use of duplicate unique keys to update instead of insert, see
Examples for INSERT ON DUPLICATE KEY UPDATE.

The following statement uses expressions in the VALUES clause to add data to a table:

CREATE TABLE t1 (cl INT, c2 CHAR(20))
INSERT INTO t1 VALUES ((78 + 12)/3, "This is" + CHAR(32) + "a string")
SELECT * FROM t1

The following statement directly adds data to the Course table using three VALUES clauses:

INSERT INTO Course(Name, Description, Credit Hours, Dept_Name)
VALUES ("CHE 308", "Organic Chemistry 11°, 4, “Chemistry~)
INSERT INTO Course(Name, Description, Credit_Hours, Dept_Name)
VALUES ("ENG 409°, "Creative Writing 117, 3, "English®)
INSERT INTO Course(Name, Description, Credit_Hours, Dept_Name)
VALUES ("MAT 307", "Probability 117, 4, "Mathematics"®)

The following INSERT statement uses a SELECT clause to retrieve from the Student table the ID
numbers of students who have taken classes.

The statement then inserts the ID numbers into the Billing table.

INSERT INTO Billing (Student_ID)
SELECT ID FROM Student WHERE Cumulative_Hours > 0O

The following example illustrates the use of the CURTIME(), CURDATE() and NOW() variables to
insert the current local time, date, and time stamp values inside an INSERT statement.

CREATE TABLE Timetbl (cl TIME, c2 DATE, c3 TIMESTAMP)
INSERT INTO Timetbl(cl, c2, c3) VALUES(CURTIME(), CURDATE(Q), NOW())

148

The following example demonstrates basic usage of default values with INSERT and UPDATE

statements.

CREATE TABLE t1 (cl INT DEFAULT 10, c2 CHAR(10) DEFAULT "abc®)

INSERT INTO t1 DEFAULT VALUES

INSERT INTO t1 (c2) VALUES (DEFAULT)
INSERT INTO t1 VALUES (100, DEFAULT)
INSERT INTO t1 VALUES (DEFAULT, “bcd")
INSERT INTO t1 VALUES (DEFAULT, DEFAULT)
SELECT * FROM t1

cl c2

10 abc

10 abc

100 abc

10 bcd

10 abc

UPDATE t1 SET cl1 = DEFAULT WHERE c1 = 100
UPDATE t1 SET c2 = DEFAULT WHERE c2 = "bcd”

UPDATE t1 SET cl
SELECT * FROM t1

DEFAULT, c2 = DEFAULT

cl c2

10 abc
10 abc
10 abc
10 abc
10 abc

Based on the CREATE TABLE statement immediately above, the following two INSERT statements are

equivalent.

INSERT INTO t1 (cl,c2) VALUES (20,DEFAULT)
INSERT INTO t1 (cl) VALUES (20)

The following SQL code shows the use of DEFAULT with multiple UPDATE values.

CREATE TABLE t2 (cl INT DEFAULT 10,
c2 INT DEFAULT 20 NOT NULL,

c3 INT DEFAULT 100 NOT NULL)

INSERT INTO t2 VALUES (1, 1, 1)
INSERT INTO t2 VALUES (2, 2, 2)
SELECT * FROM t2

cl c2 c3
1 1 1
2 2 2

UPDATE t2 SET cl = DEFAULT, c2 = DEFAULT, c3 = DEFAULT

WHERE c2 = 2
SELECT * FROM t2

149

Examples for INSERT ON DUPLICATE KEY UPDATE

This topic illustrates INSERT ON DUPLICATE KEY UPDATE. For simple INSERT, see Examples for
INSERT.

For clarity, the query results in these examples show inserted values in black and updated values in red.
Each example builds on the previous one, so you can execute them in series to see the behavior.

INSERT INTO with VALUES clause and without a column list. Unique index segment column values
are available.

CREATE TABLE t1 (
INT NOT NULL DEFAULT 10,
INT,
INT NOT NULL,
INT DEFAULT 20,
INT NOT NULL DEFAULT 1,
INT NOT NULL DEFAULT 2,
INT,
INT,
PRIMARY KEY(e, F));
CREATE UNIQUE INDEX tl_ab ON t1 (a, b, ¢, d);
INSERT INTO t1 VALUES (1, 2, 3, 4, 5, 6, 7, 8)
ON DUPLICATE KEY UPDATE tl.a = 10, tl.b = 20, tl.c = 30, tl.d = 40;
SELECT * FROM t1;

Q=D Q0OTQ®

a b c d e f g h

1 2 3 4 5 6 7 8

INSERT INTO with VALUES clause and a complete column list. The row is updated.

INSERT INTO t1 (@, b, ¢, d, e, f, g, h) VALUES (1, 2, 3, 4, 5, 6, 7, 8)
ON DUPLICATE KEY UPDATE tl.a = 10, tl.b = 20, tl.c = 30, tl.d = 40;
SELECT * FROM t1;

a b c d e T g h

10 20 30 40 5 6 7 8

INSERT INTO with VALUES clause and a partial column list. A new row is inserted, and then the row
is updated.

INSERT INTO t1 (a, b, ¢, d) VALUES (1, 2, 3, 4)
ON DUPLICATE KEY UPDATE tl.a = 11, tl.b = 12, tl.c = 13, tl.d = 14;
SELECT * FROM t1;

a b c d e f g h

150

10 20 30 40 5 6 7 8
1 2 3 4 1 2 (Null) (Null)

INSERT INTO t1 (a, b, ¢) VALUES (-1, -2, -3)
ON DUPLICATE KEY UPDATE tl.a = 11, tl.b = 12, tl.c = 13, tl.d = 14;
SELECT * FROM t1;

a b c d e f g h
10 20 30 40 5 6 7 8
11 12 13 14 1 2 (Null) (Null)

INSERT INTO with VALUES clause and DEFAULT. A row is updated to return it to an earlier state, and
then it is updated based on duplicate keys.

UPDATE t1 SET a =1, b=2, ¢c =3, d =4, e =11, ¥ = 12 WHERE a = 11;
SELECT * FROM t1;

a b c d e f g h
10 20 30 40 5 6 7 8
1 2 3 4 11 12 (Null) (Nul)

INSERT INTO t1 (a, b, ¢, d, e, f) VALUES (1, 2, 3, 4, DEFAULT, DEFAULT)

ON DUPLICATE KEY UPDATE g = VALUES (@) + VALUES (b) + VALUES (¢), h = VALUES
(e) + VALUES (f);

SELECT * FROM t1;

a b c d e T g h
10 20 30 40 5 6 7 8
1 2 3 4 11 12 6 3

Subquery expression in UPDATE SET clause to update using values from the Person table in the
Demodata sample database.

INSERT INTO t1 VALUES (1, 2, 3, 4, 5, 6, 7, 8)

ON DUPLICATE KEY UPDATE tl.a = 10, tl.b = 20, tl.c = (SELECT TOP 1 id FROM
demodata.person ORDER BY id), tl.d = (SELECT TOP 1 id FROM demodata.person ORDER
BY id DESC, last_name);

SELECT * FROM t1;

a b C d e f g h
10 20 100062607 998332124 5 6 7 8
1 2 3 4 11 12 6 3

Errors When Using DEFAULT

The following example shows possible error conditions because a column is defined as NOT NULL with
no default value defined:

CREATE TABLE t1 (cl INT DEFAULT 10, c2 INT NOT NULL, c3 INT DEFAULT 100 NOT NULL)
INSERT INTO t1 DEFAULT VALUES -- Error: No default value assigned for column <c2>.
INSERT INTO t1 VALUES (DEFAULT, DEFAULT, 10) -- Error: No default value assigned for column <c2>

151

INSERT INTO t1 (cl,c2,c3) VALUES (1, DEFAULT, DEFAULT) -- Error: No default value assigned for
column <c2>.
INSERT INTO t1 (c1,c3) VALUES (1, 10) -- Error: Column <c2> not nullable.

The following example shows what occurs when you use INSERT for IDENTITY columns and columns
with default values.

CREATE TABLE t (id IDENTITY, cl INTEGER DEFAULT 100)

INSERT INTO t (id) VALUES (0)

INSERT INTO t VALUES (0,1)

INSERT INTO t VALUES (10,10)

INSERT INTO t VALUES (0,2)

INSERT INTO t (cl) VALUES (3)
SELECT * FROM t

The SELECT shows the table contains the following rows:

1, 100
2,1
10, 10
11, 2
12, 3

The first row illustrates that if zero is specified in the VALUES clause for an IDENTITY column, then
the value inserted is 1 if the table is empty.

The first row also illustrates that if no value is specified in the VALUES clause for a column with a default
value, then the specified default value is inserted.

The second row illustrates that if zero is specified in the VALUES clause for an IDENTITY column, then
the value inserted is one greater than the largest value in the IDENTITY column.

The second row also illustrates that if a value is specified in the VALUES clause for a column with a
default value, then the specified value overrides the default value.

The third row illustrates that if a value other than zero is specified in the VALUES clause for an
IDENTITY column, then that value is inserted. If a row already exists that contains the specified value
for the IDENTITY column, then the message “The record has a key field containing a duplicate
value(Btrieve Error 5)” is returned and the INSERT fails.

The fourth rows shows again that if zero is specified in the VALUES clause for an IDENTITY column,
then the value inserted is one greater than the largest value in the IDENTITY column. This is true even
if gaps exist between the values (that is, the absence of one or more rows with IDENTITY column values
less than the largest value).

The fifth row illustrates that if no value is specified in the VALUES clause for an IDENTITY column,
then the value inserted is one greater than the largest value in the IDENTITY column.

See Also

CREATE TABLE
DEFAULT

SELECT

SET ANSI_PADDING

152

JOIN

You can specify a single table or view, multiple tables, or a single view and multiple tables. When you
specify more than one table, the tables are said to be joined.

Syntax

join-definition ::= table-reference [join-type] JOIN table-reference ON search-condition
| table-reference CROSS JOIN table-reference

| outer-join-definition
join-type zz= INNER | LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]

outer-join-definition : = table-reference outer-join-type JOIN table-reference
ON search-condition

outer-join-type ::= LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]

The following example illustrates a two-table outer join:
SELECT * FROM Person LEFT OUTER JOIN Faculty ON Person.ID = Faculty.ID

The following example shows an outer join embedded in a vendor string. The letters “OJ” can be either
upper or lower case.

SELECT tl.deptno, ename FROM {OJ emp t2 LEFT OUTER JOIN dept t1 ON
t2_deptno=tl.deptno}

Zen supports two-table outer joins as specified in the Microsoft ODBC documentation. In addition to
simple two-table outer joins, Zen supports n-way nested outer joins.

The outer join may or may not be embedded in a vendor string. If a vendor string is used, Zen strips it
off and parses the actual outer join text.

LEFT OUTER

Zen databases use the SQL92 (SQL2) model for LEFT OUTER JOIN. The syntax is a subset of the entire
SQL9I2 syntax which includes cross joins, right outer joins, full outer joins, and inner joins. The
TableRefList below occurs after the FROM keyword in a SELECT statement and before any subsequent
WHERE, HAVING, and other clauses. Note the recursive nature of TableRef and LeftOuterJoin — a
TableRef can be a left outer join that can include TableRefs which, in turn, can be left outer joins and so
forth.

TableRefList :
TableRef [, TableRefList]
| TableRef
| OuterJoinVendorString [, TableRefList]
TableRef :
TableName [CorrelationName]
| LeftOuterJdoin
| (LeftOuterJoin)
LeftOuterJoin :
TableRef LEFT OUTER JOIN TableRef ON SearchCond

The search condition (SearchCond) contains join conditions which in their usual form are
LT.ColumnName = RT.ColumnName, where LT is left table, RT is right table, and ColumnName represents

153

some column within a given domain. Each predicate in the search condition must contain some
nonliteral expression.

The implementation of left outer join goes beyond the syntax in the Microsoft ODBC documentation.

Vendor Strings

The syntax in the previous section includes but goes beyond the ODBC syntax in the Microsoft ODBC
documenation. Furthermore, the vendor string escape sequence at the beginning and end of the left
outer join does not change the core syntax of the outer join.

Zen databases accept outer join syntax without the vendor strings. However, for applications that want
to comply with ODBC across multiple databases, the vendor string construction should be used. Because
ODBC vendor string outer joins do not support more than two tables, it may be necessary to use the
syntax shown following Table 29.

Examples

The following four tables are used in these examples.

Table 26 Emp Table

154

FirstName LastName DeptID EmpID

Franky Avalon D103 E1

Gordon Lightfoot D102 E2

Lawrence Welk D101 E3

Bruce Cockburn D102 E4
Table 27 Dept Table

DeptID LoclID Name

D101 L1 TV

D102 L2 Folk
Table 28 Addr Table

EmplID Street

E1 101 Mem Lane

E2 14 Young St.

Table 29 Loc Table

LocID Name
L1 PlanetX
L2 PlanetY

The following example shows a simple two-way Left Outer Join:
SELECT * FROM Emp LEFT OUTER JOIN Dept ON Emp.DeptID = Dept.DeptlD

This two-way outer join produces the following result set:

Table 30 Two-way Left Outer Join

Emp Dept

FirstName | LastName DeptID EmpID DeptID | LoclD Name
Franky Avalon D103 E1 NULL NULL NULL
Gordon Lightfoot D102 E2 D102 L2 Folk
Lawrence Welk D101 E3 D101 L1 TV
Bruce Cockburn D102 E4 D102 L2 Folk

Notice the NULL entry for Franky Avalon in the table. That is because no DeptID of D103 was found in
the Dept table. In a standard (INNER) join, Franky Avalon would have been dropped from the result set
altogether.

Algorithm

The Zen database engine uses the following algorithm for the previous example: Take the left table,
traverse the right table, and for every case where the ON condition is TRUE for the current right table
row, return a result set row composed of the appropriate right table row appended to the current left-
table row.

If there is no right table row where the ON condition is TRUE, (it is FALSE for all right table rows given
the current left table row), create a row instance of the right table with all column values NULL.

That result set, combined with the current left-table row for each row, is indexed in the returned result
set. The algorithm is repeated for every left table row to build the complete result set. In the simple two-
way left outer join shown previously, Emp is the left table and Dept is the right table.

Note Although irrelevant to the algorithm, the appending of the left table to the right table assumes
proper projection as specified in the select list of the query. This projection ranges from all columns
(for example, SELECT * FROM .. .) to only one column in the result set (for example, SELECT
FirstName FROM...).

155

With radiating left outer joins, all other tables are joined onto one central table. In the following example
of a three-way radiating left outer join, Emp is the central table and all joins radiate from that table.

SELECT * FROM (Emp LEFT OUTER JOIN Dept ON Emp.DeptlD = Dept.DeptlD) LEFT OUTER JOIN
Addr ON Emp.EmpID = Addr_EmplID

Table 31 Three-way Radiating Left Outer Join

Emp Dept Addr

First Last Name| Dept | Emp | Dept | LocID| Name | Emp | Street
Name ID ID ID ID

Franky | Avalon D103 | E1 NULL | NULL | NULL | E1 101 Mem
Lane

Gordon | Lightfoot | D102 | E2 D102 | L2 Folk E2 14 Young
St

Lawrenc| Welk D101 | E3 D101 | L1 TV NULL | NULL
e

Bruce Cockburn | D102 | E4 D101 | L1 TV NULL | NULL

In a chaining left outer join, one table is joined to another, and that table, in turn, is joined to another.
The following example illustrates a three-way chaining left outer join:

SELECT * FROM (Emp LEFT OUTER JOIN Dept ON Emp.DeptlD = Dept.DeptlID) LEFT OUTER JOIN
Loc ON Dept.LoclD = Loc.LoclD

Table 32 Three-way Chaining Left Outer Join

Emp Dept Loc

First Name| Last Name| Dept ID| Emp | DeptID| Loc ID | Name | Loc ID | Name
ID

Franky Avalon D103 | E1 NULL | NULL | NULL | NULL | NULL

Gordon Lightfoot | D102 | E2 D102 | L2 Folk L2 PlanetY

Lawrence | Welk D101 | E3 D101 | L1 TV L1 PlanetX

Bruce Cockburn | D102 | E4 D101 | L1 TV L1 PlanetX

This join could also be expressed as:

SELECT * FROM Emp LEFT OUTER JOIN (Dept LEFT OUTER JOIN Loc ON Dept.LoclD = Loc.LoclID)
ON Emp.DeptlD = Dept.DeptlD

We recommend the first syntax because it lends itself to both the radiating and chaining joins. This
second syntax cannot be used for radiating joins because nested left outer join ON conditions cannot
reference columns in tables outside their nesting. In other words, in the following query, the reference
to Emp.EmplID is illegal:

SELECT * FROM Emp LEFT OUTER JOIN (Dept LEFT OUTER JOIN Addr ON Emp.EmpID = Addr.EmpID)
ON Emp.DeptID = Dept.DeptlD

156

The following example shows a three-way radiating left outer join, less optimized:

SELECT * FROM Emp E1 LEFT OUTER JOIN Dept ON E1.DeptlID = Dept.DeptlD, Emp E2 LEFT
OUTER JOIN Addr ON E2_EmplID = Addr.EmplD WHERE E1.EmpID = E2_EmplD

Table 33 Three-way Radiating Left Outer Join, Less Optimized

Emp Dept Addr

First Name| Last Name| Dept ID | Emp ID | Dept ID| Loc ID | Name | Emp ID | Street

Franky Avalon D103 E1 NULL | NULL | NULL | E1 101
Mem
Lane

Gordon Lightfoot | D102 E2 D102 | L2 Folk E2 14
Young
St

Lawrence | Welk D101 E3 D101 | L1 TV NULL NULL

Bruce Cockburn | D102 E4 D101 | L1 TV NULL NULL

This query returns the same results as shown in Table 32, assuming there are no NULL values for EmpID
in Emp and EmpID is a unique valued column. This query, however, is not optimized as well as the one

show for Table 32 and can be much slower.

See Also
SELECT

157

LEAVE

Remarks

A LEAVE statement continues execution by leaving a block or loop statement. You can use LEAVE
statements in the body of a stored procedure or a trigger.

Examples

The following example increments the variable vinteger by 1 until it reaches a value of 11, when the loop
is ended with a LEAVE statement.

TestLoop:
LOOP
IF (:vinteger > 10) THEN
LEAVE TestLoop;
END 1IF;
SET :vinteger = :vinteger + 1;
END LOOP;

See Also
IF
LOOP

158

LIKE

LIKE allows pattern matching within character-based column data.

Syntax
WHERE expr [NOT] LIKE value

Remarks

The value on the right side of a LIKE expression must be a simple string constant, the USER keyword,
or (outside a stored procedure) a dynamic parameter supplied at run time, indicated by a question mark.
Dynamic parameters are not supported within SQL Editor, but rather only in application code.

Use the percent sign wildcard in the comparison value as many times as desired to match zero or more
characters in the column values. Use the underscore wildcard to match any one character. If you need to
match one of these wildcard symbols as a literal character, use a backslash in front of the symbol to mark
the symbol as a literal character.

Table 34 Special Characters

Character Purpose

Percent sign “%” Wildcard: matches zero or more characters.

Underscore “_” Wildcard: matches any single character.

Back slash “\” Flags the following wildcard character as a literal character, indicating that you want to match the

actual wildcard character itself. To match a back slash, enter two back slashes. For example, to
match “%”, the pattern should specify “\%0".

Two single quotation Two single quotation marks with no space between them must be used to match a single quotation
marks “* " mark in the result string. For example, if a row in the database contains the value “Jim’s house,” you
can match this pattern by specifying LIKE "Jim""s house"® in the WHERE clause. A double-

quotation mark in the pattern string is not a special character and can be used like any letter or digit.

Examples

This example matches all column values that are five characters long and have abc as the middle three
characters:

SELECT Building_Name FROM Room WHERE Building_Name LIKE " _abc_*

This example matches all column values that contain a back slash:

SELECT Building_Name FROM Room where Building_Name LIKE “%\\%"

This example matches all column values except those that begin with a percent sign:

SELECT Building_Name FROM Room where Building_Name NOT LIKE “\%%"

This example matches all column values that contain one or more single-quotes:

SELECT Building_Name FROM Room where Building_Name LIKE "%""%"

159

This example matches all column values where the second character is a double-quote:

SELECT Building_Name FROM Room where Building_Name LIKE *_ "%~

This example creates a stored procedure that returns any rows where the Bui Iding_Name column
contains the characters stored in the input variable : rname and where the Type column contains the
characters stored in the input variable : rtype.

CREATE PROCEDURE room_test(IN :rname CHAR(20), IN :rtype CHAR(20))
RETURNS(Building_Name CHAR(25), "Type" CHAR(20));
BEGIN
DECLARE :likel CHAR(25);
DECLARE :like2 CHAR(25);
SET :likel = "%" + :rname + "%";
SET :like2 = "%" + :rtype + "%";
SELECT Building_Name, "Type'" FROM Room WHERE Building_Name LIKE :likel AND "Type"
LIKE :like2;
END;

Note that the following statement, if placed in the stored procedure above, generates a syntax error
because of the expression on the right side of the LIKE operator. The right side must be a simple
constant.

The following syntax is incorrect and will fail:

SELECT Building_Name, "Type' from Room WHERE Building_Name LIKE "%* + :zrname + "%";

160

LOOP

Remarks
A LOOP statement repeats the execution of a block of statements.
It is allowed only in stored procedures and triggers.

Zen does not support the postconditional loop REPEAT... UNTIL.

Examples

The following example increments the variable vInteger by 1 until it reaches a value of 11 and the loop
ends.

TestLoop:
LOOP
IF (:vinteger > 10) THEN
LEAVE TestLoop;
END IF;
SET :vinteger = :vinteger + 1;
END LOOP;

See Also

CREATE PROCEDURE
CREATE TRIGGER

IF

161

NOT

Remarks

Using the NOT keyword with the EXISTS keyword allows you to test whether rows do not exist in the
result of the subquery. For every row the outer query evaluates, Zen tests for the existence of a related
row from the subquery. Zen excludes from the statement result table each row from the outer query that
corresponds to a related row from the subquery.

By combining NOT with the IN operator, you can test whether the result of the outer query is not
included in the result of the subquery. The result table includes only rows the outer query returns that
do not have a related row from the subquery.

Examples

The following statement returns a list of students who are not enrolled in any classes:

SELECT * FROM Person p WHERE NOT EXISTS
(SELECT * FROM Student s WHERE s.id = p.id
AND Cumulative Hours = 0)

This statement can be rewritten to use IN:

SELECT * FROM Person p WHERE p.id NOT IN

(SELECT s.id FROM Student s WHERE Cumulative_Hours = 0)
See Also

SELECT

EXISTS

IN

162

OPEN

Syntax

OPEN cursor-name

cursor-name - := user-defined-name
Remarks

The OPEN statement opens a cursor. A cursor must be defined before it can be opened.

This statement is allowed only inside of a stored procedure or a trigger, since cursors and variables are
only allowed inside of stored procedures and triggers.

Examples

The following example opens the declared cursor BTUCursor.

DECLARE BTUCursor CURSOR
FOR SELECT Degree, Residency, Cost _Per_Credit FROM Tuition ORDER BY ID;
OPEN BTUCursor;

CREATE PROCEDURE MyProc(IN :CourseName CHAR(7)) AS
BEGIN
DECLARE cursorl CURSOR
FOR SELECT Degree, Residency, Cost _Per_Credit FROM Tuition ORDER BY ID;
(additional code would go here)
OPEN cursoril;
FETCH cursorl INTO :CourseName;
(additional code would go here)
CLOSE cursorl;
(additional code would go here)
END

See Also

CREATE PROCEDURE
CREATE TRIGGER
DECLARE CURSOR

163

PARTIAL

Remarks

To allow indexing on CHAR and VARCHAR columns wider than 255 bytes, include the PARTIAL
keyword in the CREATE INDEX statement. If the columns that make up the partial index, including
overhead, contain less than 255 bytes, PARTIAL is ignored.

Note The DROP INDEX statement does not require PARTIAL to remove a partial index.

UNIQUE and PARTIAL are mutually exclusive and cannot be used in the same CREATE INDEX
statement.

See Also
CREATE INDEX
DROP INDEX
UNIQUE

164

PRIMARY KEY

Remarks

Include PRIMARY KEY in the ADD clause to add a primary key to a table definition. The primary key
is a unique index that does not include null values. When you specify a primary key, Zen creates a unique
index with the specified attributes on the defined group of columns.

Because a table can have only one primary key, you cannot add a primary key to a table that already has
a primary key defined. To change the primary key of a table, delete the existing key using a DROP clause
in an ALTER TABLE statement and add the new primary key.

Note You must be logged in to the database using a database name before you can add a primary key
or conduct any other referential integrity (RI) operation.

Include PRIMARY KEY in the ADD clause with the ALTER TABLE statement to add a primary key to
a table definition.

Before adding the primary key, you must ensure that the columns in the primary key column list are
defined as NOT NULL. A primary key is a unique index and can be created only on not nullable
columns.

If a unique index on not nullable columns already exists, the ADD PRIMARY KEY does not create
another unique index. Instead, the existing unique index is promoted to a primary key. For example, the
following statements would promote the named index T1_C1C2 to be a primary key.

CREATE TABLE t1 (cl INT NOT NULL, c2 CHAR(10) NOT NULL)
CREATE UNIQUE INDEX tl1_clc2 ON ti1(cl,c2)
ALTER TABLE t1 ADD PRIMARY KEY(cl, c2)

If such a primary key is dropped, the primary key would be switched to a unique index.
ALTER TABLE t1 DROP PRIMARY KEY

If no unique index on not nullable columns exists in the table, ADD PRIMARY KEY creates a unique
index on not nullable columns. DROP PRIMARY KEY completely deletes the unique index.

Include a PRIMARY KEY clause with the CREATE TABLE statement to add a primary key to a table
definition.

To define referential constraints on your database, you must include a PRIMARY KEY clause to specify
the primary key on the parent table. The primary key can consist of one column or multiple columns but
can only be defined on columns that are not null. The columns you specify must also appear in the
column Definitions list of the CREATE TABLE statement.

When you specify a primary key, Zen creates an index with the specified attributes on the defined group
of columns. If the columns are not specifically defined as NOT NULL in the CREATE TABLE statement,
Zen forces the columns to be not nullable. Zen also creates a unique index on the columns.

For example, the following two statements yield the same results:

CREATE TABLE t1 (cl INT, c2 CHAR(10), PRIMARY KEY(cl,c2))
CREATE TABLE t1 (cl INT NOT NULL, c2 CHAR(10) NOT NULL, PRIMARY KEY(cl,c2))

165

Examples
The following statement defines a primary key on a table called Faculty.
ALTER TABLE Faculty ADD PRIMARY KEY (ID)

The ID column is defined as a unique index that does not include null values.

See Also
ALTER TABLE
CREATE TABLE

166

PRINT

Remarks

Use PRINT to print variable values or constants. The PRINT statement applies only to Windows-based
platforms. It is ignored on other operating system platforms.

You can use PRINT only within stored procedures.

Examples

The following example prints the value of the variable :myvar.
PRINT(:myvar);

PRINT 'MYVAR ="+ :myvar;

The following example prints a text string followed by a numeric value. You must convert a number value
to a text string to print the value.

PRINT "Students enrolled in History 101: " + convert(:int_val, SQL_CHAR);

Before the Windows Vista release, it was possible to use PRINT in a stored procedure to send output to
a dialog box if Zen was running as a service using the local system account with the setting Allow service
to interact with desktop. In Windows Vista and later releases, the operating system no longer allows this
output. As shown in the following workaround, you can convert the value to a character string and
return it in a SELECT statement.

DROP PROCEDURE varsub?2;

CREATE PROCEDURE varsub2
RETURNS (TestString CHAR(25));
DECLARE :vinteger INT;

DECLARE :tstring CHAR(25);

SET :vinteger = O;

BEGIN

WHILE (:vInteger < 10) DO

SET :vinteger = :vinteger + 1;
END WHILE;

SET :tstring = "The counter value is = " + convert(:vinteger, SQL_CHAR);
SELECT :tstring;

END;

Call varsub2;

See Also
CREATE PROCEDURE

167

PUBLIC

Remarks

You can include the PUBLIC keyword in the FROM clause to revoke the Create Table right from all the
users to whom the right was not explicitly assigned.

Include a FROM clause to specify the group or user from whom you are revoking rights. You can specify
a single name or a list of names, or you can include the PUBLIC keyword to revoke access rights from
all users whose rights are not explicitly assigned.

Examples

To assign access rights to all users in the dictionary, include the PUBLIC keyword to grant the rights to
the PUBLIC group, as in the following example:

GRANT SELECT ON Course TO PUBLIC

This statement assigns the Select right on the Course table to all users defined in the dictionary. If you
later revoke the Select right from the PUBLIC group, only users who are granted the Select right
explicitly can access the table.

The following statement includes the PUBLIC keyword to grant the Create Table right to all the users
defined in the dictionary:

GRANT CREATETAB TO PUBLIC

See Also
GRANT
REVOKE

168

RELEASE SAVEPOINT
Use the RELEASE SAVEPOINT statement to delete a savepoint.

Syntax

RELEASE SAVEPOINT savepoint-name
savepoint-name - 1= user-defined-name
Remarks

RELEASE, ROLLBACK, and SAVEPOINT and are supported at the session level (outside of stored
procedures) only if AUTOCOMMIT is off. Otherwise, RELEASE, ROLLBACK, and SAVEPOINT must
be used within a stored procedure.

Any committed statements within a stored procedure are controlled by the outermost transaction of the
calling SQL application.

Examples

The following example sets a SAVEPOINT then checks a condition to determine whether to
ROLLBACK or to RELEASE the SAVEPOINT.

CREATE PROCEDURE Enroll_student(IN :student ubigint, IN :classnum INTEGER);
BEGIN
DECLARE :CurrentEnrollment INTEGER;
DECLARE :MaxEnrollment INTEGER;
SAVEPOINT SP1;
INSERT INTO Enrolls VALUES (:student,:classnum, 0.0);
SELECT COUNT(*) INTO :CurrentEnrollment FROM Enrolls WHERE class_id = :classnum;
SELECT Max_size INTO :MaxEnrollment FROM Class WHERE ID = :classnum;
IF :CurrentEnrollment >= :MaxEnrollment THEN
ROLLBACK TO SAVEPOINT SP1;
ELSE
RELEASE SAVEPOINT SP1;
END IF;
END;

Note that COUNT (expression) counts all nonnull values for an expression across a predicate.
COUNT(*) counts all values, including null values.

See Also

CREATE PROCEDURE
ROLLBACK
SAVEPOINT

169

RESTRICT

Remarks

If you specify RESTRICT, Zen enforces the DELETE RESTRICT rule. A user cannot delete a row in the
parent table if a foreign key value refers to it.

If you do not specify a delete rule, Zen applies the RESTRICT rule by default.

See Also
ALTER TABLE

170

REVOKE

REVOKE deletes user IDs and removes privileges for specific users in a secured database. You can use
the REVOKE statement to revoke CREATE TABLE, CREATE VIEW, and CREATE PROCEDURE

privileges.

Syntax

REVOKE CREATETAB | CREATEVIEW | CREATESP FROM public-or-user-group-name [, public-or-user-
group-name J. ..

REVOKE LOGIN FROM user-name [, user-name].- ..

REVOKE permission ON < * | [TABLE] table-name [owner-name 1> | VIEW view-name | PROCEDURE
stored_procedure-name > FROM user-or-group-name [, user-or-group-name J. ..

* ::= all of the objects (that is, all tables, views and stored procedures)

permission 1= ALL

| SELECT [(column-name [, column-name]...) 1]
| UPDATE [(column-name [, column-name 1...) 1]
| INSERT [(column-name [, column-name]...) 1]
| DELETE
| ALTER
| REFERENCES
| EXECUTE

table-name ::= user-defined table-name

view-name :-:= user-defined view-name
stored-procedure-name ::= user-defined stored_procedure-name
public-or-user-group-name ::= PUBLIC | user-group-name
user-group-name ::= user-name | group-name

user-name .= user-defined user-name

group-name >:= user-defined group-name

The following table shows the syntax for a given action.

To REVOKE Permissions For This Action

Use This Keyword with REVOKE

CREATE TABLE CREATETAB
CREATE VIEW CREATEVIEW
CREATE PROCEDURE CREATESP

171

The following table shows which permissions are removed if you use the ALL keyword.

Table 35 Permissions Removed with ALL by Object Type

Permission Removed | Table View Stored Procedure
by ALL

ALTER v Ve v
DELETE V4 v

INSERT V4 v

REFERENCES v

SELECT Ve v

UPDATE v v

EXECUTE v

Examples

The following statement revokes all of these permissions from dannyd for table Class.
REVOKE ALL ON Class FROM “dannyd*®

The following statement revokes all permissions from dannyd and rgarcia for table Class.

REVOKE ALL ON Class FROM dannyd, rgarcia

The following statement revokes DELETE permission from dannyd and rgarcia for table Class.

REVOKE DELETE ON Class FROM dannyd, rgarcia

The following example revokes INSERT rights from keithv and miked for table Class.
REVOKE INSERT ON Class FROM keithv, miked

The following example revokes INSERT rights from keithv and brendanb for table Person and columns
First_name and Last_name.

REVOKE INSERT(First_name,Last_name) ON Person FROM keithv, brendanb

The following statement revokes ALTER rights from dannyd from table Class.
REVOKE ALTER ON Class FROM dannyd

The following example revokes SELECT rights from dannyd and rgarcia on table Class.
REVOKE SELECT ON Class FROM dannyd, rgarcia

The following statement revokes SELECT rights from dannyd and rgarcia in table Person for columns
First_name and Last_name.

REVOKE SELECT(First_name, Last _name) ON Person FROM dannyd, rgarcia

172

The following example revokes UPDATE rights from dannyd and rgarcia for table Person.
REVOKE UPDATE ON Person ON dannyd, rgarcia

The following example revokes CREATE VIEW privilege from userl.
REVOKE CREATEVIEW FROM userl;

The following example revokes EXECUTE privilege for userl for stored procedure MyProcl.
REVOKE EXECUTE ON PROCEDURE MyProcl FROM userl;

The following example assumes that security was enabled on the Demodata sample database and a user
named USAcctsMgr was granted SELECT rights to the ID column in table Person. You now want to
revoke selection rights to that column for that user. Use the following statement.

REVOKE SELECT (ID) ON Person FROM "USAcctsMgr*

See Also
GRANT

173

ROLLBACK

ROLLBACK returns the database to the state it was in before the current transaction began. This
statement releases the locks acquired since the last SAVEPOINT or START TRANSACTION.

The ROLLBACK TO SAVEPOINT statement rolls back the transaction to the specified savepoint.

Syntax

ROLLBACK [WORK] [TO SAVEPOINT savepoint-name]
savepoint-name : 1= user-defined-name

Remarks

ROLLBACK, SAVEPOINT, and RELEASE are supported at the session level (outside of stored
procedures) only if AUTOCOMMIT is off. Otherwise, ROLLBACK, SAVEPOINT, and RELEASE must
be used within a stored procedure.

Any committed statements within a stored procedure are controlled by the outermost transaction of the
calling SQL application.

In the case of nested transactions, ROLLBACK rolls back to the nearest START TRANSACTION. For
example, if transactions are nested five levels, then five ROLLBACK statements are needed to undo all
of the transactions. A transaction is either committed or rolled back, but not both. That is, you cannot
roll back a committed transaction.

Examples

The following statement undoes the changes made to the database since the beginning of a transaction.
ROLLBACK WORK;

The following statement undoes the changes made to the database since the last savepoint, named Svptl.

ROLLBACK TO SAVEPOINT Svptl;

See Also

COMMIT

RELEASE SAVEPOINT
SAVEPOINT

174

SAVEPOINT

SAVEPOINT defines a point in a transaction to which you can roll back.

Syntax

SAVEPOINT savepoint-name
savepoint-name ::= user-defined-name
Remarks

ROLLBACK, SAVEPOINT, and RELEASE are supported at the session level (outside of stored
procedures) only if AUTOCOMMIT is off. Otherwise, ROLLBACK, SAVEPOINT, and RELEASE must
be used within a stored procedure.

Any committed statements within a stored procedure are controlled by the outermost transaction of the
calling SQL application.

A SAVEPOINT applies only to the procedure in which it is defined. That is, you cannot reference a
SAVEPOINT defined in another procedure.

Examples

The following example sets a SAVEPOINT then checks a condition to determine whether to
ROLLBACK or to RELEASE the SAVEPOINT.

CREATE PROCEDURE Enroll_student(IN :student ubigint, IN :zclassnum INTEGER);
BEGIN
DECLARE :CurrentEnrollment INTEGER;
DECLARE :MaxEnrollment INTEGER;
SAVEPOINT SP1;
INSERT INTO Enrolls VALUES (:student, :classnum, 0.0);
SELECT COUNT(*) INTO :CurrentEnrollment FROM Enrolls WHERE class_id = :classnum;
SELECT Max_size INTO :MaxEnrollment FROM Class WHERE ID = :classnum;
IF :CurrentEnrollment >= :MaxEnrolIment THEN
ROLLBACK TO SAVEPOINT SP1;
ELSE
RELEASE SAVEPOINT SP1;
END IF;
END;

Note that COUNT (expression) counts all nonnull values for an expression across a predicate.
COUNT(*) counts all values, including null values.

See Also

COMMIT

CREATE PROCEDURE
RELEASE SAVEPOINT
ROLLBACK

175

SELECT

Retrieves specified information from a database. A SELECT statement creates a temporary view.

Syntax
query-specification [[UNION [ALL] query-specification]. - .
[ORDER BY order-by-expression [, order-by-expression J... 1 [limit-clause 7 [FOR UPDATE]
query-specification ::= (query-specification)
| SELECT [ALL | DISTINCT] [top-clause] select-list

FROM table-reference [, table-reference J. ..

[WHERE search-condition]

[GROUP BY expression [, expression]...

[HAVING search-condition |]

expression-or-subquery ::= expression | (query-specification) [ORDER BY order-by-expression
[. order-by-expression 1... 1 [limit-clause]
subquery-expression -:= (query-specification) [ORDER BY order-by-expression
[. order-by-expression 1... 1 [limit-clause]
order-by-expression ::= expression [CASE (string) | COLLATE collation-name] [ASC | DESC]
limit-clause = := [LIMIT [offset,]1 row_count | row_count OFFSET offset | ALL [OFFSET offset]]
offset z:= number | ?
row_count -:= number | ?
top-clause ::= TOP or LIMIT number
select-list 2= * | select-item [, select-item 7]...
select-item ::= expression [[AS] alias-name] | table-name.*
table-reference ::= { 0J outer-join-definition }

| [db-name.]table-name [[AS] alias-name 1 [WITH (table-hint)]
| [db-name.]view-name [[AS] alias-name]

| dbo.fsystem-catalog-function-name [[AS 1 alias-name]

| join-definition

| (join-definition)

| (table-subquery)[AS] alias-name [(column-name [, column-name J...)]

outer-join-definition ::= table-reference outer-join-type JOIN table-reference
ON search-condition

outer-join-type = LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]
table-hint - := INDEX (index-value [, index-value]...)

index-value -:= 0 | index-name

index-name - = user-defined-name

176

join-definition 2= table-reference [join-type] JOIN table-reference ON search-condition
| table-reference CROSS JOIN table-reference
| outer-join-definition

join-type == INNER | LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]

table-subquery ::= query-specification [[UNION [ALL]

query-specification] .. . JL ORDER BY order-by-expression [, order-by-expression]...]
search-condition ::= search-condition AND search-condition

| search-condition OR search-condition

| NOT search-condition

| (search-condition)

| predicate

predicate ::= expression [NOT] BETWEEN expression AND expression
| expression-or-subquery comparison-operator expression-or-subquery
| expression [NOT] IN (query-specification)
| expression [NOT] IN (value [, value J-..)
| expression [NOT] LIKE value
| expression IS [NOT] NULL
| expression comparison-operator ANY (query-specification)
| expression comparison-operator ALL (query-specification)
| [NOT] EXISTS (query-specification)

comparison-operator 1:= < | > | <= | >= | = | <> | I=
expression-or-subquery ::= expression | (query-specification)
value ::= literal | USER | ?

expression II= expression - expression

expression + expression
expression * expression
expression [/ expression
expression & expression
expression | expression
expression " expression
(expression)
—expression
+expression
column-name

?

literal

set-function
scalar-function

{ fn scalar-function }

window-function

177

| CASE case_value_expression WHEN when_expression THEN then_expression [-..] [ELSE else_
expression] END

| COALESCE (expression, expression [,...1)
| 1F (search-condition , expression , expression)
| SQLSTATE

| subquery-expression

| NULL

| : user-defined-name

| USER

| @:IDENTITY

| @:ROWCOUNT

| @@BIGIDENTITY

| @@IDENTITY

| @@ROWCOUNT

| @@sPID

| @@VERSION

case_value_expression when_expression, then_expression else_expression : = see CASE (expression)
subquery-expression - := (query-specification)
set-function == AVG ([DISTINCT | ALL] expression)
| COUNT (< * | [DISTINCT | ALL] expression >)
| COUNT_BIG (< * | [DISTINCT | ALL] expression >)
| MAX ([DISTINCT | ALL] expression)
| MIN C [DISTINCT | ALL] expression)
| STDEV ([DISTINCT | ALL] expression)
| STDEVP ([DISTINCT | ALL] expression)
| SUM ([DISTINCT | ALL] expression)
| VAR ([DISTINCT | ALL] expression)
| VARP ([DISTINCT | ALL] expression)

scalar-function ::= see Scalar Functions

window-function ::= set-function over-clause

over-clause -:= OVER (partition-by-clause order-by-in-over-clause [row-clause])
partition-by-clause ::= PARTITION BY column_name [, column_name 7]...
order-by-in-over-clause ::= ORDER BY column_name [, column_name] ...
row-clause ::= ROWS window-frame-extent

window-frame-extent - 2= { UNBOUNDED PRECEDING
| unsigned-integer-literal PRECEDING
| CURRENT ROW }

Note: Usage of ORDER BY in OVER clauses differs from usage elsewhere in Zen SQL. For details and
related information applicable to the current release, see SQL Windowing Functions.

178

Remarks

These remarks cover the following topics related to use of SELECT:

» FOR UPDATE m Subqueries

= GROUP BY » Using Table Hints

= SQL Windowing Functions m DISTINCT in Aggregate Functions
= Dynamic Parameters s TOP or LIMIT

= Aliases m Table Hint Examples

m SUM and DECIMAL Precision

FOR UPDATE

SELECT FOR UPDATE locks the row or rows within the table that is selected by the query. The record
locks are released when the next COMMIT or ROLLBACK statement is issued.

To avoid contention, SELECT FOR UPDATE locks the rows as they are retrieved.

SELECT FOR UPDATE takes precedence within a transactions if statement level SQL_ATTR _
CONCURRENCY is set to SQL_CONCUR_LOCK. If SQL_ATTR_CONCURRENCY is set to SQL_
CONCUR_READ_ONLY, the database engine does not return an error.

SELECT FOR UPDATE does not support a WAIT or NOWAIT keyword. SELECT FOR UPDATE
returns status code 84: The record or page is locked if it cannot lock the rows within a brief period (20
retries).

Constraints
The SELECT FOR UPDATE statement has the following constraints:

» Isvalid only within a transaction. The statement is ignored if used outside of a transaction.

m [s supported only for a single table. You cannot use SELECT FOR UPDATE with JOIN, nonsimple
views, or the GROUP BY, DISTINCT, or UNION keywords.

m s not supported within a CREATE VIEW statement.

GROUP BY

In addition to supporting a GROUP BY on a column list, Zen supports a GROUP BY on an expression
list or on any expression in a GROUP BY expression list. See GROUP BY for more information on
GROUP BY extensions. HAVING is not supported without GROUP BY.

Result sets and stored views generated by executing SELECT statements with any of the following
characteristics are read-only (they cannot be updated). That is, using a positioned UPDATE or a
positioned DELETE and a SQLSetPos call to add, alter or delete data is not allowed on the result set or
stored view if:

m The selection list contains an aggregate:
SELECT SuM(cl) FROM tl1

m The selection list specifies DISTINCT:
SELECT DISTINCT c1 FROM t1

m The view uses GROUP BY:
SELECT SUM(cl), c2 FROM t1 GROUP BY c2

179

m The view is a join (references multiple tables):
SELECT * FROM t1, t2

m The view uses the UNION operator and UNION ALL is not specified or all SELECT statements do
not reference the same table:
SELECT cl1 FROM t1 UNION SELECT cl FROM t1
SELECT cl1 FROM t1 UNION ALL SELECT cl FROM t2

Note that stored views do not allow the UNION operator.

m The view contains a subquery that references a table other than the table in the outer query:
SELECT c1 FROM t1 WHERE cl IN (SELECT cl FROM t2)

SQL Windowing Functions

Zen provides a subset of ANSI standard SQL windowing usage. In the current release, this initial
introduction has certain limitations and considerations.

Limitations

OVER clauses have the following limitations:

m All OVER clauses in a given SELECT statement must have identical specifications for partition-by-
clause, order-by-in-over-clause, and row-clause if present.

m A PARTITION BY clause must include an ORDER BY clause. The ORDER BY clause must not use
the same columns as the PARTITION BY clause.

» Ina PARTITION BY clause, the use of ROWS supports the following keywords:
+ UNBOUNDED
+ nPRECEDING
+ CURRENT ROW
» Ina PARTITION BY clause, the use of ROWS does not support the following keywords:
+ BETWEEN
+ FOLLOWING
m The RANGE keyword is not supported.
m The DISTINCT keyword is not supported in set functions.
» Inan OVER clause the ORDER BY clause does not support a COLLATE specification.

» Window functions can be used only with a forward-only cursor.

Considerations

Under the ANSI SQL standard, certain syntax combinations imply default RANGE semantics, which are
not supported in the current Zen release. Accordingly, in the current Zen release, in cases where the
default RANGE specification is RANGE UNBOUNDED PRECEDING, this default is implemented as
ROWS UNBOUNDED PRECEDING.

In general, the difference between these two defaults affects a result set only if the combination of
column values returned by the PARTITION BY and ORDER BY clauses is not unique for each row.
Therefore, in the current Zen release, if the combination of those column values is not unique for each
row, we recommend explicitly specifying ROWS UNBOUNDED PRECEDING, since that will return
the expected result.

The current release supports the set functions AVG, COUNT, MAX, MIN, and SUM for windowing.

180

Dynamic Parameters

Dynamic parameters, represented by a question mark (?), are not supported as SELECT items. You may
use dynamic parameters in any SELECT statement if the dynamic parameter is part of the predicate. For
example, SELECT * FROM faculty WHERE id = ? is valid because the dynamic parameter is part of the
predicate.

Note that you cannot use SQL Editor in Zen Control Center to execute a SQL statement with a dynamic
parameter in the predicate.

You may use variables as SELECT items only within stored procedures. See CREATE PROCEDURE.

Aliases

Aliases may appear in a WHERE, HAVING, ORDER BY, or GROUP BY clause. Alias names must differ
from any column names within the table. The following statement shows the use of aliases, aand b,in a
WHERE clause and in a GROUP BY clause.

SELECT Student_ID a, Transaction_Number b, SUM (Amount_Owed) FROM Billing WHERE a <
120492810 GROUP BY a, b UNION SELECT Student ID a, Transaction_Number b, SUM
(Amount_Paid) FROM Billing WHERE a > 888888888 GROUP BY a, b

SUM and DECIMAL Precision

When using the SUM aggregate function to sum a field that is of type DECIMAL, the following rules
apply:

The precision of the result is 74, while the scale is dependent on the column definition.

The result may cause an overflow error if a number with precision greater than 74 is calculated (a very

large number indeed). If an overflow occurs, no value is returned, and SQLSTATE is set to 22003,
indicating a numeric value is out of range.

Subqueries

A subquery is a SELECT statement with one or more SELECT statements within it. A subquery produces
values for further processing within the statement. The maximum number of nested subqueries allowed
within the topmost SELECT statement is 16.

The following types of subqueries are supported:

= comparison
m quantified
m in

m exists

m correlated

m expression
m table

Correlated subquery predicates are not supported in a HAVING clause that references grouped columns.

Expression subqueries allow the subquery within the SELECT list. For example, SELECT (SELECT
SUM(c1) FROM t1 WHERE t1.c2 = t1.(c2) FROM t2. Only one item is allowed in the subquery SELECT
list. For example, the following statement returns an error because the subquery SELECT list contains

181

more than one item: SELECT p.id, (SELECT SUM(b.amount_owed), SUM(b.amount_paid) FROM
billing b) FROM person p.

A subquery as an expression may be correlated or noncorrelated. A correlated subquery references one
or more columns in any of the tables in the topmost statement. A noncorrelated subquery references no
columns in any of the tables in the topmost statement. The following example illustrates a correlated
subquery in a WHERE clause:

SELECT * FROM student s WHERE s.Tuition_id IN
(SELECT t.ID FROM tuition t WHERE t.ID = s.Tuition_ID);

Note Table subqueries support noncorrelated subqueries but not correlated subqueries.

A subquery connected with the operators IN, EXISTS, ALL, or ANY is not considered an expression.

Both correlated and noncorrelated subqueries can return only a single value. For this reason, both
correlated and noncorrelated subqueries are also referred to as scalar subqueries.

Scalar subqueries may appear in the DISTINCT, GROUP BY, and ORDER BY clause.
You may use a subquery on the left-hand side of an expression:
Expr-or-SubQuery CompareOp Expr-or-SubQuery

where Expr is an expression, and CompareOp is one of:

< > <= >= =

(less than) (greater than) (lessthanor (greaterthan (equals)
equal to) or equal to)

<> 1= LIKE IN NOT IN

(notequal) (not equal)

The rest of this section covers the following topics:
= Subquery Optimization

= UNION in Subquery

m Table Subqueries

Subquery Optimization

Left-hand subquery behavior has been optimized for IN, NOT IN, and =ANY in cases where the
subquery is not correlated and any join condition is an outer join. Other conditions may not be
optimized. Here is an example of a query that meets these conditions:

SELECT count(*) FROM person WHERE id IN (SELECT faculty_id FROM class)

Performance improves if you use an index in the subquery because Zen optimizes a subquery based on
the index. For example, the subquery in the following statement is optimized on student_id because it is
an index in the Billing table:

SELECT (SELECT SUM(b.amount_owed) FROM billing b WHERE b.student_id = p.id) FROM
person p

182

UNION in Subquery

Parentheses on different UNION groups within a subquery are not allowed. Parentheses are allowed
within each SELECT statement.

For example, the parenthesis following IN and the last parenthesis are not allowed the following
statement:

SELECT c1 FROM t5 WHERE c1 IN ((SELECT c1 FROM t1 UNION SELECT cl FROM t2) UNION ALL
(SELECT c1 FROM t3 UNION SELECT cl from t4))

Table Subqueries

Table subqueries can be used to combine multiple queries into one detailed query. A table subquery is a
dynamic view, which is not persisted in the database. When the topmost SELECT query finishes, all
resources associated with table subqueries are released.

Note Only noncorrelated subqueries are allowed in table subqueries. Correlated subqueries are not
allowed.

The following examples of pagination (1500 rows with 100 rows per page) show the use of table
subqueries with the ORDER BY keyword:

The first 100 rows

SELECT * FROM (SELECT TOP 100 * FROM (SELECT TOP 100 * FROM person ORDER BY last_
name asc) AS foo ORDER BY last_name desc) AS bar ORDER BY last_name ASC

The second 100 rows

SELECT * FROM (SELECT TOP 100 * FROM (SELECT TOP 200 * FROM person ORDER BY last_
name asc) AS foo ORDER BY last_name DESC) AS bar ORDER BY last_name ASC

The fifteenth 100 rows

SELECT * FROM (SELECT TOP 100 * FROM (SELECT TOP 1500 * FROM person ORDER BY last_
name ASC) AS foo ORDER BY last_name DESC) AS bar ORDER BY last_name ASC

Using Table Hints

The table hint functionality allows you to specify which index, or indexes, to use for query optimization.
A table hint overrides the default query optimizer used by the database engine.

If the table hint specifies INDEX(0), the engine performs a table scan of the associated table. (A table
scan reads each row in the table rather than using an index to locate a specific data element.)

If the table hint specifies INDEX(index-name), the engine uses index-name to optimize the table based
on restrictions of any JOIN conditions, or based on the use of DISTINCT, GROUP BY, or ORDER BY.
If the table cannot be optimized on the specified index, the engine attempts to optimize the table based
on any existing index.

If you specify multiple index names, the engine chooses the index that provides optimal performance or
uses the multiple indexes for OR optimization. An example helps clarify this. Suppose that you have the
following:

183

CREATE INDEX ndx1l on tl(cl)
CREATE INDEX ndx2 on t1(c2)
CREATE INDEX ndx3 on t1(c3)
SELECT * FROM t1 WITH (INDEX (ndx1l, ndx2)) WHERE c1 = 1 AND c2 > 1 AND c3 = 1

The database engine uses ndx1 to optimize on c1 = 1 rather than using ndx2 for optimization. Ndx3 is
not considered because the table hint does not include ndx3.

Now consider the following:
SELECT * FROM t1 WITH (INDEX (ndxl, ndx2)) WHERE (cl = 1 OR c2 > 1) AND ¢3 = 1
The engine uses both ndx1 and ndx2 to optimize on (c1 =1 OR c2 > 1).

The order in which the multiple index names appear in the table hint does not matter. The database
engine chooses from the specified indexes the one(s) that provides for the best optimization.

Duplicate index names within the table hint are ignored.

For a joined view, specify the table hint after the appropriate table name, not at the end of the FROM
clause. For example, the following statement is correct:

SELECT * FROM person WITH (INDEX(Names)), student WHERE student.id
last_name LIKE "S%"

person.id AND

Contrast this with the following statement, which is incorrect:

SELECT * FROM person, student WITH (INDEX(Names)) WHERE student.id
last_name LIKE "S%"

person.id AND

Note The table hint functionality is intended for advanced users. Typically, table hints are not
required because the database query optimizer usually picks the best optimization method.

Table Hint Restrictions

s The maximum number of index names that can be used in a table hint is limited only by the
maximum length of a SQL statement (64 KB).

m The index name within a table hint must not be fully qualified with the table name.

Incorrect SQL: | SELECT * FROM t1 WITH (INDEX(t1.ndx1)) WHERE t1.c1 =1

Returns: SQL_ERROR
szSqlState: 37000
Message: Syntax Error: SELECT * FROM t1 WITH (INDEX(t1.<< ???

>>ndx1)) WHERE t1.¢1 = 1

» Table hints are ignored if they are used in a SELECT statement with a view.

Incorrect SQL: | SELECT * FROM myt1view WITH (INDEX(ndx1))

Returns: SQL_SUCCESS_WITH_INFO

szSqlState: 01000

184

Message:

Index hints supplied with views will be ignored

m Zero is the only valid hint that is not an index name.

Incorrect SQL: | SELECT * FROM t1 WITH (INDEX(85))
Returns: SQL_ERROR

szSqlState: S1000

Message: Invalid index hint

» The index name in a table hint must specify an existing index.

Incorrect SQL: | SELECT * FROM t1 WITH (INDEX(ndx4))
Returns: SQL_ERROR

szSqlState: S0012

Message: Invalid index name; index not found

= A table hint cannot be specified on a subquery AS table.

Examples

Incorrect SQL: | SELECT * FROM (SELECT c1, c2 FROM t1 WHERE c1 = 1) AS
a WITH (INDEX(ndx2)) WHERE a.c2 = 10

Returns: SQL_ERROR

szSqlState: 37000

Message: syntax Error: SELECT * FROM (SELECT c1, c2 FROM t1

WHERE c1 = 1) AS a WITH<< ??? >>(INDEX(ndx2)) WHERE
a.c2=10

This simple SELECT statement retrieves all the data from the Faculty table.

SELECT * FROM Faculty

This statement retrieves the data from the person and the faculty table where the id column in the person
table is the same as the id column in the faculty table.

SELECT Person.id, Faculty.salary FROM Person, Faculty WHERE Person.id = Faculty.id

185

The rest of this section provides examples of variations on SELECT statements. Some of these headings
are based on the variable given in the syntax definition for SELECT.

= FOR UPDATE m Time Stamp Literal
m Approximate Numeric Literal m String Literal

m Between Predicate m Date Arithmetic

m Correlation Name s [F

m Exact Numeric Literal m Multidatabase Join
m In Predicate m Left Outer Join

= Set Function m Right Outer Join

m Date Literal m Cartesian Join

s Time Literal

FOR UPDATE

The following example uses table t1 to demonstrate the use of FOR UPDATE. Assume that t1 is part of
the Demodata sample database. The stored procedure creates a cursor for the SELECT FOR UPDATE
statement. A loop fetches each record from t1 and, for those rows where c1=2, sets the value of c1 to four.

The procedure is called by passing the value 2 as the IN parameter.

The example assumes two users, A and B, logged in to Demodata. User A performs the following:

DROP TABLE t1
CREATE TABLE t1 (cl1 INTEGER, c2 INTEGER)
INSERT INTO t1 VALUES (1,1)
INSERT INTO t1 VALUES (2,1)
INSERT INTO t1 VALUES (1,1)
INSERT INTO t1 VALUES (2,1)
CREATE PROCEDURE pl1 (IN :a INTEGER)
AS
BEGIN
DECLARE :b INTEGER;
DECLARE :i INTEGER;
DECLARE c1Bulk CURSOR FOR SELECT * FROM t1 WHERE cl = :a FOR UPDATE;
START TRANSACTION;
OPEN cl1Bulk;
BulkLinesLoop:
LOOP
FETCH NEXT FROM c1Bulk INTO :i;
IF SQLSTATE = "02000" THEN
LEAVE BulkLinesLoop;
END IF;
UPDATE SET cl = 4 WHERE CURRENT OF clBulk;
END LOOP;
CLOSE c1Bulk;
SET :b = 0;
WHILE (:b < 100000) DO
BEGIN
SET :b = b + 1;
END;
END WHILE;
COMMIT WORK;
END;
CALL p1l(2)

186

Notice that a WHILE loop delays the COMMIT of the transaction. During that delay, assume that User
B attempts to update t1. Status code 84 is returned to User B because those rows are locked by the
SELECT FOR UPDATE statement from User A.

The following example uses table t1 to demonstrate how SELECT FOR UPDATE locks records when the
statement is used outside of a stored procedure. Assume that t1 is part of the Demodata sample database.

The example assumes that two users, A and B, are logged in to Demodata. User A performs the
following:

DROP TABLE t1

CREATE TABLE t1 (cl INTEGER, c2 INTEGER)
INSERT INTO t1 VALUES (1,1)

INSERT INTO t1 VALUES (2,1)

INSERT INTO t1 VALUES (1,1)

INSERT INTO t1 VALUES (2,1)

(turn off AUTOCOMMIT)
(execuieandibujﬂ:"SELECT * FROM tl1 WHERE c1 = 2 FOR UPDATE"

The two records where c1 = 2 are locked until User A issues a COMMIT WORK or ROLLBACK WORK
statement.

(User B attempts to update t1): "UPDATE t1 SET c1=3 WHERE c1=2" A status code 84 is returned to
User B because those rows are locked by the SELECT FOR UPDATE statement from User A.

(Now assume that User A commits the transaction.) The two records where c1 = 2 are unlocked.

User B could now execute "UPDATE t1 SET c1=3 WHERE c1=2" and change the values for cI.

Approximate Numeric Literal

SELECT * FROM results WHERE quotient =-4_5E-2
INSERT INTO results (quotient) VALUES (+5E7)

Between Predicate

The syntax expression] BETWEEN expression2 and expression3 returns TRUE if expressionl >=
expression2 and expressionl<= expression3. FALSE is returned if expressionl >= expression3, or is
expressionl <= expression2.

Expression2 and expression3 may be dynamic parameters (for example, SELECT * FROM emp WHERE
emp_id BETWEEN ? AND ?).

The next example retrieves the first names from the Person table whose ID falls between 10000 and
20000.

SELECT First_name FROM Person WHERE ID BETWEEN 10000 AND 20000

Correlation Name

Both table and column correlation names are supported.

187

The following example selects data from both the person table and the faculty table using the aliases T'1
and T2 to differentiate between the two tables.

SELECT * FROM Person tl1, Faculty t2 WHERE tl.id = t2.id

The correlation name for a table name can also be specified in using the FROM clause, as seen in the
following example:

SELECT a.Name, b.Capacity FROM Class a, Room b
WHERE a.Room_Number = b.Number

Exact Numeric Literal

SELECT car_num, price FROM cars WHERE car_num =49042 AND price=49999.99

In Predicate
This selects the records from table Person table where the first names are Bill and Roosevelt.

SELECT * FROM Person WHERE First_name IN ("Roosevelt®, "Bill")

Set Function

The aggregate functions for AVG (average), MAX (maximum), MIN (minimum), and SUM operate as
commonly expected. The following examples use these functions with the Salary field in the Faculty
sample table.

SELECT AVG(Salary) FROM Faculty
SELECT MAX(Salary) FROM Faculty
SELECT MIN(Salary) FROM Faculty
SELECT SUM(Salary) FROM Faculty

The following example retrieves student_id and sum of the amount_paid where it is greater than or equal
to 100 from the billing table. It then groups the records by student_id.

SELECT Student_ID, SUM(Amount_Paid)
FROM Billing

GROUP BY Student_ID

HAVING SUM(Amount_Paid) >=100.00

If the expression is a positive integer literal, then that literal is interpreted as the number of the column
in the result set and ordering is done on that column. No ordering is allowed on set functions or an
expression that contains a set function.

COUNT (expression) and COUNT_BIG(expression) count all nonnull values for an expression across a
predicate. COUNT(*) and COUNT_BIG(*) count all values, including NULL values. COUNT() returns
an INTEGER data type with a maximum value of 2,147,483,647. COUNT_BIG() returns a BIGINT data
type with a maximum value of 9,223,372,036,854,775,807.

The following example returns a count of chemistry majors who have a grade point average of 3.5 or
greater (and the result does not equal null).

188

SELECT COUNT(*) FROM student WHERE (CUMULATIVE_GPA > 3.4 and MAJOR="Chemistry~)

The STDEV function returns the standard deviation of all values based on a sample of the data. The
STDEVP function returns the standard deviation for the population for all values in the specified
expression. Here are the equations for each function:

2 2 2 2
STDEV(x,) = f% STDEVP(x,) = |MEX ;z(zx)

The following returns the standard deviation of the grade point average by major from the Student
sample table.

SELECT STDEV(Cumulative_GPA), Major FROM Student GROUP BY Major

The following returns the standard deviation for the population of the grade point average by major
from the Student sample table.

SELECT STDEVP(Cumulative_GPA), Major FROM Student GROUP BY Major

The VAR function returns the statistical variance for all values on a sample of the data. The VARP
function returns the statistical variance for the population for all values in the specified expression. Here
are the equations for each function:

nEx? — (Ix)? i nIx? - (Ix)
= JURP(x,) =

VAR(x,) = = o0 .

The following returns the statistical variance of the grade point average by major from the Student
sample table.

SELECT VAR(Cumulative_GPA), Major FROM Student GROUP BY Major

The following returns the statistical variance for the population of the grade point average by major from
the Student sample table.

SELECT VARP(Cumulative_GPA), Major FROM Student GROUP BY Major

Note that for STDEV, STDEVP, VAR, and VARP, the expression must be a numeric data type and an
eight-byte DOUBLE is returned. A floating-point overflow error results if the difference between the
minimum and maximum values of the expression is out of range. Expression cannot contain aggregate
functions. There must be at least two rows with a value in the expression field or a result is not calculated
and returns a NULL.

Date Literal

See Date Values.

Time Literal

See Time Values.

Time Stamp Literal

See Time Stamp Values.

189

String Literal
See String Values.

Date Arithmetic
See Date Arithmetic.

SELECT * FROM person P, Class C WHERE p.Date Of Birth < " 1973-09-05" AND c.Start_
date >{d "1995-05-08"} + 30
Zen supports adding or subtracting an integer from a date where the integer is the number of days to add

or subtract, and the date is embedded in a vendor string. (This is equivalent to executing a convert on
the date).

You may also subtract one date from another to yield a number of days.

IF
The IF system scalar function provides conditional execution based on the truth value of a condition

This expression prints the column header as Primel and amount owed as 2000 where the value of the
column amount_owed is 2000 or it prints a 0 if the value of the amount_owed column is not equal to
2000.

SELECT Student_ID, Amount_Owed,
IF (Amount_Owed = 2000, Amount_Owed, Convert(0, SQL_DECIMAL)) "Primel"
FROM Billing

From table Class, the following example prints the value in the Section column if the section is equal to
001, else it prints “xxx” under column header Primel.

Under column header Prime2, it prints the value in the Section column if the value of the section column
is equal to 002, or else it prints “yyy.”

SELECT 1D, Name, Section,

IF (Section = "001", Section, "xxx") "Primel",

IF (Section = "002", Section, "yyy") "Prime2"

FROM Class

You can combine header Primel and header Prime2 by using nested IF functions. Under column header
Prime, the following query prints the value of the Section column if the value of the Section column is
equal to 001 or 002. Otherwise, it print “xxx.”

SELECT 1D, Name, Section,

IF (Section = "001", Section, IF(Section = "002", Section, "xxx")) Prime
FROM Class

Multidatabase Join

When needed, a database name may be prepended to an aliased table name in the FROM clause, to
distinguish among tables from two or more different databases that are used in a join.

All of the specified databases must be serviced by the same database engine and have the same database
code page settings. The databases do not need to reside on the same physical volume. The current

190

database may be secure or unsecure, but all other databases in the join must be unsecure. With regard to
Referential Integrity, all RI keys must exist within the same database. (See also Encoding.)

Literal database names are not permitted in the select-list or in the WHERE clause. If you wish to refer
to specific columns in the select-list or in the WHERE clause, you must use an alias for each specified
table. See examples.

Assume two separate databases, named accounting and customers, exist on the same server. You can join
tables from the two databases using table aliases and SQL syntax similar to the following example:

SELECT ord.account, inf.account, ord.balance, inf.address
FROM accounting.orders ord, customers.info inf
WHERE ord.account = inf.account

In this example, the two separate databases are acctdb and loandb. The table aliases are a and b,
respectively.

SELECT a.loan_number_a, b.account_no, a.current_bal, b._balance

FROM acctdb.ds500_acct_master b LEFT OUTER JOIN loandb.mI502_loan_master a ON
(a-loan_number_a = b.loan_number)

WHERE a.current_bal <> (b.balance * -1)

ORDER BY a.loan_number_a

Left Outer Join

The following example shows how to access the Person and Student tables from the Demodata database
to obtain the Last Name, First Initial of the First Name and GPA of students. With the LEFT OUTER
JOIN, all rows in the Person table are fetched (the table to the left of LEFT OUTER JOIN). Since not all
people have GPAs, some of the columns have NULL values for the results. This is how outer join works,
returning nonmatching rows from either table.

SELECT Last_Name,Left(First_Name,1) AS First_Initial,Cumulative_GPA AS GPA FROM
"Person"’

LEFT OUTER JOIN "Student"™ ON Person.ID=Student.ID

ORDER BY Cumulative_GPA DESC, Last_Name

Assume that you want to know everyone with perfectly rounded GPAs and have them all ordered by the
length of their last name. Using the MOD statement and the LENGTH scalar function, you can achieve
this by adding the following to the query:

WHERE MOD(Cumulative_GPA,1)=0 ORDER BY LENGTH(Last_Name)

Right Outer Join

The difference between LEFT and RIGHT OUTER JOIN is that all non matching rows show up for the
table defined to the right of RIGHT OUTER JOIN. Change the query for LEFT OUTER JOIN to include
a RIGHT OUTER JOIN instead. The difference is that the all nonmatching rows from the right table, in
this case Student, show up even if no GPA is present. However, since all rows in the Student table have
GPAs, all rows are fetched.

SELECT Last_Name,Left(First_Name,1) AS First_Initial,Cumulative_GPA AS GPA FROM
"Person"’

RIGHT OUTER JOIN "'Student™ ON Person.ID=Student.ID

ORDER BY Cumulative GPA DESC, Last Name

191

Cartesian Join

A Cartesian join is the matrix of all possible combinations of the rows from each of the tables. The
number of rows in the Cartesian product equals the number of rows in the first table times the number
of rows in the second table.

Assume you have the following tables in your database.

Table 36 Addr Table

EmplID Street
E1 101 Mem Lane
E2 14 Young St.

Table 37 Loc Table

LocID Name
L1 PlanetX
L2 PlanetY

The following performs a Cartesian JOIN on these tables:
SELECT * FROM Addr,Loc
This results in the following data set:

Table 38 SELECT Statement with Cartesian JOIN

EmplID Street LocID Name

E1 101 Mem Lane L1 PlanetX
E1 101 Mem Lane L2 PlanetY
E2 14 Young St L1 PlanetX
E2 14 Young St L2 PlanetY

DISTINCT in Aggregate Functions

DISTINCT is useful in aggregate functions. When used with SUM, AVG, and COUNT, it eliminates
duplicate values before calculating the sum, average or count. With MIN, and MAX, however, it is
allowed but does not change the result of the returned minimum or maximum.

For example, assume you want to know the salaries for different departments, including the minimum,
maximum and salary, and you want to remove duplicate salaries. The following statement does this,
excluding the computer science department:

192

SELECT dept_name, MIN(salary), MAX(salary), AVG(DISTINCT salary) FROM faculty WHERE
dept_name<>"computer science® GROUP BY dept_name

On the other hand, to include duplicate salaries, drop DISTINCT:

SELECT dept_name, MIN(salary), MAX(salary), AVG(salary) FROM faculty WHERE dept_
name<>T"computer science® GROUP BY dept_name

For the use of DISTINCT in SELECT statements, see DISTINCT.

TOP or LIMIT

You can set the maximum number of rows returned by a SELECT statement by using the keywords TOP
or LIMIT. The number must be a literal positive value. It is defined as a 32-bit unsigned integer. For
example:

SELECT TOP 10 * FROM Person
returns the first 10 rows of the Person table in Demodata.

LIMIT is identical to TOP except that it provides the OFFSET keyword to enable you to “scroll” through
the result set by choosing the first row in the returned records. For example, if the offset is 5, then the
first row returned is row 6. LIMIT has two ways to specify the offset, both with and without the OFFSET
keyword, as shown in the following examples, which return identical results:

SELECT * FROM Person LIMIT 10 OFFSET 5
SELECT * FROM Person LIMIT 5,10

Note that when you do not use the OFFSET keyword, you must put the offset value before the row count,
separated by a comma.

You can use TOP or LIMIT with ORDER BY. If so, then the database engine generates a temporary table
and populates it with the entire query result set if no index can be used for ORDER BY. The rows in the
temporary table are arranged as specified by ORDER BY in the result set, but only the number of rows
determined by TOP or LIMIT are returned by the query.

Views that use TOP or LIMIT may be joined with other tables or views.

The main difference between TOP or LIMIT and SET ROWCOUNT is that TOP or LIMIT affect only
the current statement, while SET ROWCOUNT affects all subsequent statements issued during the
current database session.

If SET ROWCOUNT and TOP or LIMIT are both used in a query, the query returns a number of rows
equal to the lowest of the two values.

Either TOP or LIMIT is allowed within a single query or subquery, but not both.

Cursor Types and TOP or LIMIT

A SELECT query with a TOP or LIMIT clause that uses a dynamic cursor converts the cursor type to
static. Forward-only and static cursors are not affected.

TOP or LIMIT Examples

The following examples use both TOP and LIMIT clauses, which are interchangeable as keywords and
give the same results, although LIMIT offers more control of which rows are returned.

SELECT TOP 10 * FROM person; --returns 10 rows
SELECT * FROM person LIMIT 10; --returns 10 rows
SELECT * FROM person LIMIT 10 OFFSET 5; --returns 10 rowsstartingwith row 6

193

SELECT * FROM person LIMIT 5,10; --returns 10 rows starting with row 6

SET ROWCOUNT = 5;

SELECT TOP 10 * FROM person; --returns 5 rows

SELECT * FROM person LIMIT 10; --returns5 rows

SET ROWCOUNT = 12;

SELECT TOP 10 * FROM person ORDER BY id; -- returns the first 10 rows of the full list ordered by column id.

SELECT * FROM person LIMIT 20 ORDER BY id; --returns the first 12 rows of the full list ordered by column
id.

The following examples show a variety of behaviors when TOP or LIMIT is used in views, unions, or
subqueries.

CREATE VIEW v1 (cl) AS SELECT TOP 10 id FROM person;

CREATE VIEW v2 (d1) AS SELECT TOP 5 cl1 FROM v1i;

SELECT * FROM v2 --returns 5 rows

SELECT TOP 10 * FROM v2 --returns 5 rows

SELECT TOP 2 * FROM v2 --returns 2 rows

SELECT * FROM v2 LIMIT 10 --returns5rows

SELECT * FROM v2 LIMIT 10 OFFSET 3 -- returns 2 rows starting with row 4
SELECT * FROM v2 LIMIT 3,10 -- returns 2 rows starting with row 4

SELECT TOP 10 id FROM person UNION SELECT TOP 13 faculty_id FROM class -- returns 17 rows

SELECT TOP 10 id FROM person UNION ALL SELECT TOP 13 faculty_id FROM class -- returns 23
rows

SELECT id FROM person WHERE id IN (SELECT TOP 10 faculty_id from class) --returns5rows

SELECT id FROM person WHERE id >= any (SELECT TOP 10 faculty_id from class) --returns
1040 rows

The following example returns last name and amount owed for students above a certain ID number.

SELECT p_last_name, b_owed FROM
(SELECT TOP 10 id, last_name FROM person ORDER BY id DESC) p (p_id, p_last_name),
(SELECT TOP 10 student_id, SUM (amount_owed) FROM billing GROUP BY student_id
ORDER BY student_id DESC) b (b_id, b_owed)
WHERE p.p_id = b.b_id AND p.p_id > 714662900
ORDER BY p_last_name ASC

Table Hint Examples

This topic provides working examples for table hints. Use the SQL statements to create them in Zen.

DROP TABLE t1

CREATE TABLE tl1 (cl INTEGER, c2 INTEGER)
INSERT INTO t1 VALUES (1,10)

INSERT INTO t1 VALUES (1,10)

INSERT INTO t1 VALUES (2,20)

INSERT INTO t1 VALUES (2,20)

INSERT INTO t1 VALUES (3,30)

INSERT INTO t1 VALUES (3,30)

CREATE INDEX itlcl ON t1 (cl)

CREATE INDEX itlclc2 ON tl (cl, c2)
CREATE INDEX itlc2 ON tl (c2)

CREATE INDEX itlc2cl ON tl (c2, cl)

DROP TABLE t2

CREATE TABLE t2 (cl INTEGER, c2 INTEGER)
INSERT INTO t2 VALUES (1,10)

INSERT INTO t2 VALUES (1,10)

194

INSERT INTO t2 VALUES (2,20)
INSERT INTO t2 VALUES (2,20)
INSERT INTO t2 VALUES (3,30)
INSERT INTO t2 VALUES (3,30)

Certain restrictions apply to the use of table hints. See Table Hint Restrictions for examples.

The following example optimizes on index itlclc2.
SELECT * FROM t1 WITH (INDEX(itlclc2)) WHERE cl =1

Contrast this with the following example, which optimizes on index itlcl instead of on it1c2 because the
restriction consists of only c1 = 1. If a query specifies an index that cannot be used to optimize the query,
the hint is ignored.

SELECT * FROM t1 WITH (INDEX(itlc2)) WHERE cl =1

The following example performs a table scan of table t1.

SELECT * FROM t1 WITH (INDEX(0)) WHERE cl1 = 1

The following example optimizes on indexes itlclc2 and itlc2cl.

SELECT * FROM t1 WITH (INDEX(itlclc2, itlc2cl)) WHERE cl1 = 1 OR c2 = 10

The following example using a table hint in the creation of a view. When all records are selected from
the view, the SELECT statement optimizes on index itlclc2.

DROP VIEW v2
CREATE VIEW v2 as SELECT * FROM t1 WITH (INDEX(itlclc2)) WHERE c1 =1
SELECT * FROM v2

The following example uses a table hint in a subquery and optimizes on index itlclc2.

SELECT * FROM (SELECT cl1l, c2 FROM t1 WITH (INDEX(itlclc2)) WHERE cl = 1) AS a WHERE
a.c2 = 10

The following example uses a table hint in a subquery and an alias name “a.” The alias name is required.

SELECT * FROM (SELECT Last _Name FROM Person AS P with (Index(Names))) a

The following example optimizes the query based on the c1 = 1 restriction and optimizes the GROUP
BY clause based on index itlclc2.

SELECT c1, c2, count(*) FROM tl1 WHERE cl = 1 GROUP BY cl, c2

The following example optimizes on index it1cl and, unlike the previous example, optimizes only on the
restriction and not on the GROUP BY clause.

SELECT c1, c2, count(*) FROM t1 WITH (INDEX(itlcl)) WHERE cl = 1 GROUP BY cl, c2

195

Since the GROUP BY clause cannot be optimized using the specified index, itlcl, the database engine
uses a temporary table to process the GROUP BY.

The following example uses a table hint in a JOIN clause and optimizes on index itlclc2.
SELECT * FROM t2 INNER JOIN t1 WITH (INDEX(itlclc2)) ON tl.cl = t2.cl
Contrast this with the following statement, which does not use a table hint and optimizes on index it1lcl.

SELECT * FROM t2 INNER JOIN t1 ON tl.cl = t2.cl

The following example uses a table hint in a JOIN clause to perform a table scan of table t1.
SELECT * FROM t2 INNER JOIN t1 WITH (INDEX(0)) ON tl.cl = t2.cl

Contrast this with the following example which also performs a table scan of table t1. However, because
no JOIN clause is used, the statement uses a temporary table join.

SELECT * FROM t2, t1 WITH (INDEX(0)) WHERE tl.cl = t2.cl

See Also
Global Variables

196

SELECT (with INTO)

The SELECT (with INTO) statement allows you to select column values from a specified table to insert
into variables or to populate a table with data.

Syntax

SELECT [ALL | DISTINCT] [top-clause] select-list INTO variable | table-name | temp-table-name
[, variable]...
FROM table-reference [, table-reference]... [WHERE search-condition]
[GROUP BY expression [, expression]...[HAVING search-condition 1] [UNION [ALL] query-
specification 17 [ORDER BY order-by-expression [, order-by-expression J...]

query-specification ::= (query-specification)
| SELECT [ALL | DISTINCT] [top-clause] select-list
FROM table-reference [, table-reference] . ..
[WHERE search-condition]
[GROUP BY expression [, expression]...
[HAVING search-condition | 1

variable ::= user-defined-name
table-name : := user-defined-name of a table
temp-table-name ::= user-defined-name of a temporary table

For the remaining syntax definitions, see SELECT.

Remarks
The variables must occur within a stored procedure, a trigger, or a user-defined function.

You can populate a table by using SELECT INTO only if the SELECT INTO statement occurs outside of
a user-defined function or trigger. Populating or creating a table with SELECT INTO is not permitted
within a user-defined function or trigger.

SELECT INTO is permitted within a stored procedure.

Only a single table can be created and populated with a SELECT INTO statement. A single SELECT
INTO statement cannot create and populate multiple tables.

New tables created by SELECT INTO only maintain CASE and NOT NULL constraints from the source
tables. Other constraints such as DEFAULT and COLLATE are not maintained. In addition, no indexes
are created on the new table.

Examples

See the examples for CREATE (temporary) TABLE for how to use SELECT INTO to populate temporary
tables.

The following example assigns into variables :x, :y the values of first_name and last_name in the Person
table where first name is Bill.

SELECT first_name, last name INTO :x, :y FROM person WHERE first _name = "Bill*

197

See Also

CREATE FUNCTION
CREATE PROCEDURE
CREATE (temporary) TABLE
CREATE TABLE

198

SET

The SET statement assigns a value to a declared variable.

Syntax

SET variable-name = proc-expr

Remarks

You must declare variables before you can set them. SET is allowed only in stored procedures and
triggers.

Examples

The following examples assigns a value of 10 to varl.

SET :varl = 10;

See Also
CREATE PROCEDURE
DECLARE

199

SET ANSI_PADDING

The SET ANSI_PADDING statement allows the Relational Engine to handle CHAR data types padded
with NULLs (binary zeros). CHAR is defined as a character data type of fixed length.

Zen supports two interfaces: transactional and relational. The MicroKernel Engine allows a CHAR to be
padded with NULLs. The Relational Engine conforms to the ANSI standard for padding, which specifies
that a CHAR be padded with spaces. For example, by default, a CHAR column created with a CREATE
TABLE statement is always padded with spaces.

An application that uses both interfaces may need to process strings padded with NULLs.

Syntax
SET ANSI_PADDING=< ON | OFF >

Remarks

The default value is ON, meaning that strings padded with spaces are inserted into CHARs. Trailing
spaces are considered as insignificant in logical expression comparisons. Trailing NULLSs are considered
as significant in comparisons.

If set to OFF, the statement means that strings padded with NULLs are inserted into CHARs. Both
trailing NULLs and trailing spaces are considered as insignificant in logical expression comparisons.

On Windows, ANSI padding can be set to on or off for a DSN through a registry setting. See the Zen
Knowledge Base on the Actian website and search for “ansipadding.”

The following string functions support NULL padding:

CHAR_LENGTH CONCAT LCASE or LOWER
LEFT LENGTH LOCATE

LTRIM POSITION REPLACE
REPLICATE RIGHT RTRIM

STUFF SUBSTRING UCASE or UPPER

For information on how ANSI_PADDING affects each function, see its scalar function documentation.

Restrictions
The following restrictions apply to SET ANSI_PADDING:

m The statement applies only to the fixed length character data type CHAR, not to NCHAR,
VARCHAR, NVARCHAR, LONGVARCHAR or NLONGVARCHAR.

m The statement applies to the session level.

Examples

The following example shows the results of string padding using the INSERT statement with SET ANSI_
PADDING set to ON and to OFFE.

DROP TABLE t1
CREATE TABLE t1 (cl CHAR(4))

200

SET ANSI_PADDING = ON

INSERT INTO t1 VALUES ("a") -- string a = a\0x20\0x20\0x20

INSERT INTO t1 VALUES ("a" + CHAR(O) + CHAR(O) + CHAR(OQ)) --string a = a\0x00\0x00\0x00
DROP TABLE t1

CREATE TABLE t1 (cl CHAR(4))

SET ANSI_PADDING = OFF

INSERT INTO t1 VALUES ("a") -- string a = a\0x00\0x00\0x00

INSERT INTO t1 VALUES ("a" + CHAR(32) + CHAR(32) + CHAR(32)) --stringa = a\0x20\0x20\0x20

The following example shows the results of string padding using the UPDATE statement with SET
ANSI_PADDING set to ON and to OFE

DROP TABLE t1

CREATE TABLE tl1 (cl CHAR(4))

SET ANSI_PADDING ON

UPDATE tl1 SET cl = "a” --allrows for cI = a\0x20\0x20\0x20

UPDATE tl1 SET cl = "a™ + CHAR(O) + CHAR(O) + CHAR(O) --all rows for c1 = a\0x00\0x00\0x00
DROP TABLE t1

CREATE TABLE t1 (cl CHAR(4))

SET ANSI_PADDING OFF

UPDATE t1 SET cl1 = "a" --allrows for cI = a\0x00\0x00\0x00

UPDATE tl1 SET cl = "a" + CHAR(32) + CHAR(32) + CHAR(32) --allrows for cl1 = a\0x20\0x20\0x20

The following example shows how a character column, c1, can be cast to a BINARY data type so that you
can display the contents of c1 in BINARY format. Assume that table t1 has the following six rows of data:

a\x00\x00\x00\x00
a\x00\x00\x00\x00
a\x00\x20\x00\x00
a\x00\x20\x00\x00
a\x20\x20\x20\x20
a\x20\x20\x20\x20

The following statement casts c1 as a BINARY data type:
SELECT CAST(cl AS BINARY(4)) FROM t1
The SELECT statement returns the following:

0x61000000
0x61000000
0x61002000
0x61002000
0x61202020
0x61202020
See Also
INSERT
UPDATE

String Functions

Conversion Functions

201

SET CACHED_PROCEDURES

The SET CACHED_PROCEDURES statement specifies the number of stored procedures that the
database engine caches in memory for a SQL session.

Syntax
SET CACHED_PROCEDURES = number

Remarks

The value of number can be any whole number in the range zero through approximately two billion. The
database engine automatically defaults to 50. Each session can change its number of cached procedures
by issuing the SET statement.

The companion statement to SET CACHED_PROCEDURES is SET PROCEDURES_CACHE.

» Ifyou set both SET statements to zero, the database engine does not cache stored procedures. In
addition, the engine removes any existing cache used for stored procedures. That is, the engine
flushes from cache all stored procedures that were cached before you set both statements to zero.

= Ifyou set only one of the statements to a value, either zero or a nonzero value, the other statement is
implicitly set to zero. The statement implicitly set to zero is ignored. For example, if you are only
interested in caching 70 procedures and are not concerned with the amount of memory;, set
CACHED_PROCEDURES to 70. The database engine implicitly sets PROCEDURES_CACHE to
zero, which ignores the setting.

The following condition applies if you set CACHED_PROCEDURES to a nonzero value. The database
engine removes the least-recently-used procedures from the cache if the execution of a procedure causes
the number of cached procedures to exceed the CACHED_PROCEDURES value.

If a memory cache is used, it retains a compiled version of a stored procedure after the procedure
executes. Typically, caching results in improved performance for each subsequent call to a cached
procedure. Note that excessive memory swapping, or thrashing, could occur depending on the cache
settings and the SQL being executed by your application. Thrashing can cause a decrease in
performance.

Registry Setting

In addition to the SET statement, the number of cached procedures can be specified with a registry
setting. The registry settings apply to all sessions and provides a convenient way to set an initial value.
Each session can override the registry setting for that particular session by using the SET statement.

The registry setting applies to all server platforms where Zen Enterprise Server or Cloud Server is
supported. You must manually modify the registry setting. On Windows, use the registry editor provided
with the operating system. On Linux and macOS, you can use the psregedit utility.

If the registry setting is not specified, the database engine automatically defaults to 50.

» To specify cached procedures registry setting on Windows
1 Locate the following key:
HKEY_LOCAL_MACHINE\SOFTWARE\Actian\Zen\SQL Relational Engine

202

Note that in most Windows operating systems, the key is under HKEY_LOCAL_MACHINE\
SOFTWARE\Actian\Zen. However, its location below HKEY_LOCAL_MACHINE\SOFTWARE
can vary depending on the operating system.

2 For this key, create a new string valued named CachedProcedures.

3 Set CachedProcedures to the desired number of procedures that you want to cache.

» To set the cached procedures registry key in the Zen Registry on Linux and macOS
1 Locate the following key:

PS_HKEY_CONFIG\SOFTWARE\Actian\Zen\SQL Relational Engine
2 For this key, create a new string valued named CachedProcedures.

3 Set CachedProcedures to the desired number of procedures that you want to cache.

Caching Exclusions
A stored procedure is not cached, regardless of the cache setting(s), for any of the following:

m The stored procedure references a local or a global temporary table. A local temporary table has a
name that begins with the pound sign (#). A global temporary table has a name that begins with two
pound signs (##). See CREATE (temporary) TABLE.

m The stored procedure contains any data definition language (DDL) statements. See Data Definition
Statements.

m The stored procedure contains an EXEC[UTE] statement used to execute a character string, or an
expression that returns a character string. For example: EXEC ("SELECT Student_ID FROM " +
myinputvar).

Examples

The following example sets a cache memory of 2 MB that stores up to 20 stored procedures.

SET CACHED_PROCEDURES = 20
SET PROCEDURES_CACHE = 2

The following example sets a cache memory of 1,000 MB that stores up to 500 stored procedures.

SET CACHED_PROCEDURES = 500
SET PROCEDURES_CACHE = 1000

The following example specifies that you do not want to cache stored procedures and that any existing
procedures cache will be removed.

SET CACHED_PROCEDURES = 0O
SET PROCEDURES_CACHE = O

203

The following example specifies that you want to cache 120 stored procedures and ignore the amount of
memory used for the cache.

SET CACHED_PROCEDURES = 120
(The database engine implicitly sets PROCEDURES_CACHE to zero.)

See Also
CREATE PROCEDURE
SET PROCEDURES_CACHE

204

SET DECIMALSEPARATORCOMMA

The Zen database engine by default displays decimal data using a period (.) as the separator between
ones and tenths (for example, 100.95). The SET DECIMALSEPARATORCOMMA statement allows you
to specify that results should be displayed using a comma to separate ones and tenths (for example,
100,95).

As with all SET statements, the effects of this statement apply to the remainder of the current database
session, or until another SET DECIMALSEPARATORCOMMA statement is issued.

Syntax
SET DECIMALSEPARATORCOMMA=<ON | OFF>

Remarks
The default value is OFF, meaning that the period is used as the default decimal separator.

Inlocales where the comma is used as the decimal separator, decimal data can be entered using a comma
or a period as the separator (literal values that use the comma as the separator must be enclosed in single
quotes, for example: ‘123,43”). When the data is returned, however (as in the results of a SELECT
statement), it is always displayed using a period unless SET DECIMALSEPARATORCOMMA=ON has
been specified.

Likewise, if your database contains data that was entered using the period as the decimal separator, you
can choose to specify the comma as the separator for output and display by using this statement.

This command affects output and display only. It has no effect on values being inserted, updated, or used
in a comparison.

Examples

The following example shows how to insert period-delimited data and the effects of the SET
DECIMALSEPARATORCOMMA statement on the SELECT results.

CREATE TABLE t1 (cl real, c2 real)
INSERT INTO t1 VALUES (102.34, 95.234)
SELECT * FROM t1

Results:

102.34 95.234

SET DECIMALSEPARATORCOMMA=ON
SELECT * FROM t1

Results:

102,34 95,234

The following example shows how to insert comma-delimited data, and the effects of the SET
DECIMALSEPARATORCOMMA statement on the SELECT results.

205

Note The comma can only be used as the separator character if the client and/or server operating
system locale settings are set to a locale that uses the comma as the separator. For example, if you
have U.S. locale settings on both your client and server, you will receive an error if you attempt to
run this example.

CREATE TABLE tl1 (cl1 real, c2 real)
INSERT INTO t1 VALUES (°102,34%, "95,234"%)
SELECT * FROM t1

Results:

102.34 95.234

SET DECIMALSEPARATORCOMMA=0ON
SELECT * FROM t1

Results:

102,34 95,234

See Also

Comma as Decimal Separator

206

SET DEFAULTCOLLATE

The SET DEFAULTCOLLATE statement specifies the collating sequence to use for all columns of data
type CHAR, VARCHAR, LONGVARCHAR, NCHAR, NVARCHAR, or NLONGVARCHAR. The
statement offers the following options:

» A null value to default to the numerical order of the current code page

A path to a file containing alternate collating sequence (ACS) rules

= An International Sorting Rules (ISR) table name

An International Components for Unicode (ICU) collation name

Syntax

SET DEFAULTCOLLATE = < NULL | “sort-order™ >

sort-order ::=path name to an ACS file or the name of an ISR table or a supported ICU collation name
Remarks

The SET DEFAULTCOLLATE statement offers the convenience of a global session setting. However, an
individual column definition can use the COLLATE keyword to set its particular collating sequence. If
so, then SET DEFAULTCOLLATE has no effect on that column.

The default setting for DEFAULTCOLLATE is null.

Using ACS Files
When you provide an ACS file for the sort-order parameter, the following statements apply:

= You must specify a path accessible to the database engine rather than to the calling application.
m The path must be enclosed in single quotation marks.
m The path must be at least 1 character but no more than 255 characters long.

m The path must already exist and must include the name of an ACS file. An ACS file is a 265-byte
image of the format used by the MicroKernel Engine. By default, Zen installs the commonly used
ACS file upper.alt in C:\ProgramData\Actian\Zen\samples. You can also use a custom file. For
information on custom files, see User-Defined ACS in Zen Programmer’s Guide.

m Relative paths are allowed and are relative to the DDF directory. Relative paths can contain a period
(current directory), double period (parent directory), slash, or any combination of the three. Slash
characters in relative paths may be either forward (/) or backslash (\). You may mix the types of slash
characters in the same path.

» Universal naming convention (UNC) path names are permitted.

Using ISR Table Names
When you provide an ISR table name for the sort-order parameter, the following statements apply:

m Zen supports the table names listed in this documentation under International Sort Rules.

m The ISR table name is not the name of a file, but rather a string recognized by Zen as one of the ISRs
that it supports.

m Zen supports selected Unicode collations based on International Components for Unicode (ICU).
Simply use the ICU collation name in place of the ISR table name. The available collations are
described under Collation Support Using an ICU Unicode Collation.

207

ACS, ISR, and ICU Examples

This ACS example sets a collating sequence using the upper.alt file supplied with Zen. The table t1 is
created with three text columns and three columns not text. A SELECT statement executes against Zen
system tables to return the ID, type, size, and attributes of the columns in t1. The result shows that the
three text columns have an attribute of UPPER.

SET DEFAULTCOLLATE = "C:\ProgramData\Actian\Zen\samples\upper.alt”

DROP TABLE t1

CREATE TABLE t1 (cl INT, c2 CHAR(10), c3 BINARY(10), c4 VARCHAR(10), c5 LONGVARBINARY,
c6 LONGVARCHAR)

SELECT * FROM x$attrib WHERE xa$id in (SELECT xe$id FROM x$Ffield WHERE xe$Ffile =
(SELECT xf$id FROM x$file WHERE xf$name = "t1%))

Xa$ld Xa$Type Xa$ASize Xa$Attrs
327 0 265 UPPER
329 0 265 UPPER
331 0 265 UPPER

3 rows were affected.

The following ACS example continues with the use of table t1. An ALTER TABLE statement changes the
text column c2 from a CHAR to an INTEGER. The result of the SELECT statement shows that now only
two columns are affected by the default collating.

ALTER TABLE t1 ALTER c2 INT

SELECT * FROM x$attrib WHERE xa$id in (SELECT xe$id FROM x$Ffield WHERE xe$Ffile =
(SELECT xf$id FROM x$File WHERE xf$name = "tl1%))

Xa$ld Xa$Type Xa$ASize Xa$Attrs
329 0 265 UPPER
331 0 265 UPPER

2 rows were affected.

The following ACS example uses an ALTER TABLE statement to change column c1 in table t1 from an
INTEGER to a CHAR. The result of the SELECT statement shows that three columns are affected by the
default collating.

ALTER TABLE t1 ALTER cl1 CHAR(10)

SELECT * FROM x$attrib WHERE xa$id in (SELECT xe$id FROM x$Ffield WHERE xe$Ffile =
(SELECT xf$id FROM x$File WHERE xf$name = "tl1%))

Xa$ld Xa$Type Xa$ASize Xa$Attrs
326 0] 265 UPPER
329 0] 265 UPPER
331 0] 265 UPPER

3 rows were affected.

208

The following ISR example creates a table with a VARCHAR column, assumes the default Windows
encoding CP1252, and uses the ISR collation MSFT_ENUS01252_0.

create table isrtest (ord INT, value VARCHAR(19) COLLATE *"MSFT_ENUS01252 0" not null,
primary key(value));

The following ICU example creates a table with a VARCHAR column, assumes the default Linux
encoding UTF-8, and uses the ICU collation u54-msft_enus_0.

create table isrtest (ord INT, value VARCHAR(19) COLLATE "u54-msft_enus_0" not null,
primary key(value));

The following ICU example creates a table with an NVARCHAR column using the ICU collation u54-
msft_enus_0.

create table isrtest (ord INT, value NVARCHAR(19) COLLATE "u54-msft_enus_0" not null,
primary key(value));

See Also

ALTER TABLE

CREATE TABLE

Support for Collation and Sorting in Advanced Operations Guide

209

SET LEGACYTYPESALLOWED

The SET LEGACYTYPESALLOWED statement enables backward compatibility with data types no
longer supported in the current release of Zen.

Syntax
SET LEGACYTYPESALLOWED = < ON | OFF >

Remarks

A SET LEGACYTYPESALLOWED statement is executed in a SQL session before CREATE TABLE or
ALTER TABLE statements to enable their use of legacy data types supported in earlier releases of Zen.

The default value is OFF, meaning that these data types are not supported.

For more information, see Legacy Data Types.

Example

In this example, turning on LEGACYTYPESALLOWED before a CREATE TABLE statement enables
the legacy data type to work, then is turned off again after the table is created:
SET LEGACYTYPESALLOWED=ON;

CREATE TABLE notes (cl INTEGER, c2 NOTE(20));
SET LEGACYTYPESALLOWED=0OFF;

Note If you do not turn off the setting, like all SET commands, it ends with the SQL session.

210

SET OWNER

The SET OWNER statement lists owner names for files to be accessed by SQL commands in the current
database session. For more information about this file-level security feature, see Owner Names.

Syntax
SET OWNER = ["Jownername["] [,["Jownername["]1]

Remarks

In SET OWNER statements, owner names that begin with a nonalphabetic character and ASCII owner
names that contain spaces must be enclosed in single quotation marks. A long owner name in
hexadecimal begins with 0x or 0X, so it always requires single quotation marks.

A SET OWNER statement can list all owner names needed for data files in a session. The Relational
Engine caches the owner names to use as needed in requesting file access from the MicroKernel Engine.

A SET OWNER statement is effective only for the current connection session. If a user logs out after
issuing SET OWNER, the command must be reissued the next time the user logs in.

Each SET OWNER statement resets the current owner name list for the session. You cannot add owner
names to the list with more statements.

In a database with security turned off, the SET OWNER statement allows full access to any data file that
has an owner name matching an owner name supplied in the statement.

In a database with security turned on, the SET OWNER statement has no effect for users other than the
Master user. If the Master user has not granted itself rights, executing SET OWNER gives the Master user
full access to any data file with one of the owner names provided. For other users, the Master user can
authorize access in either of the following two ways:

m Execute SET OWNER with owner names, followed by GRANT with no owner name.

m Execute GRANT with an owner name.

These two options are illustrated in the following examples.

Examples

In this example, the owner name begins with a numeral, so it has single quotation marks.

SET OWNER = "1@1phaOm3gA*

This example provides a list of owner names used by files to be accessed in the current session.
SET OWNER = "serverl7 region5®, "0x7374726f6e672050617373776¥7264212425fe"

Single quotation marks are used for the ASCII string because it includes a space and for the hexadecimal
string because its prefix Ox starts with a numeral.

During a a database session, each SET OWNER statement overrides the previous one. In this example,
after the second command runs, the first three owner names are no longer available to use for file access.

SET OWNER
SET OWNER

Jjudyann, krishnal, maxima
d3ltagamm@, V3rs1OnXI1ll, m@X1mumSp33d

211

This example demonstrates the use of SET OWNER by the Master user in a secure database where
security has been turned on, but no permissions have been granted to users. The data file named
inventoryl has the owner name admin.

To grant itself permissions, the Master user has two options. For the first, you can issue a SET OWNER
followed by a GRANT without an owner name:

SET OWNER = admin
GRANT ALL ON inventoryl TO MASTER

For the second option, the Master user can omit the SET OWNER statement and issue a GRANT that
includes the owner name:

GRANT ALL ON inventoryl admin TO MASTER

Both methods achieve the same result.

See Also
GRANT
REVOKE

212

SET PASSWORD
The SET PASSWORD statement provides the following functionality for a secured database:

m The Master user can change the password for the Master user or for another user.

» A normal user (non-Master user) can change his or her logon password to the database.

Syntax

SET PASSWORD [FOR “user-name"] = password

user-name ::= name of user logged on the database or authorized to log on the database
password : = password string

Remarks

SET PASSWORD requires that the database have relational security enabled and may be issued at any
time. (In contrast, SET SECURITY can be issued only when the session for the Master user is the only
current database connection. See SET SECURITY.)

SET PASSWORD may be issued by the Master user or by a normal, non-Master user. The Master user
can change the password for any user authorized to log in to the database. Normal users can change only
their own password. The changed password takes effect the next time the user logs on the database.

User Issuing SET with FOR clause without FOR clause

PASSWORD statement

Master Master can specify a user name of Master or | Password changed for entire database (that
of any user authorized to log on the is, changed for the Master user, which affects
database. the entire database).

Password changed for user name.

Normal Normal user can specify his or her user Password changed only for the user issuing
name. The user must be logged on the the SET PASSWORD statement. The user
database. must be logged on the database.

Password changed only for that user.

1User-name refers to a user who can log on to a Zen database, which may differ from the name assigned to a user at the
operating system level. For example, assume that Yogine is a user who can log on to the operating system. Security is
enabled on database Demodata and Yogine is added to Demodata as a user named DeptMgr. The user name required for
this person to log on to Demodata is DeptMgr.

Password Characteristics
m SeeIdentifier Restrictions by Identifier Type in Advanced Operations Guide for the maximum length
of a password and the characters allowed.

m Passwords are case sensitive. If the password begins with a nonalphabetic character, the password
must be enclosed in single quotes.

m The space character may be used in a password provided it is not the first character. If a password
contains a space character, the password must be enclosed by single quotes. As a general rule, avoid
using the space character in a password.

213

m “Password” is not a reserved word. It may be used as a name for a table or column. However, if used
for a table or column name in a SQL statement, “password” must be enclosed by double quotation
marks because it is a keyword.

m If you want to use the literal “null” as a password, you must enclose the word with single quotes
(‘null’). The quoted string prevents confusion with the statement SET SECURITY = NULL, which
disables security on the database.

Examples

The following example shows the Master user enabling security on the database with the password
bluesky. The Master user then grants login privilege to user user45 with the password tmppword and
grants that user SELECT permission to the table person. The Master user then changes the Master
password to reddawn, which changes it for the entire database. Finally, it changes the user45 password
to newuser.

SET SECURITY = bluesky

GRANT LOGIN TO user45:tmppword
GRANT SELECT ON person TO user45
SET PASSWORD = reddawn

SET PASSWORD FOR user45 = newuser

The following example assumes that user45 has logged on to the database with a password newuser.
User45 changes its own password to tomato. User45 then selects all records in the table person.

SET PASSWORD FOR user45 = tomato
SELECT * FROM person

See Also

ALTER USER

CREATE USER

GRANT

SET SECURITY

214

SET PROCEDURES_CACHE

The SET PROCEDURES_CACHE statement specifies the amount of memory for a SQL session that the
database engine reserves as a cache for stored procedures.

Syntax
SET PROCEDURES_CACHE = megabytes

Remarks

The value of megabytes can be any whole number in the range zero to approximately two billion. The
database engine defaults to 5 MB. Each session can change its amount of cache memory by issuing this
SET statement.

The companion statement to SET PROCEDURES_CACHE is SET CACHED_PROCEDURES.

= Ifyou set both of these SET statements to zero, the database engine does not cache stored
procedures. In addition, the engine removes any existing cache used for stored procedures. That is,
the engine flushes from cache all stored procedures that were cached before you set both statements
to zero.

= Ifyou set only one of the statements to either a zero or a nonzero value, the other statement is
implicitly set to zero. The statement implicitly set to zero is ignored. For example, if you are
interested only in 30 MB as the amount of memory cached and are not concerned with the number
of procedures cached, set PROCEDURES_CACHE to 30. The database engine implicitly sets
CACHED_PROCEDURES to zero, which causes that setting to be ignored.

The following condition applies if you set PROCEDURES_CACHE to a nonzero value. The database
engine removes the least recently used procedures from the cache if the execution of a procedure
allocates memory that exceeds the PROCEDURES_CACHE value.

If a memory cache is used, it retains a compiled version of a stored procedure after the procedure
executes. Typically, caching results in improved performance for subsequent calls to a cached procedure.
Note that excessive memory swapping, or thrashing, can occur depending on the cache settings and the
SQL statements executed by your application. Thrashing can lessen performance.

Registry Setting

In addition to the SET statement, the amount of memory reserved for the cache can be specified with a
registry setting. The registry settings apply to all sessions and provides a convenient way to set an initial
value. Each session can override the registry setting for that particular session by using the SET
statement.

The registry setting applies to all server platforms where Zen Enterprise Server or Cloud Server is
supported. You must manually modify the registry setting. On Windows, use the registry editor provided
with the operating system. On Linux and macOS, you can use the psregedit utility.

If the registry setting is not specified, the database engine automatically defaults to 5 MB.

» To specify the amount of cache memory in a registry setting on Windows
1 Locate the following key:
HKEY_LOCAL_MACHINE\SOFTWARE\Actian\Zen\SQL Relational Engine

215

Note that in most Windows operating systems, the key is under HKEY_LOCAL_MACHINE\
SOFTWARE\Actian\Zen. However, its location below HKEY_LOCAL_MACHINE\SOFTWARE
can vary depending on the operating system.

2 For this key, create a new string valued named ProceduresCache.

3 Set ProceduresCache to the desired amount of memory that you want to cache.

» To set the amount of cache memory in the Zen Registry on Linux and macOS
1 Locate the following key:

PS_HKEY_CONFIG\SOFTWARE\Actian\Zen\SQL Relational Engine
2 For this key, create a new string valued named ProceduresCache.

3 Set ProceduresCache to the desired amount of memory that you want to cache.

Caching Exclusions
A stored procedure is not cached, regardless of the cache setting(s), for any of the following:

m The stored procedure references a local or a global temporary table. A local temporary table has a
name that begins with the pound sign (#). A global temporary table has a name that begins with two
pound signs (##). See CREATE (temporary) TABLE.

m The stored procedure contains any data definition language (DDL) statements. See Data Definition
Statements.

m The stored procedure contains an EXEC[UTE] statement used to execute a character string, or an
expression that returns a character string. For example: EXEC ("SELECT Student_ID FROM " +
myinputvar).

Examples

The following example sets a cache memory of 2 MB that stores up to 20 stored procedures.

SET CACHED_PROCEDURES = 20
SET PROCEDURES_CACHE = 2

The following example sets a cache memory of 1,000 MB that stores up to 500 stored procedures.

SET CACHED_PROCEDURES = 500
SET PROCEDURES_CACHE = 1000

The following example specifies that you do not want to cache stored procedures and that any existing
procedures cache will be removed.

SET CACHED_PROCEDURES = 0O
SET PROCEDURES_CACHE = 0O

216

The following example specifies that you want to set the amount of cache memory to 80 MB and ignore
the number of procedures that may be cached.

SET PROCEDURES_CACHE = 80
(The database engine implicitly sets CACHED_PROCEDURES to zero.)

See Also
CREATE PROCEDURE
SET CACHED_PROCEDURES

217

SET ROWCOUNT

You may limit the number of rows returned by all subsequent SELECT statements within the current
session by using the keyword SET ROWCOUNT.

The main difference between SET ROWCOUNT and TOP or LIMIT is that TOP affects only the current
statement, while SET ROWCOUNT affects all statements issued during the current database session,
until the next SET ROWCOUNT or until the session is terminated.

Syntax
SET ROWCOUNT = number

Remarks

If a SELECT statement subject to a SET ROWCOUNT condition contains an ORDER BY keyword and
an index cannot be used to optimize on the ORDER BY clause, Zen generates a temporary table. The
temporary table is populated with the entire query result set. The rows in the temporary table are ordered
as specified by the ORDER BY value and return the ROWCOUNT number of rows in the ordered result
set.

You may turn off the ROWCOUNT feature by setting ROWCOUNT to zero:
SET ROWCOUNT = O
SET ROWCOUNT is ignored when dynamic cursors are used.

If both SET ROWCOUNT and TOP are applied to a given query, the number of rows returned is the
lower of the two values.

Examples

Also see the examples for TOP or LIMIT.

SET ROWCOUNT = 10;
SELECT * FROM person;
-- returns 10 rows

See Also
TOP or LIMIT

218

SET SECURITY

The SET SECURITY statement allows the Master user to enable or disable security for the database to
which Master is logged on.

Syntax
SET SECURITY [USING authentication_type] = < "password™ | NULL >

Remarks

You must be logged on as Master to set security. You can then assign a password by using the SET
SECURITY statement. No password is required for Master to log on to an unsecured database, but to set
security for the database, that Master user must have a password assigned.

SET SECURITY can be issued only when the session for the Master user is the only current database
connection. You can also set security from the Zen Control Center (ZenCC). See To turn on security
using Zen Explorer in Zen User’s Guide.

The authentication type string is either local_db or domain. If the USING clause is not included, the
authentication type is set to local_db.

When the authentication type is domain, execution of SQL scripts related to users returns an error
message that the statement is not supported under domain authentication. Examples of the unsupported
statements include ALTER USER, CREATE USER, DROP USER, GRANT in relation to users, SET
PASSWORD (for non-Master user), and REVOKE.

For password requirements, see Password Characteristics.

User Permissions

Permissions on objects such as tables, views, and stored procedures are retained in the system tables after
SET SECURITY is set to NULL. Consider the following scenario:

» Security for database mydbase is enabled and user Master is logged in.

m Master creates users userl and user2, and table t1 for database mydbase.

m Master grants User2 SELECT permission on t1.

m Security for mydbase is disabled.

m Table tl is dropped.

Even though table t1 no longer exists, permissions for t1 are still retained in the system tables (the ID for
t1 is still in X$Rights). Now consider the following:

m Security for database mydbase is enabled again.

m Userl logs in to the database.

m Userl creates a new table tbl1 for mydbase. It is possible for tbl1 to be assigned the same object ID
that had been assigned to t1. In this particular scenario, the object IDs assigned to t1 and tbl1 are the
same.

m The previous permissions for t1 are reinstated for tbl1. That is, userl has SELECT permissions on
tbl1 even though no permissions to the new table have been explicitly granted.

219

Note If you want to delete permissions for an object, you must explicitly revoke them. This applies
to tables, views, and stored procedures because permissions are associated with object IDs and the
database reuses object IDs of deleted objects for new objects.

Examples
The following example enables security for the database and sets the Master password to “mypasswd”
SET SECURITY = "mypasswd”

The following example enables domain authentication for the database and sets the Master password to
123456.

SET SECURITY USING domain = "123456"

The following example disables security.

SET SECURITY = NULL

See Also
ALTER USER
CREATE USER
GRANT
REVOKE

SET PASSWORD

220

SET TIME ZONE

The SET TIME ZONE keyword allows you to specify a current time offset from Coordinated Universal
Time (UTC) for your locale, overriding the operating system time zone setting where the database
engine is located.

Any SET TIME ZONE statement remains in effect until the end of the current database session, or until
another SET TIME ZONE statement is executed.

Caution You should always use the default behavior unless you have a specific need to override the
time zone setting in your operating system. If you are using DataExchange replication or your
application has dependencies on the sequential time order of records inserted, use of SET TIME
ZONE to modify your time zone offset is not recommended.

Syntax
SET TIME ZONE < offset | LOCAL >

offset 1:= <+|->hh:mm
Valid range of hh is 00-12.
Valid range of mm is 00-59.

Either a plus (+) or a minus (-) sign is required as part of the offset value.

Remarks

Default Behavior - SET TIME ZONE LOCAL is the default behavior, which is the same as not using
the SET TIME ZONE command at all. Under the default behavior, the database engine establishes its
time zone based on the operating system where it is running. For example, SELECT CURTIME() returns
the current local time, while SELECT CURRENT_TIME() returns the current UTC time, both based on
local system time and the time zone setting in the operating system.

The LOCAL keyword allows you to restore default behavior after specifying a offset value, without
having to terminate and reopen the database session.

Under default behavior, literal time and date values, such as 1996-03-28 and 17:40:46, are interpreted
as current local time and date. In addition, during inserts, time stamp literal values are interpreted as
current local time. Time stamp values are always adjusted and stored internally using UTC time, and
converted to local time upon retrieval. For more information, see Time Stamp Values.

Table 39 Time/Date Functions with SET TIME ZONE Default

If no time zone is specified, or TIME ZONE LOCAL is specified...

CURDATE(), CURTIME(), NOW(), SYSDATETIME() Return current local time and date based on system clock.
CURRENT_DATE(), CURRENT_TIME(), CURRENT _ Return current UTC time and date based on system clock and
TIMESTAMP(), SYSUTCDATETIME() operating system locale setting.

Behavior When Offset is Specified - If a valid offset value is specified, then that value is used instead
of the operating system time zone offset to generate values for CURDATE(), CURTIME(), NOW(), or

221

SYSDATETIMEY(). For example, if a offset of -02:00 is specified, then the local time value of CURDATE()
is calculated by adding -02:00 to the UTC time returned from the operating system.

Under this behavior, time and date literals are interpreted as local time, at their face values. Time stamp
literals are interpreted as specifying a time such that if the offset value is subtracted from it, the result is
UTC. Daylight savings is not a consideration, since the offset explicitly takes it into account. Time stamp
values are always stored internally using UTC time.

Table 40 Time/Date Functions with SET TIME ZONE Specified

If a valid offset value is specified...

CURDATE(), CURTIME(), NOW(), SYSDATETIME() These functions return current local time and date values by
adding offset to the current UTC time/date values.

CURRENT_DATE(), CURRENT_TIME(), CURRENT _ These functions always return current UTC time and date

TIMESTAMP(), SYSUTCDATETIME() based on system clock and operating system locale setting.

To convert a given local time value to UTC, you must subtract your time zone offset value from the local
time value. In other words,

UTC time = local time - time zone offset
See Table 41 for example conversions.

Table 41 Local to UTC Conversion Examples

Local Time Offset uTC

10:10:15 US Central Standard Time 10:10:15-(-06:00)=16:10:15 UTC
Austin -06:00

16:10:15 Greenwich Mean Time 16:10:15-(+00:00)=16:10:15 UTC
London +00:00

22:10:15 +06:00 22:10:15-(+06:00)=16:10:15 UTC
Dhaka

A Note about Time Stamp Data Types

Because time stamp data is always stored as UTC, and literal time stamp values (including values stored
on disk) are always converted to local time when retrieved, the behavior of NOW() and CURRENT_
TIMESTAMP() values can be confusing. For example, consider the following table, assuming the
database engine is located in Central Standard Time, U.S.

Table 42 Time Stamp Data Type Examples

Statement Value

SELECT NOW() 2001-10-01 12:05:00.123 displayed.

INSERT INTO t1 (c1) SELECT NOW() 2001-10-01 18:05:00.1234567 stored on disk.
SELECT * from t1 2001-10-01 12:05:00.123 displayed.
SELECT CURRENT_TIMESTAMP() 2001-10-01 18:05:00.123 displayed.

222

Table 42 Time Stamp Data Type Examples

Statement Value
INSERT INTO t2 (c1) SELECT CURRENT_TIMESTAMP() 2001-10-01 18:05:00.1234567 stored on disk.
SELECT * from t2 2001-10-01 12:05:00.123 displayed.

It is important to note that the value displayed by a direct SELECT NOW() is not the same as the value
stored on disk by the syntax INSERT SELECT NOW(). Likewise, note that the display value of SELECT
CURRENT_TIMESTAMP() is not the same value that you will see if you INSERT the value of
CURRENT_TIMESTAMP() then SELECT it, because the literal value stored in the data file is adjusted
when it is retrieved.

Examples

In this example, no SET TIME ZONE statement has been issued yet, and the computer on which the
database engine is running has its clock set to January 9, 2002, 16:35:03 CST (U.S.). Recall that
CURRENT_TIMESTAMP() and the other CURRENT_ functions always return UTC time and/or date
based on the system clock and locale settings of the computer where the database engine is running.

SELECT CURRENT_TIMESTAMP(), NOWQ),
CURRENT_TIME(Q), CURTIMEQ,
CURRENT_DATE(), CURDATEQ)

Results:

2002-01-09 22:35:03.000 2002-01-09 16:35:03.000
22:35:03 16:35:03

0170972002 0170972002

Note that CST is 6 hours ahead of UTC.
SET TIME ZONE -10:00
Now the same SELECT statement above returns the following:

2002-01-09 22:35:03.000 2002-01-09 12:35:03.000

22:35:03 12:35:03

2002-01-09 2002-01-09

Note that the value of NOW() changed after the SET TIME ZONE statement, but the value of
CURRENT_TIMESTAMP() did not.

The following example demonstrates the difference between time stamp values that are stored as UTC
values then converted to local values upon retrieval, and TIME or DATE values that are stored and
retrieved at their face value. Assume that the system clock currently shows January 9, 2002, 16:35:03 CST
(U.S.). Also assume that no SET TIME ZONE statement has been issued.

CREATE TABLE t1 (cl1 TIMESTAMP, c2 TIMESTAMP, c3 TIME, c4 TIME, c5 DATE, c6 DATE)

INSERT INTO t1 SELECT CURRENT_TIMESTAMP(), NOW(), CURRENT_TIME(), CURTIME(), CURRENT_
DATE(), CURDATEQ)

SELECT * FROM t1

223

Results:

22:35:03 16:35:03 0170972002 01/09/2002

Observe that NOW() and CURRENT_TIMESTAMP() have different values when displayed to the
screen with SELECT NOW(), CURRENT_TIMESTAMP(), but once the literal values are saved to disk,
UTC time is stored for both values. Upon retrieval, both values are converted to local time.

By setting the time zone offset to zero, we can view the actual data stored in the file, because it is adjusted
by +00:00 upon retrieval:

SET TIME ZONE +00:00
SELECT * FROM t1

Results:

The following example demonstrates the expected behavior when the local date is different than the
UTC date (for example, UTC is past midnight, but local time is not, or the reverse). Assume that the
system clock currently shows January 9, 2002, 16:35:03 CST (U.S.).

SET TIME ZONE +10:00

SELECT CURRENT_TIMESTAMP(), NOWQ),
CURRENT_TIME(Q), CURTIMEQ,
CURRENT_DATE(), CURDATEQ)

Results:

2002-01-09 22:35:03.000 2002-01-10 08:35:03.000
22:35:03 08:35:03

0170972002 01/10/2002

INSERT INTO t1 SELECT CURRENT_TIMESTAMP(), NOW(), CURRENT_TIME(), CURTIME(), CURRENT_
DATE(), CURDATEQ)

SELECT * FROM t1

Results:

cl c2

2002-01-10 08:35:03.000 2002-01-10 08:35:03.000
c3 c4 c5 c6

22:59:55 08:59:55 01/09/2002 01/10/2002

224

As you can see, the UTC time and date returned by CURRENT_DATE() and CURRENT_TIME() are
stored as literal values. Since they are not time stamp values, no adjustment is made to them when they
are retrieved from the database.

See Also

TIMESTAMP data type

Time and Date Functions

225

SET TRUEBITCREATE

The SET TRUEBITCREATE statement allows you to specify whether the BIT data type can be indexed
and can map to the LOGICAL transactional data type.

Syntax
SET TRUEBITCREATE = < ON | OFF >

Remarks

The default is on. This means that the BIT data type is 1 bit, cannot be indexed and is assigned a Zen
type code of 16. When of type code 16, BIT has no equivalent transactional data type to which it maps.

For certain situations, such as compatibility with other DBMS applications, you may want to map BIT
to the LOGICAL data type and be able to index the BIT data type. To do so, set TRUEBITCREATE to
off. This maps BIT to LOGICAL, which is a 1-byte data type of type code 7.

The creation mode remains in effect until it is changed by issuing the statement again, or until the
database connection is disconnected. Because this setting is maintained on a per-connection basis,
separate database connections can maintain different creation modes, even within the same application.
Every connection starts with the setting in default mode, where BITs are created with a Zen type code of
16.

This feature does not affect existing BITs, only ones created after the set statement is applied.

This setting can be toggled only in a SQL statement. It cannot be set in Zen Control Center. Note that
Table Editor displays the relational data types for columns (so the type is displayed as “BIT”). If
TRUEBITCREATE is turned off, then Table Editor allows you to index the BIT column.

Example

The following statement toggles the setting and specifies that new BITs should be created to allow
indexing, map to the LOGICAL transactional data type, and have a type code of 7:

SET TRUEBITCREATE=0OFF

226

SET TRUENULLCREATE
The SET TRUENULLCREATE statement turns on or off true nulls when you create new tables.

Syntax
SET TRUENULLCREATE = < ON | OFF >

Remarks

This setting first appeared in Pervasive.SQL 2000 (7.5). On is the default, causing tables to be created
with a NULL indicator byte at the beginning of each empty field. If it is set to off by a SQL statement,
tables are created from then on using the legacy NULL from Pervasive.SQL 7 and earlier releases. The
legacy null behavior persists until the session is disconnected. In a new session, the setting is on again.

Since connections each have their own TRUENULLCREATE setting, they can differ even within the
same application.

Even though they are not true nulls, legacy nulls behave as nullable, and you can INSERT NULL into any
column type. When you query the value, however, one of the following nonnull binary equivalents is
returned:

m 0 for Binary types
» Empty string for STRING and BLOB types, including legacy types such as LVAR and LSTRING

Accordingly, you must use these equivalents in WHERE clauses to retrieve specific values.

The following table describes the interaction between default values and nullable columns.

Column Type Default value used if no literal default value is Default value if literal value is defined
defined for the column

Nullable NULL As defined
Not NULL Error — "No default value assigned for column" As defined
Pre-v7.5 nullable The legacy null for the column As defined

If a statement attempts to insert an explicit NULL into a NOT NULL column that has a default value
defined, the statement fails with an error. The default value is not used in place of the attempt.

For any column with a default value defined, that value may be invoked in an INSERT statement by
omitting the column from the insert column list or using the keyword DEFAULT for the insert value.

If all columns in a table are either nullable or have default values defined, you can insert a record with
all default values by using DEFAULT VALUES as the values clause. If any column is not nullable and no
default is defined, or if you want to specify a column list, you cannot use this type of clause.

Using DEFAULT VALUES for BLOB, CLOB, or BINARY data types is not currently supported.

Examples

To toggle the setting and create new tables with legacy null support in the current session, use:
SET TRUENULLCREATE=0OFF

To return the engine to the default and create tables with true null support in the current session, use:

227

SET TRUENULLCREATE=ON

228

SIGNAL

Remarks

The SIGNAL statement allows you to signal an exception condition or a completion condition other
than successful completion.

Signalling a SQLSTATE value causes SQLSTATE to be set to a specific value. This value is then returned
to the user, or made available to the calling procedure (through the SQLSTATE value). This value is
available to the application calling the procedure.

You can also specify an error message with the SQLSTATE value.

Note SIGNAL is available only inside a stored procedure or user-defined function.

Syntax

SIGNAL SQLSTATE_value [, error_message]
SQLSTATE value ::= user-defined value
error_message - >= user-defined message
Examples

The following example prints the initial SQLSTATE value 00000, then prints “SQLSTATE exception
found” after the signal is raised. The final SQLSTATE value printed is W9001.

CREATE PROCEDURE GenerateSignal();
BEGIN

SIGNAL "W9001*;
END;

CREATE PROCEDURE TestSignal() WITH DEFAULT HANDLER;
BEGIN
PRINT SQLSTATE;
CALL GenerateSignal();
IF SQLSTATE <> "00000" THEN
PRINT "SQLSTATE exception found-;

END 1F;
PRINT SQLSTATE;
END;

229

CREATE PROCEDURE GenerateSignalWithErrorMsg(Q);
BEGIN
SIGNAL "W9001*, "Invalid Syntax";
END;
CALL GenerateSignalWithErrorMsg(Q)

See Also
CREATE PROCEDURE

230

SQLSTATE

Remarks

The SQLSTATE value corresponds to a success, warning, or exception condition. The complete list of
SQLSTATE values defined by ODBC can be found in the Microsoft ODBC documentation.

When a handler executes, the statements within it affect the SQLSTATE value in the same way as
statements in the main body of the compound statement. However, a handler that is intended to take
specific action for a specific condition can optionally leave that condition unaffected, by reassigning that
condition at its conclusion. This does not cause the handler to be invoked again; that would cause a loop.
Instead, Zen treats the exception condition as an unhandled exception condition, and execution stops.

See Also

CREATE PROCEDURE
SELECT

SIGNAL

231

START TRANSACTION

START TRANSACTION signals the start of a logical transaction and must always be paired with a
COMMIT or a ROLLBACK.

Syntax

START TRANSACTION
Sqgl-statements
COMMIT | ROLLBACK [WORK]

Remarks

START TRANSACTION is supported only within stored procedures. You cannot use START
TRANSACTION within SQL Editor. SQL Editor sets AUTOCOMMIT to on.

Examples

The following example, within a stored procedure, begins a transaction which updates the Amount_
Owed column in the Billing table. This work is committed, while another transaction updates the
Amount_Paid column and sets it to zero. The final COMMIT WORK statement ends the second
transaction.

START TRANSACTION;
UPDATE Billing B
SET Amount Owed = Amount Owed - Amount_Paid
WHERE Student_ID IN (SELECT DISTINCT E.Student_ID
FROM Enrolls E, Billing B WHERE E.Student_ID = B.Student_ID);
COMMIT WORK;
START TRANSACTION;
UPDATE Billing B
SET Amount Paid = 0
WHERE Student_ID IN (SELECT DISTINCT E.Student_ID
FROM Enrolls E, Billing B WHERE E.Student_ID = B.Student_ID);
COMMIT WORK;

See Also

COMMIT

CREATE PROCEDURE
ROLLBACK

232

UNION

Remarks

SELECT statements that use UNION or UNION ALL allow you to obtain a single result table from
multiple SELECT queries. UNION queries are suitable for combining similar information contained in
more than one data source.

UNION eliminates duplicate rows. UNION ALL preserves duplicate rows. Using the UNION ALL
option is recommended unless you require duplicate rows to be removed.

With UNION, the Zen database engine orders the entire result set which, for large tables, can take several
minutes. UNION ALL eliminates the need for the sort.

Zen databases do not support LONGVARBINARY columns in UNION statements. LONGVARCHAR
and NLONGVARCHAR are limited to 65500 bytes in UNION statements. The operator UNION cannot
be applied to any SQL statement that references one or more views.

The two query specifications involved in a union must be compatible. Each query must have the same
number of columns and the columns must be of compatible data types.

You may use column names from the first SELECT list in the ORDER BY clause of the SELECT
statement that follows the UNION keyword. Ordinal numbers are also allowed to indicate the desired
columns. For example, the following statements are valid:

SELECT c1, c2, c3 FROM t1 UNION SELECT c4, c5, c6 FROM t2 ORDER BY tl.cl, tl.c2, tl.c3

SELECT c1, c2, c3 FROM t1 UNION SELECT c4, c5, c6 FROM t2 ORDER BY 1, 2, 3
You may also use aliases for the column names:

SELECT c1 x, c2 y, c3 z FROM t1 UNION SELECT cl1, c2, c3 FROM t2 ORDER BY X, y, z

SELECT cl1 x, c2 y, c3 z FROM t1 a UNION SELECT c1, c2, c3 FROM t1 b ORDER BY a.x,
a.y, a.z

Aliases must differ from any table names and column names in the query.

Examples

The following example lists the ID numbers of each student whose last name begins with 'M' or who has
a 4.0 grade point average. The result table does not include duplicate rows.

SELECT Person.ID FROM Person WHERE Last name LIKE "M%" UNION SELECT Student.ID FROM
Student WHERE Cumulative GPA = 4.0

The next example lists the column id in the person table and the faculty table including duplicate rows.
SELECT person.id FROM person UNION ALL SELECT faculty.id from faculty

The next example lists the ID numbers of each student whose last name begins with 'M' or who has a 4.0
grade point average. The result table does not include duplicate rows and orders the result set by the first
column

SELECT Person.ID FROM Person WHERE Last _name LIKE *M%" UNION SELECT Student.I1D FROM
Student WHERE Cumulative GPA = 4.0 ORDER BY 1

It is common to use the NULL scalar function to allow a UNION select list to have a different number
of entries than the parent select list. To do this, you must use the CONVERT function to force the NULL
to the correct type.

233

CREATE TABLE tl1 (cl INTEGER, c2 INTEGER)
INSERT INTO t1 VALUES (1,1)

CREATE TABLE t2 (cl INTEGER)

INSERT INTO t2 VALUES (2)

SELECT cl1, c2 FROM t1

UNION SELECT cl1, CONVERT(NULL(),sql integer)FROM t2

See Also
SELECT

234

UNIQUE

Remarks

To specify that the index not allow duplicate values, include the UNIQUE keyword. If the column or
columns that make up the index contains duplicate values when you execute the CREATE INDEX
statement with the UNIQUE keyword, Zen returns status code 5 and does not create the index.

Note You should not include the UNIQUE keyword in the list of index attributes following the
column name you specify; the preferred syntax is CREATE UNIQUE INDEX.

See Also
ALTER TABLE
CREATE INDEX
CREATE TABLE

235

UPDATE

The UPDATE statement allows you to modify column values in a database.

Syntax

UPDATE < table-name | view-name > [alias-name]

SET column-name = < NULL | DEFAULT | expression | subquery-expression > [, column-name =
--- 1
[FROM table-reference [, table-reference] ...

[WHERE search-condition]

table-name : := user-defined-name

view-name ::= user-defined-name

alias-name ::= user-defined-name (Alias-name is not allowed if a FROM clause is used. See FROM Clause.)
table-reference ::= { OJ outer-join-definition }

| [db-name.]table-name [[AS] alias-name]
| [db-name.]view-name [[AS] alias-name]
| join-definition

| (join-definition)

| (table-subquery)[AS] alias-name [(column-name [, column-name J...)]
outer-join-definition - := table-reference outer-join-type JOIN table-reference ON search-condition
outer-join-type = LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]
search-condition ::= search-condition AND search-condition

| search-condition OR search-condition
| NOT search-condition
| (search-condition)

| predicate

db-name ::= user-defined-name
view-name ::= user-defined-name
join-definition : == table-reference [join-type] JOIN table-reference ON search-condition

| table-reference CROSS JOIN table-reference

| outer-join-definition
join-type zz= INNER | LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]

table-subquery ::= query-specification [[UNION [ALL]
query-specification] . . .]

subquery-expression ::= (query-specification)

236

Remarks

UPDATE statements, as with DELETE and INSERT, behave in an atomic manner. That is, if an update
of more than one row fails, then all updates of previous rows by the same statement are rolled back.

In the SET clause of an UPDATE statement, you may specify a subquery. This feature allows you to
update information in a table based on data in another table or another part of the same table.

You may use the keyword DEFAULT to set the value to the default value defined for the given column.
If no default value is defined, NULL is used if the column is nullable, and if not, an error is returned. For
information about default values and true nulls and legacy nulls from older releases, see SET
TRUENULLCREATE.

The UPDATE statement can update only a single table at a time. UPDATE can relate to other tables
through a subquery in the SET clause. This can be a correlated subquery that depends in part on the
contents of the table being updated, or it can be a noncorrelated subquery that depends only on another
table.

For example, here is a correlated subquery:

UPDATE t1 SET tl.c2 = (SELECT t2.c2 FROM t2 WHERE t2.cl = tl.cl)
Compared to a noncorrelated subquery:

UPDATE t1 SET tl.c2 = (SELECT SUM(t2.c2) FROM t2 WHERE t2.cl = 10)

The same logic is used to process pure SELECT statements and subqueries, so the subquery can consist
of any valid SELECT statement. Subqueries follow no special rules.

If SELECT within an UPDATE returns no rows, then the UPDATE inserts NULL. If the given columns
are not nullable, then the UPDATE fails. If SELECT returns more than one row, then UPDATE fails.

An UPDATE statement does not allow the use of join tables in the statement. Instead, use a correlated
subquery in the SET clause like the one shown in the example above.

For information about true nulls and legacy nulls, see SET TRUENULLCREATE.

Updating Data Longer Than the Maximum Literal String

The maximum literal string supported by Zen is 15,000 bytes. You can handle data longer than this using
direct SQL statements, breaking the update into multiple calls. Start with a statement like this:

UPDATE tablel SET longfield = 15000 bytes of text® WHERE restriction
Then issue the following statement to add more data:

UPDATE tablel SET longfield = notefield + 15000 more bytes of text" WHERE restriction

FROM Clause

Some confusion may arise pertaining to the optional FROM clause and references to the table being
updated (referred to as the “update table”). If the update table occurs in the FROM clause, then one of
the occurrences is the same instance of the table being updated.

For example, in the statement UPDATE t1 SET cl = 1 FROM tl, t2 WHERE tl.c2 = t2.c2, thetl
immediately after UPDATE is the same instance of table t1 as the t1 after FROM. Therefore, the
statement is identical to UPDATE t1 SET c1 = 1 FROM €2 WHERE tl.c2 = t2.c2.

237

If the update table occurs in the FROM clause multiple times, one occurrence must be identified as the
same instance as the update table. The FROM clause reference that is identified as the same instance as
the update table is the one that does not have a specified alias.

Therefore, the statement UPDATE t1 SET tl.cl = 1 FROM tl a, tl b WHERE a.c2 = b.c2isinvalid
because both instances of t1 in the FROM clause contain an alias. The following version is valid: UPDATE
tl SET tl.cl = 1 FROM t1, t1 b WHERE tl.c2 = b.c2.

The following conditions apply to the FROM clause:

m Ifthe UPDATE statement contains an optional FROM clause, the table reference prior to the FROM
clause cannot have an alias specified. For example, UPDATE t1 a SET a.cl = 1 FROM t2 WHERE
a.c2 = t2.c2 returns the following error:

SQL_ERROR (-1)
SQLSTATE of 37000
“"Table alias not allowed in UPDATE/DELETE statement with optional FROM.™

A valid version of the statement is UPDATE €1 SET tl1.cl = 1 FROM t2 WHERE tl1.c2 = t2.c2
or UPDATE t1 SET tl.cl = 1 FROM tl1 a, t2 WHERE a.c2 = t2.c2.

m If more than one reference to the update table appears in the FROM clause, then only one of the
references can have a specified alias. For example, UPDATE t1 SET tl.cl = 1 FROM tl a, tl b
WHERE a.c2 = b.c2 returns the following error:

SQL_ERROR (-1)
SQLSTATE of ""37000" and
"The table tl1 is ambiguous.™

«_»

In the erroneous statement, assume that you want table t1 with alias “a” to be the same instance of
the update table. A valid version of the statement would then be UPDATE t1 SET tl.cl = 1 FROM
tl, t1 b WHERE tl1.c2 = b.c2.

m The FROM clause is supported in an UPDATE statement only at the session level. The FROM clause
is not supported if the UPDATE statement occurs within a stored procedure.

Examples

The following example updates the record in the faculty table and sets salary as 95000 for ID 103657107.
UPDATE Faculty SET salary = 95000.00 WHERE ID = 103657107

The following example shows how to use the DEFAULT keyword.

UPDATE tl1 SET c2
UPDATE tl1 SET cl

DEFAULT WHERE c2 = “bcd*®
DEFAULT, c2 = DEFAULT

The following example changes the credit hours for Economics 305 in the course table from 3 to 4.

UPDATE Course SET Credit_Hours = 4 WHERE Name = "ECO 305"

The following example updates the address for a person in the Person table:

UPDATE Person p

SET p.Street = "123 Lamar",
p.zip = "78758",

p-phone = 5123334444

238

WHERE p.ID = 131542520

Subquery Example A

Two tables are created and rows are inserted. The first table, t5, is updated with a column value from the
second table, t6, in each row where table t5 has the value 2 for column c1. Because there is more than
one row in table t6 containing a value of 3 for column c2, the first UPDATE fails because more than one
row is returned by the subquery. This result occurs even though the result value is the same in both cases.
As shown in the second UPDATE, using the DISTINCT keyword in the subquery eliminates the
duplicate results and allows the statement to succeed.

CREATE TABLE t5 (c1l INT, c2 INT)
CREATE TABLE t6 (cl INT, c2 INT)
INSERT INTO t5(cl, c2) VALUES (1,3)
INSERT INTO t5(cl, c2) VALUES (2,4)
INSERT INTO t6(cl, c2) VALUES (2,3)
INSERT INTO t6(cl, c2) VALUES (1,2)
INSERT INTO t6(cl, c2) VALUES (3,3)
SELECT * FROM t5

Results:

cl c2
1 3
2 4

UPDATE t5 SET t5.c1=(SELECT c2 FROM t6 WHERE c2=3) WHERE t5.c1=2 — Note that the query
fails

UPDATE t5 SET t5.c1=(SELECT DISTINCT c2 FROM t6 WHERE c2=3) WHERE t5.c1=2 — Note that
the query succeeds

SELECT * FROM t5

Results:

cl c2

1 3

3 4
Subquery Example B

Two tables are created and a variety of valid syntax examples are demonstrated. Note the cases where
UPDATE fails because the subquery returns more than one row. Also note that UPDATE succeeds and
NULL is inserted if the subquery returns no rows (where NULL values are allowed).

CREATE TABLE t1 (cl INT, c2 INT)
CREATE TABLE t2 (cl INT, c2 INT)
INSERT INTO t1 VALUES (1, 0)
INSERT INTO t1 VALUES (2, 0)
INSERT INTO t1 VALUES (3, 0)
INSERT INTO t2 VALUES (1, 100)
INSERT INTO t2 VALUES (2, 200)
UPDATE t1 SET tl.c2 (SELECT SuM(t2.c2) FROM t2)
UPDATE t1 SET tl.c2 0

UPDATE t1 SET tl.c2
UPDATE t1 SET tl.c2

(SELECT t2.c2 FROM t2 WHERE t2.cl = tl.cl)
@@IDENTITY

239

UPDATE t1 SET tl.c2

UPDATE t1 SET tl.c2

UPDATE t1 SET tl.c2 (SELECT @@ROWCOUNT)

UPDATE t1 SET tl.c2 (SELECT t2.c2 FROM t2) — update fails

INSERT INTO t2 VALUES (1, 150)

INSERT INTO t2 VALUES (2, 250)

UPDATE t1 SET tl.c2 = (SELECT t2.c2 FROM t2 WHERE t2.cl = tl.cl) — update fails

UPDATE t1 SET tl1.c2 = (SELECT t2.c2 FROM t2 WHERE t2.cl = 5) — Note that the update
succeeds, NULL is inserted for all rows of tl.c2

UPDATE t1 SET tl.c2 = (SELECT SUM(t2.c2) FROM t2 WHERE t2.cl = tl.cl)

@@ROWCOUNT
(SELECT @@IDENTITY)

The following example creates table t1 and t2 and populates them with data. The UPDATE statement
uses a FROM clause to specify another table from which to get the new value.

DROP table t1

CREATE table tl1 (cl integer, c2 integer)
INSERT INTO t1 VALUES (O, 10)

INSERT INTO t1 VALUES (O, 10)

INSERT INTO t1 VALUES (2, 20)

INSERT INTO t1 VALUES (2, 20)

DROP table t2

CREATE table t2 (cl integer, c2 integer)
INSERT INTO t2 VALUES (2, 20)

INSERT INTO t2 VALUES (2, 20)

INSERT INTO t2 VALUES (3, 30)

INSERT INTO t2 VALUES (3, 30)

UPDATE t1 SET tl.cl = t2.cl FROM t2 WHERE tl1.c2 = t2.c2
SELECT * FROM tl1

See Also

ALTER TABLE
CREATE PROCEDURE
CREATE TRIGGER
DEFAULT

GRANT
INSERT

240

UPDATE (positioned)

The positioned UPDATE statement updates the current row of a rowset associated with a SQL cursor.

Syntax

UPDATE [table-name 1 SET column-name = proc-expr [, column-name= proc-expr]. ..
WHERE CURRENT OF cursor-name

table-name : := user-defined-name
cursor-name - := user-defined-name
Remarks

This statement is allowed in stored procedures, triggers, and at the session level.

Note Even though positioned UPDATE is allowed at the session level, the DECLARE CURSOR
statement is not. The method to obtain the cursor name of the active result set depends on the Zen
access method your application uses. See the Zen documentation for that access method.

The table-name may be specified in the positioned UPDATE statement only when used at the
session level. Table-name cannot be specified with a stored procedure or trigger.

Examples

The following sequence of statements provide the setting for the positioned UPDATE statement. The
required statements for a positioned UPDATE are DECLARE CURSOR, OPEN CURSOR, and FETCH
FROM cursorname.

The positioned UPDATE statement in this example updates the name of the course HIS 305 to HIS 306.

CREATE PROCEDURE UpdateClass();
BEGIN
DECLARE :CourseName CHAR(7);
DECLARE :OldName CHAR(7);
DECLARE c1 CURSOR FOR SELECT name FROM course WHERE name = :CourseName FOR UPDATE;
SET :CourseName = "HIS 3057;
OPEN c1;
FETCH NEXT FROM c1 INTO :OldName;
UPDATE SET name = "HIS 306" WHERE CURRENT OF cl;
END;

See Also
CREATE PROCEDURE
CREATE TRIGGER

241

USER

Remarks

The USER keyword returns the current user name (such as Master) for each row returned by the
SELECT restriction.

Example
The following examples return the user name from the course table.

SELECT USER FROM course
-- returns 145 instances of Master (the table contains 145 rows)
SELECT DISTINCT USER FROM course
-- returns 1 instance of Master
See Also
SELECT

SET SECURITY

242

WHILE

Use a WHILE statement is used to control flow. It allows code to be executed repeatedly as long as the
WHILE condition is true. Optionally, you may use the WHILE statement with DO and END WHILE.

Note You cannot use a mixed syntax for the WHILE statement. You may use either WHILE with DO
and END WHILE, or only WHILE.

If you are using multiple statements with a WHILE condition, you must use BEGIN and END to
indicate the beginning and ending of the statement blocks.

Syntax
[label-name -] WHILE proc-search-condition [DO] [proc-stmt [; proc-stmt]].-.
[END WHILE][label-name]
Remarks
A WHILE statement can have a beginning label, in which case it is called a labeled WHILE statement.

Examples

The following example increments the variable vinteger by 1 until it reaches a value of 10, when the loop
ends.

WHILE (:vInteger < 10) DO

SET :vinteger = :vinteger + 1;
END WHILE

See Also

CREATE PROCEDURE

CREATE TRIGGER

243

Grammar Element Definitions

The following is an alphabetical list of element definitions used in the grammar syntax.

alter-options = := alter-option-listl | alter-option-list2
alter-option-listl ::= alter-option | (alter-option [, alter-option 1...)
alter-option z:= ADD [COLUMN] column-definition

| ADD table-constraint-definition

| ALTER [COLUMN] column-definition
| DROP [COLUMN] column-name

| DROP CONSTRAINT constraint-name

| DROP PRIMARY KEY

| MODIFY [COLUMN] column-definition

alter-option-list2 - := PSQL_MOVE [COLUMN] column-name TO [[PSQL_PHYSICAL] PSQL_POSITION
1 new-column-position | RENAME COLUMN column-name TO new-column-name

as-or-semicolon ::= AS | ;
before-or-after -:= BEFORE | AFTER
call-arguments - := positional-argument [, positional-argument J. ..
col-constraint == NOT NULL
| NOT MODIFIABLE

| UNIQUE
| PRIMARY KEY
| REFERENCES table-name [(column-name) 1 [referential-actions]

collation-name ::= "string”
column-constraint - := [CONSTRAINT constraint-name] col-constraint
column-definition ::= column-name data-type [DEFAULT Expression] [column-constraint [column-

constraint]... [CASE | COLLATE collation-name]

column-name ::= user-defined-name

commit-statement :>:= see COMMIT statement
comparison-operator 1= < | > | <= | >= | =] < | 1=
constraint-name ::= user-defined-name

correlation-name ::= user-defined-name

cursor-name I 1= user-defined-name

data-type = := data-type-name [(precision [, scale]) 1]

data-type-name ::= see Zen Supported Data Types

244

db-name ::= user-defined-name

expression: 1=
expression
expression
expression
expression
expression
expression

+
*
/
&
I
N

(expression

+expression

~expression
?

iiteral

expression — expression

expression
expression
expression
expression
expression
expression

))

scalar-function
{ fn scalar-function }

|
|
|
|
|
|
|
| -expression
|
|
|
|
|
|
|

USER

literal - := “string™ | N<string™

| number

| { d “date-literal™ %}
| { t "time-literal™ }
| { ts “timestamp-literal® }

scalar-function :: = See Scalar Functions
expression-or-subquery ::= expression | (query-specification)
fetch-orientation - = NEXT

group-name - := user-defined-name

index-definition - I=

index-name 1= user-defined-name

index-number - 2= user-

index-segment-definition - := column-name [ASC | DESC]
ins-upd-del ::= INSERT | UPDATE | DELETE

insert-values

2= values-clause

| query-specification

join-definition == table-reference [INNER] JOIN table-reference ON search-condition
| table-reference CROSS JOIN table-reference

| outer-join-definition

label-name - := user-defined-name
literal - := “string™ | N-string™
| number

| { d “date-literal™ }

= (index-segment-definition [, index-segment-definition ...)

defined-value (an integer between 0 and 118)

245

| { t “time-literal™ %}
| { ts “timestamp-literal™ }

order-by-expression - := expression [CASE | COLLATE collation-name] [ASC | DESC]
outer-join-definition ::= table-reference outer-join-type JOIN table-reference ON search-condition
outer-join-type ::= LEFT [OUTER]| RIGHT [OUTER] | FULL [OUTER]

parameter - I= parameter-type-name data-type [DEFAULT proc-expr | = proc-expr]
| SQLSTATE

parameter-type-name ::= parameter-name
| parameter-type parameter-name

| parameter-name parameter-type

parameter-type -z= IN | OUT | INOUT | IN_OUT
parameter-name -:= [-] user-defined-name

password ::= user-defined-name | "string”

positional-argument ::= expression

precision I:= integer

predicate ::= expression [NOT] BETWEEN expression AND expression

expression comparison-operator expression-or-subquery
expression [NOT] IN (query-specification)

expression [NOT 1 IN (value [, value J...)
expression [NOT] LIKE value

expression IS [NOT] NULL

expression comparison-operator ANY (query-specification)
expression comparison-operator ALL (query-specification)

EXISTS (query-specification)

proc-expr ::= same as normal expression but does not allow IF expression, or scalar functions
proc-search-condition ::= same as search-condition but does not allow expressions with subqueries
proc-stmt z:= [label-name -] BEGIN [ATOMIC] [proc-stmt [; proc-stmt J...] END [

label-name]

CALL procedure-name (proc-expr [, proc-expr J-..)

CLOSE cursor-name

DECLARE cursor-name CURSOR FOR select-statement [FOR UPDATE | FOR READ ONLY]
DECLARE variable-name data-type [DEFAULT proc-expr | = proc-expr]

DELETE WHERE CURRENT OF cursor-name

delete-statement

FETCH [fetch-orientation [FROM] 7 cursor-name [INTO variable-name [, variable-name |]

IF proc-search-condition THEN proc-stmt [; proc-stmt J... [ELSE proc-stmt [; proc-stmt
1-.. 1 END IF

246

IF proc-search-condition proc-stmt [ELSE proc-stmf]
insert-statement

LEAVE label-name

[label-name - 1 LOOP proc-stmt [; proc-stmt]... END LOOP [label-name]
OPEN cursor-name

PRINT proc-expr [, “string™]

RETURN [proc-expr]

transaction-statement

select-statement-with-into

select-statement

SET variable-name = proc-expr

SIGNAL [ABORT] sqistate-value

START TRANSACTION [tran-name]

update-statement

UPDATE SET column-name = proc-expr [, column-name = proc-expr]... WHERE CURRENT
OF cursor-name

| [label-name :] WHILE proc-search-condition DO [proc-stmt [; proc-stmt] 1... END WHILE
[label-name 7]

[label-name -] WHILE proc-search-condition proc-stmt
alter-table-statement
create-index-statement
create-table-statement

create-view-statement

|

I

|

|

|

| drop-index-statement
| drop-table-statement
| drop-view-statement
| grant-statement

| revoke-statement

|

set-statement
procedure-name ::= user-defined-name
public-or-user-group-name ::= PUBLIC | user-group-name

query-specification [[UNION [ALL] query-specification] - . .
[limit-clause J[ORDER BY order-by-expression [, order-by-expression J... 1 [FOR UPDATE]
query-specification - := (query-specification)
| SELECT [ALL | DISTINCT] [top-clause] select-list

FROM table-reference [, table-reference] . ..

[WHERE search-condition]

[GROUP BY expression [, expression]...

[HAVING search-condition | 1]

referencing-alias 2= OLD [AS] correlation-name [NEW [AS] correlation-name]
| NEW [AS] correlation-name [OLD [AS] correlation-name |

247

referential-actions = 1= referential-update-action [referential-delete-action]

| referential-delete-action [referential-update-action]

referential-update-action ::= ON UPDATE RESTRICT

referential-delete-action -:= ON DELETE CASCADE
| ON DELETE RESTRICT

release-statement - := see RELEASE statement

result I .= user-defined-name data-type

rollback-statement ::= see ROLLBACK WORK statement
savepoint-name . 1= user-defined-name

scalar-function ::= see Scalar Function list

scale ::= integer

search-condition ::= search-condition AND search-condition

| search-condition OR search-condition
| NOT search-condition

| (search-condition)

| predicate

select-item - := expression [[AS] alias-name] | table-name.>
select-list z:= * | select-item [, select-item 7]...
set-function z:= AVG ([DISTINCT | ALL] expression)

| COUNT (< * | [DISTINCT | ALL] expression >)

| COUNT_BIG (< * | [DISTINCT | ALL] expression >)
| MAX ([DISTINCT | ALL] expression)

| MIN C [DISTINCT | ALL] expression)

| STDEV ([DISTINCT | ALL] expression)

| STDEVP ([DISTINCT | ALL] expression)

| SUM (C [DISTINCT | ALL] expression)

| VAR ([DISTINCT | ALL] expression)

| VARP ([DISTINCT | ALL] expression)

sqlstate-value - 2= "string"
table-constraint-definition ::= [CONSTRAINT constraint-name] table-constraint
table-constraint z:= UNIQUE (column-name [, column-name |...)

| PRIMARY KEY (column-name [, column-name]...)
| FOREIGN KEY (column-name [, column-name |)
REFERENCES table-name

[C column-name [, column-name 1-..)]

248

[referential-actions]

table-element - := column-definition

| table-constraint-definition

table-expression - :=
FROM table-reference [, table-reference] . ..
[WHERE search-condition]
[GROUP BY expression [, expression]...
[HAVING search-condition]

table-name ::= user-defined-name

table-permission z:= ALL
SELECT [(column-name [, column-name ...)]
UPDATE [(column-name [, column-name ...)]

|
|
| INSERT [(column-name [, column-name]...)]
| DELETE
| ALTER
| REFERENCES
table-reference ::= { 0J outer-join-definition }

| [db-name.Ntable-name [[AS] alias-name]
| join-definition
| (join-definition)

table-subquery ::= query-specification [[UNION [ALL]

query-specification] . . . [limit-clause J[ORDER BY order-by-expression [, order-by-expression]...]
limit-clause =:= [LIMIT [offset,] row_count | row_count OFFSET offset | ALL [OFFSET offset]]
offset z:= number | ?
row_count ::= number | ?
transaction-statement - .= commit-statement

| roliback-statement

| release-statement

trigger-name ::= user-defined-name

user_and_password ::= user-name [:] password

user-group-name ::= user-name | group-name

user-name ::= user-defined-name

value :z:= literal | USER | NULL | ?

value-list =:= (value [, value 1...)

values-clause ::= DEFAULT VALUES | VALUES (expression [, expression J...)

249

variable-name I I= user-defined-name
view-name ::= user-defined-name

SQL Statement List

SqlStatementList is defined as:

SqlStatementList

statement " ;" | SqlStatementList ;"
statement ::= statement-label ":" statement
| BEGIN ... END block

| CALL statement

| CLOSE CURSOR statement

| COMMIT statement

| DECLARE CURSOR statement
| DECLARE variable statement
| DELETE statement

| FETCH statement

| IF statement

| INSERT statement

| LEAVE statement

| LOOP statement

| OPEN statement

| PRINT statement

| RELEASE SAVEPOINT statement
| RETURN statement

| ROLLBACK statement

| SAVEPOINT statement

| SELECT statement

| SET statement

| SIGNAL statement

| START TRANSACTION statement
| UPDATE statement

| WHILE statement

Predicate

A predicate is defined as:

expression compare-operator expression

| expression [NOT] BETWEEN expression AND expression
| expression [NOT] LIKE string-literal

| expression IS [NOT] NULL

| NOT predicate

| predicate AND predicate

| predicate OR predicate

| “(C predicate ™)Tcompare-operator -:= "=% | ">=" |
| [NOT 1 IN value-list

Expression

An expression is defined as:

number

| string-literal

| column-name
| variable-name
| NULL

250

-

L P

CONVERT *(" expression "," data-type ")~
"-" expression

expression "+T expression
expression "-" expression
expression "*T expression
expression “/" expression
expression &< expression
"~ expression

expression "|" expression
expression "/ expression
function-name “(* [expression-list] ")~
" (" expression®)"

“{" D string-literal "}
“{" T string-literal “}°
“{" TS string-literal "3}~
@: IDENTITY
@:ROWCOUNT
@@BIGIDENTITY
@@IDENTITY
@@ROWCOUNT

@@VERSION

An expression list is defined as:

expression-list ::= expression [, expression

--- 1

251

Global Variables

Zen supports the following global variables:

s @@IDENTITY and @@BIGIDENTITY
. @@ROWCOUNT

s @@SESSIONID

= @@SPID

= @@VERSION

Global variables are prefaced with two at signs, @@. All global variables are variables per connection.
Each database connection has its own @@IDENTITY, @@BIGIDENTITY, @@ROWCOUNT, and
@@SPID values. The value of @@ VERSION is information about the version of the engine that executes
the statement where it is used.

@@IDENTITY and @@BIGIDENTITY

Either of these variables returns its most recently inserted column value. The value is a signed integer
value. The initial value is NULL.

The variable can refer to only a single column. If the target table includes more than one IDENTITY
column, the value of this variable refers to the IDENTITY column serving as the table primary key. If no
such column exists, then the value of this variable refers to the first IDENTITY column in the table.

If the most recent insert was to a table without an IDENTITY column, then the value of @@IDENTITY
is set to NULL.

For BIGIDENTITY values, use @@BIGIDENTITY. For SMALLIDENTITY values, use @@IDENTITY.

Examples
SELECT @@IDENTITY

Returns NULL if no records have been inserted in the current connection, otherwise returns the
IDENTITY column value of the most recently inserted row.

SELECT * FROM t1 WHERE @@IDENTITY = 12

Returns the most recently inserted row if it has an IDENTITY column value of 12. Otherwise, returns
Nno rows.

INSERT INTO t1(c2) VALUES (@@IDENTITY)
Inserts the IDENTITY value of the last row inserted into column C2 of the new row.
UPDATE t1 SET tl.cl = (SELECT @@IDENTITY) WHERE tl.cl = @@IDENTITY + 10

Updates column C1 with the IDENTITY value of the last row inserted, if the value of C1 is 10 greater
than the IDENTITY column value of the last row inserted.

UPDATE t1 SET tl.cl = (SELECT NULL FROM t2 WHERE t2.cl = @@IDENTITY)

Updates column C1 with the value NULL if the value of C1 equals the IDENTITY column value of the
last row inserted.

The example below creates a stored procedure and calls it. The procedure sets variable V1 equal to the
sum of the input value and the IDENTITY column value of the last row updated. The procedure then

252

deletes rows from the table anywhere column C1 equals V1. The procedure then prints a message stating
how many rows were deleted.
CREATE PROCEDURE TEST (IN :P1 INTEGER);
BEGIN
DECLARE :V1 INTERGER;
SET V1 = :P1 + @@IDENTITY;
DELETE FROM t1 WHERE tl.cl = :Vi1;
IF (B@ROWCOUNT = 0) THEN
PRINT "No row deleted”;
ELSE
PRINT CONVERT(@@ROWCOUNT, SQL_CHAR) + " rows deleted";
END IF;
END;
CALL TEST (@@IDENTITY)

@@ROWCOUNT

This variable returns the number of rows that were affected by the most recent operation in the current
connection. The value is an unsigned integer. The initial value is zero.

The @@ROWCOUNT variable is valid only when used after an INSERT, UPDATE, or DELETE
statement.

Examples
SELECT @@ROWCOUNT

Returns zero if no records were affected by the previous operation in the current connection, otherwise
returns the number of rows affected by the previous operation.

CREATE TABLE t1 (c1l INTEGER, c2 INTEGER)

INSERT INTO t1 (cl, c2) VALUES (100,200)

INSERT INTO t1(cl, c2) VALUES (300, @@ROWCOUNT)
SELECT @@ROWCOUNT

Results:
1 (in @@ROWCOUNT variable)

In line four, the @@ROWCOUNT variable has the value of 1 because the previous INSERT operation
affected one row.

Also see the example for @@IDENTITY.

@@SESSIONID

This variable returns an eight-byte integer value that identifies the connection to a Zen server engine,
reporting engine, or workgroup engine. The integer is a combination of a time value and an incremental
counter. This variable can be used to identify uniquely each Zen connection.

@@SESSIONID requires a connection to the database engine to return a value. If the connection to the
database engine is lost, the variable cannot return an identifier.

Example
SELECT @@SESSIONID

The example returns an integer identifier such as 26552653137523.

253

@@SPID

This variable, the server process identifier, returns the identifier integer value of the system thread for
the Zen connection.

If the connection to the database engine is lost, the SPID variable cannot return an identifier. Instead,
the statement returns an error with a SqlState of 08S01.

Example
SELECT @@SPID

The example returns an integer identifier, such as 402.

@@VERSION

SQL statements that use this variable return a value based on the Zen server engine, reporting engine,
or workgroup engine to which the session is connected.

m ForaZen server, the value is the version of the local engine and the bitness, name, and version of the
local operating system.

m For Zen Client Reporting Engine, it is the version of the local reporting engine and the bitness,
name, and version of the local operating system.

= For Zen Client, it is the version of the engine on the remote Zen server to which the client is
connected and the bitness, name, and version of the operating system where the server is running.

» For Zen Workgroup Engine, the value is the version of the local engine and the bitness, name, and
version of the local operating system.

Example

SELECT @@version

The example returns text information resembling the following:

Actian Zen - 14.10.020.000 (x86_64) Server Engine - Copyright (C) Actian Corporation
2019 on (64-bit) Windows NT 6.2 7d

254

Other Characteristics

This topic describes other characteristics of the SQL grammar. It is divided into the following sections:

» Temporary Files

= Working with NULL Values
» Working with Binary Data
m Creating Indexes

m Comma as Decimal Separator

Temporary Files

When Zen must generate a temporary table in order to process a given query, it creates the file in a
location determined in one of the following ways:

= If you have manually added the string key value PervasiveEngineOptions\TempFileDirectory
to ODBC.INI, Zen uses the path set for TempFileDirectory. The proper location for both 32- and 64-
bit Zen installations on Windows is the registry location HKEY_LOCAL_MACHINE\SOFTWARE\
ODBC\ODBC.INI. For Linux, macOS, and Raspbian, the ODBC.INI file is located in /usr/local/
actianzen/etc.

m Ifyou have set the temporary file directory property for a Zen engine using ZenCC or befg, Zen uses
this location. For more information, see Temporary Files in Advanced Operations Guide.

= If you have not used either of the first two options listed here, then Zen checks for the file location
using the following sequence on Window platforms:

1 The path specified by the TMP environment variable

2 The path specified by the TEMP environment variable

3 The path specified by the USERPROFILE environment variable
4 The Windows directory

For example, if the TMP environment variable is not defined, Zen uses the path specified in the
TEMP environment variable, and so on.

On Linux and macOS distributions, Zen uses the current directory for the server process. No
attempt is made to use TMP.

Zen deletes all temporary files used to process a query after the query is finished. If the query is a
SELECT statement, then the temporary files exist as long as the result set is active, meaning until the
result set is freed by the calling application.

When Are Temporary Files Created?

Zen uses three types of temporary files: in-memory, on-disk, and Btrieve (MicroKernel Engine).

In-Memory Temporary File
In-memory temporary files are used for the following circumstances:

m Forward-only cursor
m Number of bytes in the temporary file is less than 250,000.

255

m SELECT statements with ORDER BY, GROUP BY, or DISTINCT that do not use an index, that have
no BLOB or CLOB in the ORDER BY, GROUP BY, or DISTINCT, and that have no BLOB or CLOB
in selection list with UNION.

On-Disk Temporary File
On-disk temporary files are used for the following circumstances:

m Forward-only cursor
= Number of bytes in the temporary file is greater than 250,000.

m SELECT statements with ORDER BY, GROUP BY, or DISTINCT that do not use an index, that have
no BLOB or CLOB in the ORDER BY, GROUP BY, or DISTINCT, and that have no BLOB or CLOB
in selection list with UNION.

Btrieve Temporary File

Btrieve temporary files are used for the following circumstances:

m Forward-only cursor with BLOB or CLOB in ORDER BY, GROUP BY, or DISTINCT or with BLOB
or CLOB in selection list with UNION

» Dynamic or static cursor with UNION queries or SELECT statements with ORDER BY, GROUP BY,
or DISTINCT that do not use an index.

Zen does not create a Btrieve temporary file for each base table in a static cursor SELECT query. Instead,
each base table is opened by using the MicroKernel to reserve pages in the file as a static representation
of the file. Any change made through a static cursor cannot be seen by that cursor.

Working with NULL Values

Zen interprets a NULL as an unknown value. Thus, if you try to compare two NULL values, they will
compare as not equal.

An expression that evaluates to WHERE NULL=NULL returns FALSE.

Working with Binary Data

Consider the following scenario: you insert the literal value '1' into a BINARY(4) column named cl, in
table t1. Next, you enter the statement, SELECT * FROM t1 WHERE c1="1".

The engine can retrieve data using the same binary format as was used to input the data. That is, the
SELECT example above works properly and returns the value, 0x01000000, even though there is no
literal match.

Note The engine always adds a zero (‘0’) to the front of odd-digit binary values that are inserted. For
example, if you insert the value '010, then the value '0x00100000' is stored in the data file.

Currently, Zen does not support suffix 0x to denote binary constants. Binary constants are a string
of hexadecimal numbers enclosed by single quotation marks.

This behavior is the same as for Microsoft SQL Server.

256

Creating Indexes

The maximum column size for indexable VARCHAR columns is 254 bytes if the column does not allow
Null values and 253 bytes if the column is nullable.

The maximum column size for CHAR columns is 255 bytes if the column does not allow Null values and
254 bytes if the column is nullable.

The maximum column size for indexable NVARCHAR columns is NVARCHAR(126). This limit applies
to both nullable and not-null columns. The NVARCHAR size is specified in UCS-2 character units.

The maximum column size for NCHAR columns is NCHAR(127). This limit applies to both nullable
and not-null columns. The NCHAR size is specified in UCS-2 character units.

The maximum Btrieve key size is 255. When a column is nullable and indexed a segmented key is created
with 1 byte for the null indicator and a maximum 254 bytes from the column indexed. VARCHAR
columns differ from CHAR columns in that either length byte (Btrieve Istring) or a zero terminating byte
(Btrieve zstring) are reserved, increasing the effective storage by 1 byte. NVARCHAR (Btrieve wzstring)
columns differ from NCHAR columns in that a zero terminating character is reserved, increasing the
effective storage by 2 bytes.

Comma as Decimal Separator

Many locales use a comma to separate whole numbers from fractional numbers within a floating point
numeric field. For example, they would use 1,5 instead of 1.5 to represent the number one-and-one-half.

Zen supports both the period and the comma as decimal separators. Zen accepts input values using the
period or the comma, based on the regional settings for the operating system. By default, the database
engine displays values using the period.

Note When the decimal separator is not a period, SQL statements must enclose numbers in quotes.

For output and display only, the session-level command SET DECIMALSEPARATORCOMMA can be
used to specify output (for example, SELECT results) that uses the comma as the decimal separator. This
command has no effect on data entry or storage.

Client-Server Considerations

Support for the comma as decimal separator is based on the locale setting in the operating system. Both
the client operating system and the server operating system have a locale setting. The expected behavior
varies according to both settings.

m Ifeither the server or client locale setting uses the comma as decimal separator, then Zen accepts
both period-separated values and quoted comma-separated values.

m If neither the server nor the client locale setting uses the comma decimal separator, then Zen does
not accept comma-separated values.

Changing the Locale Setting

Decimal separator information can be retrieved or changed only for a machine running a Windows
operating system. The decimal setting for Linux and macOS cannot be configured, and it is set to a
period. If you have a Linux and macOS server engine and you want to use a comma as decimal separator,
you must ensure that all your client computers are set to a locale that uses the decimal separator.

257

To change the regional settings on a Windows operating system, access the settings from the Control
Panel. Stop and restart Zen services after your change to enable the database engine to use the setting.

Examples

Example A — Server locale uses a comma for decimal separator

Client locale uses a comma as decimal separator:

CREATE TABLE t1 (cl DECIMAL(10,3), c2 DOUBLE)
INSERT INTO t1 VALUES (10.123, 1.232)

INSERT INTO t1 VALUES (°10,123", "1.232%)
SELECT * FROM t1 WHERE cl = 10.123

SELECT * FROM t1 FROM c1 = "10,123"

The above two SELECT statements, if executed from the client, return:

10.123, 1.232

10.123, 1.232

SET DECIMALSEPARATORCOMMA=ON
SELECT * FROM t1 FROM c1 = "10,123*

The above SELECT statement, if executed from the client after setting the decimal separator, returns:
10,123, 1,232

Client locale uses period as decimal separator, and these statements are issued from a new connection
(meaning default behavior for SET DECIMALSEPARATORCOMMA):

CREATE TABLE t1 (cl DECIMAL(10,3), c2 DOUBLE)
INSERT INTO t1 VALUES (10.123, 1.232)

INSERT INTO t1 VALUES (°10,123", "1.232%)
SELECT * FROM t1 WHERE cl 10.123

SELECT * FROM t1 WHERE cl "10,123"

The above two SELECT statements, if executed from the client, return:
10.123, 1.232
10.123, 1.232
Example B — Server locale uses the period for decimal separator
Client locale uses comma as DECIMAL separator:

Same as client using comma in Example A.
Client locale uses period as DECIMAL separator:

CREATE TABLE t1 (cl DECIMAL(10,3), c2 DOUBLE)

INSERT INTO t1 VALUES (10.123, 1.232)

INSERT INTO t1 VALUES (°10,123", "1,232%) --errorin assignment
SELECT * FROM t1 WHERE cl = 10.123

SELECT * FROM t1 WHERE cl = "10,123" --error in assignment

The first SELECT statement above, if executed from the client, returns:

10.123, 1.232
SET DECIMALSEPARATORCOMMA=0ON
SELECT * FROM t1 FROM cl1 = 10.123

The above SELECT statement, if executed after setting the decimal separator for display, returns:

10,123, 1,232

258

Scalar Functions

A Reference to Zen Scalar Functions

Scalar functions are covered in the following topics:

Bitwise Operators
Arithmetic Operators
String Functions
Numeric Functions

Time and Date Functions
System Functions
Logical Functions

Conversion Functions

chapter

Zen supports scalar functions that may be included in a SQL statement as a primary expression.

257

Bitwise Operators

Bitwise operators allow you to manipulate the bits of one or more operands. The following are the types
of bitwise operators:

Operator Meaning
& bitwise AND
~ bitwise NOT
bitwise OR
A bitwise exclusive OR

The storage length of the expression is a key factor to be considered while performing a bitwise
operation. The following are the data types supported for bitwise operations:

BIT TINYINT SMALLINT
INTEGER BIGINT UTINYINT
USMALLINT UINTEGER UBIGINT

The following table describes the bitwise operators. Each bitwise operator can take only numeric values
as its operands.

Table 44 Descriptions, Syntax, Values Returned, and Examples of Bitwise Operators

Bitwise Description and Syntax Values Returned Example

Operator

AND The bitwise AND operator performs a In a bitwise AND operation The & operator can be used in
bitwise logical AND operation between involving operands of different conjunction with the IF function
two operands. AND compares two bits integer data types, the argument | to find out whether a table is a
and assigns a value equal to 1 to the of the smaller data type is system table or a user-defined
result only if the values of both the bits converted to the larger data type | table.
are equal to 1. Otherwise, the bit in the or to the data type that is
result is set to 0. immediately larger than the larger | S€lect Xf$Name,

of the two operands. IF(Xf$Flags & 16 = 16,
expression & expression "System table*, "User

If any of the operands involved in | table®) from X$File
Expression is any valid expression a bitwise AND operation is
containing the integer data type, which is signed, then the resultant value is
transformed into a binary number for the | 5150 signed.
bitwise operation.

NOT The bitwise NOT operator inverts the bit | The bitwise NOT operatorreturns | The following query performs
values of any variable and sets the the reverse of its single operand | the complement operation on a
corresponding bit in the result. of the integer data type. All ones | numeric literal:

) are converted to zeros, and all
~ expression zeros are converted to ones. SELECT ~12
Expression is any valid expression The resultis -13. The result is
containing the integer data type, which is negative because the
transformed into a binary number for the complement operator
bitwise operation. The tilde (~) cannot be complements the sign bit also.
used as part of a user-defined name.

258

Table 44 Descriptions, Syntax, Values Returned, and Examples of Bitwise Operators

Bitwise Description and Syntax Values Returned Example
Operator
OR The bitwise OR operator performs a In a bitwise OR operation The following could obtain a list
bitwise logical OR operation between involving operands of different of foreign key and primary
two operands. OR compares two bitsand | integer data types, the argument | constraints:
assigns a value equal to 1 to the resultif | of the smaller data type is
the values of either or both the bits are | converted to the larger data type | S€1€ct B.Xf$Name "Table
equal to 1. If neither bit in the input or to the data type that is name::, C-Xes$Name **Column
expressions has a value of 1, the bitin | immediately larger than the larger | N@me",
the rteT(uIt islset to O..The |OR opg:ator of the two operands. IF (Xi$Flags & 8192 = 0,
g;a)zraangs(.)n y numeric valties a8 1= If any of the operands involved in | ~Primary key®, *Foreign
a bitwise OR operation is signed, | K€y™) "Key type™ from
expression | expression then the resultant value will also | X3Index A, X$File B,
be signed. X$Field C
Expression is any valid expression }
containing the integer data type, which is where (A-Xi$Flags &
transformed into a binary number for the (16?84_| 8192)) > O AND
bitwise operation. A.Xi$File = B.Xf$ld AND
A_Xi$Field = C._Xe$ld
OR The bitwise exclusive OR operator In a bitwise exclusive OR The following SQL query
(exclusive) | performs a bitwise logical exclusive OR | operation involving operands of | performs the exclusive OR on
operation between two operands. different integer data types, the two numeric literals:
Exclusive OR compares two bits and argument of the smaller data type
assigns a value equal to 0 to the result if | is converted to the larger data SELECT 12 ~ 8
the values of both the bits are either 0 or | type or to the data type that is The result is 4.
1. Otherwise, this operator sets the immediately larger than the larger
corresponding result bit to 1. of the two operands.
expression " expression If any of the operands involved in
) a bitwise exclusive OR operation
Expression is any valid expression is signed, then the resultant value
containing the integer data type, whichis | s 5150 signed.
transformed into a binary number for the
bitwise operation. The circumflex (*)
cannot be used as part of a user-defined
name.
Truth Table

The following is the truth table for bitwise operations.

Table 45 Truth Table for Bitwise Operations

A B A&B A|B A*B ~A
0 0 0 0 0 1
0 1 0 1 1 1
1 0 0 1 1 0
1 1 1 1 0 0

259

Arithmetic Operators

Date Arithmetic

Zen supports adding or subtracting an integer from a date where the integer is the number of days to add
or subtract, and the date is embedded in a vendor string. This is equivalent to executing a convert on the
date.

Zen also supports subtracting one date from another to yield a number of days.

Example

SELECT * FROM person P, Class C WHERE p.Date Of Birth < * 1973-09-05" AND c.Start_date
>{d "1995-05-08"} + 30

260

String Functions

String functions are used to process and manipulate columns that consist of text information, such as
CHAR, NCHAR, VARCHAR, NVARCHAR, LONGVARCHAR, or NLONGVARCHAR data types.

The string functions support multiple-byte character strings. (Note, however, that CASE (string) does
not support multiple-byte character strings. The CASE (string) keyword assumes that the string data is
single-byte ASCII. See CASE (string).)

Arguments denoted as string can be the name of column, a string literal, or the result of another scalar

function.

Table 46 String Functions

Function

Description

ASCII (string)

Returns a numeric value for the left most character of string. The value is the
position of the character in the database code page. See also UNICODE
function.

BIT_LENGTH (string)

Returns the length in bits of string

CHAR (code)

Returns a single-character string where the code argument selects the
character from the database code page. The argument must be an integer
value. See also NCHAR function.

CHAR_LENGTH (string)

Returns the number of bytes in string. All padding is significant for CHAR and
NCHAR string.

CHAR_LENGTH2 (string)

Returns the number of characters in string. All padding is significant for CHAR
and NCHAR string. A value less than the size of the string may be returned if
the data contains double-byte characters.

CHARACTER_LENGTH (string)

Same as CHAR_LENGTH.

CONCAT (string1, string2)

Returns a string that results from combining string1 and string2.

ISNUMERIC(string)

Returns 1 (TRUE) if the string value can be evaluated as a numeric value.
Otherwise returns 0 (FALSE).

LCASE or LOWER (string)

Converts all upper case characters in string to lower case.

LEFT (string, count)

Returns the left most count of characters in string. The value of count is an
integer.

LENGTH (string)

Returns the number of characters in string. Trailing spaces are counted in a
VARCHAR, NVARCHAR, LONGVARCHAR, or NLONGVARCHAR string.
Trailing NULLs are counted in a CHAR, NCHAR, LONGVARCHAR, or
NLONGVARCHAR string. The string termination character is not counted.
When ANSI_PADDING = OFF, trailing NULLs are treated the same as trailing
spaces and are not counted in the length of a CHAR column.

LOCATE (stringl, string2 [, start])

Returns the starting position of the first occurrence of string1 within string2. The
search within string2 begins at the first character position unless you specify a
starting position (start). The search begins at the starting position you specify.
The first character position in string2 is 1. The stringl is not found, the function
returns the value zero.

LTRIM (string)

Returns the characters of string with leading blanks removed. All padding is
significant for CHAR and NCHAR string.

261

Table 46 String Functions (Continued)

Function

Description

NCHAR (code)

Returns a single-character wide string where the code argument is a Unicode
codepoint value. The argument must be an integer value. See also CHAR
function.

OCTET_LENGTH (string)

Returns the length of string in octets (bytes). All padding is significant for CHAR
and NCHAR string.

POSITION (stringl, string2)

Returns the position of stringl in string2. If stringl does not exist in string2, a
zero is returned.

REPLACE (stringl, string2, string3)

Searches stringl for occurrences of string2 and replaces each with string3.
Returns the result. If no occurrences are found, stringl is returned.

REPLICATE (string, count)

Returns a character string composed of string repeated count times. The value
of count is an integer.

REVERSE(string)

Returns a character string with the order of the characters reversed. Note that
leading spaces in any string types are considered as significant, unlike trailing
spaces which are not considered as significant. See Examples for an example.

RIGHT (string, count)

Returns the right most count of characters in string. The value of count is an
integer.

RTRIM (string)

Returns the characters of string with trailing blanks removed. When
ANSI_PADDING = OFF, trailing NULLs are treated the same as trailing spaces
and are removed from a CHAR column value.

SOUNDEX (string)

Converts an alpha string to a four character code to find similar sounding words
or names. Returns a four character (SOUNDEX) code to evaluate the similarity
of two strings, usually a name.

Note: Conforms to the current rule set for the official implementation of Soundex
used by the United States Government.

SPACE (count)

Returns a character string consisting of count spaces.

STUFF (stringl, start, length, string2)

Returns a character string where length characters in string1 beginning at
position start have been replaced by string2. The values of start and length are
integers.

SUBSTRING (string1, start, length)

Returns a character string derived from stringl beginning at the character
position specified by start for length characters. The start value can be any
number. The first position of stringl is 1. A start value of 0 or a negative number
is considered left of the first position. Length cannot be negative.

UCASE or UPPER (string)

Converts all lower case characters in string to upper case.

UNICODE (string)

Returns the Unicode codepoint value for the left most character of string. See
also ASCII function.

Queries containing a WHERE clause with scalar functions RTRIM or LEFT can be optimized. For
example, consider the following query:

SELECT * FROM T1, T2 WHERE T1.Cl = LEFT(T2.C1, 2)

In this case, both sides of the predicate are optimized if T1.C1 and T2.C2 are index columns. The
predicate is the complete search condition following the WHERE keyword. Depending on the size of the
tables involved in the join, the optimizer chooses the appropriate table to process first.

262

LTRIM and RIGHT cannot be optimized if they are contained in a complex expression on either side of
the predicate.

Examples

The following example creates a new table with an integer and a character column. It inserts 4 rows with
values for the character column only, then updates the integer column of those rows with the ASCII
character code for each character.

CREATE TABLE numchars(num INTEGER,chr CHAR(1) CASE);
INSERT INTO numchars (chr) VALUES("a");

INSERT INTO numchars (chr) VALUES("b");

INSERT INTO numchars (chr) VALUES("A");

INSERT INTO numchars (chr) VALUES("B®);

UPDATE numchars SET num=ASCIlI1(chr);

SELECT * FROM numchars;

Results of SELECT:
num chr
97 a

98 b

65 A

66 B

SELECT num FROM numchars WHERE num=ASCII("a")
Results of SELECT:

The following example concatenates the first and last names in the Person table and results in
"RooseveltBora".

SELECT CONCAT(First_name, Last _name) FROM Person WHERE First_name = "Roosevelt”

The next example changes the case of the first name to lowercase and then to upper case, and results in
"roosevelt", "ROOSEVELT".

SELECT LCASE(First_name),UCASE(First_name) FROM Person WHERE First_name = "Roosevelt”

The following example results in first name trimmed to three characters beginning from left, the length
as 9 and locate results 0. This query results in "Roo", 9, 0

SELECT LEFT(First_name, 3),LENGTH(First_name), LOCATE(First_name, "a") FROM Person
WHERE First_name = "Roosevelt”

The following example illustrates use of LTRIM and RTRIM functions on strings, results in "Roosevelt",

"Roosevelt", "elt".

SELECT LTRIM(First_name),RTRIM(First_name), RIGHT(First_name,3) FROM Person WHERE
First_name = "Roosevelt”®

263

The following examples illustrate use of the SUBSTRING function.
This substring returns up to three characters starting with the second character in the specified column:
SELECT SUBSTRING(First_name,2, 3) FROM Person WHERE First_name = “Roosevelt”

Results set:

0os
This substring returns an empty string because the starting position is beyond the end of the string:
SELECT substring("ABCDE",10,1);

The following substrings return values as specified:

SELECT substring("ABCDE",0,2); - Returns'A’

SELECT substring("ABCDE",-5,10); - Returns 'ABCD'

SELECT substring("ABCDE",-1,4); - Returns 'AB'

The following example illustrates use of the SOUNDEX function on strings Smith and Smythe.
SELECT SOUNDEX ("Smith"), SOUNDEX ("Smythe®)*"
Results set:

S530
S530

The following example illustrates use of the SOUNDEX function on the Person table finding all last
names that sound like "Kennedy".

SELECT Last_Name FROM Person WHERE SOUNDEX(last_name) = SOUNDEX ("Kennedy®)
Results of SELECT:

Last_Name

Kandy
Kenady
Kennedy
Kennedy

The following example illustrates use of the REVERSE function.
SELECT REVERSE(dept_name) from COURSE where dept_name = “Music®
Results set:

cisuM
cisuM
cisuM
cisuM
cisuM

5 rows were affected.

264

Because leading spaces are signficant, the following query returns zero rows:

SELECT * from COURSE WHERE REVERSE(dept_name) = "cisuM"

This is because dept_name is defined as a CHAR field 20 characters wide. Either of the following query
statements returns the expected results:

SELECT * from COURSE WHERE REVERSE(dept_name) = *

SELECT * from COURSE WHERE LTRIM(REVERSE(dept_name)) = "cisuM"

Results set:

MUS 101
MUS 102
MUS 203
MUS 304
MUS 405

Hymnology
Church

Piano

Music Theory
Recital

5 rows were affected.

WwWwwww

Music
Music
Music
Music
Music

265

Numeric Functions

Numeric functions are used to process and manipulate columns that consist of strictly numeric
information, such as decimal and integer values.

Table 47 Numeric Functions

Function

Description

ABS (numeric_exp)

Returns the absolute (positive) value of nhumeric_exp.

ACOS (float_exp)

Returns the arc cosine of float_exp as an angle, expressed in radians.

ASIN (float_exp)

Returns the arc sine of float_exp as an angle, expressed in radians.

ATAN (float_exp)

Returns the arc tangent of float_exp as an angle, expressed in radians.

ATANZ (float_expl, float_exp2)

Returns the arc tangent of the x and y coordinates, specified by float_exp1 and
float_exp2, respectively, as an angle, expressed in radians.

CEILING (numeric_exp)

Returns the smallest integer greater than or equal to numeric_exp.

COS (float_exp)

Returns the cosine of float_exp, where float_exp is an angle expressed in
radians.

COT (float_exp)

Returns the cotangent of float_exp, where float_exp is an angle expressed in
radians.

DEGREES (numeric_exp)

Returns the number of degrees corresponding to numeric_exp radians.

EXP (float_exp)

Returns the exponential value of float_exp.

FLOOR (numeric_exp)

Returns the largest integer less than or equal to numeric_exp.

LOG (float_exp)

Returns the natural logarithm of float_exp.

LOG10 (float_exp)

Returns the base 10 logarithm of float_exp.

MOD (integer_exp1l, integer_exp2)

Returns the remainder (modulus) of integer_exp1 divided by integer_exp2.

PI()

Returns the constant value Pi as a floating point value.

POWER (numeric_exp, integer_exp)

Returns the value of numeric_exp to the power of integer_exp.

RADIANS (numeric_exp)

Returns the number of radians equivalent to numeric_exp degrees.

RAND (integer_exp)

Returns a random floating-point value using integer_exp as the optional seed
value.

ROUND (numeric_exp, integer_exp)

Returns numeric_exp rounded to integer_exp places right of the decimal point.
If integer_exp is negative, numeric_exp is rounded to |integer_exp| (absolute
value of integer_exp) places to the left of the decimal point.

SIGN (numeric_exp)

Returns an indicator of the sign of numeric_exp. If numeric_exp is less than
zero, -1 is returned. If numeric_exp equals zero, 0 is returned. If numeric_exp
is greater than zero, 1 is returned.

SIN (float_exp)

Returns the sine of float_exp, where float_exp is an angle expressed in
radians.

SQRT (float_exp)

Returns the square root of float_exp.

266

Table 47 Numeric Functions (Continued)

Function

Description

TAN (float_exp)

Returns the tangent of float_exp, where float_exp is an angle expressed in
radians.

TRUNCATE (numeric_exp, integer_exp)

Returns numeric_exp truncated to integer_exp places right of the decimal
point. If integer_exp is negative, numeric_exp is truncated to |integer_exp|
(absolute value) places to the left of the decimal point.

Examples

The following example lists the modulus of the number and capacity columns in a table named Room.

SELECT Number, Capacity, MOD(Number, Capacity) FROM Room WHERE Building_Name

"Faske Building® and Type =

“Classroom”

The following example selects all salaries from a table named Faculty that are evenly divisible by 100.

SELECT Salary FROM Faculty WHERE MOD(Salary, 100) = O

267

Time and Date Functions

Time and date functions enable you to generate, process, and manipulate data with time and date data
types. This topic covers the use of these functions.

You may use CURTIME(), CURDATE() and NOW() in INSERT statements to insert the current local
date, time, and time stamp values. For example:

CREATE TABLE tablel (coll DATE)
INSERT INTO tablel VALUES (CURDATE())

All time and date functions support a SELECT subquery in an INSERT statement, as shown here:
INSERT INTO t1 (cl, c2) SELECT CURRENT_DATE(), CURRENT_TIMEQ

Some functions, such as CURDATE(), CURTIME(), and NOW(), also support direct insert, as in:
INSERT INTO tl1 (cl) VALUES (CURDATE(Q))

For more examples, see Time and Date Function Examples.

Note The date and time formats listed here may not match the ones used to display values the Text
and Grid views in ZenCC. The displayed format is fixed by the application.

Table 48 Time and Date Functions

Function Description

CURDATE() Returns the current local date in the format 'yyyy-mm-dd'. Uses the local
clock date by default. If SET TIME ZONE has been called, then the value of
CURDATE() is determined by calculating UTC time and date from the
system clock and operating system locale setting, then adding the offset
value from SET TIME ZONE.

CURRENT_DATE() Returns the current UTC date in the format 'dd/mm/yyyy'.

CURTIME() Returns the current local time in the format 'hh:mm:ss'. Uses the local clock
time by default. If SET TIME ZONE has been called, then the value of
CURTIME() is determined by calculating UTC time and date from the
system clock and operating system locale setting, then adding the offset
value from SET TIME ZONE.

CURRENT_TIME() Returns the current UTC time in the format 'hh:mm:ss'.

CURRENT_TIMESTAMP() Returns the current UTC date and time in the format 'yyyy-mm-dd
hh:mm:ss.mmm’.

268

Table 48 Time and Date Functions (Continued)

Function

Description

DATEADD(datepart, interval, date_exp)

Returns a new DATETIME value by adding an interval to a date. For
example, a datepart day, an interval of 11, and a date_exp of January 26,
2020 returns February 6, 2020. Datepart specifies the part of the date to
which interval is added and must be one of the following values:

e year
e quarter

* month

« day

» dayofyear
* week

e hour

* minute

* second

* millisecond

Interval specifies a positive or negative integer value used to increment
datepart. If interval contains a fractional portion, the fraction part is ignored.

Date_exp is an expression that returns a DATETIME value, a value that can
be implicitly converted to a DATETIME value, or a character string in a
DATE format. See DATETIME.

DATEDIFF(datepart, start, end)

Returns an integer for the difference between the two dates. The integer is
the number of date and time boundaries crossed between the two dates.

For example, table mytest has two columns,col1 and col2, both of which are
DATETIME. The value in col1 is 2000-01-01 11:11:11.234 and the value in
col2 is 2004-09-11 10:10:10.211. The following SELECT statement returns
56, because that is the difference in months between col1 and col2:
SELECT DATEDIFF(month, coll, col2) as Month_Difference
FROM mytest

Datepart specifies the part of the date on which to calculate the difference
and must be one of the following values:

* year
e quarter

* month

« day

» dayofyear
* week

* hour

* minute

» second

* millisecond

Start specifies the beginning date for the difference calculation. Start is an
expression that returns a DATETIME value or a Unicode character string in
a DATE format.

End specifies the ending date for the difference calculation. End is an
expression that returns a DATETIME value or a Unicode character string in
a DATE format.

Start is subtracted from end. An error is returned if the return value is
outside of the range for integer values. See Data Type Ranges.

269

Table 48 Time and Date Functions (Continued)

Function

Description

DATEFROMPARTS(year, month, day)

Returns a date value for the specified year, month, and day.

NULL is returned if any of the parameters are NULL.

DATENAME(datepart, date_exp)

Returns an English character string (a VARCHAR) that represents the
datepart of date_exp. For example, a datepart month returns the name of
the month such as January, February, and so forth. A datepart weekday
returns the day of the week such as Monday, Tuesday, and so forth.

Datepart specifies the part of the date to return and must be one of the
following values:

e year
e quarter

* month

« day

« dayofyear
* week

* weekday
* hour

* minute

* second

* millisecond

Date_exp is an expression that returns a DATETIME value, a value that can
be implicitly converted to a DATETIME value, or a character string in a
DATE format. See DATETIME.

270

Table 48 Time and Date Functions (Continued)

Function

Description

DATEPART (datepart, date_exp)

Returns an integer that represents the datepart of date_exp. For example,
a datepart month returns an integer representing the month (January = 1,
December = 12). A datepart weekday returns an integer representing the

day of the week (Sunday = 1, Saturday = 7).

Datepart is the part of the date to return and must be one of the following
values:

e year
e quarter

* month

« day

« dayofyear
* week

* weekday
* hour

* minute

* second

* millisecond
* TZoffset

The TZoffset value returns a time zone offset in number of minutes (signed).
The DATEPART function with TZoffset works only with
SYSDATETIMEOFFSET() and string literals containing a time zone offset.
The time zone offset range is -14:00 through +14:00. See Time and Date
Function Examples.

Date_exp is an expression that returns a DATETIME value, a value that can
be implicitly converted to a DATETIME value, or a character string in a
DATE format. See DATETIME.

DAY (date_exp)

Returns the day of the month for the given date_exp. Identical to
DATEPART (day, date_exp). See DATEPART (datepart, date_exp).

DAYNAME(date_exp)

Returns an English character string containing the name of the day (for
example, Sunday through Saturday) for the day portion of date_exp.

Date_exp can be a DATE, SQL_TIMESTAMP literal, or a column containing
DATE, DATETIME, or time stamp data.

DAYOFMONTH(date_exp)

Returns the day of the month in date_exp as an integer in the range of 1 to
31. Date_exp can be a DATE, SQL_TIMESTAMP literal, or a column
containing DATE, DATETIME, or time stamp data.

DAYOFYEAR(date_exp)

Returns the day of the year based on the year field in date_exp as an
integer value in the range of 1-366.

DATETIMEFROMPARTS(year, month, day,
hour, minute, seconds, milliseconds)

Returns a value constructed from the provided parameters. NULL is
returned if any of the parameters are NULL.

271

Table 48 Time and Date Functions (Continued)

Function

Description

DATETIMEOFFSETFROMPARTS(year,
month, day, hour, minute, seconds, fractions,
hour_offset, minute_offset, scale)

Returns a string value for a date and time using specified parameters.

If any of the parameters except scale are NULL, then NULL is returned. If
scale is NULL, then an error is returned.

Scale specifies the precision of the fractions value and has a range from 0
to 7. Fractions depends on scale and has a range from 0 to 9999999. For
example, if scale is 3, then each fraction represents a millisecond. The
number of digits specified for fractions must be less or equal to the value for
scale.

The hour_offset specifies the hour portion of a time zone with a range from
-14 to +14. The minute_offset specifies the minute portion of a time zone
with a range from 0 to 59. Hour_offset and minute_offset must have the
same sign unless hour offset is 0.

The default string literal format for DATETIMEOFFSETFROMPARTS is
YYYY-MM-DD hh:mm:ss[.nnnnnnn] [{+|-}hh:mm].

EXTRACT (extract_field, extract_source)

Returns the extract_field portion of the extract_source. The extract_source
argument is a date, time, or interval expression.

The following values are permitted for extract_field and are returned from
the target expression:

* YEAR

+ MONTH
+ DAY

« HOUR

* MINUTE
+ SECOND

HOUR(time_exp)

Returns the hour as an integer in the rage of 0 to 23. Time_exp can be a
DATE, SQL_TIMESTAMP literal, or a column containing DATE, DATETIME,
or time stamp data.

MINUTE(time_exp)

Returns the minute as an integer in the range 0 to 59. Time_exp can be a
DATE, SQL_TIMESTAMP literal, or a column containing DATE, DATETIME,
or time stamp data.

MONTH(date_exp)

Returns the month as an integer in the range of 1 to 12. Date_exp can be a
DATE, SQL_TIMESTAMP literal, or a column containing DATE, DATETIME,
or time stamp data.

MONTHNAME(date_exp)

Returns an English character string containing the name of the month (for
example, January through December) for the month portion of date_exp.
Date_exp can be a DATE, SQL_TIMESTAMP literal, or a column containing
DATE, DATETIME, or time stamp data.

NOW()

Returns the current local date and time in the format 'yyyy-mm-dd
hh:mm:ss.mmm’.

Uses the local clock time by default. If SET TIME ZONE has been called,
then the value of NOW() is determined by calculating UTC time and date
from the system clock and operating system locale setting, then adding the
offset value from SET TIME ZONE.

QUARTER(date_exp)

Returns the quarter in date_exp as an integer value in the range of 1- 4,
where 1 represents January 1 through March 31. Date_exp can bebe a
DATE, SQL_TIMESTAMP literal, or a column containing DATE, DATETIME,
or time stamp data.

272

Table 48 Time and Date Functions (Continued)

Function Description

SECOND(time_exp) Returns the second as an integer in the range of 0 to 59. Time_exp can be
a DATE, SQL_TIMESTAMP literal, or a column containing DATE,
DATETIME, or time stamp data.

SYSDATETIME() Returns the current local date and time displayed in the format 'yyyy-mm-
dd hh:mm:ss.nnnnnnnnn'.

Uses the local clock time by default. Scale is septaseconds on Windows 10,
nanoseconds on Linux, and microseconds on all other platforms. Trailing
digits not returned are padded with zeros to 9 places. If SET TIME ZONE
has been called, then the value of SYSDATETIME() is determined by
calculating UTC time and date from the system clock and operating system
locale setting, then adding the offset value from SET TIME ZONE.

SYSDATETIMEOFFSET() Returns the current date and time along with the hour and minute offset
between the current time zone and UTC of the computer on which the Zen
database engine is running. Daylight saving time (DST) is accounted for.

The default format returned is YYYY-MM-DD hh:mm:ss[.nnnnnnnnn] [<+ | -
>hh:mm]. A plus sign indicates that the current time zone is ahead of the
UTC. A minus sign indicates that the current time zone is behind the UTC.

SYSUTCDATETIME() Returns the current local date and time displayed in the format 'yyyy-mm-
dd hh:mm:ss.nnnnnnnnn'.

Uses the local clock time by default. Scale is septaseconds on Windows 10,
nanoseconds on Linux, and microseconds on all other platforms. Trailing

digits not returned are padded with zeros to 9 places. If SET TIME ZONE
has been called, then the value of SYSUTCDATETIME() is determined by
calculating UTC time and date from the system clock and operating system
locale setting.

TIMEFROMPARTS(hour, minute, seconds, Returns a time value constructed from the specified time parameters.

fractions, scale
) If any of the parameters except scale are NULL, then NULL is returned. If

scale is NULL, then an error is returned.

Scale specifies the precision of the fractions value and has a range from 0
to 7. Fractions depends on scale and has a range from 0 to 9999999. For
example, if scale is 3, then each fraction represents a millisecond. The
number of digits specified for fractions must be less or equal to the value for
scale.

The default format for TIMEFROMPARTS is hh:mm:ss[.nnnnnnn].

TIMESTAMPADD(interval, integer_exp, Returns the time stamp calculated by adding integer_exp intervals of type
timestamp_exp) interval to timestamp_exp.

The following values are allowed for interval:
*+ SQL_TSI_YEAR

* SQL_TSI_QUARTER

* SQL_TSI_MONTH

+ SQL_TSI_WEEK

+ SQL_TSI_DAY

+ SQL_TSI_HOUR

* SQL_TSI_MINUTE

» SQL_TSI_SECOND

273

Table 48 Time and Date Functions (Continued)

Function Description
TIMESTAMPDIFF(interval, timestamp_exp1, Returns the integer number of intervals of type interval by which
timestamp_exp2) timestamp_exp2 is greater than timestamp_exp1.

The values allowed for interval are the same as for TIMESTAMPADD.

WEEK(date_exp) Returns the week of the year based on the week field in date_exp as an
integer in the range of 1 to 53. Date_exp can be a DATE, SQL_TIMESTAMP
literal, or a column containing DATE, DATETIME, or time stamp data.

WEEKDAY (date_exp) Returns the day of the week for the given date_exp, where 1=Sunday and
7=Saturday. Identical to DATEPART(weekday, date_exp). See
DATEPART (datepart, date_exp).

YEAR(date_exp) Returns the year as an integer value. The range depends on the data
source. Date_exp can be a DATE, SQL_TIMESTAMP literal, or a column
containing DATE, DATETIME, or time stamp data.

Time and Date Function Examples

The following example illustrates the use of hour.

SELECT c.Name, c.Credit_Hours FROM Course c WHERE c.Name = ANY (SELECT cl.Name FROM
Class cl WHERE c.Name = cl_.Name AND c.Credit_Hours >(HOUR (Finish_Time -
Start_Time) + 1))

The following is an example of minute.

SELECT MINUTE(log) FROM billing

The following example illustrates the use of second.

SELECT SECOND(log) FROM billing;
SELECT log FROM billing WHERE SECOND(log) = 31

The following example illustrates the use of NOW().
SELECT NOW() - log FROM billing

The following is a more complex example that uses month, day, year, hour and minute.

SELECT Name, Section, MONTH(Start_Date), DAY(Start_Date), YEAR(Start_Date),
HOUR(Start_Time), MINUTE(Start_Time) FROM Class

The following example illustrates use of CURDATE().

SELECT 1D, Name, Section FROM Class WHERE (Start_Date - CURDATE()) <= 2 AND
(Start_Date - CURDATE(Q)) >= 0

274

The next example gives the day of the month and day of the week of the start date of class from the class
table.

SELECT DAYOFMONTH(Start_date), DAYOFWEEK(Start_date) FROM Class;
SELECT * FROM person WHERE YEAR(Date OFf Birth) < 1970

The following example illustrates use of DATEPART with the TZoffset parameter.
SELECT DATEPART(TZoffset, SYSDATETIMEOFFSET())
Assuming the statement returns -360, the current time zone is 360 minutes behind UTC.

Assume that SELECT SYSDATETIMEOFEFSET() returns 2011-01-24 14:33:08.4650000 -06:00. Given
this, the following query returns -360:

SELECT DATEPART(TZoffset, "2011-01-24 14:33:08.4650000 -06:00%)
If the time zone portion is omitted from the string literal, 0 is returned:

SELECT DATEPART(TZoffset, "2011-01-24 14:33:08.4650000")

The following example uses DATEFROMPARTS to return a date from the provided values.

SELECT NOW(), DATEFROMPARTS(DATEPART(Year, NOW()), DATEPART(Month, NOWQ)),
DATEPART(Day, NOW()))

Returns: 2013-05-09 14:33:34.835 PM 5/9/2013

The following example uses TIMEFROMPARTS to return a time from the provided values.

SELECT NOW(), TIMEFROMPARTS(DATEPART (hour, NOW()), DATEPART(minute, NOW(Q)),
DATEPART(second, NOW()), DATEPART(millisecond, NOW()), 3)

Returns: 2013-05-09 15:04:11.425 PM 15:04:11.425

The following example uses DATETIMEFROMPARTS to return a time stamp from the provided values.
SELECT DATETIMEFROMPARTS(1962, 08, 12, 17, 45, 0, 0)
Returns: 1962-08-12 17:45:00.000 PM

The following example uses DATETIMEOFFSETFROMPARTS to return a string display for the time
stamp plus a timezone specification.

SELECT DATETIMEOFFSETFROMPARTS (1962, 08, 12, 17, 45, 0, 0, 5, 0, 0) + " GMT"
Returns: 1962-08-12 17:45:00 +05:00 GMT

275

System Functions

System functions provide information at a system level.

Table 49 System Functions

Function Description

DATABASE() Returns the current database name.

NEWID() Creates a unique value for data type uniqueidentifier
USER() Returns the login name of the current user.

System Function Examples
The following examples show how to obtain the name of the current user and database:

SELECT USERQ):
SELECT DATABASEQ);

The following example creates a column of data type UNIQUEIDENTIFIER as the first column in new

table tablel. Setting a default value with the NEWID function provides a unique value for "coll" in each

new row within the table.

CREATE TABLE tablel (coll UNIQUEIDENTIFIER DEFAULT NEWID() NOT NULL, col2 INTEGER);
INSERT INTO tablel (col2) VALUES (1);

INSERT INTO tablel (col2) VALUES (2);
INSERT INTO tablel (col2) VALUES (3);

276

Logical Functions

Logical functions are used to manipulate data based on certain conditions.

Table 50 Logical Functions

Function Description

COALESCE (expressionl, expression2 [, ...]) | Returns the first non-null argument, starting from the left in the expression
list.

See also COALESCE for additional details.

IF (predicate, expressionl, expression2) Returns expressionl if predicate is true. Otherwise returns expression2.

NULL() Sets a column as NULL values.

IFNULL (exp, value) If exp is NULL, value is returned. If exp is not null, exp is returned. The
possible data type or types of value must be compatible with the data type
of exp.

ISNULL (exp, value) Replaces NULL with the value specified for value. Exp is the expression to

check for NULL. Value is the value returned if exp is NULL. Exp is returned
if itis not NULL. The data type of value must be compatible with the data type
of exp.

NULLIF (expl, exp2) NULLIF returns expl if the two expressions are not equivalent. If the
expressions are equivalent, NULLIF returns a NULL value.

Logical Function Examples
The COALESCE scalar function takes two or more arguments and returns the first non-null argument,
starting from the left in the expression list.

select COALESCE(10, "abc® + "def*)

Ten is treated as a SMALLINT and ResultType (SMALLINT, VARCHAR) is SMALLINT. Hence, the
result type is SMALLINT.

The first parameter is 10, which can be converted to result type SMALLINT. Therefore, the return value
of this example is 10.

The system scalar functions IF and NULL are SQL extensions.

IF allows you to enter different values depending on whether the condition is true or false. For example,
if you want to display a column with logical values as “true” or “false” instead of a binary representation,
you would use the following SQL statement:

SELECT IF(logicalcol=1, "True®, "False®)

The system scalar function NULL allows you to set a column as null values. The syntax is:
NULLO

For example, the following SQL statement inserts a row in the Room table with a NULL value for
Capacity:

277

INSERT INTO Room VALUES ("Young Building”, 222, NULL(), "Lab")

The following example demonstrates how ISNULL returns a value.

CREATE TABLE t8 (cl INT, c2 CHAR(10));
INSERT INTO t8 VALUES (100, "stringl®);
SELECT c1, c2, ISNULL(cl, 1000), ISNULL(C2, "a string") from t8;

The SELECT returns 100 and stringl because both c1 and ¢2 contain a value, not a NULL.

INSERT INTO t8 VALUES (NULL, NULL);
SELECT c1, c2, ISNULL(c1l, 1000), ISNULL(C2, "a string") from t8

The SELECT returns 1000 and a string because both c1 and c2 contain a NULL.

The following statements demonstrate the IFNULL and NULLIF scalar functions. You use these
functions when you want to do certain value substitution based on the presence or absence of NULLs
and on equality.

CREATE TABLE Demo (coll CHAR(3));
INSERT INTO Demo VALUES ("abc®);
INSERT INTO Demo VALUES (NULL);

INSERT INTO Demo VALUES ("xyz");

Since the second row contains the NULL value, "foo" is substituted in its place.
SELECT IFNULL(coll, "foo") FROM Demo
This results in three rows fetched from one column:

"abc"
"foo"
xyz"
3 rows fetched from 1 column.

The first row contains ‘abc,” which matches the second argument of the following NULLIF call.
SELECT NULLIF(coll, "abc®) FROM Demo
A NULL is returned in its place:

<Null>
<Null>
"xyz"
3 rows fetched from 1 column.

278

Conversion Functions

Conversion functions convert an expression to a particular data type. The CONVERT function is best
used when converting between a value and its text representation. The CAST function gives more
control over the data type but less control over character formatting. Note that CONVERT supports only
a subset of relational types.

CAST converts an expression to a Zen relational data type, provided that the expression can be
converted. CAST can convert binary zeros in a string. For example, CAST(c1 AS BINARY(10)), where
cl is a character column that contains binary zeros (nulls).

If both input and output are character strings, output from CAST or CONVERT has the same collation
as the input string.

Conversions between CHAR, VARCHAR, or LONGVARCHAR and NCHAR, NVARCHAR, or
NLONGVARCHAR assume that CHAR values are encoded using the database code page.

TRY_CAST and TRY_CONVERT are identical to CAST and CONVERT except for handling of data
values that cannot be converted. For CAST and CONVERT the entire query fails, but for TRY_CAST
and TRY_CONVERT the columns in the query result that fail are filled with nulls. See Conversion
Function Examples below.

Table 51 Conversion Functions

Function Description

CAST (exp AS type) Converts exp to type, where type may be a data type listed under Zen Transactional and

Relational Data Types, which includes precision and scale parameters.
TRY_CAST (exp AS type)

CONVERT (exp, type [, style]) Converts exp to the type indicated, using SQL_TIMESTAMP

the following type arguments: SQL_TINYINT

TRY_CONVERT (exp, type [, style]) SQL VARCHAR
SQL_BIGINT SQL WCHAR
SQL_BINARY SQL_WLONGVARCHAR
SQL_BIT SQL_WVARCHAR
SQL_CHAR
SQL_DATE The CONVERT arguments use SQL_as a
SQL_DECIMAL prefix for the data type. The Zen relational
SQL_DOUBLE data types do not include the SQL_ prefix.
SQL_FLOAT Precision and scale take default values.
SQL_GUID
SQL_INTEGER The optional parameter style applies only

SQL_LONGVARBINARY
SQL_LONGVARCHAR

SQL NUMERIC portion of the DATETIME data type. A
SQL_REAL style value may be either 20 or 120. Both
SQL_SMALLINT values specify the canonical format: yyyy-
SQL_T||\/|E mm-dd hh:mm:ss. See Conversion

to the DATETIME data type. Use of the
parameter truncates the milliseconds

Function Examples below.

Conversion Function Examples

The following example casts a DATE to a CHAR.

CREATE TABLE ul(cdata DATE);
INSERT INTO ul VALUES(curdate());
SELECT CAST(cdate as (CHAR20)) FROM ul;

279

If the current date were January 1, 2004, the SELECT returns 2004-01-01.

The following example converts, respectively, a UBIGINT to a CHAR, and string data to DATE, TIME,
and TIMESTAMP.

SELECT CONVERT(id , SQL_CHAR), CONVERT("1995-06-05", SQL_DATE), CONVERT("10:10:10",
SQL_TIME), CONVERT("1990-10-10 10:10:10", SQL_TIMESTAMP) FROM Faculty

The following example converts a string to DATE then adds 31 to DATE.
SELECT Name FROM Class WHERE Start _date > CONVERT ("1995-05-07", SQL_DATE) + 31

The following examples show how to cast and convert a UNIQUEIDENTIFIER data type.
CREATE TABLE tablel(coll CHAR(36), col2 UNIQUEIDENTIFIER DEFAULT NEWIDQ));

INSERT INTO tablel (coll) VALUES ("1129619D-772C-AAAB-B221-00FFOOFF0099");
SELECT CAST(coll AS UNIQUEIDENTIFIER) FROM tablel;

SELECT CAST(col2 AS LONGVARCHAR) FROM tablel;

SELECT CONVERT(col2 , SQL_CHAR) FROM tablel;

SELECT CONVERT("1129619D-772C-AAAB-B221-00FFOOFF0099" , SQL_GUID) FROM tablel;

The following examples show how to convert a DATETIME data type with and without the style
parameter.

CREATE TABLE table2(coll DATETIME);
INSERT INTO table2 (coll) VALUES ("2006-12-25 10:10:10.987%);

SELECT CONVERT(coll , SQL_CHAR, 20) FROM table2;

This returns 2006-12-25 10:10:10.

SELECT CONVERT(coll , SQL_CHAR, 120) FROM table2

This returns 2006-12-25 10:10:10.

SELECT CONVERT(coll , SQL_CHAR) FROM table2

This returns 2006-12-25 10:10:10.987.

If you want to include the DATETIME milliseconds, omit the style parameter.
Note the following requirements when using the style parameter:

m The type parameter must be SQL_CHAR. Any other data type is ignored.
m The column data type of the expression must be DATETIME.

» The only permissible style values are 20 and 120. Any other value returns an error. The values 20 or
120 specify the canonical format: yyyy-mm-dd hh:mm:ss.

280

The following examples show the different results when using CAST and TRY_CAST. The same
behavior occurs with CONVERT and TRY CONVERT.

SELECT CAST ("10" AS numeric(10,2)); — Success: returns 10.00
SELECT CAST("test™ AS float); — Error: returns Expression evaluation error.
SELECT TRY_CAST ("10" AS numeric(10,2)); — Success: returns 10.00

SELECT TRY_CAST ("test"™ AS float); - Success: returns NULL

281

282

System Stored Procedures

A Reference to Zen System Stored Procedures

Stored procedures are covered in the following topic:

= Zen System Stored Procedures

chapter

283

Zen System Stored Procedures

System stored procedures help you accomplish those administrative and informative tasks that are not
covered by the Data Definition Language. System stored procedures have a psp_ prefix.

Note Do not create stored procedures with the psp_ prefix. Any user-created stored procedure with
the same name as a system stored procedure will never be executed.

The following table lists the system stored procedures currently supported.

Table 52 Zen System Stored Procedures

psp_columns psp_column_attributes psp_column_rights
psp_fkeys psp_groups psp_help_sp
psp_help_trigger psp_help_udf psp_help_view
psp_indexes psp_pkeys psp_procedure_rights
psp_rename psp_stored_procedures psp_tables
psp_table_rights psp_triggers psp_udfs

psp_users psp_view_rights psp_views

Unless otherwise noted, examples for system stored procedures use the Demodata sample database or
refer to Zen system tables.

If you execute a system stored procedure within a database to obtain information from a secured
database, an error occurs. You cannot access information in a secured database from any other database.
psp_columns

Returns the list of columns and their corresponding information for a specified table, from the current

database or the specified database.

Syntax

call psp_columns(["database_qualifier®], “table_name®, [“column_name®])

Arguments

Table 53 psp_columns Arguments

Parameter Type Default Value Description

Database_qualifier VARCHAR(20) Current database Name of database from which to obtain details
table_name VARCHAR(255) (no default value) Name of table whose column information is required
column_name VARCHAR(255) | All columns for the table | Column name of the table specified

284

Returned Result Set

Table 54 psp_columns Returned Result Set

Column Name Data Type Description

TABLE_QUALIFIER | VARCHAR (20) Name of the database

TABLE_OWNER VARCHAR (20) Name of the table owner. Table owner is reserved for future use. It currently
returns empty (NULL).

TABLE_NAME VARCHAR(255) | Name of the table

COLUMN_NAME VARCHAR(255) Column name of the table

DATA_TYPE SMALLINT Data type code of the column. See Zen Transactional and Relational Data
Types.

TYPE_NAME VARCHAR (32) Name of the data type of the column corresponding to DATA_TYPE value

PRECISION INTEGER The precision of the column if the data type is Decimal, Numeric, and so forth.
See Precision and Scale of Decimal Data Types.

LENGTH INTEGER The length of the column.

SCALE SMALLINT The scale of the column if the data type is Decimal, Numeric, and so forth.

RADIX SMALLINT Base for numeric data types

NULLABLE SMALLINT Specifies nullability:

1 - NULL allowed
0 - NULL not allowed

REMARKS VARCHAR(255) Remarks field

Example

create table tx (c_binary BINARY(10),
c_char CHAR(10),
Cc_tinyint TINYINT,
c_smallint SMALLINT,
c_int INT,
c_bigint BIGINT,
c_utinyint UTINYINT);
call psp_columns(, "tx",);

285

Result Set

Table_ Table_ | Table_ | Column | Data_ | Type_ | P L S R N R
qualifier owner | name |_name type name
‘demodata’ | Null tx C_binary | -2 Binary | 10 10 Null Null 1 Null
'demodata’ | Null tx C_char -1 Char 10 10 Null Null 1 Null
‘demodata’ | Null tx C_tinyint | -6 Tinyint | Null | 1 0 10 1 Null
Legend: P = Precision; L = Length; S = Scale; R = Radix; N = Nullable; R = Remarks

Assume that you have a database named mydatabase that contains a table named tx.

call psp_columns("mydatabase®, "tx",)

Result Set
Table_ Table_ | Table_ | Column | Data_ | Type_ | P L S R N R
qualifier owner | name |_name type name
‘wsrde' Null tx C_binary | -2 Binary | 10 10 Null Null 1 Null
‘wsrde' Null tx C_char -1 Char 10 10 Null Null 1 Null
‘wsrde' Null tx C_tinyint | -6 Tinyint | Null | 1 0 10 1 Null
Legend: P = Precision; L = Length; S = Scale; R = Radix; N = Nullable; R = Remarks

call psp_columns("mydatabase®, "tx", "c_binary")

286

Result Set

Table_ Table_ | Table_ | Column | Data_ | Type_ | P L S R N R
qualifier owner | name |_name type name
‘wsrde' Null tx C_binary |-2 Binary | 10 | 10 Null Null 1 Null

Legend: P = Precision; L = Length; S =

Scale; R = Radix; N = Nullable; R = Remarks

Error Conditions

Condition

Error Message

database_qualifier is a blank string

Please enter a valid database name. Database name cannot be a blank string.

database_qualifier is an undefined database

Unable to open table: X$File

table_name is undefined in the database

No error is returned and no results are returned

table_name is null

Table name cannot be null

table_name is a blank string

Table name cannot be a blank string

column_name is a blank string

Column name cannot be a blank string

column_name is undefined in the table

No error is returned and no results are returned

psp_column_attributes

Returns the list of column attributes and the corresponding information from the current database or

the specified database.

Syntax

call psp_column_attributes(["database_qualifier®], ["table_name®], ["column_name®])

Arguments

Table 55 psp_column_attributes Arguments

Parameter Type Default Value Description

Database_qualifier | VARCHAR(20) Current database you are logged in | Name of the database from which the details

are to be obtained

table_name VARCHAR(255) All tables for the specified database | Name of the table whose column information
is required
column_name VARCHAR(255) All columns for the specified table | Column name of the table specified

287

Returned Result Set

Table 56 psp_column_attributes Returned Result Set

Column Name Data Type Description

TABLE_QUALIFIER | VARCHAR (20) Name of the database

TABLE_OWNER VARCHAR (20) Name of the table owner

TABLE_NAME VARCHAR(255) | Name of the table

COLUMN_NAME VARCHAR(255) Column name of the table

ATTRIB_TYPE CHAR(10) "Default" if a default value has been assigned to the column
"Collate" if the column uses a collating sequence
"L" if the column has a logical positioning
Null or blank for all other types of attributes

ATTRIB_SIZE USMALLINT Size of the column attribute

ATTRIB_VALUE LONGVARCHAR | Value of the column attribute

Examples

create table tx (c_binary binary (10) default 01,
c_char char (11) default "thisisatest”,

Cc_tinyint TINYINT,
C_SMALLINT SMALLINT,
c_int INT,
c_bigint BIGINT,
c_utinyint uTINYINT);
call psp_column_attributes(, ,);

Result Set
Table_ Table_owner | Table_name | Column_name | Attrib_Type | Attrib_Size | Attrib_Value
qualifier
‘demodata’ | Null tx C_binary Default 2 01
‘demodata’ | Null tx C_char Default 11 'Thisisatest'

create table tlogicalmv (coll integer, col2 char(20))
alter table tlogicalmv psgql_move coll to 2
call psp_column_attributes(, "tlogicalmv® ,)

288

Result Set

Table_ Table_owner | Table_name | Column_name | Attrib_Type | Attrib_Size | Attrib_Value
qualifier

‘demodata’ | Null tlogicalmv col2 L 1 1

‘demodata’ | Null tlogicalmv col1 L 1 2

call psp_column_attributes(, "tx", "c_binary")

Result Set
Table_ Table_owner | Table_name | Column_name | Attrib_Type | Attrib_Size | Attrib_Value
qualifier
‘demodata’ | Null tx C_binary Default 2 01

Error Conditions

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database name cannot be a blank string.

database_qualifier is an undefined database | Unable to open table: X$File

table_name is undefined in the database No error is returned and no results are returned
table_name is null Table name cannot be null

table_name is a blank string Table name cannot be a blank string
column_name is a blank string Column name cannot be a blank string
column_name is undefined in the table No error is returned and no results are returned

psp_column_rights

Returns the list of column rights and corresponding information for the specified table, from the current
database or the specified database.

Note This system stored procedure returns the list of column rights only if it has been explicitly
specified using the GRANT syntax.

Syntax

call psp_column_rights(["database_qualifier®], "table_name®, ["column_name®],
[Fuser_name®])

289

Arguments

Table 57 psp_column_rights Arguments

Parameter Type Default Value Description

Database_qualifier | VARCHAR(20) Current database Name of the database from which the details
are to be obtained

table_name VARCHAR(255) (no default value) Name of the table for which rights have been
specified

column_name VARCHAR(255) | All columns of the specified table Name of the column whose rights are to be
obtained

user_name VARCHAR(255) Current user Name of the user for whom the list of column
rights need to be obtained. Pattern matching
is supported.

Returned Result Set

Table 58 psp_column_rights Returned Result Set

Column Name Data Type Description
TABLE_QUALIFIER | VARCHAR (20) Name of the database
TABLE_OWNER VARCHAR (20) Name of the owner of the table
USER_NAME VARCHAR(255) Name of the user
(GRANTEE)
TABLE_NAME VARCHAR(255) | Name of the table
COLUMN_NAME VARCHAR(255) Name of the column for which the different rights have been granted
RIGHTS VARCHAR(12) One of the following values:
SELECT
UPDATE
INSERT
Example

After granting the following permissions on table Dept in the Demodata database, retrieve the column
permissions:

GRANT SELECT(Name, Building_Name) ON Dept TO John;
GRANT UPDATE(Name) ON Dept TO Mary;
GRANT INSERT(Building_Name) ON Dept TO John;

Call psp_column_rights(, "Dept®, ,"%");

290

Result Set

Table_Qualifier Table_owner | User_name | Table_name Column_name Rights

Demodata Null John Dept Name SELECT
Demodata Null John Dept Building_name SELECT
Demodata Null John Dept Building_name INSERT
Demodata Null Mary Dept Name UPDATE

Note User Master has no explicit column rights defined, so psp_column_rights returns no results
for that user.

Assume that user John is logged on to the database. The following statement prints column permissions
on table Dept table for user John.

call psp_column_rights ("demodata®, "Dept”, ,)

Result Set
Table_Qualifier Table_owner | User_name | Table_name Column_name Rights
Demodata Null John Dept Building_name INSERT
Demodata Null John Dept Building_name SELECT
Demodata Null John Dept Name SELECT

Note If a user has been granted rights at the table level (for example, GRANT SELECT ON Dept TO
Mary), a call to psp_column_rights returns no rights. The rights were granted to the table, not to
specific columns.

The following statement prints column permissions on table Dept for column Name for the current user.

call psp_column_rights ("demodata®, “"dept", "name-”,)

Result Set
Table_Qualifier Table_owner | User_name | Table_name Column_name Rights
Demodata Null John Dept Name SELECT

The following statement prints column permissions on table Dept for user Mary:

call psp_column_rights(“demodata®, “dept®, , “Mary")

291

Result Set

Table_Qualifier

Table_owner

User_name | Table_name Column_name Rights

Demodata Null

Mary Dept Name UPDATE

Error Conditions

Condition

Error Message

database_qualifier is a blank string

Please enter a valid database name. Database name cannot be a blank string.

table_name is null

Table name cannot be null.

table_name is a blank string

Table name cannot be a blank string.

column_name is a blank string

Column name cannot be a blank string.

user_name is a blank string

User name cannot be a blank string.

psp_fkeys

Returns the foreign key information for the specified table in the current database.

Syntax

call psp_fkeys(["table_qualifier®], "pkey_ table_name-,

Arguments

Table 59 psp_fkeys Arguments

[fkey_table_name™"])

Parameter Type Default Value Description

table_qualifier VARCHAR(20) Current database Name of the database from which the details are to
be obtained

pkey_table_name | VARCHAR(255) (no default value) Name of the table whose foreign key is associated
with the primary key column

fkey_table_name VARCHAR(255) (no default value) Name of the table whose foreign key information
needs to be obtained

Returned Result Set

Table 60 psp_fkeys Returned Result Set

Column Name Data Type Description

PKTABLE_QUALIFIER VARCHAR (20) Database name of the primary key table
PKTABLE_OWNER VARCHAR (20) Name of the owner of the primary key table
PKTABLE_NAME VARCHAR(255) Name of the primary key table
PKCOLUMN_NAME VARCHAR(255) Column name of the primary key column.

292

Table 60 psp_fkeys Returned Result Set

Column Name Data Type Description

KEY_SEQ USMALLINT Sequence of Keys. The value of this column corresponds to Xi$Part in
X$Index. See X$Index.

FKTABLE_QUALIFIER VARCHAR (20) Database name of the foreign key table

FKTABLE_OWNER

VARCHAR (20)

Name of the owner of the foreign key table

FKTABLE_NAME

VARCHAR(255)

Name of the foreign key table

FKCOLUMN_NAME

VARCHAR(255)

Column name of the foreign key column.

UPDATE_RULE

Utinyint

Update Rule

DELETE_RULE

Utinyint

Delete Rule

PK_NAME VARCHAR(255) Name of the primary key
FK_NAME VARCHAR(255) Name of the foreign key
Example

CREATE TABLE Employee

(

Id INTEGER NOT NULL,
Name VARCHAR(50) NOT NULL,
Supld INTEGER NOT NULL

);

ALTER TABLE Employee
ADD CONSTRAINT EmpPkey

PRIMARY KEY(1d);

ALTER TABLE Employee
ADD CONSTRAINT ForgnKey

FOREIGN KEY(Supld) REFERENCES

Employee(1d) ON DELETE CASCADE;

call psp_fkeys(, "Employee”,);

293

Result Set

PkQ | PkO PkT PkCol | Seq FkQ FkO | FKT FkCol | UR |DR | PK FK

Demo | Null Empl | Id 0 Demo | Null Employ | Supid 1 2 Emp Forgn
data oyee data ee Pkey | Key

Legend: PkQ = Pkey_ table_ qualifier; PkO = Pkey_table_owner; PkT = Pktable_ name; PkCol = Pk_ column_
name; Seq = Key_seq; FkQ = Fktable_qualifier; FkO = Fktable_owner; FkT = Fktable_name; FkCol =
Fkcolumn_name; UR = Update_rule; DR = Delete_rule; Pk = Pk_ name; FK = Fk_ name

Error Conditions

Condition Error Message

table_qualifier is a blank string Table name cannot be a blank string.

pKey_table_name is a blank string Primary key table name cannot be a blank string.

pKey_table_name is null No argument or default value supplied. Argument: 2.
fKey_table_name is a blank string Foreign key table name cannot be a blank string.
psp_groups

Returns the list of groups and the corresponding information from the current database or the specified
database.

Syntax

call psp_groups([“"database_qualifier®], ["group_name®])

Arguments

Table 61 psp_groups Arguments

Parameter Type Default Value Description

Database_qualifier | VARCHAR(20) Current database | Name of the database from which the details are to be
obtained

group_name VARCHAR(255) (no default value) | Name of the group used to return group information. Pattern
matching is supported.

Returned Result Set

Table 62 psp_groups Returned Result Set

Column Name Data Type Description

DATABASE_QUALIFIER VARCHAR (20) Name of the database

GROUP_ID USMALLINT Group Id

GROUP_NAME VARCHAR (255) | Name of the group

294

Example
Assume that the Demodata sample database has two groups defined: DevGrpl and DevGrp2.
call psp_groups(,)

Result Set
Database_qualifier Group_Id Group_Name
Demodata 1 PUBLIC
Demodata 2 DevGrp1
Demodata 3 DevGrp2

call psp_groups("Demodata®, "D%")

Result Set
Database_qualifier Group_Id Group_Name
Demodata 2 DevGrp1
Demodata 3 DevGrp2

Error Conditions

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database name cannot be a blank string.

group_name is a blank string Group name cannot be a blank string.

psp_help_sp
Returns the definition text of a given stored procedure from the current database or the specified
database.

Syntax

call psp_help_sp("[database_qualifier®], “procedure_name®)

295

Arguments

Table 63 psp_help_sp - Arguments

Parameter Type Default Value Description

Database_qualifier | VARCHAR(20) Current database | Name of the database from which the details are to be
obtained

procedure_name CHAR(255) (no default value) | Name of the procedure whose definition text is required.
Pattern matching is not supported.

Returned Result Set

Table 64 psp_help_sp - Returned Result Set

Column Name Data Type Description

DATABASE_QUALIFIER VARCHAR (20) Name of the database

SP_TEXT LONGVARCHAR | Stored procedure definition text

Example

Assume that the Demodata sample database contains the following stored procedure saved as “Myproc.”

Create procedure Myproc(:a integer, OUT :b integer) as

Begin
Set a = ta + 10;
Set :b = :a;

End

The following statement prints the definition text for stored procedure “Myproc” in the current
database.

call psp_help_sp(, "Myproc*®)

Result Set

Database_Qualifier | SP_TEXT

Demodata Create procedure Myproc(:a integer, OUT :b integer) as
Begin
Set a = a + 10;
Set :b = :a;
End

Assume that a database named “wsrde” contains the following stored procedure saved as “Myprocl.”

Create procedure Myprocl(:a integer) returns (name char(20))
as
Begin
Select name from employee where 1d =:a;
End

296

The following statement prints the definition text for stored procedure “Myprocl” in database “wsrde.”

call psp_help_sp(“wsrde®, “Myprocl®)

Result Set

Database_Qualifier | SP_TEXT

wsrde Create procedure Myprocl(:a integer) returns (name char(20))
as
Begin
Select name from employee where 1d =:a;
End

Error Conditions

Condition Error Message

database_qualifier is a blank string or null | Please enter a valid database name. Database name cannot be a blank string

procedure_name is null No argument or default value supplied.

procedure_name is a blank string Procedure name cannot be a blank string.

psp_help_trigger

Returns the definition text of a trigger from the current database or the specified database.

Syntax

call psp_help_trigger (["database_qualifier®], "trigger_name®)

Arguments

Table 65 psp_help_trigger - Arguments

Parameter Type Default Value Description

Database_qualifier | VARCHAR(20) Current database | Name of the database from which the details are to be
obtained

trigger_name VARCHAR(255) (no default value) | Name of the trigger whose definition text is to be returned.
Pattern matching is supported.

Returned Result Set

Table 66 psp_help_trigger - Returned Result Set

Column Name Data Type Description

DATABASE_QUALIFIER | VARCHAR (20) Name of the database

TRIGGER_TEXT LONGVARCHAR | Trigger definition text.

297

Example
The following statement prints the definition of the 'MyInsert' trigger:

CREATE TABLE A
¢

coll INTEGER,
col2 CHAR(255)

);

CREATE TABLE B

(
coll INTEGER,

col2 CHAR(255)
):

CREATE TRIGGER Mylnsert
AFTER INSERT ON A
FOR EACH ROW
INSERT INTO B VALUES
(NEW.coll, NEW.col2);

call psp_help_trigger(, "MylIns%*®);

Result Set

Database_Qualifier | TRIGGER_TEXT

Demodata CREATE TRIGGER Mylnsert
AFTER INSERT ON A
FOR EACH ROW
INSERT INTO B VALUES
(NEW.coll, NEW.col2);

Error Conditions

Condition Error Message

database_qualifier is a blank string | Please enter a valid database name. Database name cannot be a blank string

trigger_name is null No argument or default value supplied.
trigger_name is a blank string Trigger name cannot be a blank string.
psp_help_udf

Returns the text of a given user-defined function (UDF) from the current database or the specified
database.

Syntax
call psp_help_udf (["database_qualifier®], “udf_name-®)

298

Arguments

Table 67 psp_help_udf - Arguments

Parameter Type Default Value Description

Database_qual VARCHAR(20) Current database | Name of the database from which the details are to be
obtained

udf_name VARCHAR(255) (no default value) | Name of the user-defined function whose function text is
required. Pattern matching is supported.

Returned Result Set

Table 68 psp_help_udf - Returned Result Set

Column Name

Data Type

Description

DATABASE_QUALIFIER

VARCHAR (20)

Name of the database

UDF_TEXT LONGVARCHAR | The text of the User Defined Function
Example
call psp_help_udf(, “Myfunction®)
Result Set

Database_Qualifier | UDF_TEXT

Demodata Create function Myfunction(:a integer) Returns integer
as
Begin
Return :a * :a;
End
call psp_help_udf("mydbase®, “Get%")

299

Result Set

Database_Qualifier

UDF_TEXT

wsrde

CREATE FUNCTION GetSmallest(:A integer,
RETURNS Integer
AS
BEGIN
DECLARE :smallest INTEGER
IF (:A < :B) THEN
SET :smallest = :A;

ELSE
SET :smallest = :B;
END IF;
RETURN :smallest;
END

:B Integer)

Error Conditions

Condition

Error Message

database_qualifier is a blank string

Please enter a valid database name. Database name cannot be a blank string

udf_name is null

No argument or default value supplied.

udf_name is a blank string

User-defined function name cannot be a blank string.

psp_help_view

Returns the definition text of a view, from the current database or the specified database.

Syntax

call psp_help_view(["database_qualifier®], “view_name-®)

Arguments

Table 69 psp_help_view - Arguments

Parameter

Type

Default Value Description

Database_qual

VARCHAR(20) Current database | Name of the database from which the details are to be

obtained

view_name

VARCHAR(255) (no default value) | Name of the view whose definition text is required. Pattern

matching is supported.

300

Returned Result Set

Table 70 psp_help_view - Returned Result Set

Column Name Data Type Description

DATABASE_QUALIFIER | VARCHAR (20) Name of the database

VIEW_TEXT LONGVARCHAR | View definition text.

Example

Assume that the following view exists for the Demodata sample database:

CREATE VIEW vw_Person (lastn,firstn,phone) AS
SELECT Last Name, First_Name, Phone
FROM Person;

The following statement returns the definition text for view “vw_Person” in the Demodata database.
call psp_help_view(, "vw_Person*®)
or

call psp_help_view(, "vw_%")

Result Set

Database_Qualifier VIEW_TEXT

Demodata SELECT "'T1"™ ."Last Name™ ,"T1" _"First_Name"™ ,"T1"™ _"Phone"™ FROM
"Person™ "T1"

Error Conditions

Condition Error Message

database_qualifier is a blank string | Please enter a valid database name. Database name cannot be a blank string.

view_name is null No argument or default value supplied.

view_name is a blank string View name cannot be a blank string.

psp_indexes

Returns the list of indexes defined for the specified table. For each index, it also lists the index properties
as persisted in the X$Index table.

Syntax

call psp_indexes(["table_qualifier™], [“table_name®])

301

Arguments

Table 71 psp_indexes Arguments

Parameter Type Default Value Description

table_qualifier VARCHAR(20) Current database | Name of the database from which the details are to be
obtained

table_name VARCHAR(255) (no default value) | Name of the table for whose indexes are to be obtained.

Pattern matching is supported.

Returned Result Set

Table 72 psp_indexes Returned Result Set

Column Name Data Type Description
TABLE_QUALIFIER VARCHAR (20) Name of the database
TABLE_OWNER VARCHAR (20) Name of the owner of the primary key table
TABLE_NAME VARCHAR(255) Name of the primary key table
INDEX_NAME VARCHAR(255) | Name of the index
INDEX_TYPE VARCHAR (20) Type of the Index: primary, foreign, or normal
COLUMN_NAME VARCHAR(255) Name of the column on which index is defined
ORDINAL_POSITION USMALLINT Ordinal position of the index
DUPLICATES_ALLOWED | CHAR(3) Yes, if it is a duplicate index

No, if it is not a duplicate index
UPDATABLE CHAR(3) Yes, if the index is updatable

No, if the index is not updatable
CASE_SENSITIVE CHAR(3) Yes, if the index is case-sensitive

No, if the index is not case-sensitive
ASC_DESC CHAR(1) D, Descending

A, Ascending
NAMED_INDEX CHAR(3) Yes, if it is a named index

No, if it is not a named index

Example

call psp_indexes(,)

302

Result Set

Qual |TO | TN IN IT CN Opos |(Dup |Up Case | AID | NI
Demo | Null | Billing Student_ Normal | Student ID | O No Yes | No A Yes
data Trans Index

Demo | Null | Billing Student_ Normal | Transaction |1 No Yes | No A Yes
data Trans Index _Number

Demo | Null | Billing Student_ Normal | Log 2 No Yes | No A Yes
data Trans Index

Legend: Qual = Table__ qualifier; TO = Table_owner; TN = Table_name; IN = Index_name; IT = Index_type; CN
= Column_name; Opos = Ordinal_position; Dup = Duplicates_allowed; UP = Updatable; Case = Case__
sensitive; A/ID = Asc_desc; NI = Named_index

Result Set

call psp_indexes("demodata®, "Dep%-)
Qual TO TN IN IT CN Opos |(Dup |Up Case | AID | NI
Demo | Null | Dept | Building_Room | Normal | Building | 0 Yes Yes | Yes A Yes
data Index _Name
Demo | Null Dept | Building_Room | Normal | Room_ 1 Yes Yes | No A Yes

data Index Number

Demo | Null | Dept | Dept_Head Normal | Head_ 0 No Yes | No A Yes
data Index Of Dept

Demo | Null | Dept | Dept_Name Normal | Name 0 No Yes | Yes A Yes
data Index

Legend: Qual = Table_ qualifier; TO = Table_owner; TN = Table_name; IN = Index_name; IT = Index_type; CN
= Column_name; Opos = Ordinal_position; Dup = Duplicates_allowed; UP = Updatable; Case = Case_
sensitive; A/D = Asc_desc; NI = Named_index

Error Conditions

Condition

Error Message

database_qualifier is a blank string

Please enter a valid database name. Database name cannot be a blank string.

table_name is a blank string

View name cannot be a blank string.

psp_pkeys

Returns the primary key information for the specified table, from the current database or the database

specified.

303

Syntax
call psp_pkeys(["pkey_table_qualifier®] "table_name®)

Arguments

Table 73 psp_pkeys Arguments

Parameter Type Default Value Description

pkey_table_qualifier VARCHAR(20) Current database | Name of the database from which the details are to be
obtained

table_name VARCHAR(255) | (no default value) | Name of the table whose primary key information is
requested. Pattern matching is supported

Returned Result Set

Table 74 psp_pkeys Returned Result Set

Column Name Data Type Description
TABLE_QUALIFIER | VARCHAR (20) Name of the database
TABLE_OWNER VARCHAR (20) Name of the owner of the primary key table
TABLE_NAME VARCHAR(255) Name of the primary key table
COLUMN_NAME VARCHAR(255) Name of the primary key column
COLUMN_SEQ USMALLINT Sequence of the columns (a segmented index)
PK_NAME VARCHAR(255) Name of the primary key

Example

The following statement returns the information about the primary key defined on the 'pkeytest1' table:

CREATE TABLE pkeytestl

(

coll int NOT NULL,

col2 int NOT NULL,

col3 VARCHAR(20) NOT NULL,
PRIMARY KEY(coll, col2),
UNIQUE(col3)

);

call psp_pkeys(, "pkeytestl®);

304

Result Set

Table_ Table_ | Table_name | Column_ | Column_ | PK_name
qualifier owner name Seq

‘demodata’ Null Pkeytest1 Col1 0 PK_col1
‘demodata’ Null Pkeytest1 Col2 1 PK_col1

Error Conditions

Condition

Error Message

pkey_table_qualifier is a blank string

Please enter a valid database name. Database name cannot be a blank string.

table_name is null

No argument or default value supplied.

table_name is a blank string

Table name cannot be a blank string.

psp_procedure_rights

Returns the list of procedure rights and corresponding information for the specified stored procedure,
from the current database or the specified database. The stored procedure can be a trusted or a non-
trusted one. See Trusted and Non-Trusted Objects.

Syntax

call psp_procedure_rights(["database_qualifier®], ["procedure_name®], [“user_name-"])

305

Arguments

Table 75 psp_procedure_rights Arguments

Parameter Type Default Value Description

database_qualifier | VARCHAR(20) Current database | Name of the database from which the details are to be
obtained

procedure_name VARCHAR(255) (no default value) | Name of the procedure for which rights are specified. Pattern
matching is supported.

user_name VARCHAR(255) | Current user Name of the user for whom the list of procedure rights needs
to be obtained. Pattern matching is supported.

Returned Result Set
Table 76 psp_procedure_rights Returned Result Set

Column Name Data Type Description

PROCEDURE_QUALIFIER | VARCHAR (20) Name of the database

PROCEDURE_OWNER VARCHAR (20) Name of the owner of the procedure

USER_NAME (GRANTEE) | VARCHAR(255) | Name of the user

PROCEDURE_NAME VARCHAR(255) Name of the procedure
RIGHTS VARCHAR(12) One of the following values:
ALTER
EXECUTE

Note that RIGHTS pertains only to procedures in a database that uses V2
metadata.

Example
Assume that the following permissions exist for the Demodata sample database:

GRANT EXECUTE ON PROCEDURE Deptl_Proc TO John;
GRANT ALTER ON PROCEDURE Deptl_Proc TO Mary;
GRANT ALTER ON PROCEDURE Deptl_Proc TO John;
GRANT EXECUTE ON PROCEDURE Proc2 TO Mary;
GRANT ALTER ON PROCEDURE Proc2 TO Mary;

GRANT ALTER ON PROCEDURE MyProc TO Mary;

The following statement prints the permissions on the “Deptl_Proc” stored procedure for user “John.”

call psp_procedure_rights(, "Deptl_Proc®, "John®);

306

Result Set

Procedure_Qualifier | Procedure_owner | User_name Procedure_name Rights
Demodata Null John Dept1_Proc ALTER
Demodata Null John Dept1_Proc EXECUTE

The following statement prints the permissions on the “Proc2” stored procedure for user “Mary.”

call psp_procedure_rights("demodata®, "%Pr%", “M%")

Result Set
Procedure_Qualifier | Procedure_owner | User_name Procedure_name Rights
Demodata Null Mary MyProc ALTER
Demodata Null Mary Proc2 ALTER
Demodata Null Mary Proc2 EXECUTE

Error Conditions

Condition

Error Message

database_qualifier is a blank string

Please enter a valid database name. Database name cannot be a blank string.

procedure_name is a blank string

Procedure name cannot be a blank string.

user_name is a blank string

User name cannot be a blank string.

psp_procedure_rights called for a
database with V1 metadata

View and Stored Procedure permissions are not supported for metadata version

1.

307

psp_rename

Changes the name of a COLUMN, INDEX, FUNCTION, PROCEDURE, TABLE, TRIGGER or VIEW
in the database to which your machine is currently connected.

Syntax

call psp_rename("object_name®, "new_name", "object_type*®)
Arguments

Table 77 psp_rename Arguments

Parameter Type Description

object_name VARCHAR(776) The current name of the column, index, user-defined function, stored procedure,
table, trigger or view.

Object_name must be specified in a particular format depending on the type of object:

Column: table_name.column_name.
Index: table_name.index_name.
Function: function_name
Procedure: procedure_name

Table: table_name

Trigger: table_name.trigger_name
View: view_name

new_name VARCHAR(776) A user-defined name for the object. The name must conform to the naming
conventions for the type of object. See Naming Conventions in Zen Programmer’s
Guide.

object_type VARCHAR(13) The type of object being renamed. Object_type must be one of the following:

COLUMN, INDEX, FUNCTION, PROCEDURE, TABLE, TRIGGER or VIEW.

Example
The following statement renames stored procedure “checkstatus” to “eligibility” in the current database.

call psp_rename("checkstatus®, "eligibility”, "PROCEDURE®)

Error Conditions

All errors returned from psp_rename use status code -5099. See -5099: Error condition pertaining to a
stored procedure in Status Codes and Messages.

psp_stored_procedures

Returns the list of stored procedures and their corresponding information from the current database or
the specified database.

Syntax

call psp_stored_procedures(]["database_qualifier®], ["procedure_name®], ["procedure_
type”])

308

Arguments

Table 78 psp_stored_procedures Arguments

Parameter Type Default Value Description

Database_qualifier | VARCHAR(20) Current database | Name of the database from which the details are to be
obtained

procedure_name VARCHAR(255) (no default value) | Name of the stored procedure whose information is required.
Pattern matching is supported.

procedure_type VARCHAR(5) (no default value) | 'SP' returns the stored procedures

'SSP’ returns the system stored procedures (this type is
currently not supported)

Note System stored procedures are defined in the internal PERVASIVESYSDB database, which does
not display in Zen Control Center.

Returned Result Set

Table 79 psp_stored_procedures Returned Result Set

Column Name Data Type Description

PROCEDURE_QUALIFIER | VARCHAR (20) Name of the database

PROCEDURE _OWNER VARCHAR (20) Name of the owner of the procedure

PROCEDURE _NAME VARCHAR(255) Name of the procedure

PROCEDURE_TYPE VARCHAR(25) Type of procedure. The types are STORED PROCEDURE or SYSTEM
STORED PROCEDURE.

NUM_INPUT_PARAMS INT Returns null, because SQLPROCEDURES returns null when executed
against Zen DSN

NUM_OUTPUT_PARAMS INT Returns null, because SQLPROCEDURES returns null when executed
against Zen DSN

NUM_RESULT_SETS INT Returns null, since SQLPROCEDURES returns null when executed
against Zen DSN

REMARKS VARCHAR(255) Remarks
TRUSTEE INTEGER For V2 metadata, returns O for a trusted stored procedure and -1 for a
nontrusted stored procedure. The TRUSTEE column is empty for V1
metadata.
Example

Assume that the current database mydbase contains two stored procedures: myprocl and myproc2. The
following statement lists the information about them.

Call psp_stored_procedures(, ,)

309

Result Set

Qualifier' | Owner | Name! | Type' Num_ Num_ Num | Remarks | Trustee
1 input_ output_ _
params params resul
t
sets
mydbase Null Myproc1 | Stored Null Null Null Null
Procedure
mydbase Null Myproc2 | Stored Null Null Null Null
Procedure
The complete column name includes “procedure_" prepended to this name: Procedure_qualifier, procedure_
owner, and so forth.

The following statement lists the information about the stored procedures in the PERVASIVESYSDB
internal database.

call psp_stored_procedures("PERVASIVESYSDB®", “psp_u%’, "SP")

Result Set
Qualifier' | Owner | Name! Type1 Num_ Num_ Num | Remarks | Trustee
U input_ output_ _
params params resul
t_
sets
pervasive | Null psp_udfs Stored Null Null Null Null
systdb Procedure
pervasive | Null psp_users Stored Null Null Null Null
systdb Procedure
The complete column name includes “procedure_” prepended to this name: Procedure_qualifier, procedure_
owner, and so forth.

Error Conditions

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database name cannot be a blank string

table_name is a blank string Table name cannot be a blank string.

procedure_type is a blank string Procedure type cannot be a blank string.

procedure_type is a value other than | Procedure type can be SP, SSP, or null.
SP, SSP, or null

psp_tables

Returns a list of tables along with their corresponding information, from the current database or the
specified database.

310

Syntax

call psp_tables(["database_qualifier®], ["table_name®], ["table_type®])

Arguments

Table 80 psp_tables — Arguments

Parameter Type Default Value Description

Database_qualifier | VARCHAR(20) Current database | Name of the database from which the details are to be
obtained

table_name VARCHAR(255) (no default value) | Name of the table whose information needs to be obtained.
Pattern matching is supported.

table_type VARCHAR(20) (no default value) | Must be one of the following:

'User table' returns only the user tables
'System table' returns all the system tables

NULL returns all tables

Returned Result Set

Table 81 psp_tables — Returned Result Set

Column Name Data Type Description
TABLE_QUALIFIER | VARCHAR (20) Name of the database
TABLE_OWNER VARCHAR (20) Name of the table owner
TABLE_NAME VARCHAR(255) | Name of the table
TABLE_TYPE VARCHAR (15) System table - if the table is a system table
User table - if the table has been created by any user
REMARKS VARCHAR(255) | Remarks
FILE_LOCATION VARCHAR(255) Location where the file is saved

Example
call psp_tables(,,)

311

Result Set

Table_Qualifier Table_owner | Table_name | Table_Type Remarks File_
location
Demodata Null X$file System table Null File.ddf
Demodata Null X$field System table Null Field.ddf
Demodata Null X$Attrib System table Null Attrib.ddf
Demodata Null Billing User table Null Billing.mkd

call psp_tables(, , “user table")

Result Set
Table_Qualifier Table_owner | Table_name | Table_Type Remarks File_
location
Demodata Null Class User table Null class.mkd
Demodata Null Billing User table Null Billing.mkd
call psp_tables(, , *system table”y
Result Set
Table_Qualifier Table_owner | Table_name | Table_Type Remarks File_
location
Demodata Null X$file System table Null File.ddf
Demodata Null X$field System table Null Field.ddf
Demodata Null X$Attrib System table Null Attrib.ddf

Error Conditions

Condition

Error Message

database_qualifier is a blank string

Please enter a valid database name. Database name
cannot be a blank string.

table_name is a blank string

Table name cannot be a blank string.

table_type is a blank string

Table type cannot be a blank string.

table_type is something other than 'system table,' 'user table,’ or null

Table type can be system table, user table or null.

312

psp_table_rights

Returns the list of table rights and corresponding information for the specified table, from the current

database or the specified database.

Syntax

call psp_table_rights(["database_qualifier®], ["table_name®], [“user_name"])

Arguments

Table 82 psp_table_rights Arguments

Parameter Type Default Value Description

Database_qualifier | VARCHAR(20) Current database | Name of the database from which the details are to be
obtained

table_name VARCHAR(255) All tables Name of the table for which rights have are specified. Pattern
matching is supported.

user_name VARCHAR(255) Current user Name of the user for whom the list of table rights needs to be

obtained. Pattern matching is supported.

313

Returned Result Set

Table 83 psp_table_rights Returned Result Set

Column Name Data Type Description
TABLE_QUALIFIER VARCHAR (20) Name of the database
TABLE_OWNER VARCHAR (20) Name of the owner of the table
USER_NAME (GRANTEE) | VARCHAR(255) | Name of the user
TABLE_NAME VARCHAR(255) | Name of the table
RIGHTS VARCHAR(12) One of the following values:

SELECT

ALTER

DELETE

INSERT

REFERENCES

SELECT

UPDATE

Example

Assume that the following permissions exist for the Demodata sample database.

GRANT SELECT ON Dept TO John;
GRANT ALTER ON Dept TO John;

GRANT DELETE ON Dept TO John;
GRANT SELECT ON Class TO Mary;
GRANT ALTER ON Class TO Mary;

The following statement prints the table permissions on the “Dept” table for user “John” in the current
database (Demodata).

call psp_table_rights(, "Dept®, "John");

Result Set
Table_Qualifier | Table_owner | User_name | Table_name | Rights
Demodata Null John Dept ALTER
Demodata Null John Dept DELETE
Demodata Null John Dept SELECT

Assume that user “Mary” is logged on the database. The following statement prints the table permissions
on the “Class” table in the Demodata database for the current user (Mary).

call psp_table_rights(“demodata®, “cl%",)

314

Result Set

Error Conditions

Table_Qualifier | Table_owner | User_name | Table_name | Rights
Demodata Null Mary Class SELECT
Demodata Null Mary Class ALTER

Condition

Error Message

database_qualifier is a blank string

Please enter a valid database name. Database name cannot be a blank string.

table_name is a blank string

Table name cannot be a blank string.

user_name is a blank string

User name cannot be a blank string.

psp_triggers

Returns the list of triggers and their corresponding information from the current database or the

specified database.

Syntax

call psp_triggers([“database_qualifier-],

Arguments

Table 84 psp_triggers Arguments

[“table_name®])

Parameter Type Default Value Description

Database_qualifier | VARCHAR(20) Current database | Name of the database from which the details are to be
obtained

table_name VARCHAR(255) All tables Name of the table for which the trigger is defined. Pattern

matching is supported.

Returned Result Set

Table 85 psp_triggers Returned Result Set

Column Name Data Type Description

TRIGGER_QUALIFIER VARCHAR (20) Name of the database

TRIGGER_OWNER VARCHAR (20) Name of the owner of the Trigger

TABLE_NAME VARCHAR(255) Name of the table for which the trigger is defined.
TRIGGER_NAME VARCHAR(255) Name of the trigger

ISUPDATE UTINYINT Is set if it is an update trigger

315

Table 85 psp_triggers Returned Result Set

Column Name Data Type Description
ISDELETE UTINYINT Is set if it is an delete trigger
ISINSERT UTINYINT Is set if it an insert trigger
ISAFTER UTINYINT Is set if the trigger action time is "after"
ISBEFORE UTINYINT Is set if the trigger action time is "before"
REMARKS VARCHAR(255) | Remarks

Example

Assume that the current database is mydbase. The following statement returns the list of triggers defined
in the database:

CREATE TABLE A
(

coll INTEGER,
col2 CHAR(255)

)

CREATE TABLE B
(

coll INTEGER,
col2 CHAR(255)

)

CREATE TRIGGER Insert
AFTER INSERT ON A
FOR EACH ROW
INSERT INTO B VALUES
(NEW.coll, NEW.col2);

call psp_triggers(,);

316

Result Set

Trigger_ | Trigger | Table_ | Trigger | isupdate | isdelete | isinsert | isafter | isbefore | Remarks
qualifier | _owner | name | _name
mydbase | Null A Insert 0 0 1 0 0 Null

Error Conditions

Condition

Error Message

database_qualifier is a blank string

Please enter a valid database name. Database name cannot be a blank string.

table_name is a blank string

Table name cannot be a blank string.

psp_udfs

Returns the list of user-defined functions (UDF) and their corresponding information from the current

database or the specified database.

Syntax

call psp_udfs(["database_qualifier®], [“udf_name®])

Arguments

Table 86 psp_udfs Arguments

Parameter Type Default Value Description

Database_qualifier | VARCHAR(20) Current database Name of the database from which the details are to be
obtained

udf_name VARCHAR(255) All user-defined functions | Name of the udf whose details are needed. Pattern
matching is supported.

Returned Result Set

Table 87 psp_udfs Returned Result Set

Column Name Data Type Description

UDF_QUALIFIER VARCHAR (20) Name of the database

UDF_OWNER VARCHAR (20) Name of the owner of the UDF

UDF _NAME VARCHAR(255) | Name of the UDF

UDF_TYPE VARCHAR(25) Type of UDF (always set to 1)
Currently, Zen does not support any special type of UDF.

NUM_INPUT_PARAMS INT Returns null, because SQLPROCEDURES returns null when executed
against Zen DSN.

317

Table 87 psp_udfs Returned Result Set

Column Name Data Type Description
NUM_OUTPUT_PARAMS INT Returns 1, because UDFs return only scalar values
NUM_RESULT_SETS INT Returns 0, because UDFs do not return resultsets
REMARKS VARCHAR(255) Remarks

Example

Assume that the current database mydbase has two user-defined functions: calcinterest and factorial.

call psp_udfs(,)

Result Set
UDF_ UDF_ | UDF_name | Udf type | Num_input_ | Num_output_ | Num_ Remarks
qualifier owner params params result_sets
mydbase Null CalclInterest | 1 Null 1 0 Null
mydbase Null Factorial 1 Null 1 0 Null

Error Conditions

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database name cannot be a blank string.

udf_name is a blank string User-defined function name cannot be a blank string.

psp_users

Returns the list of users and the corresponding information from the current database or the specified
database.

Syntax

call psp_users(["database_qualifier®], [“group_name®], [“user_name"])
Arguments

Table 88 psp_users Arguments

Parameter Type Default Value Description
database_qualifier | VARCHAR(20) Current database Name of the database from which the details are to be
obtained

318

Table 88 psp_users Arguments

Parameter Type Default Value Description
group_name VARCHAR(255) | All groups (if group_name | Name of the group used to return the user
is null) information. Pattern matching is supported. If group
name is specified (i.e. if it is not NULL), only users
belonging to the same group will be returned.
user_name VARCHAR(255) | All users (if user_name is | Name of the user. Pattern matching is supported.
null)

Returned Result Set

Table 89 psp_users Returned Result Set

Column Name Data Type Description
DATABASE_QUALIFIER | VARCHAR(20) Name of the database
GROUP_ID USMALLINT Group ID of the group to which user belongs
GROUP_NAME VARCHAR(255) Name of the group to which user belongs
USER_ID USMALLINT ID of the user
USER_NAME VARCHAR(255) | Name of the user

Example

Assume that current database mydbase has users John, Mary, and Michael, and groups DevGrp and

DevGrpl.

call psp_users(, ,)

Result Set

Database_qualifier | Group_Id Group_Name | User_Id User_Name
Demodata 1 DevGrp 3 John
Demodata 2 DevGrp1 1 Mary
Demodata 1 DevGrp 4 Michael

call psp_users(, "Devgrp~,)

319

Result Set

Database_qualifier | Group_Id Group_Name | User_Id User_Name

Demodata 1 DevGrp 3 John

Demodata 2 DevGrp 4 Michael

Error Conditions

Condition Error Message

database_qualifier is a blank string | Please enter a valid database name. Database name cannot be a blank string.

user_name is null User name cannot be a null.

group_name is a blank string Group name cannot be a blank string.

psp_view_rights

Returns the list of list of view rights and corresponding information for the specified view, from the
current database or the specified database. The view can be a trusted or a non-trusted one. See Trusted
and Non-Trusted Objects.

Psp_view_rights applies only to a database using V2 metadata.

Syntax

call psp_view_rights(["database_qualifier"], ["view_name"], [“user_name"])

320

Arguments

Table 90 psp_view_rights Arguments

Parameter Type Default Value Description
database_qualifier | VARCHAR(20) Current database Name of the database from which the details are to be
obtained
view_name VARCHAR(255) | All views (if view_ Name of the view for which rights are specified. Pattern
name is null) matching is supported.
user_name VARCHAR(255) Current user (if Name of the user for whom the list of view rights needs to
user_name is null) | be obtained. Pattern matching is supported.

Returned Result Set

Table 91 psp_view_rights Returned Result Set

Column Name Data Type Description
VIEW_QUALIFIER VARCHAR (20) Name of the database
VIEW_OWNER VARCHAR (20) Name of the owner of the view
USER_NAME (GRANTEE) VARCHAR(255) Name of the user
VIEW_NAME VARCHAR(255) Name of the view
RIGHTS VARCHAR(12) One of the following values:
ALTER
DELETE
INSERT
SELECT
UPDATE
Example

Assume that the following permissions exist for the Demodata sample database:

GRANT SELECT ON VIEW vw_Dept TO John;
GRANT ALTER ON VIEW vw_Dept TO John;
GRANT DELETE ON VIEW vw_Dept TO John;
GRANT SELECT ON VIEW vw_Class TO Mary;
GRANT ALTER ON VIEW vw_Class TO Mary;
GRANT SELECT ON VIEW vw_Class TO Prakesh;

The following statement prints the view permissions on the “vw_Dept” view for user “John.’

call psp_view_rights(, "vw_Dept”,

*John®);

>

321

Result Set

View_Qualifier View_owner User_name View_name Rights
Demodata Null John vw_Dept ALTER
Demodata Null John vw_Dept DELETE
Demodata Null John vw_Dept SELECT

Assume that user “Mary” is logged on the database. The following statement prints the view permissions
on all views in the sample database Demodata for the current user (Mary).

call psp_view_rights(“demodata*,

Result Set
View_Qualifier View_owner User_name View_name Rights
Demodata Null Mary vw_Class ALTER
Demodata Null Mary vw_Class SELECT

The following statement prints the view permissions on the “vw_Class” view for user “Mary.”

call psp_view_rights(“demodata®, “vw_C%", “Mary®)

Result Set
View_Qualifier View_owner User_name View_name Rights
Demodata Null Mary vw_Class ALTER
Demodata Null Mary vw_Class SELECT

Error Conditions

Condition

Error Message

database_qualifier is a blank string

Please enter a valid database name. Database name
cannot be a blank string

view_name is a blank string

View name cannot be a blank string.

user_name is a blank string

User name cannot be a blank string.

psp_procedure_rights called for a database with V1 metadata | View and stored procedure permissions are not supported

for V1 metadata.

322

psSp_views

Returns the list of views along with their corresponding information, from the current database or from
the database specified.

Syntax

call psp_views(["database_qualifier®], [“view_name"])

Arguments

Table 92 psp_views Arguments

Parameter Type Default Value Description

Database_qualifier | VARCHAR(20) Current database | Name of the database from which the details are to be
obtained

view_name VARCHAR(255) (no default value) | Name of the view whose information is required. Pattern

matching is supported.

Returned Result Set

Table 93 psp_views Returned Result Set

Column Name Data Type Description
VIEW_QUALIFIER VARCHAR (20) Name of the database
VIEW_OWNER VARCHAR (20) Name of the owner of the view
VIEW_NAME VARCHAR(255) | Name of the view
REMARKS VARCHAR(255) | Remarks
TRUSTEE INTEGER For V2 metadata, returns 0 for a trusted view and -1 for a non-trusted view. The
TRUSTEE column is empty for V1 metadata.
Example

Assume that the following view exists for a V2 metadata database named Demodata2.

CREATE VIEW vw_Person (lastn,firstn,phone) WITH EXECUTE AS “Master® AS
SELECT Last_Name, First_Name,Phone FROM Person;

The following statement prints the list of views in the current database, which is Demodata2.

call psp_views(,

)

323

Result Set

View_Qualifier

View_Owner

View_Name

Remarks

Trustee

Demodata

0

Null Vw_Person Null

The following statement prints the view information for the “vw_Person” view in the Demodata
database.

call psp_views("demodata®, “vw_P%")

Result Set
View_Qualifier | View_Owner | View_Name Remarks Trustee
Demodata Null Vw_Person Null

Error Conditions

Condition Error Message

database_qualifier is a blank string | Please enter a valid database name. Database name cannot be a blank string

view_name is a blank string Table name cannot be a blank string.

324

chapter

Performance Reference

An Examination of the Performance Features in the Database Engine

The Zen database engine uses a number of optimizations. The following topics discuss how to take
advantage of these in SQL statements. This technical material is meant for expert SQL users. For
definitions of the terms used, see Terminology.

= Restriction Analysis

s Restriction Optimization

» Push-Down Filters

m Efficient Use of Indexes

m Temporary Table Performance

m Row Prefetch

m Terminology

325

Restriction Analysis

This topic explains one method that the database engine uses to analyze and optimize on a Restriction.
For definitions of the technical terms used, see Terminology.

Modified CNF Conversion

During SQL statement execution, the database engine attempts to convert the restriction into Modified
Conjunctive Normal Form (Modified CNF). Conversion to modified CNF is a method for placing
Boolean expressions in a uniform structure to facilitate restriction analysis for possible query processing
optimizations. If the restriction can be converted to modified CNF, the database engine can
methodically and thoroughly analyze the query for possible optimizations that make efficient use of
available Indexes. If the database engine is unable to convert the restriction to modified CNE it still
analyzes the restriction for possible optimizations. In this case, however, the database engine is often
unable to make use of the available indexes as effectively as it would for restrictions that either are already
in modified CNF or can be converted internally to modified CNF.

Restrictions that Cannot be Converted

The database engine is unable to convert some restrictions into modified CNF depending on the
contents of the restriction. A restriction is not converted to modified CNF if any of the following
conditions is true:

m The restriction contains a subquery.

m The restriction contains a NOT operator.

m The restriction contains a dynamic parameter (a dynamic parameter is a question mark (“?”) in the
SQL statement, which will be prompted for when the statement is executed).

Conditions Under Which Conversion is Avoided

There are some cases in which the database engine may be capable of converting a restriction into
modified CNF but will not do so. The database engine chooses not to convert a restriction to modified
CNF in cases where it has determined that the restriction is more likely to benefit from optimizations
that can be applied to its original form than from optimizations that could be applied after modified
CNF conversion.

A restriction is not converted to modified CNF if either of the following conditions is true:

m The restriction is in Disjunctive Normal Form (DNF) and all Predicates involve only the equal (=),
LIKE or IN comparison operators.
For example, the database engine does not convert the following restriction to modified CNF:
(cl =1 AND c2 = 1) OR (c1 = 1 AND c2 = 2) OR (cl = 2)

m The restriction meets all of the following conditions:

+ It contains an expression in Disjunctive Normal Form (DNF) that is AND connected to the rest
of the restriction

+ The specified DNF expression contains only Predicates that involve the equal (=), LIKE or IN
comparison operator

+ The predicates in identical positions in each Conjunct in the DNF expression reference the same
column.

326

For example, a Restriction that contains the following Expression will not be converted to modified
CNEF:

(cl =1 AND c2 = 1) OR (cl1 = 1 AND c2 = 2)

327

Restriction Optimization

This section provides a detailed description of the primary techniques employed by the database engine
to make use of expressions in a restriction for optimization purposes. The types of optimizations
performed by the database engine are described below in order from the simplest to the most complex.

A clear understanding of optimization techniques used by the database engine may aid you in
structuring queries to achieve optimal performance from the database engine. In addition, by
understanding how the database engine uses indexes to optimize queries, you can determine how to
construct indexes that provide the best performance for a given set of typical uses.

For the sake of simplicity, the descriptions below initially address expressions that reference columns
from only a single table. Optimizations making use of join conditions, in which predicates compare
columns from two different tables, are described following the single table optimizations.

For definitions of the technical terms used, see Terminology.

Single Predicate Optimization

The simplest form of Restriction optimization involves the use of a single Predicate. A predicate can be
used for optimization if it meets all of the following conditions:
m the predicate is joined to the rest of the restriction by the AND operator

m one operand of the predicate consists of a column reference which is a leading segment of an index
and the other operand consists of an expression that does not contain a column reference (that is,
the other operand contains only a literal value or dynamic parameter)

m the comparison operator is one of: <, <=, =, >=, >, LIKE, or IN.

For example, suppose an index exists with the first segment on column c1. The following predicates can
be used for optimization:

cl=1
cl IN (1,2)
cl>1

The LIKE operator is optimized only if the second operand starts with a character other than a wildcard.
For example, C2 LIKE ‘ABC%’ can be optimized, but C2 LIKE ‘%ABC’ will not be.

Closed Range Optimization

A Closed Range can be used for optimization if it satisfies all the requirements for Single Predicate
Optimization.

For example, suppose an index exists with the first segment on column c1. The following closed range
can be used for optimization:

cl >= 1 AND cl1 < 10

Modified Disjunct Optimization
A Modified Disjunct can be used for optimization if it satisfies all of the following conditions:

m itisjoined to the rest of the Restriction by the AND operator

m each Predicate and Closed Range in the disjunct satisfies the requirements for Single Predicate
Optimization and Closed Range Optimization

328

m each predicate or closed range references the same column as the others.
For example, suppose an index exists with the first segment on column c1. The following modified
disjunct can be used for optimization:

cl =10R (cl>5ANDcl < 10) OR cl > 20

The following modified disjunct cannot be used for this type of optimization because the same column
is not referenced in all predicates and closed ranges:

cl =10R (cl >5AND cl1 <10) ORc2 =1

Conjunct Optimization
A Conjunct can be used for optimization if it satisfies all of the following conditions:

m it is joined to the rest of the restriction by the AND operator
m each Predicate in the conjunct satisfies the requirements for Single Predicate Optimization

m each predicate optimizes on the leading segments of an index with only one predicate for each
leading segment (that is, there are not two different predicates that use the same set of leading
segments)

m all predicates, except for the predicate referencing the last segment used for optimization, use the
equal (=) comparison operator.

For example, suppose an index exists with the first three segments on columns c1, c2 and ¢3, in that
order. The following conjunct assignments can be used for optimization:

cl=1ANDc2=1ANDCc3 =1
cl =1AND c2 =1 AND c3 >=1
cl=1ANDC2 >1

The order of the predicates does not matter. For example, the following conjunct can be used for
optimization:

c2=1ANDc3=1ANDCl =1

The following conjunct cannot be used for optimization because the second segment of the index is
skipped (there is no reference to column c2):

cl=1ANDc3 =1

In this case, the single predicate, c1 = 1, can still be used for optimization.

Disjunctive Normal Form Optimization

An expression in Disjunctive Normal Form (DNF) can be used for optimization if it satisfies all of the
following conditions:
m it is joined to the rest of the restriction by the AND operator

m each conjunct in the expression satisfies the requirements for Conjunct Optimization with the
additional limitation that all the predicates must contain the equal (=) comparison operator

m all the conjuncts must use the same index and the same number of segments for optimization.

The database engine does not convert restrictions that are originally in DNF into modified CNE because
it can optimize on DNE.

For example, suppose an index exists with the first three segments on columns c1, c2 and ¢3, in that
order. The following expression in DNF can be used for optimization:

329

(cl1=1AND c2 =1 AND c3 = 1) OR (c1 = 1 AND ¢c2 = 1 AND ¢3 = 2) OR (cl = 2 AND c2 =
2 AND c3 = 2)

The following expression in DNF cannot be used for optimization because both conjuncts do not
reference the same number of segments:

(cl1=1ANDcC2=1ANDc3 =1)OR (cl =1AND c2 = 2)

Modified Conjunctive Normal Form Optimization

An expression in Modified Conjunctive Normal Form (Modified CNF) can be used for optimization if
it satisfies all of the following conditions:
= itisjoined to the rest of the restriction by the AND operator

m each Modified Disjunct satisfies the requirements for Modified Disjunct Optimization except that
each modified disjunct must reference a different index segment which together make up the
Leading Segments (that is, taking all the disjuncts together, no segments can be skipped)

= all the modified disjuncts except for the one that references the last segment must contain at least
one predicate that contains the equals (=) comparison operator.

Modified CNF optimization is similar to DNF optimization but allows combinations of predicates
involving different comparison operations not supported by DNF optimization.

For example, suppose an index exists with the first three segments on columns c1, c2 and ¢3, in that
order. The following expression in modified CNF can be used for optimization:

(cl1 =10Rcl =2) AND (c2 =1 OR (c2 > 2 AND c2 < 5)) AND (c3 > 1)

It may be easier to understand how the database engine uses this expression for optimization by looking
at the equivalent expression in modified DNF:

(cl = 1 AND c2
= 2 AND c2

1 AND c3 > 1) OR (cl
1 AND c3 > 1) OR (cl

1 AND (c2 > 2 AND c2 < 5) AND c3 > 1) OR (cl
2 AND (c2 > 2 AND c2 < 5) AND c3 > 1)

Closing Open Ended Ranges through Modified CNF Optimization

Two Modified Disjuncts can be combined to form one or more Closed Ranges if the following conditions
are satisfied:

» both modified disjuncts satisfy the requirements for Modified Disjunct Optimization
» both modified disjuncts use the same segment in the same index

m both modified disjuncts contain open ended ranges that can be combined to form one or more
closed ranges.

For example, suppose an index exists with the first segment on column c1. The following expression in
modified CNF can be used for optimization:

(cl =10Rcl>2) AND (c1 <5 O0R cl1 = 10)

It may be easier to understand how the database engine uses this expression for optimization by looking
at an equivalent expression which is simply a modified disjunct:

cl=10R (cl>2ANDcl <5)O0Rcl =10

Single Join Condition Optimization

The simplest form of optimization involving two tables makes use of a single Join Condition. Single join
condition optimization is similar to Single Predicate Optimization. A join condition can be used for

330

optimization if it satisfies the requirements for single predicate optimization. The table that will be
optimized through the use of the join condition will be processed after the other table referenced in the
join condition. The table optimized through the use of the join condition uses an optimization value
retrieved from a row in the other table referenced in the join condition.

For example, suppose an index exists on table t1 with the first segment on column c1. The following join
conditions can be used for optimization:

tl.cl = t2.c2
tl.cl > t2.c2

During optimization, a row is retrieved from table t2. From this row, the value of column ¢2 is used to
optimize on table t1 according to the join condition.

If, instead of an index on tl.cl, there is an index on t2.c2, then t1.c1=t2.c2 could be used to optimize
on table t2. In this case, table t1 would be processed first and the value for t1.c1 would be used to
optimize on table t2 according to the join condition.

In the case that there is an index on t1.c1 as well as an index on t2.c2, the database engine query
optimizer examines the size of both tables as well as the characteristics of the two indexes and chooses
the table to optimize that will provide the best overall query performance.

Conjunct with Join Conditions Optimization

A Conjunct that consists of a mixture of join conditions and other Predicates can be used for
optimization if it satisfies all of the following conditions:

m all the join conditions compare columns from the same two tables

m the conjunct satisfies the requirements for regular Conjunct Optimization for one of the two tables.

The table that will be optimized through the use of the conjunct will be processed after the other table
referenced.

For example, suppose an index exists on table t1 with the first three segments on columns c1, ¢2 and ¢3,
in that order. The following conjuncts can be used for optimization:

tl.cl = t2.c1l AND tl1.c2 = t2.c2 AND tl1.c3 = t2.c3
tl.cl = t2.cl AND tl.c2 > t2.c2

tl.cl = t2.c1l AND tl.c2 =1

tl.cl =1 AND tl.c2 = t2.c2

Modified Conjunctive Normal Form with Join Conditions Optimization

An Expression in Modified Conjunctive Normal Form (Modified CNF) that contains join conditions
can be used for optimization if it satisfies all the following conditions:
m it satisfies the conditions for Modified Conjunctive Normal Form Optimization

» inaddition, all disjuncts but the disjunct optimizing on the last portion of the leading segment being
used must contain only a single join condition or a single predicate and at least one of these is a single
join condition.

For example, suppose an index exists on table t1 with the first three segments on columns c1, ¢2 and ¢3,
in that order. The following expressions in modified CNF can be used for optimization:

(tl.cl = t2.c1l) AND (tl.c2 = t2.c2 OR
(tl.c2 > 2 AND tl.c2 < 5))

(tl.cl = 1) AND (tl.c2 = t2.c2) AND

331

(tl.c3 > 2 AND t1.c3 < 5)

Closing Join Condition Open Ended Ranges through Modified CNF Optimization

This type of optimization is exactly like Closing Open Ended Ranges through Modified CNF
Optimization except that the range being closed may be a Join Condition.

For example, suppose an index exists on table t1 with the first two segments on columns c1 and c2, in
that order. The following expressions in modified CNF can be used for optimization:

(tl.cl > t2.cl) AND (tl.cl < t2.c2 OR tl.cl = 10)

(tl.cl = t2.c1) AND (tl.c2 > t2.c2) AND (tl.c2 < 10 OR tl.c2 = 100)

Multi-Index Modified Disjunct Optimization

A Modified Disjunct can be used for optimization through the use of more than one index if it satisfies
all of the following conditions:
= isjoined to the rest of the restriction by the AND operator

m each Predicate and Closed Range in the disjunct satisfies the requirements for Single Predicate
Optimization or Closed Range Optimization, respectively

m each predicate or closed range references a column that is the first segment in an index. If all
predicates and closed ranges reference the same column, then this scenario is simply Modified
Disjunct Optimization, as described previously.

For example, suppose an index exists with the first segment on column c1 and another index exists with
the first segment on column c2. The following modified disjunct can be used for optimization:

cl =10R (cl >5AND cl1 <10) ORc2 =1

332

Push-Down Filters

Push-down filters are strictly an internal optimization technique. By taking advantage of high speed
filtering capabilities, the database engine can efficiently identify certain rows to be rejected from the
result set depending on characteristics of the restriction. Because rows are rejected from the result set
before they are returned, the database engine has to analyze fewer rows and completes the operation
faster than it would without push-down filters.

The database engine can use an expression or combination of expressions as a push-down filter if the
following conditions are satisfied:

m A Predicate can be used in a push-down filter if it is joined to the rest of the Restriction by the AND
operator.

m A Predicate can be used in a push-down filter if one operand consists of a column reference and the
other operand consists of either a literal value or a dynamic parameter (“?”). Also, the referenced
column must not be of one of the following data types: bit, float, double, real, longvarchar,
longvarbinary, or binary.

m A Predicate can be used in a push-down filter if the comparison operator is one of the following: <,
<=,=,>=, >, 0r <>.

m A Disjunct can be used in a push-down filter if it is joined to the rest of the restriction by the AND
operator and all the predicates within the disjunct satisfy the requirements for a predicate to be used
in a push-down filter, except for the condition that the predicate must be joined to the rest of the
restriction by an AND operator. Only one disjunct may be included in the push-down filter.

» A push-down filter may combine a single disjunct with other predicates that satisfy the requirements
for a predicate to be used in a push-down filter.

For definitions of the technical terms used, see Terminology.

333

Efficient Use of Indexes

Indexes can optimize on query characteristics other than the Restriction, such as a DISTINCT or
ORDER BY clause.

For definitions of the technical terms used, see Terminology.

DISTINCT in Aggregate Functions

An index can be used to reduce the number of rows retrieved for queries with a selection list that consists
of an Aggregate Function containing the DISTINCT keyword. To be eligible for this type of
optimization, the expression on which the DISTINCT keyword operates must consist of a single column
reference. Furthermore, the column must be the leading segment of an index.

For example, suppose an index exists on table t1 with the first segment on column c1. The index can be
used to avoid retrieving rows with duplicate values of column cl:

SELECT COUNT(DISTINCT cl) FROM t1 WHERE c2 = 1

DISTINCT Preceding Selection List

An index can be used to reduce the number of rows retrieved for some queries with the DISTINCT
keyword preceding the selection list. To be eligible for this type of optimization, the selection list must
consist only of column references (no complex expressions such as arithmetic expressions or scalar
functions), and the referenced columns must be the leading segments of a single index.

For example, suppose an index exists on table t1 with the first three segments on columns c1, c2 and c3,
in any order. The index can be used to avoid retrieving rows with duplicate values for the selection list
items:

SELECT DISTINCT c1, c2, c3 FROM t1 WHERE c2 = 1

Relaxed Index Segment Order Sensitivity

Whether an index can be used to optimize on an ORDER BY clause depends on the order in which the
columns appear as segments in the index. Specifically, to be eligible for this type of optimization, the
columns in the ORDER BY clause must make up the leading segments of an index, and the columns
must appear in the ORDER BY clause in the same order as they appear as segments in the index.

In contrast, an index can be used to optimize on a DISTINCT preceding a selection list or on a GROUP
BY clause as long as the selection list or GROUP BY clause consists of columns that are the leading
segments of the index. This statement is true regardless of the order in which the columns appear as
segments in the index.

For example, suppose an index exists on table t1 with the first three segments on columns c1, ¢2 and ¢3,
in any order. The index can be used to optimize on the DISTINCT in the following queries:

SELECT DISTINCT €1, c2, c3 FROM t1
SELECT DISTINCT c2, c3, c1 FROM t1 WHERE c3 > 1

The index can be used to optimize on the GROUP BY in the following queries:

SELECT c1, c2, c3, count(*) FROM t1 GROUP BY c2, cl, c3
SELECT c2, c3, cl, count(*) FROM t1 GROUP BY c3, c2, cl

For the index to be used to optimize on the ORDER BY, however, the index segments must be in the
order of ¢2, c1, c3:

334

SELECT c1, c2, c3 FROM t1 ORDER BY c2, cl, c3

Relaxed Segment Ascending Attribute Sensitivity
Whether an index can be used to optimize on an ORDER BY clause depends on several conditions.

Specifically, an index can be used for optimization of ORDER BY if all of the following conditions are
satisfied:

m the DESC keyword follows the column in the ORDER BY clause
m the corresponding index segment is defined as descending

m the specified column is not nullable.

In addition, an index can be used for optimization of ORDER BY if all of the following converse
conditions are satisfied (note that nullable columns are allowed for ascending ORDER BY):

m the ASC keyword or neither ASC nor DESC follows the column in the ORDER BY statement

m the corresponding index segment is defined as ascending.

As well, an index can be used for optimization of ORDER BY if the ascending/descending attributes of
all the involved segments are the exact opposite of each ASC or DESC keyword specified in the ORDER
BY. Again, the segments defined as descending can only be used if the associated columns are not
nullable.

Indexes can be used for any of the restriction optimizations, optimization on a DISTINCT, or
optimization on a GROUP BY clause, regardless of the ascending/descending attribute of any of the
segments.

For example, suppose an index exists on table t1 with the first two segments on columns c1 and c2, in
that order, and both segments are ascending. The index can be used to optimize on the following queries:

SELECT c1, c2, c3 FROM t1 ORDER BY cl, c2

SELECT c1, c2, c3 FROM t1 ORDER BY cl DESC, c2 DESC
SELECT DISTINCT cl1, c2 FROM ti1

SELECT DISTINCT c2, cl1 FROM t1

SELECT * FROM t1 WHERE cl1l =1

Suppose an index exists on table t1 with the first two segments on columns c1 and ¢2, in that order, with
the segment on c1 defined as ascending and the segment on c2 defined as descending. Suppose also that
c2 is nullable. The second segment cannot be used to optimize on ORDER BY because the column is
both descending and nullable. The index can be used to optimize on the following queries:

SELECT c1, c2, c3 FROM t1 ORDER BY cl
SELECT c1, c2, c3 FROM t1 ORDER BY cl1 DESC
SELECT DISTINCT cl1, c2 FROM ti1

SELECT DISTINCT c2, cl1 FROM tl1

SELECT * FROM t1 WHERE c1 = 1

If column c2 is not nullable, then the index can also be used to optimize on the following queries:
SELECT c¢1, c2, c3 FROM t1 ORDER BY cl, c2 DESC

SELECT c1, c2, c3 FROM t1 ORDER BY cl1l DESC, c2

Search Update Optimization

You may take advantage of search optimization when you update a leading segment index by using the
same index in the WHERE clause for the search. The database engine uses one session (client ID) for the
UPDATE and another session for the search.

335

The following statements benefit from search optimization.

CREATE TABLE t1 (cl INT)

CREATE INDEX t1_cl ON tl(cl)

INSERT INTO t1 VALUES(1)

INSERT INTO t1 VALUES(1)

INSERT INTO t1 VALUES(9)

INSERT INTO t1 VALUES(10)

INSERT INTO t1 VALUES(10)

UPDATE t1 SET cl = 2 WHERE c1 = 10
UPDATE t1 SET ¢l = ¢l + 1 WHERE c1 >= 1

336

Temporary Table Performance

Performance improvements have been made to the implementation of temporary sort tables in this
release. To process certain queries, the database engine must generate temporary tables for internal use.
The performance for many of these queries has been improved.

In general, the database engine generates at least one temporary table to process a given query if any of
the following conditions is true:

m The DISTINCT keyword precedes the selection list and the items in the selection list are not
columns that are the leading segments of an index.

For example, a temporary table is generated to process the following query unless an index exists
with columns c1 and ¢2 as leading segments:

SELECT DISTINCT cl1, c2 FROM ti1

s A GROUP BY clause is used, and the items in the GROUP BY clause are not columns that are the
leading segments of an index.

For example, a temporary table is generated to process the following query unless an index exists
with columns c1 and ¢2 as leading segments:

SELECT c1, c2, COUNT(*) FROM tl GROUP BY cl, c2
m A static cursor is being used.

For example, a temporary table is generated if an application calls the ODBC API
SQLSetStmtOption specifying the SQL_CURSOR_TYPE option and the SQL_CURSOR_STATIC
value prior to creation of the result set.

m The result set includes bookmarks.

For example, if the ODBC API SQLSetStmtOption is called specifying the
SQL_USE_BOOKMARKS option and the SQL_UB_ON value prior to generating the result set.

m A query contains a non-correlated subquery to the right of the IN or =ANY keywords.
For example:

SELECT c1 FROM t1 WHERE c2 IN (SELECT c2 FROM t2)

337

Row Prefetch

Under certain circumstances, upon execution of a SELECT statement, this release of the database engine
attempts to prefetch to the client the first two rows of the resulting rowset. This prefetch greatly improves
the performance of fetching data from result sets that consist of zero or one row.

Prefetching rows can be a costly waste of time if the result set consists of more than one row and the first
data retrieval operation requests a row other than the first row in the result set, such as the last row.
Therefore, prefetching is limited to a maximum of two rows with the goal of improving performance for
the cases that would benefit most while avoiding cases where prefetching would not provide significant
benefits.

Prefetching occurs only if Array Fetch is enabled in the advanced connection attributes for client DSNs
(see Advanced Connection Attributes in ODBC Guide). Array fetching is similar to prefetching except
that an array fetch does not occur until the first explicit data retrieval operation is performed. This
difference exists because the first explicit data retrieval operation may provide enough information to
allow the database engine to extrapolate how the rest of the result set will be retrieved. For example, if
the first data retrieval operation is a call to the ODBC API SQLFetch, then the database engine can
assume with complete certainty that the entire result set will be retrieved one record at a time in the
forward direction only. This assumption can be made because, according to the ODBC specification, a
SQLFetch entails that the rest of the result set will be retrieved via SQLFetch as well. On the other hand,
ifa SQLExtendedFetch call is made, and the row set size is greater than one, then the client assumes that
the developer-specified rowset size is optimal, and it does not override that setting with the array fetch.

Prefetching occurs only when all of the following conditions are satisfied:

= Array fetch is enabled.

m The result set does not include large variable length data. For example, the selection list does not
contain a column of type LONGVARCHAR or LONGVARBINARY.

m The result set does not include bookmarks.

For example, prefetching does not occur if the ODBC API SQLSetStmtOption is called prior to
generating the result set, specifying the SQL_USE_BOOKMARKS option and the SQL_UB_ON
value.

m A cursor with read-only concurrency is being used.

For example, prefetching does not occur if the ODBC API SQLSetStmtOption is called, specifying
the SQL_CONCURRENCY option and any value other than SQL_CONCUR_READ_ONLY, prior
to generating the result set. By default, concurrency is read-only.

338

Terminology

This topic provides definitions and examples to help you understand the complex technical material
presented here.

Aggregate Function

An aggregate function uses a group of values in the SELECT or HAVING clause of a query to produce a
single value. Aggregate functions include: COUNT, AVG, SUM, STDEV, MAX, MIN, and DISTINCT.

Closed Range

A closed range is a pair of Open-Ended Ranges joined by an AND operator. Both open-ended ranges
must reference the same column and one must contain the < or <= comparison operator and the other
must contain the >= or > comparison operator. A BETWEEN clause also defines a closed range.

For example, the following expressions are closed ranges:

cl > 1 AND cl <= 10
cl BETWEEN 1 AND 10

Conjunct

A conjunct is an expression in which two or more Predicates are joined by AND operators. For example,
the following Restrictions are conjuncts:

cl=2 AND c2<5
cl1>2 AND cl1l<5 AND c2= "abc*®

Conjunctive Normal Form (CNF)

An Expression is in Conjunctive Normal Form if it contains two or more Disjuncts joined by AND
operators. For example, the following expressions are in CNF:

cl =2 AND c2 < 5
(cl =20R cl =5) AND (c2 <5 0R c2 > 20) AND (c3 = "abc®" OR c3 = "efg")

Disjunct

A disjunct is an Expression in which two or more Predicates are joined by OR operators. For example,
the following expressions are disjuncts:

cl
cl

20RCc2=5
20R cl >50R c2 = "abc*

Disjunctive Normal Form (DNF)

An Expression is in disjunctive normal form if it contains two or more Conjuncts joined by OR
operators. For example, the following expressions are in DNF:

cl=20Rc2<5
(cl =2 AND c2 =5) OR (c2 > 5 AND c2 < 10) OR c3 = "abc"

339

Expression

An expression consists of any Boolean algebra allowed in a Restriction. An entire restriction or any part
of the restriction that includes at least one or more complete Predicates is an expression.

Index

An index is a construct associated with one or more columns in a table that allows the database engine
to perform efficient searches and sorts. The database engine can make use of indexes to improve search
performance by reading only specific rows that will satisfy the search conditions rather than by
examining all the rows in the table. The database engine can make use of indexes to retrieve rows in the
order specified by a SQL query rather than having to use inefficient techniques to order the rows after
retrieving them.

Join Condition

A join condition is a Predicate that compares a column in one table to a column in another table using
any of the comparison operators: <, <=, =, >=, >.

For example, the following predicates are join conditions:

tl.cl = t2.cl
tl.cl > t2.c2

Leading Segments

A group of index segments are leading segments if they consist of the first # columns in an Index, where
n is any number up to and including the total number of segments in the index. For example, if an index
is defined with segments on columns c1, c2, and c4, then c1 is a leading segment, c1 and c2 together are
leading segments, and all three together are leading segments. c2 alone is not a leading segment, because
the segment c1 precedes c2 and is excluded. Columns c1 and c4 together are not leading segments,
because c2 precedes c4 and is excluded.

Modified Conjunctive Normal Form (Modified CNF)

An Expression in Modified Conjunctive Normal Form is like an expression in Conjunctive Normal
Form (CNF) except that each Disjunct may contain Closed Ranges as well as Predicates.

For example, the following expressions are in Modified CNF:

cl =2 AND c2 <5

(cl =20R (cl1 >4 AND c1 < 6) OR cl1 = 10) AND (c2 = 1 OR c3 = "efg")

Modified Disjunct

A modified disjunct is like a Disjunct except that it may contain Closed Ranges as well as Predicates.

For example, the following expressions are modified disjuncts:

cl =2O0R (cl >4 AND cl1 < 5)
(cl =20R (cl >4 AND cl1 < 5)) OR c2 = "abc”

340

Open-Ended Range

An open-ended range is a predicate that contains any of the following comparison operators: <, <=, >=
or >. Furthermore, one of the predicate operands must consist entirely of a single column and the other

operand must consist entirely of either a single column from another table or a literal.

For example, the following expressions are open ended ranges:

cl>1
cl <= 10
tl.cl > t2.cl

Predicate

A predicate is a Boolean expression that does not include any AND or OR Boolean operators (with the

exception of a BETWEEN predicate).

For example, the following expressions are predicates:

(cl1 =1)
(cl LIKE "abc*)
(cl BETWEEN 1 AND 2)

The following examples are not predicates:

(cl > 1 AND cl < 5)
(cl=10Rcl = 2)

Restriction
A restriction is the entire WHERE clause of a SQL query.

341

342

System Catalog Functions

Retrieving Metadata with System Catalog Functions

System catalog functions are covered the following topics:

= Zen System Catalog Functions
s dbo.fSQLColumns

» dbo.fSQLForeignKeys

» dbo.fSQLPrimaryKeys

s dbo.fSQLProcedures

m dbo.fSQLProcedureColumns
m dbo.fSQLSpecialColumns

s dbo.fSQLStatistics

m dbo.fSQLTables

m dbo.fSQLDBTableStat

m String Search Patterns

chapter

343

Zen System Catalog Functions

System catalog functions allow you to obtain database metadata from the data dictionary files, also
known as the catalog. The system catalog functions can be used only in a FROM clause.

Zen can also return metadata by calling appropriate catalog APIs or by using system stored procedures
(see System Stored Procedures). These two methods, however, do not store the metadata in a view that
can be joined or unioned with other tables. To provide JOIN and UNION capability with other tables,
the system catalog functions are required.

Note that some access methods, such as ADO.NET, require system catalog functions for entity support
so that JOIN and UNION capabilities are available.

A temporary view schema for each system catalog function is created during the prepare phase and data
is stored in the view by calling a corresponding catalog API during the execute phase.

The following table lists the available system catalog functions.

Zen Function’ Returns

dbo.fSQLColumns The list of columns and their corresponding information for a specified table, from the current
database or the specified database

dbo.fSQLForeignKeys The foreign key information for the specified table in the current database

dbo.fSQLPrimaryKeys The primary key information for the specified table, from the current database or the database
specified

dbo.fSQLProcedures The names of stored procedures in the current database or the specified database

dbo.fSQLProcedureColumns | The list of input and output parameters and the columns that make up the result set for the
specified procedure

dbo.fSQLSpecialColumns Information about the optimal set of columns that uniquely identifies a row in a specified table,
or the columns that are automatically updated when any value in the row is updated by a
transaction.

dbo.fSQLStatistics Statistics about a single table and the list of indexes associated with the table, from the current

database or the specified database

dbo.fSQLTables Alist of tables along with their corresponding information, from the current database or the
specified database

1 Because the Zen catalog functions are based on ODBC, you may want to refer to ODBC documentation for additional
information. The content presented here provides enough information to understand and use Zen catalog functions without
exhaustive technical detail.

Return Status
Each system catalog function returns one of the following status values depending on execution results:

s SQL_SUCCESS

s SQL_SUCCESS_WITH_INFO
s SQL_STILL_EXECUTING

= SQL_ERROR

s SQL_INVALID_HANDLE

344

Summary

The system catalog functions have the following characteristics:

They return metadata.
They work in the same manner as views.
They can be referenced only in the FROM clause of a SELECT statement.

The parameters can be only in the form of constants or dynamic parameters.

Note Most popular SQL editors do not use statement delimiters to execute multiple statements.

However, SQL Editor in ZenCC requires them. If you wish to execute the examples in other
environments, you may need to remove the pound sign or semicolon separators.

345

dbo.fSQLColumns

This function returns the list of column names in a specified table.

Syntax

dbo.fSQLColumns <"database_qualifier® | null>, <"table_name® | null>, <"column_name*
| null>)

Arguments

Table 94 dbo.fSQLColumns Arguments

Parameter Type Default Value Description

database_qualifier VARCHAR Current database | Name of the database from which the details are to be obtained.

table_name VARCHAR (no default value) | Name of the table whose column information is required

column_name VARCHAR All columns for the | Column name of the table specified.
specified table

Returned Result Set

Table 95 dbo.fSQLColumns Returned Result Set

Column Name Data Type Description
TABLE_QUALIFIER VARCHAR Name of the database. NULL if not applicable to the database.
TABLE_OWNER VARCHAR Schema name of the table. NULL if not applicable to the database.
TABLE_NAME VARCHAR not Name of the table.
NULL
COLUMN_NAME VARCHAR Column name of the table or an empty string for a column that does not
have a name.
DATA_TYPE SMALLINT not SQL data type of the column. See Supported Data Types in ODBC Guide.
NULL
TYPE_NAME VARCHAR Name of the data type of the column corresponding to DATA_TYPE value
PRECISION INTEGER The precision of the column if the data type is Decimal, Numeric, and so

forth. See Precision and Scale of Decimal Data Types.

If DATA_TYPE is CHAR or VARCHAR, this column contains the
maximum length in characters of the column. For date time data types,
this is the total number of characters required to display the value when it
is converted to characters. For numeric data types, this is either the total
number of digits or the total number of bits allowed in the column,
according to the RADIX column.

346

Table 95 dbo.fSQLColumns Returned Result Set (Continued)

Column Name

Data Type

Description

LENGTH

INTEGER

The length in bytes of data transferred on a SQLGetData, SQLFetch, or
SQLFetchScroll operation if SQL_C_DEFAULT is specified.

For numeric data, this size may differ from the size of the data stored in
the database. This value might differ from COLUMN_SIZE column for
character data.

SCALE

SMALLINT

The total number of significant digits to the right of the decimal point. For
TIME, TIMESTAMP, and TIMESTAMP?2, this column contains the number
of digits in the fractional seconds component.

For the other data types, this is the decimal digits of the column in the
database. See Precision and Scale of Decimal Data Types.

RADIX

SMALLINT

Base for numeric data types

For numeric data types, either 10 or 2.

* 10—the values in COLUMN_SIZE and DECIMAL_DIGITS give the
number of decimal digits allowed for the column.

» 2—the values in COLUMN_SIZE and DECIMAL_DIGITS give the
number of bits allowed in the column.

NULL is returned for data types where RADIX is not applicable.

NULLABLE

SMALLINT

Indicates whether the procedure column accepts a NULL value:

* 0 =NO_NULLS—the procedure column does not accept NULL
values.

* 1 =NULLABLE—the procedure column accepts NULL values.

* 2=NULLABLE_UNKNOWN—it is not known if the procedure column
accepts NULL values.

REMARKS

VARCHAR

Remarks field

COLUMN_DEF

VARCHAR

The default value of the column.

If NULL was specified as the default value, this column is the word NULL,
not enclosed in quotation marks. If the default value cannot be
represented without truncation, this column contains TRUNCATED, with
no enclosing single quotation marks. If no default value was specified, this
column is NULL.

SQL_DATA_TYPE

SMALLINT not
NULL

Value of the SQL data type as it appears in the SQL_DESC_TYPE field
of the descriptor. This column is the same as the TYPE_NAME column,
except for data types AUTOTIMESTAMP, DATE, DATETIME, TIME,
TIMESTAMP, and TIMESTAMP2.

For those data types, the SQL_DATA_TYPE field in the result set returns
the following: SQL_DATE for DATE, SQL_TIME for TIME, and SQL_
TIMESTAMP for AUTOTIMESTAMP, DATETIME, TIMESTAMP, and
TIMESTAMP2.

SQL_DATETIME_SUB

SMALLINT

Subtype code for AUTOTIMESTAMP, DATE, DATETIME, TIME,
TIMESTAMP, and TIMESTAMP2. For other data types, this column
returns a NULL.

+ 1 =for DATE (SQL_CODE_DATE)
« 2 =for TIME (SQL_CODE_TIME)

* 3 =for AUTOTIMESTAMP, DATETIME, TIMESTAMP, and
TIMESTAMP2 (SQL_CODE_TIMESTAMP)

347

Table 95 dbo.fSQLColumns Returned Result Set (Continued)

Column Name

Data Type

Description

CHAR_OCTET_LENGTH

INTEGER

Maximum length in bytes of a character or binary data type column. For
all other data types, this column returns a NULL.

ORDINAL_POSITION

INTEGER not
NULL

For input and output parameters, the ordinal position of the parameter in
the procedure definition (in increasing parameter order, starting at 1).

For a return value (if any), O is returned. For result-set columns, the
ordinal position of the column in the result set, with the first column in the
result set being number 1.

IS_NULLABLE

VARCHAR

"NQ" if the column does not include NULLs.
"YES" if the column includes NULLSs.

This column returns a zero-length string if nullability is unknown. The
value returned for this column differs from the value returned for the
NULLABLE column.

Example

This example returns information for all columns in the Room table in the default Demodata sample

database.

SELECT * FROM dbo.fSQLColumns ("Demodata®, “"room®, null);

Result Set (abbreviated for space considerations):

COLUMN_NAME DATA_TYPE LENGTH ORDINAL_POSITION
Building_Name 1 25 1
Number 4 4 2
Capacity 5 2 3
Type 1 20 4

4 rows were affected.

348

dbo.fSQLForeignKeys

This functions returns the foreign key information for the specified table in the current database.
Dbo.fSQLForeignKeys can return a list of foreign keys as a result set for either of the following:

m The specified table (columns in the specified table that refer to primary keys in other tables)

m Other tables that refer to the primary key in the specified table

Syntax

dbo.fSQLForeignKeys (<"table_qualifier™ | null>, "pkey_table name® | null>, <"fkey
table_name® | null>)

Arguments

Table 96 dbo.fSQLForeignKeys Arguments

Parameter

Type Default Value

Description

table_qualifier

VARCHAR Current database Name of the database from which the details are to be obtained.

pkey_table_name

VARCHAR (no default value) | Name of the table whose foreign key is associated with the

primary key column. Pattern matching is supported (see String
Search Patterns).

fkey_table_name

VARCHAR (no default value) | Name of the table whose foreign key information needs to be

obtained. Pattern matching is supported (see String Search

Patterns).
Returned Result Set
Table 97 dbo.fSQLForeignKeys Returned Result Set
Column Name Data Type Description
PKTABLE_QUALIFIER VARCHAR Database name of the primary key table. NULL if not applicable to the
database.
PKTABLE_OWNER VARCHAR Name of the owner of the primary key table. NULL if not applicable to

the database.

PKTABLE_NAME

VARCHAR not NULL

Name of the primary key table

PKCOLUMN_NAME

VARCHAR not NULL

Column name of the primary key column. An empty string is returned
for a column that does not have a name.

FKTABLE_QUALIFIER VARCHAR Database name of the foreign key table. NULL if not applicable to the
database.
FKTABLE_OWNER VARCHAR Name of the owner of the foreign key table. NULL if not applicable to

the database.

FKTABLE_NAME

VARCHAR not NULL

Name of the foreign key table.

FKCOLUMN_NAME

VARCHAR not NULL

Column name of the foreign key column. An empty string is returned
for a column that does not have a name.

349

Table 97 dbo.fSQLForeignKeys Returned Result Set

Column Name Data Type Description

KEY_SEQ SMALLINT Column sequence number in key (starting with 1). The value of this
column corresponds to Xi$Part in X$Index. See X$Index.

UPDATE_RULE SMALLINT Action to be applied to the foreign key when the SQL operation is
UPDATE. Can have one of the following values:

+ 0=CASCADE
+ 1=RESTRICT

DELETE_RULE SMALLINT Action to be applied to the foreign key when the SQL operation is
DELETE. Can have one of the following values:

» 0=CASCADE
*+ 1=RESTRICT

FK_NAME VARCHAR Name of the foreign key. NULL if not applicable to the database.
PK_NAME VARCHAR Name of the primary key. NULL if not applicable to the database.
DEFERRABILITY SMALLINT One of the following values:

* 5=INITIALLY_DEFERRED
* 6 =INITIALLY_IMMEDIATE
+ 7=NOT_DEFERRABLE

Example

This example creates three tables in the Demodata sample database. Primary keys and foreign keys are
assigned to the tables. The dbo.fSQLForeignKeys function references the two primary key tables using a
string search pattern. See also String Search Patterns.

CREATE TABLE primarykeyl (pklcoll INT, pklcol2 INT, pklcol3 INT, pklcol4 INT, PRIMARY
KEY (pklcoll, pklcol2));

ALTER TABLE primarykeyl ADD FOREIGN KEY (pklcol3, pklcol4) REFERENCES primarykeyl ON
DELETE CASCADE;

CREATE TABLE primarykey2 (pk2coll INT, pk2col2 INT, pk2col3 INT, pk2col4 INT, PRIMARY
KEY (pk2coll, pk2col2));

ALTER TABLE primarykey2 ADD FOREIGN KEY (pk2col3, pk2col4) REFERENCES primarykey2 ON
DELETE CASCADE;

CREATE TABLE foreignkeyl (fkcoll INT, fkcol2 INT, fkcol3 INT, fkcol4 INT);
ALTER TABLE foreignkeyl ADD FOREIGN KEY (fkcoll, fkcol2) REFERENCES PRIMARYKEY1;
ALTER TABLE foreignkeyl ADD FOREIGN KEY (fkcol3, fkcol4) REFERENCES PRIMARYKEYZ2;

SELECT * FROM dbo.fSQLForeignKeys ("Demodata®, "primarykey%®, “foreignkeyl®);

Result Set (abbreviated for space considerations):

FKCOLUMN_NAME DELETE_RULE FK_NAME PK_NAME

fkcoll 1 FK_Ofkcoll PK_pkilcoll
fkcol2 1 FK_Ofkcoll PK_pkilcoll
fkcol3 1 FK_Ofkcol3 PK_pk2coll
fkcol4 1 FK_Ofkcol3 PK_pk2coll

4 rows were affected.

350

dbo.fSQLPrimaryKeys

This function returns as a result set the column names that make up the primary key for a table.
Dbo.fSQLPrimaryKeys does not support returning primary keys from multiple tables in a single call.

Syntax
dbo.fSQLPrimaryKeys (<"pkey_table_qualifier® | null>, <"table_name® | null>)

Arguments

Table 98 dbo.fSQLPrimaryKeys Arguments

Parameter Type Default Value Description

pkey_table_qualifier | VARCHAR Current database | Name of the database from which the details are to be obtained.

table_name VARCHAR (no default value) | Name of the table whose primary key information is requested.
Pattern matching is supported (see String Search Patterns).

Returned Result Set

Table 99 dbo.fSQLPrimaryKeys Returned Result Set

Column Name Data Type Description
TABLE_QUALIFIER VARCHAR Name of the database. NULL if not applicable to the database.
TABLE_OWNER VARCHAR Name of the owner of the primary key table. NULL if not applicable to the
database.
TABLE_NAME VARCHAR not Name of the primary key table
NULL
COLUMN_NAME VARCHAR not Name of the primary key column. An empty string is returned for a column that
NULL does not have a name.
COLUMN_SEQ SMALLINT not Column sequence number in key (starting with 1).
NULL
PK_NAME VARCHAR Name of the primary key. NULL if not applicable to the database.
Example

This example creates two tables in the Demodata sample database. Primary keys and foreign keys are

assigned to the tables. The dbo.fSQLPrimaryKeys function references the two tables using a string search

pattern. See also String Search Patterns.

CREATE TABLE tblprimarykey3 (tblpk3coll INT, tblpk3col2 INT, tblpk3col3 INT,
tblpk3col4 INT, PRIMARY KEY (tblpk3coll, tblpk3col2));

ALTER TABLE tblprimarykey3 ADD FOREIGN KEY (tblpk3col3, tblpk3col4) REFERENCES
tblprimarykey3 ON DELETE CASCADE;

CREATE TABLE tblprimarykey4 (tblpk4coll INT, tblpk4col2 INT, tblpk4col3 INT,
tblpk4col4 INT, PRIMARY KEY (tblpk4coll, tblpk4col2));

351

ALTER TABLE tblprimarykey4 ADD FOREIGN KEY (tblpk4col3, tblpk4col4) REFERENCES
tblprimarykey4 ON DELETE CASCADE;

SELECT * FROM dbo.fsqglprimarykeys("Demodata®, "tbl%");

Result Set (abbreviated for space considerations):

TABLE_NAME COLUMN_NAME KEY_SEQ PK_NAME

tblprimarykey3 tblpk3coll
tblprimarykey3 tblpk3col2
tblprimarykey4 tblpk4coll
tblprimarykey4 tblpk4col?2

PK_tblpk3coll
PK_tblpk3coll
PK_tblpk4coll
PK_tblpk4coll

NEF,NPRP

4 rows were affected.

352

dbo.fSQLProcedures

This function returns as a result set the names of stored procedures and user-defined functions in the
current database or the specified database. See also CREATE PROCEDURE and CREATE FUNCTION.

Syntax

dbo.fSQLProcedures (<"database_qualifier®™ | null>, <"procedure_name® | null>)

Arguments

Table 100 dbo.fSQLProcedures Arguments

Parameter Type Default Value Description

database_qualifier VARCHAR Current database | Name of the database from which the details are to be obtained.

procedure_name VARCHAR (no default value) | Name of the stored procedure whose information is required.

Note System stored procedures are defined in the internal PERVASIVESYSDB database, which Zen
Control Center does not display.

Returned Result Set

Table 101 dbo.fProcedures Returned Result Set

Column Name Data Type Description
PROCEDURE_QUALIFIER | VARCHAR Name of the database in which the procedure was created. NULL if not

applicable to the database.
PROCEDURE_OWNER VARCHAR Procedure schema identifier. NULL if not applicable to the database.
PROCEDURE_NAME VARCHAR not Procedure identifier

NULL

NUM_INPUT_PARAMS none Reserved for future use. Do not use for your application.
NUM_OUTPUT_PARAMS none Reserved for future use. Do not use for your application.
NUM_RESULT_SETS none Reserved for future use. Do not use for your application.
REMARKS VARCHAR The description of the procedure
PROCEDURE_TYPE SMALLINT Defines the procedure type:

* 0=PT_UNKNOWN—it cannot be determined whether the procedure
returns a value.

* 1=PT_PROCEDURE—the returned object is a procedure and does
not have a return value.

* 2=PT_FUNCTION—the returned object is a function and has a return
value.

353

Example

By default, the Demodata database does not contain any stored procedures or user-defined functions.
To provide output for the dbo.fSQLProcedures function (and for dbo.fSQLProcedureColumns), you can
create the following stored procedures and user-defined function. They can all be called provided the
required tables and parameter bindings are present. However, the point for this example is to include
them as database objects rather than demonstrate their execution.

See also CREATE PROCEDURE and CREATE FUNCTION.

CREATE PROCEDURE cursl (IN :Argl CHAR(4), IN :Arg2 INTEGER) AS BEGIN

DECLARE :alpha char(10) DEFAULT "BA*";

DECLARE :beta INTEGER DEFAULT 100;

DECLARE degdel CURSOR FOR

SELECT degree, cost_per_credit FROM tuition WHERE Degree = :Argl AND cost_per_credit
= targ2

FOR UPDATE;

OPEN degdel;

FETCH NEXT FROM degdel INTO :alpha, :beta

DELETE WHERE CURRENT OF degdel;

CLOSE degdel ;

END

CREATE PROCEDURE EnrollStudent2 (IN :Stud_id INTEGER, IN
:Class_Id INTEGER);
BEGIN

INSERT INTO Enrolls VALUES (:Stud_id, :Class_Id, 0.0);
END

CREATE PROCEDURE Alnsert

(IN :AGUID BINARY(16),

IN :-APeriod INT,

IN :BBal UTINYINT,

IN :BDr DECIMAL(23,9),

IN :BCr DECIMAL(23,9),

IN :BNet DECIMAL(23,9),

IN -HTrx UTINYINT,

IN :PDr DECIMAL(23,9),

IN :PCr DECIMAL(23,9),

IN :PNet DECIMAL(23,9))

AS BEGIN

INSERT INTO "ASum"™ ("AID", "APeriod'", "I1Bal', "BDr', "BCr', "BNet', "HTrx'", "PDr",
"PCr', "PNet'") VALUES (:AGUID, :APeriod, :BBal, :BDr, :BCr, :BNet, :HTrx,
:PDr, :PCr, :PNet);

END

CREATE PROCEDURE AR (OUT :BIID SMALLINT, IN :zBName CHAR(30))
AS BEGIN

SELECT MAX(BID) + 1 INTO :BIID FROM Br;

INSERT INTO Br (BID, FName) VALUES (:BIID, :BName);

END

CREATE FUNCTION Callnterest (IN :principle FLOAT,
IN :period REAL, IN :rate DOUBLE)

RETURNS DOUBLE

AS BEGIN

DECLARE :interest DOUBLE;

SET :interest = ((:principle * :zperiod * :rate) /
100);

354

RETURN (:interest);
END;

SELECT * FROM dbo.fSQLProcedures ("Demodata®, null);

Result Set (abbreviated for space considerations):

PROCEDURE_QUALIFIER PROCEDURE_NAME PROCEDURE_TYPE
Demodata cursl 1
Demodata Enrollstudent2 1
Demodata Alnsert 1
Demodata AR 1
Demodata CalInterest 2

5 rows were affected.

355

dbo.fSQLProcedureColumns

This function returns the list of input and output parameters and the columns that make up the result
set for the specified stored procedure or user-defined function. See also CREATE PROCEDURE and
CREATE FUNCTION.

Syntax
dbo.fSQLProcedureColumns (<"database_qualifier™ | null>, <"procedure_name®" | null>,

<"procedure_column_name® | null>)

Arguments

Table 102 dbo.fSQLProcedureColumns Arguments

Parameter Type Default Value Description

database_qualifier VARCHAR Current database | Name of the database from which the details are to be obtained.

procedure_name VARCHAR (no default value) | Name of the stored procedure whose information is required.

procedure_column_ | VARCHAR (no default value) | Name of the column in the procedure.
name

Note System stored procedures are defined in the internal PERVASIVESYSDB database, which does
not display in Zen Control Center.

Returned Result Set

Table 103 dbo.fProcedureColumns Returned Result Set

Column Name Data Type Description
PROCEDURE_QUALIFIER | VARCHAR Name of the database in which the procedure was created. NULL if not
applicable to the database.
PROCEDURE_OWNER VARCHAR Procedure schema identifier. NULL if not applicable to the database.
PROCEDURE_NAME VARCHAR not Procedure identifier
NULL

356

Table 103 dbo.fProcedureColumns Returned Result Set

Column Name

Data Type

Description

COLUMN_TYPE

SMALLINT not
NULL

Defines the procedure column as a parameter or a result set column:

* 0 =PARAM_TYPE_UNKNOWN—procedure column is a parameter
whose type is unknown.

* 1 =PARAM_INPUT—procedure column is an input parameter.

+ 2=PARAM_INPUT_OUTPUT—procedure column is an input/output
parameter.

* 3 =RESULT_COL—procedure column is a result set column.
* 4 =PARAM_OUTPUT—procedure column is an output parameter.

* 5 =RETURN_VALUE—procedure column is the return value of the
procedure.

DATA_TYPE SMALLINT not SQL data type. See also Supported Data Types in ODBC Guide.
NULL

TYPE_NAME VARCHAR not Relational data type name. See also Zen Supported Data Types.
NULL

PRECISION INTEGER Size of the procedure column in the database. NULL is returned for data
types where column size is not applicable. See also Precision and Scale
of Decimal Data Types.

LENGTH INTEGER Length in bytes of data transferred on a SQLGetData or SQLFetch
operation if SQL_C_DEFAULT is specified. For numeric data, this size
may be different than the size of the data stored in the database. See also
Zen Supported Data Types.

SCALE SMALLINT Number of decimal digits of the procedure column in the database. NULL
is returned for data types where decimal digits is not applicable. See also
Precision and Scale of Decimal Data Types.

RADIX SMALLINT For numeric data types, either 10 or 2.

* 10—the values in COLUMN_SIZE and DECIMAL_DIGITS give the
number of decimal digits allowed for the column.

* 2—the values in COLUMN_SIZE and DECIMAL_DIGITS give the
number of bits allowed in the column.

NULL is returned for data types where RADIX is not applicable.

NULLABLE SMALLINT not Indicates whether the procedure column accepts a NULL value:

NULL * 0 =NO_NULLS—the procedure column does not accept NULL
values.
* 1 =NULLABLE—the procedure column accepts NULL values.
* 2=NULLABLE_UNKNOWN—itis not known if the procedure column
accepts NULL values.
REMARKS VARCHAR The description of the procedure column
COLUMN_DEF VARCHAR The default value of the column.

If NULL was specified as the default value, this column is the word NULL,
not enclosed in quotation marks. If the default value cannot be
represented without truncation, this column contains TRUNCATED, with
no enclosing single quotation marks. If no default value was specified,
this column is NULL.

357

Table 103 dbo.fProcedureColumns Returned Result Set

Column Name Data Type Description
SQL_DATA_TYPE SMALLINT not Value of the SQL data type as it appears in the SQL_DESC_TYPE field
NULL of the descriptor. This column is the same as the TYPE_NAME column,

except for data types AUTOTIMESTAMP, DATE, DATETIME, TIME,
TIMESTAMP, and TIMESTAMP2.

For those data types, the SQL_DATA_TYPE field in the result set returns
the following: SQL_DATE for DATE, SQL_TIME for TIME, and SQL_
TIMESTAMP for AUTOTIMESTAMP, DATETIME, TIMESTAMP, and
TIMESTAMP2.

SQL_DATETIME_SUB SMALLINT Subtype code for AUTOTIMESTAMP, DATE, DATETIME, TIME,
TIMESTAMP, and TIMESTAMP2. For other data types, this column
returns a NULL.

- 1=for DATE (SQL_CODE_DATE)
- 2= for TIME (SQL_CODE_TIME)

« 3 =for AUTOTIMESTAMP, DATETIME, TIMESTAMP, and
TIMESTAMP2 (SQL_CODE_TIMESTAMP)

CHAR_OCTET_LENGTH INTEGER Maximum length in bytes of a character or binary data type column. For
all other data types, this column returns a NULL.
ORDINAL_POSITION INTEGER not For input and output parameters, the ordinal position of the parameter in
NULL the procedure definition (in increasing parameter order, starting at 1).

For a return value (if any), O is returned. For result-set columns, the
ordinal position of the column in the result set, with the first column in the
result set being number 1.

IS_NULLABLE VARCHAR "NO" if the column does not include NULLs.
"YES" if the column includes NULLs.

This column returns a zero-length string if nullability is unknown. The
value returned for this column differs from the value returned for the
NULLABLE column.

Example

By default, the Demodata sample database does not contain any stored procedures or user-defined
functions. To provide output for the dbo.fSQLProcedureColumns function, you can create the stored
procedures and user-defined function provided in the example for dbo.fSQLProcedures. This example
assumes that Demodata contains the stored procedures cursl, Enrollstudent2, Alnsert, and AR, and the
user-defined function Callnterest.

The following statement returns information for all columns in all stored procedures and user-defined
functions in the Demodata sample database:

SELECT * FROM dbo.fsglprocedurecolumns ("Demodata®, null, null)
Result Set (abbreviated for space considerations):

PROCEDURE_NAME COLUMN_NAME COLUMN_TYPE DATA_TYPE

Alnsert :AGUID 1 -2
Alnsert :APeriod 1 4
Alnsert :BBal 1 -6
Alnsert :BCr 1 3
Alnsert :BDr 1 3

358

Alnsert :BNet

Alnsert THTrx
Alnsert :PCr
Alnsert :PDr
Alnsert :PNet

AR :BIID

AR :BName
Callnterest Zperiod
Callnterest cprinciple
CallInterest Irate
Callnterest :RETURN_VALUE
cursl tArgl
cursl tArg2

Enrollstudent2 :Class_Id
Enrollstudent2 :Stud_id

20 rows were affected.

RPRPRPRPRUORRPRRPRRARRRRER

ARARDARPO0OOONRFR,UUWWWO W

359

dbo.fSQLSpecialColumns

For a specified table, this function retrieves column information for the optimal set of columns that
uniquely identifies a row in the table and columns that are automatically updated when any value in the
row is updated by a transaction.

Syntax

dbo.fSQLSpecialColumns (<"database_qualifier® | null>, <"table_name® | null>,
<"nullable® | null>)

Arguments

Table 104 dbo.fSQLSpecialColumns Arguments

Parameter Type Default Value Description

database_qualifier VARCHAR Current database | Name of the database from which the details are to be obtained

table_name VARCHAR (no default value) | Name of the table whose column information is required

nullable SMALLINT (no default value) | Determines whether to return special columns that can have a
NULL value. Must be one of the following:

* 0 =NO_NULLS—exclude special columns that can have
NULL values.

* 1 =NULLABLE—return special columns even if they can
have NULL values.

Returned Result Set

Table 105 dbo.fSQLSpecialColumns Returned Result Set

Column Name Data Type Description

SCOPE SMALLINT Scope of the rowid. Contains one of the following values:
+ 0=SCOPE_CURROW

*+ 1 =SCOPE_TRANSACTION

* 2=SCOPE_SESSION

NULL is returned when IdentifierType is SQL_ROWVER.

COLUMN_NAME VARCHAR not Name of the column. An empty string is returned for a column that does not have
NULL a name.

DATA_TYPE SMALLINT not SQL data type. See also Supported Data Types in ODBC Guide.
NULL

PRECISION INTEGER Size of the procedure column in the database. See also Precision and Scale of

Decimal Data Types.

LENGTH INTEGER Length in bytes of data transferred on a SQLGetData or SQLFetch operation if
SQL_C_DEFAULT is specified. For numeric data, this size may differ from that
of the data stored in the database. See also Zen Supported Data Types.

360

Table 105 dbo.fSQLSpecialColumns Returned Result Set (Continued)

Column Name Data Type Description

SCALE SMALLINT Number of decimal digits of the procedure column in the database. NULL is
returned for data types where decimal digits is not applicable. See also Precision
and Scale of Decimal Data Types.

PSEUDO_COLUMN | SMALLINT Indicates whether the column is a pseudo-column.

* 0=PC_UNKNOWN

Zen does not support pseudo-columns.

Example

This example creates a table with two columns that uniquely identify a row and are automatically
updated when a transaction updates any value in the row.

CREATE TABLE t2 (cl IDENTITY, c2 INTEGER, c¢3 SMALLINT NOT NULL, c4 TIMESTAMP NOT NULL)
ALTER TABLE t2 ADD PRIMARY KEY (cl, c4);

SELECT * FROM dbo.fSQLSpecialColumns ("Demodata® ,"t2" , "null®)

Result Set (abbreviated for space considerations):

COLUMN_NAME DATA_TYPE TYPE_NAME PRECISION LENGTH

cl
c4

4

INTEGER 4 4

11 DATETIME 16 16

2 rows were affected.

361

dbo.fSQLStatistics

This function returns as a result set a list of statistics about a table and the indexes associated with the
table.

Syntax

dbo.fSQLStatistics (<"database_qualifier® | null>, <"table_name®" | null>, <“unique*
| null>)

Arguments

Table 106 dbo.fSQLStatistics Arguments

Parameter Type Default Value Description

database_qualifier VARCHAR Current database | Name of the database from which the details are to be obtained

table_name VARCHAR (no default value) | Name of the table whose column information is required.
Pattern matching is supported (see String Search Patterns).

unique SMALLINT (no default value) | Type of index:
0 = INDEX_UNIQUE

1 =INDEX_ALL
Returned Result Set
Table 107 dbo.fSQLStatistics Returned Result Set
Column Name Data Type Description
TABLE_QUALIFIER VARCHAR Name of the database containing the table to which the statistic orindex applies.
NULL if not applicable to the database.
TABLE_OWNER VARCHAR Schema name of the table to which the statistic or index applies. NULL if not
applicable to the database.
TABLE_NAME VARCHAR not Name of the table to which the statistic or index applies
NULL
NON_UNIQUE SMALLINT Indicates whether the index does not allow duplicate values:

* 0= FALSE if the index values must be unique.
+ 1 =TRUE if the index values can be nonunique.

NULL is returned if TYPE is TABLE_STAT.

INDEX_QUALIFIER VARCHAR The identifier that is used to qualify the index name doing a DROP INDEX.
NULL is returned if an index qualifier is not supported by the database or if
TYPE is TABLE_STAT.

INDEX_NAME VARCHAR Index name. NULL is returned if TYPE is TABLE_STAT.

362

Table 107 dbo.fSQLStatistics Returned Result Set (Continued)

Column Name Data Type Description
TYPE SMALLINT not Type of information being returned:
NULL .+ 0=TABLE_STAT
+ 3=INDEX_OTHER

SEQ_IN_INDEX SMALLINT Column sequence number in index (starting with 1). NULL is returned if TYPE
is TABLE_STAT.

COLUMN_NAME VARCHAR Column name. If the column is based on an expression, such as PERSONID +
NAME, the expression is returned. Iff the expression cannot be determined, an
empty string is returned.

NULL is returned if TYPE is TABLE_STAT.
COLLATION CHAR Sort sequence for the column:
A = ascending
D = descending
NULL is returned if column sort sequence is not supported by the database or
if TYPE is TABLE_STAT.

CARDINALITY INTEGER Cardinality of table or index.

Number of rows in table if TYPE is TABLE_STAT. Number of unique values in
the index if TYPE is not TABLE_STAT
NULL is returned if the value is not available from the database.

PAGES INTEGER Number of pages used to store the index or table.

Number of pages for the table if TYPE is TABLE_STAT. Number of pages for the
index if TYPE is not TABLE_STAT

NULL is returned if the value is not available from the database or if not
applicable to the database.

FILTER_CONDITION | VARCHAR If the index is a filtered index, this is the filter condition, such as CLASSID >
150. If the filter condition cannot be determined, this is an empty string.

NULL if the index is not a filtered index, it cannot be determined whether the
index is a filtered index, or TYPE is TABLE_STAT.

Example

This example returns statistics about all indexes for all tables that begin with the letter ¢ in the default
Demodata sample database. NULLs are excluded from INDEX_NAME. See also String Search Patterns.

SELECT * FROM dbo.fSQLStatistics ("Demodata®, “c%",

Result Set (abbreviated for space considerations):

TABLE_NAME INDEX_NAME COLUMN_NAME
Class UK_ID ID

Class Class_Name Name

Class Class_Name Section
Class Class_seg_Faculty Faculty_ID
Class Class_seg_Faculty Start Date

363

1) WHERE INDEX_NAME IS NOT NULL

Class
Class
Class
Class
Class
Course
Course

Class_seg_Faculty

Building_Room
Building_Room
Building_Room
Building_Room
Course_Name
DeptName

12 rows were affected.

364

Start_Time
Building_Name
Room_Number
Start_Date
Start_Time
Name
Dept_Name

dbo.fSQLTables

The function returns the list of table, catalog, or schema names, and table types, stored in a database.

Syntax

dbo.fSQLTables (<"database_qualifier”

null>)

Arguments
Table 108 dbo.fSQLIables Arguments

| null>, <"table_name® | null>, <["type" |

Parameter Type Default Value Description

database_qualifier VARCHAR Current database | Name of the database from which the details are to be obtained
table_name VARCHAR (no default value) | Name of the table whose information needs to be obtained.
type VARCHAR (no default value) | Must be one of the following:

» TABLE returns only the user tables

* SYSTEM TABLE returns all the system tables
* VIEW returns only views

* NULL returns all tables

Returned Result Set

Table 109 dbo.fSQLTables Returned Result Set

Column Name Data Type Description
TABLE_QUALIFIER VARCHAR Name of the database. NULL if not applicable to the database.
TABLE_OWNER VARCHAR Name of the table owner. NULL if not applicable to the database.
TABLE_NAME VARCHAR Name of the table
TABLE_TYPE VARCHAR One of the following:
+ TABLE
+ VIEW
+ SYSTEM TABLE
REMARKS VARCHAR A description of the table.
Example

This example returns a list of the user tables and system tables in the default Demodata sample database.

SELECT * FROM dbo.fSQLTables ("Demodata®, null, null)

Result Set (abbreviated for space considerations):

TABLE_NAME TABLE_TYPE
X$File SYSTEM TABLE
X$Field SYSTEM TABLE

365

X$1ndex
X$View
X$Proc
X$Relate
X$Trigger
X$Attrib
X$0ccurs
X$Variant
Billing
Class
Course
Dept
Enrolls
Faculty
Person
Room
Student
Tuition
X$User
X$Rights

SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
SYSTEM
SYSTEM

22 rows were affected.

366

TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE

TABLE
TABLE

dbo.fSQLDBTableStat

This function returns as a result set the basic information, including the details returned by a Btrieve Stat

(15) operation, about a table or file in the current database.

Syntax

dbo.fSQLDBTableStat ("table_name™)

Argument

Table 110 dbo.fSQLDBTableStat Arguments

Parameter Type Default Value Description
table_name VARCHAR (no default value) | Name of the table in the current database for which to obtain
information.
Returned Result Set
Table 111 dbo.fSQLDBTableStat Returned Result Set
Column Name Data Type Description
Table Name VARCHAR Name of the table.
Table Location VARCHAR Full path name of the data file for the table.
Dictionary Path VARCHAR Dictionary path of the database.
File Version VARCHAR Btrieve version of the file in hexadecimal, such as "13.0" for version 13.
Record Length SMALLINT Fixed record length for the file, as returned by Stat (15).
Page Size SMALLINT Page size for the file, as returned by Stat (15).
Number of Records BIGINT Number of records in the file, as returned by Stat (15).
Number of Indexes SMALLINT Number of indexes, as returned by Stat (15).
Unused LinkedDup Ptr SMALLINT Number of unused duplicate pointers, as returned by Stat (15).
Unused PreAlloc Pages SMALLINT Number of unused empty pages in the file, as returned by Stat (15).
Variable Len Records VARCHAR YES or NO indicating whether the file contains variable length records.
Blank Truncation VARCHAR YES or NO indicating whether variable length records use blank truncation.
Record Compression VARCHAR YES or NO indicating whether Btrieve data compression is used.
Page Compression VARCHAR YES or NO indicating whether Btrieve page compression is used.
Key Only File VARCHAR YES or NO indicating whether the file is a key-only file.
Index Balancing VARCHAR YES or NO indicating whether Btrieve index balancing is in use.
Freespace Threshold VARCHAR Percentage indicating what the free space threshold is, if any.

367

Table 111 dbo.fSQLDBTableStat Returned Result Set

Column Name Data Type Description

Uses ACS VARCHAR YES or NO indicating whether the file uses an alternate collating sequence.
System Data VARCHAR YES or NO indicating whether the file has system data keys enabled.

Used LinkedDup Ptr SMALLINT Number of keys using linked duplicates.

For further information on these fields, see the Create (14) and Stat (15) in Btrieve API Guide.

Example

This example returns information for a table in the default Demodata sample database.

SELECT * FROM dbo.fSQLDBTableStat ("student®)

Result Set (reformatted for space considerations):

Table Name

Table Location
Dictionary Path

File Version

Record Length

Page Size

Number of Records
Number of Indexes
Unused LinkedDup Ptr

Student

C:\PROGRAMDATANACT IAN\ZEN\DEMODATA\Student.mkd
C:\PROGRAMDATAN\ACT IAN\ZEN\DEMODATA

9.5
76
4096
1288
2

0

Unused PreAlloc Pages O

Variable Len Records
Blank Truncation
Record Compression
Page Compression

Key Only File

Index Balancing
Freespace Threshold
Uses ACS

System Data

Used LinkedDup Ptr

368

NO
NO
NO
NO
NO
NO
0%
NO
YES
0

String Search Patterns

The following system catalog functions support string search patterns:

» dbo.fSQLForeignKeys
» dbo.fSQLPrimaryKeys
m dbo.fSQLStatistics

Two wildcard characters can be used in a search pattern:

m Percent sign (%) represents any sequence of n characters.

» Underscore (_) represents a single character.

Examples

The following table lists examples of using string search patterns.

Example Statement Returns

SELECT * FROM dbo.fSQLStatistics (null, ‘%’, 0) All tables with a unique index in current database

SELECT * FROM dbo.fSQLStatistics (null, ‘t%’, 1) All tables starting with ‘t’ and an index in current database

SELECT * FROM dbo.fSQLPrimaryKeys (null, ‘%’) All tables with a primary key in current database

SELECT * FROM dbo.fSQLPrimaryKeys (null, t%") All tables starting with ‘t’ and a primary key in current database

SELECT * FROM dbo.fSQLForeignKeys (null, ‘%’, ‘%’) | All tables with a primary key and corresponding foreign key tables
in current database

369

370

chapter

Data Types

Zen Supported Data Types

This appendix describes the data types and data type mappings offered by Zen through the MicroKernel
and relational engines.

m Zen Supported Data Types

= Notes on Data Types

m Legacy Data Types

m Btrieve Key Data Types

m Non-Key Data Types

371

Zen Supported Data Types

The following table maps the transactional and relational data types supported by Zen. It is useful for
developers of SQL applications that access data in Btrieve data files.

Table 112 Zen Transactional and Relational Data Types

Transactional Type (Size) | Relational Type Metadata Type Size (bytes) | Create/Add Data Type
Code Value Parameters’ Notes
AUTOINCREMENT(2) SMALLIDENTITY 15 2
AUTOINCREMENT (4) IDENTITY 15 4
AUTOINCREMENT(8) BIGIDENTITY 15 8
AUTOTIMESTAMP AUTOTIMESTAMP 32 8 11
BFLOAT(4) BFLOAT4 9 4 not null 4
BFLOAT(8) BFLOAT8 9 8 not null 4
BLOB LONGVARBINARY 21 n/a? not null 2,3,6
BLOB(2) NLONGVARCHAR 21 n/a? not null 7
case insensitive
CLOB LONGVARCHAR 21 n/a? not null 56
case insensitive
CURRENCY CURRENCY 19 8 not null
DATE DATE 3 4 not null
None DATETIME 30 8 not null 10
DECIMAL DECIMAL 5 1-64 precision
scale
not null
FLOAT(4) REAL 2 4 not null
FLOAT(8) DOUBLE 2 8 not null
GUID UNIQUEIDENTIFIER | 27 16 not null
INTEGER(1) TINYINT 1 1 not null
INTEGER(2) SMALLINT 1 2 not null
INTEGER(4) INTEGER 1 4 not null
INTEGER(8) BIGINT 1 8 not null
MONEY DECIMAL 6 1-64 precision
scale
not null
NUMERIC NUMERIC 8 1-37 precision 4
scale
not null

372

Table 112 Zen Transactional and Relational Data Types (Continued)

Transactional Type (Size) | Relational Type Metadata Type Size (bytes) | Create/Add Data Type
Code Value Parameters’ Notes
NUMERICSA NUMERICSA 18 1-37 precision 4
scale
not null
NUMERICSLB NUMERICSLB 28 1-37 precision 4
scale
not null
NUMERICSLS NUMERICSLS 29 1-37 precision 4
scale
not null
NUMERICSTB NUMERICSTB 31 1-37 precision 4
scale
not null
NUMERICSTS NUMERICSTS 17 1-37 precision 4
scale
not null
STRING BINARY 0 1-8,000 size 2,3
not null
case insensitive
STRING CHAR 0 1-8,000 size 1
not null
case insensitive
TIME TIME 4 4 not null
TIMESTAMP TIMESTAMP 20 8 not null
TIMESTAMP2 TIMESTAMP2 34 8 not null 11
UNSIGNED(1) BINARY UTINYINT 14 1 not null
UNSIGNED(2) BINARY USMALLINT 14 2 not null
UNSIGNED(4) BINARY UINTEGER 14 4 not null
UNSIGNED(8) BINARY UBIGINT 14 8 not null
WSTRING NCHAR 25 2-8,000 size 1 - 4,000 12,13
not null
case insensitive
WZSTRING NVARCHAR 26 2-8,000 size 1 - 4,000 12,14
not null
case insensitive
ZSTRING VARCHAR 11 1-8,000 size 5
not null
case insensitive
none BIT 16 1 bit 6,8
LOGICAL(1) BIT 7 1 bit 9

373

Table 112 Zen Transactional and Relational Data Types (Continued)

Transactional Type (Size) | Relational Type Metadata Type Size (bytes) | Create/Add Data Type
Code Value Parameters’ Notes
LOGICAL(2) SMALLINT 1 2 not null

"The required parameters are precision and size. The optional parameters are case insensitive, not null, and scale.
2 "n/a" stands for "not applicable"
Data Type Notes

1. Padded with spaces

2. Flag set in FIELD.DDF to tell SQL to use binary. See also COLUMNMAP Flags in Distributed Tuning Interface Guide and
Column Flags in Distributed Tuning Objects Guide.

3. Padded with binary zeros

4. Cannot be used as variable or in stored procedures
5. Not padded

6. Cannot be indexed

7. Flag set in FIELD.DDF to tell SQL to use NLONGVARCHAR. See also COLUMNMAP Flags in Distributed Tuning Interface
Guide and Column Flags in Distributed Tuning Objects Guide.

8. TRUEBITCREATE must be set to on (the default).

9. TRUEBITCREATE must be set to off.

10. Type code 30 is not a MicroKernel Engine code. It is the identifier for DATETIME within the Relational Engine metadata.
11. Sorts like UBIGINT.

12. For Unicode types, the column size represents the number of 2-byte UCS-2 units.

13. Padded with Unicode spaces (2 bytes)

14. Padded with Unicode NUL characters (2 bytes, binary zero)

Data Type Ranges
The following table lists the value ranges for the Zen data types and their increments where appropriate.

Table 113 Zen Data Type Ranges

Relational Data Type Valid Value Range

AUTOTIMESTAMP 1970-01-01 00:00:00.000000000 to 2554-07-21 23:34:33.709551615

Initializing with zero causes the insert or the next update to use the current time and date.

BFLOAT4 -1.70141172e+38 — +1.70141173e+38

Smallest value by which you can increment or decrement a BFLOAT4 is 2.938736e-39

BFLOAT8 -1.70141173e+38 — +1.70141173e+38

Smallest value by which you can increment or decrement a BFLOATS is 2.93873588e-39.

BIGIDENTITY -9223372036854775808 — +9223372036854 775807
BIGINT -9223372036854775808 — +9223372036854 775807
BINARY Range not applicable

374

Table 113 Zen Data Type Ranges (Continued)

Relational Data Type

Valid Value Range

BIT Range not applicable
CHAR Range not applicable
CURRENCY -922337203685477.5808 — +922337203685477.5807
DATE 01-01-0001 to 12-31-9999
Note: 00-00-0000 is not a valid value. If you have legacy data that contains a 00-00-0000 value of
type DATE, you can query it by using "is null" in the query.
DATETIME 1753-01-01 00:00:00.000 to 9999-12-31 23:59:59.999, to an accuracy of 1 millisecond
DECIMAL Depends on the length and number of decimal places
DOUBLE -1.7976931348623157e+308 — +1.7976931348623157e+308
The smallest value by which to increment or decrement a DOUBLE is 2.2250738585072014e-308.
FLOAT -1.7976931348623157E+308 — +1.7976931348623157E+308
Smallest value by which you can increment or decrement a FLOAT is 2.2250738585072014e-308.
IDENTITY -2147483648 — +2147483647
INTEGER -2147483648 — +2147483647
LOGICAL Range not applicable

LONGVARBINARY

Range not applicable

LONGVARCHAR Range not applicable

MONEY -99999999999999999.99 — +99999999999999999.99

NCHAR Range not applicable

NLONGVARCHAR Range not applicable

NUMERIC Based on length and number of decimal places. See Precision and Scale of Decimal Data Types.
NUMERICSA Based on length and number of decimal places. See Precision and Scale of Decimal Data Types.
NUMERICSLB Based on length and number of decimal places. See Precision and Scale of Decimal Data Types.
NUMERICSLS Based on length and number of decimal places. See Precision and Scale of Decimal Data Types.
NUMERICSTB Based on length and number of decimal places. See Precision and Scale of Decimal Data Types.
NUMERICSTS Based on length and number of decimal places. See Precision and Scale of Decimal Data Types.
NVARCHAR Range not applicable

REAL -3.4028234E+38 — +3.4028234e+38

Smallest value by which you can increment or decrement a REAL value is 1.4E-45.

SMALLIDENTITY

-32768 — +32767

SMALLINT

-32768 — +32767

375

Table 113 Zen Data Type Ranges (Continued)

Relational Data Type

Valid Value Range

TIME 00:00:00 — 23:59:59
TIMESTAMP 0001-01-01 00:00:00.0000000 — 9999-12-31 23:59:59.9999999 UTC

Scale can vary. See Scale of Time Stamp Data Types and Returned Function Values.
TIMESTAMP2 1970-01-01 00:00:00.000000000 — 2554-07-21 23:34:33.709551615 UTC

Scale can vary. See Scale of Time Stamp Data Types and Returned Function Values.
TINYINT -128 — +127
UBIGINT 0 — 18446744073709551615
UINTEGER 0 — 4294967295

UNIQUEIDENTIFIER

Range not applicable

USMALLINT 0 - 65535
UTINYINT 0-255
VARCHAR Range not applicable

Operator Precedence

Expressions may have multiple operators, which are performed in order of precedence. Zen uses the
following order, with level 1 highest and level 9 lowest. A higher operator is evaluated before a lower one.

1+ (positive), - (negative), ~ (bitwise NOT)

2 * (multiply), / (divide), % (modulo)

3 + (add), (+ concatenate), - (subtract), & (bitwise AND)

4 =, >, < >=, <=, <>, !=(these comparison operators mean the following, respectively: equals,
greater than, less than, greater than equal to, less than equal to, not equal, not equal)

5 A (bitwise Exclusive OR), | (bitwise OR)

6 NOT

7 AND

8 ALL, ANY, BETWEEN, IN, LIKE, OR, SOME

9 = (assignment)

In an expression, operators with equal precedence are evaluated left to right. For example, in SET
:Counter = 12 / 4 * 7, the division is evaluated before the multiplication to return a result of 21.

Parentheses

You can use parentheses to override the precedence of operators in an expression. Everything within the
parentheses is evaluated first to yield a value that is then used by an operator outside of the parentheses.
For example, in the following statement, the division operator would ordinarily be evaluated before the
addition operator. The result would be 12 (that is, 8 + 4). However, the addition is performed first
because of the parentheses, so the procedure returns a result of 4.

376

SET :Counter = 32 / (4 + 4)

If an expression has nested parentheses, the deepest nested expression is evaluated first, followed by the
next deepest, and so on. For example, in the following statement, the addition is performed first, then
the multiplication, then the subtraction, and finally the division. The result is a value of 5.

SET :Counter = 100 /7 (40 - (2 * (5 + 5)));

Data Type Precedence

Data type precedence determines the result when two expressions of different types are combined by an
operator. The data type with lower precedence is converted to the data type with higher precedence.

Note Operations on incompatible data types return errors, such as adding an INTEGER to a CHAR.

Numeric Data Types

Relational numeric data types use the following precedence:
DOUBLE, FLOAT, BFLOATS (highest)

REAL, BFLOAT4

DECIMAL, NUMERIC, NUMERICSA, NUMERICSTS
NUMERICSLS, NUMERICSTB, NUMERICSLB
CURRENCY, MONEY

BIGINT, UBIGINT, BIGIDENTITY

INTEGER, UINTEGER, IDENTITY

SMALLINT, USMALLINT, SMALLIDENTITY
TINYINT, UTINYINT

10 BIT (lowest)

© 00 N OO a A~ WON -

Character Data Types

Relational character data types use the following precedence:
1 NLONGVARCHAR

2 NCHAR, NVARCHAR

3 LONGVARCHAR

4 CHAR, VARCHAR

If you concatenate an NCHAR or NVARCHAR with a NLONGVARCHAR, the result is an
NLONGVARCHAR.

If you concatenate an NCHAR with a LONGVARCHAR, the result is an NLONGVARCHAR.
If you concatenate a CHAR or VARCHAR with a LONGVARCHAR, the result isa LONGVARCHAR.

377

If you concatenate a CHAR with a VARCHAR, the result is the type of the first data type in the
concatenation, moving left to right. For example, if c1 is a CHAR and c2 is a VARCHAR, the result of
(c1 + ¢2) isa CHAR. The result of (c2 + c1) isa VARCHAR.

Data Types with No Precedence

The BINARY, LONGVARBINARY, and UNIQUEIDENTTIFIER data types have no precedence because
operations to combine them are not allowed.

No date and time data type may be combined with any other date and time data type.

Precision and Scale of Decimal Data Types

Precision is the number of digits in a number. Scale is the number of digits to the right of the decimal
point in a number. The number 909.777 has a precision of 6 and a scale of 3, for instance.

The maximum precision of NUMERIC, NUMERICSA, and DECIMAL data types is 64. The maximum
precision of NUMERICSTS and NUMERICSLS is 63 because it reserves one byte for the plus or minus
sign.

Precision and scale are fixed for all numeric data types except DECIMAL. An arithmetic operation on
two expressions of the same data type results in the same data type, with the precision and scale for that
type. If the operation involves expressions with different data types, the precedence rules determine the
data type of the result. The result has the precision and scale defined for its data type.

The result is a DECIMAL for operations under the following conditions:

m Both expressions are DECIMAL.
m One expression is DECIMAL and the other is a data type with a precedence lower than DECIMAL.

Table 114 defines how precision and scale are derived when the result of an operation is of data type
DECIMAL. Exp stands for expression, s stands for scale, and p stands for precision.

Table 114 Calculation of Precision and Scale for DECIMAL Operation

Operation Precision Scale

Addition (exp1 + exp2) max(s1, s2) + max(p1 - s1, p2 - s2) +1 max(s1, s2)
Subtraction (exp1 - exp2) max(s1, s2) + max(p1 - s1, p2 - s2) +1 max(s1, s2)
Multiplication (exp1 * exp2) p1+p2+1 s1+s2

Division (exp1 / exp2) p1-s1+s2+max(6, s1+p2+1) max(6, s1 + p2 +1)
UNION (exp1 UNION exp2) max(s1, s2) + max(p1 - s1, p2 - s2) +1 max(s1, s2)

For example, if you add or subtract two fields defined as DECIMAL(8,2) and DECIMAL(7,4), the
resulting field is DECIMAL(11,4).

Scale of Time Stamp Data Types and Returned Function Values

In time stamp data types, scale is the number of digits to the right of the decimal point in the fractional
second part of the time stamp. For instance, 2019-12-31 23:59:59.782 has a scale of 3, or milliseconds.

378

Starting in Zen 14.10, you can choose the scale for the TIMESTAMP and TIMESTAMP2 data types. For
example, the following SQL script creates a table with four columns, the first two using TIMESTAMP
and TIMESTAMP2 with default scale, and the second two setting the scale to one decimal point:

create table times

(ts timestamp default sysdatetime(),

ts2 timestamp2 default sysdatetime(),

ts_1 timestamp(l) default sysdatetime()
ts2_1 timestamp2(1l) default sysdatetime());
insert into times default values;

select * from times;

The SELECT statement returns the following row:

ts ts2 ts-1 ts2-1

2019-12-10 10:25:39.555 2019-12-10 10:25:39.555080200 2019-12-10 10:25:39.5 2019-12-10 10:25:39.5

Note that shortening the scale does not round fractional seconds.

The following table lists Zen data types that support date and time stamps with scale.

Data Type Format with Default Scale Scale
AUTOTIMESTAMP yyyy-mm-dd hh:mm:ss.nnnnnnnnn (nanoseconds) 9
DATETIME yyyy-mm-dd hh:mm:ss.nnn (milliseconds) 3
TIMESTAMP yyyy-mm-dd hh:mm:ss.nnn (milliseconds) 3
TIMESTAMP(n) yyyy-mm-dd hh:mm:ss.nnnnnnn (none up to septaseconds) 0-7
TIMESTAMP2 yyyy-mm-dd hh:mm:ss.nnnnnnnnn (nanoseconds) 9
TIMESTAMP2(n) yyyy-mm-dd hh:mm:ss.nnnnnnnnn (none up to nanoseconds) 0-9

The following table lists Zen scalar functions that return date and time stamp values with scale.

Function Format Scale
CURRENT_TIMESTAMP() yyyy-mm-dd hh:mm:ss.nnn (milliseconds) 3
NOW() yyyy-mm-dd hh:mm:ss.nnn (milliseconds) 3
SYSDATETIME() yyyy-mm-dd hh:mm:ss.nnnnnnnnn (nanoseconds) 9
SYSUTCDATETIME() yyyy-mm-dd hh:mm:ss.nnnnnnnnn (nanoseconds) 9

If the time stamp returned by a function has smaller scale than the data type of the column to which it
is written, then trailing decimal places are filled with zeros. For example, the value 2019-12-10
14:23:46.292000000 is returned by CURRENT_TIMESTAMP() in a TIMESTAMP2 column.
Truncation

If your application runs against different SQL DBMS products, you may encounter the following issues
pertaining to truncation.

In certain situations, some SQL DBMS products prevent insertion of data because of truncation, while
Zen allows the insertion of that same data. Additionally, reporting of SQL_SUCCESS_WITH_INFO and

379

the information being truncated differs in Zen from some SQL DMBS products in certain scenarios
based on when the message is reported.

Numeric string data and true numeric data are always truncated by Zen, whereas other SQL DBMS
products round the data. For example, if you have a numeric string or true numeric value of 123.457 and
you insert it into a 6-byte string column or precision 2 numeric column, Zen always inserts 123.45.
Other DBMS products, by comparison, may insert a value of 123.46.

380

Notes on Data Types

This topic covers various behaviors and key information regarding the available data types.

CHAR, NCHAR, VARCHAR, NVARCHAR, LONGVARCHAR, and NLONGVARCHAR

» CHAR and NCHAR columns are padded with trailing blanks. These blanks are not counted in
comparison operations (LIKE and =). However, in the LIKE case, if a space is explicitly entered in
the query (like 'abc %), then the space before the wild card is counted. In this example you are
looking for 'abc<space><any other character>".

m The CHAR types store characters using the database code page, that is, using one or more bytes per
character. The NCHAR types store characters as UCS-2 two-byte values.

» VARCHAR, NVARCHAR, LONGVARCHAR, and NLONGVARCHAR values are not padded with
trailing blanks. The significant data is terminated with a NULL character.

» Trailing blanks are significant in VARCHAR and NVARCHAR comparison operations. For
example, c1 = 'Test ' does not find rows where c1 is a VARCHAR type containing the value "Test'".

See also Limitations on LONGVARCHAR, NLONGVARCHAR and LONGVARBINARY.

BINARY and LONGVARBINARY

m BINARY columns are padded with trailing zeros.
» LONGVARBINARY columns are not padded with trailing blanks.

» The database engine does not compare LONGVARBINARY columns. The database engine does
compare fixed-length BINARY data.

Zen supports multiple LONGVARCHAR and LONGVARBINARY columns per table. The data is stored
according to the offset in the variable length portion of the record. The variable length portion of data
can vary from the column order of the data depending on how the data is manipulated. Consider the
following example:

CREATE TABLE BlobDataTest

(
Nbr UINT, // Fixed record (Type 14)
Clobl LONGVARCHAR, // Fixed record (Type 21)
Clob2 LONGVARCHAR, // Fixed record (Type 21)
Blobl LONGVARBINARY, // Fixed record (Type 21)

)
On disk, the physical record would normally look like this:

[Fixed Data (Nbr, Cloblheader, Clob2header,
Bloblheader)][ClobDatal][ClobData2][BlobDatal]

Now alter column Nbr to a LONGVARCHAR column:
ALTER TABLE BlobDataTest ALTER Nbr LONGVARCHAR
On disk, the physical record now looks like this:

[Fixed Data (Nbrheader, Cloblheader, Clob2header,
Bloblheader)][ClobDatal][ClobData2][BlobDatal]
[NbrClobData]

As you can see, the variable length portion of the data is not in the column order for the existing data.

381

For newly inserted records, however, the variable length portion of the data is in the column order for
the existing data. This assumes that all columns have data assigned (the columns are not NULL).

[Fixed Data (Nbrheader, Cloblheader, Clob2header,
Bloblheader)][NbrClobData][ClobDatal][ClobData2]
[BlobDatal]

See also Limitations on LONGVARCHAR, NLONGVARCHAR and LONGVARBINARY.

Limitations on LONGVARCHAR, NLONGVARCHAR and LONGVARBINARY
The following limitations apply to the LONGVARCHAR and LONGVARBINARY data types:

m The LIKE predicate operates on the first 65500 bytes of the column data.

m All other predicates operate on the first 256 bytes of the column data.

m SELECT statements with GROUP BY, DISTINCT, and ORDER BY return all the data but only order
on the first 256 bytes of the column data.

m Though the maximum amount of data that can be inserted into a LONGVARCHAR/
LONGVARBINARY column is 2GB, using a literal in an INSERT statement reduces this amount to
15000 bytes. You can insert more than 15000 bytes by using a parameterized insert.

» The maximum number of bytes returned in a single call by Zen for a LONGVARCHAR,
NLONGVARCHAR or LONGVARBINARY columns depends on the access method used by the
application. In most cases, the limit is 65500 bytes. For more information, see the documentation for
your specific development environment.

DATETIME

The DATETIME data type represents a date and time value. This type is stored internally as two 4-byte
integers. The first four bytes store the number of days before or after the base date of January 1, 1900.
The other four bytes store the time of day, represented as the number of milliseconds after midnight.

The DATETIME data type can be indexed. The accuracy of DATETIME is 1 millisecond.
DATETIME is a relational data type only. No corresponding Btrieve data type is available.

Format of DATETIME

The format for DATETIME is YYYY-MM-DD HH:MM:SS.mmm. If you need to truncate the
millisecond portion, the CONVERT function offers parameter to do so. The following table gives the
data components and their range of values for DATETIME.

Component Valid Values
Year (YYYY) 1753 to 9999
Month (MM) 01to 12

Day (DD) 01 to 31
Hour (HH) 00 to 23
Minute (MM) 00 to 59
Second (SS) 00 to 59
Millisecond (mmm) 000 to 999

382

Compatibility of Date and Time Data Types

If you need to perform addition or subtraction involving date and time data types, we recommend using
the scalar functions TIMESTAMPADD(), DATEADD(), TIMESTAMPDIFE(), and DATEDIFF(). The
use of these functions is required if your expression includes the newer AUTOTIMESTAMP and
TIMESTAMP2 data types. Other data types can in some cases be used directly in expressions with
operators. For example, the following statements are valid:

SELECT "Start_Date™ + 5 FROM "Class™

SELECT "Finish_Time" — "'Start_Time" FROM "Class"
SELECT current_timestamp() — *Log™ FROM *"Billing"

Some queries may return "incompatible types" or "error in expression" messages if you try to add or
subtract values that are not compatible, or if the result would not be valid. For example, the following
statements return such errors:

SELECT "Start_Date'"™ + 5.0 FROM "Class"
SELECT "Start_Time"™ + "Finish_Time"™ FROM ""Class"
SELECT current_timestamp() + "Log" FROM "Billing"

The CONVERT and CAST functions can be used with DATE, DATETIME, TIME, and TIMESTAMP
in the ways shown in the following tables.

Table 115 Permitted CONVERT Operations

CONVERT From Permitted Resultant Data Type (to)

AUTOTIMESTAMP SQL_CHAR, SQL_DATE, SQL_TIME, SQL_TIMESTAMP, SQL_VARCHAR

DATE SQL_CHAR, SQL_DATE, SQL_TIMESTAMP, SQL_VARCHAR

DATETIME Any of the supported CONVERT data types except for GUID, BINARY, and LONGVARBINARY. The
type parameter for CONVERT requires a prefix of “SQL_.” See CONVERT (exp, type [, style]).

TIME SQL_CHAR, SQL_TIME, SQL_TIMESTAMP, SQL_VARCHAR

TIMESTAMP SQL_CHAR, SQL_DATE, SQL_TIME, SQL_TIMESTAMP, SQL_VARCHAR

TIMESTAMP2 SQL_CHAR, SQL_DATE, SQL_TIME, SQL_TIMESTAMP, SQL_VARCHAR

VARCHAR SQL_CHAR, SQL_DATE, SQL_TIME, SQL_TIMESTAMP, SQL_VARCHAR

Note The CONVERT function contains an optional parameter that allows you to truncate the
milliseconds portion of DATETIME. See the Convert function under Conversion Functions.

Table 116 Permitted CAST Operations

CAST From Permitted Resultant Data Type (to)

AUTOTIMESTAMP DATE, DATETIME, TIME, TIMESTAMP, TIMESTAMP2, VARCHAR

DATE DATE, DATETIME, TIMESTAMP, VARCHAR
DATETIME Any of the relational data types
TIME TIME, DATETIME, TIMESTAMP, TIMESTAMP2, VARCHAR

383

Table 116 Permitted CAST Operations

CAST From Permitted Resultant Data Type (to)

TIMESTAMP DATE, DATETIME, TIME, TIMESTAMP, TIMESTAMP2, VARCHAR
TIMESTAMP2 DATE, DATETIME, TIME, TIMESTAMP, TIMESTAMP2, VARCHAR
VARCHAR DATE, DATETIME, TIME, TIMESTAMP, TIMESTAMP2

UNIQUEIDENTIFIER

The UNIQUEIDENTIFIER data type is a 16-byte binary value known as a globally unique identifier
(GUID). A GUID is useful when a row must be unique among other rows.

UNIQUEIDENTIFIER requires a file format of 9.5 or higher.
You can initialize a column or local variable of UNIQUEIDENTIFIER the following ways:
m By using the NEWID() scalar function. See NEWID().

m By providing a quoted string in the form *XxXxXXXXX=XXXX=XXXX~XXXX~XXXXXXXXXXxX " in which
each x is a hexadecimal digit in the range 0-9 or A-F. For example, "1129619D-772C-AAAB-B221-
OOFFOOFF0099" is a valid UNIQUEIDENTIFIER value.

If you provide a quoted string, all 32 digits are required. The database engine does not pad a partial
string.

You may use only the following comparison operators with UNIQUEIDENTIFIER values:

Operator Meaning

= Equals

<>orl= Not equal to

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to
IS NULL the value is NULL

IS NOT NULL the value is not NULL

Note that ordering is not implemented by comparing the bit patterns of the two values.

Declaring Variables

You may declare variables of the UNIQUEIDENTIFIER data type and set the variable value with the SET
statement.

DECLARE :Cust_ID UNIQUEIDENTIFIER DEFAULT NEWIDQ)
DECLARE :1SO_ID uniqueidentifier
SET :1SO_ID = "1129619D-772C-AAAB-B221-00FFOOFF0099"

384

Converting UNIQUEIDENTIFIER to Another Data Type
The UNIQUEIDENTIFER can be converted with the CAST or CONVERT scalar functions to any of the

following data types:

s CHAR

» LONGVARCHAR
= VARCHAR

For conversion examples, see Conversion Functions.

Representation of Infinity

When Zen is required by an application to represent infinity, it can do so in either a 4-byte (C float type)
or 8-byte (C double type) form, and in either a hexadecimal or character representation, as shown in the

following table.

Table 117 Infinity Representation

Value Float Float Double Hexadecimal Double
Hexadecimal Character Character

Maximum Positive Ox7FEFFFFFFFFFFFFF

Maximum Negative OxFFEFFFFFFFFFFFFF

Infinity Positive 0x7F800000 1E999 0x7FF0000000000000 1E999

Infinity Negative 0xFF800000 -1E999 0xFFF0000000000000 -1E999

385

Legacy Data Types

Some older (legacy) data types are not supported in the current release of Zen. The following table shows

the new data type to use in place of the legacy data type.

Table 118 Data Types Used to Replace Legacy Data Types

Legacy Type Type Code Replaced by Type Code
LOGICAL(1) 7 BIT 16
LOGICAL(2) 7 SMALLINT 14
LSTRING 10 VARCHAR 11
LVAR 13 LONGVARCHAR 21
NOTE 12 LONGVARCHAR 21

Existing databases that use these data types are supported and function correctly. To support these data
types in a new database, execute a SET LEGACYTYPESALLOWED=ON statement before a CREATE
TABLE or ALTER TABLE statement. Afterward, execute a SET LEGACYTYPESALLOWED=OFF
statement or let the SET statement expire with the SQL session. For more information, see SET

LEGACYTYPESALLOWED.

386

Btrieve Key Data Types

This topic discusses the Btrieve data types that can be indexed (key types). Internally, the MicroKernel
compares string keys on a byte-by-byte basis, from left to right. By default, the MicroKernel sorts string
keys according to their ASCII value. You may, however, define string keys to be case insensitive or to use
an alternate collating sequence (ACS).

The MicroKernel compares unsigned binary keys one word at a time. It compares these keys from right
to left because the Intel 8086 family of processors reverses the high and low bytes in an integer.

If a particular data type is available in more than one size (for example, both 4- and 8-byte FLOAT values
are allowed), the Key Length parameter (used in the creation of a new key) defines the size that will be
expected for all values of that particular key. Any attempt to define a key using a key length that is not

allowed results in a status 29 (Invalid Key Length).

The following table lists the key types and their associated codes. Following the table is a discussion of
the internal storage formats for each key type.

Table 119 Btrieve Key Data Types and Type Codes

Data Type Type Code Data Type Type Code
AUTOINCREMENT 15 NUMERIC 8
AUTOTIMESTAMP 32 NUMERICSA 18
BFLOAT 9 NUMERICSLB 28
STRING 0 NUMERICSLS 29
CURRENCY 19 NUMERICSTB 31
DATE 3 NUMERICSTS 17
DECIMAL 5 TIME 4
FLOAT 2 TIMESTAMP 20
GUID 27 TIMESTAMP2 34
INTEGER 1 UNSIGNED BINARY 14
LOGICAL 7 WSTRING 25
LSTRING 10 WZSTRING 26
MONEY 6 ZSTRING 11

AUTOINCREMENT

The AUTOINCREMENT key type is a signed Intel integer that can be either 2, 4, or 8 bytes long.
Internally, autoincrement keys are stored in Intel binary integer format, with the high-order and low-
order bytes reversed within a word. The MicroKernel sorts autoincrement keys by their absolute
(positive) values, comparing the values stored in different records a word at a time from right to left.
Autoincrement keys may be used to automatically assign the next highest value when a record is inserted
into a file. Because the values are sorted by absolute value, the number of possible records is roughly half
what you would expect given that the data type is signed.

387

Values that have been deleted from the file are not reused automatically. If you indicate that you want the
database engine to assign the next value by entering a zero (0) value in an insert or update, the database
simply finds the highest number, adds 1, and inserts the resulting value.

You can initialize the value of a field in all or some records to zero and later add an index of type
AUTOINCREMENT. This feature allows you to prepare for an autoincrement key without actually
building the index until it is needed.

When you add the index, the MicroKernel changes the zero values in each field appropriately, beginning
its numbering with a value equal to the greatest value currently defined in the field, plus one. If nonzero
values exist in the field, the MicroKernel does not alter them. However, the MicroKernel returns an error
status code if nonzero duplicate values exist in the field.

The MicroKernel maintains the highest previously used autoincrement value associated with each open
file containing an autoincrement key. This value is established and increments only when an INSERT
operation occurs for a record with ASCII zeros in the autoincrement field. The value is used by all clients
so that concurrent changes can take place, taking advantage of key page concurrency.

The next autoincrement value for a file is raised whenever any INSERT occurs that uses the previous
autoincrement value. This happens whether or not the INSERT is in a transaction or the change is
committed.

However, this value may be lowered during an INSERT if all of the following are true:

m The highest autoincrement value found in the key is lower than the next autoincrement value for the
file.

m No other client has a pending transaction affecting the page that contains the highest autoincrement
value.

m The key page containing the highest autoincrement value is not already pending by the client doing
the INSERT.

In other words, only the first INSERT within a transaction can lower the next available autoincrement
value. After that, the next available autoincrement value simply keeps incrementing.

An example helps clarify how an autoincrement value may be lowered. Assume an autoincrement file
exists with records 1, 2, 3, and 4. The next available autoincrement value is 5.

Client] begins a transaction and inserts two new records, raising the next available autoincrement value
to 7. (Client1 gets values 5 and 6). Client2 begins a transaction and also inserts two new records. This
raises the next available autoincrement value to 9. (Client 2 gets values 7 and 8).

Client1 the deletes records 4, 5, and 6. The next autoincrement value remains the same, since it is
adjusted only on INSERT. Client1 then commits. The committed version of the file now contains records
1,2, and 3.

For Client2, the file contains records 1, 2, 3,7, and 8 (7 and 8 are not yet committed). Client2 then inserts
another record, which becomes record 9. The next available autoincrement value is raised to 10. Client2
deletes records 3, 7, 8, and 9. For Client2, the file now contains only the committed records 1 and 2.

Next Client?2 inserts another record, which becomes record 10. The next available autoincrement value
is raised to 11. The next autoincrement value is not lowered to 3 since the page containing the change
has other changes pending on it.

Client2 then aborts the transaction. The committed version of the file now contains records 1, 2, and 3,
but the next available autoincrement value is still 11.

388

If either client inserts another record, whether or not in a transaction, the next available autoincrement
value is lowered to 4. This occurs because all of the conditions required for lowering the value are true.

If a resulting autoincrement value is out of range, a Status Code 5 results. The database engine does not
attempt to “wrap” the values and start again from zero. You may, however, insert unused values directly
if you know of gaps in the autoincrement sequence where a previously inserted value has been deleted.

Restrictions
The following restrictions apply to keys of type AUTOINCREMENT:

m The key must be defined as unique.

m The key cannot be segmented. However, an autoincrement key can be included as an integer
segment of another key, as long as the autoincrement key has been defined as a separate, single key
first, and the autoincrement key number is lower than the segmented key number.

m The key cannot overlap another key.

m All keys must be ascending.
The MicroKernel treats autoincrement key values as follows when you insert records into a file:

m If you specify a value of binary 0 for the autoincrement key, the MicroKernel assigns a value to the
key based on the following criteria:

+ Ifyou are inserting the first record in the file, the MicroKernel assigns the value of 1 to the
autoincrement key.

+ Ifrecords already exist in the file, the MicroKernel assigns the key a value that is one number
higher than the highest existing absolute value in the file.

» Ifyou specifya positive, nonzero value for the autoincrement key, the MicroKernel inserts the record
into the file and uses the specified value as the key value. If a record containing that value already
exists in the file, the MicroKernel returns an error status code and does not insert the record.

AUTOTIMESTAMP

The AUTOTIMESTAMP key type is an 8-byte unsigned integer for tracking time in nanoseconds based
on the Unix epoch. A value of zero prompts the database engine to replace it automatically with the
current time when a new record is inserted or the first time an existing record is updated. A nonzero
value is allowed and is interpreted as a number of nanoseconds since 1970 UTC.

This key type is available starting in Zen v14 for file formats 9.5 and 13.0. Older database engines that
attempt to open a file that has a record that uses this type will return status code 30 for an unrecognized
Microkernel file.

The range of AUTOTIMESTAMP values is 1970-01-01 00:00:00.000000000 to 2554-07-21
23:34:33.709551615.

Current Linux and Android system clocks provide true nanosecond resolution. On Windows the highest
resolution is septaseconds (107 second), and on macOS the highest is microseconds. When an
AUTOTIMESTAMP key is written on systems that do not support nanosecond resolution, the value is
padded with zeros. Accordingly, inserts or updates on these systems without nanosecond resolution can
result in duplicate values. However, if the index is set to be unique and the database engine detects a
match with the most recent previously generated time stamp, then it adds 1 nanosecond. Duplication
can also result from a manually inserted time stamp value or from the resetting of the system clock. In
both of these cases, Insert (2) or Update (3) fails with status code 5.

389

Inserts and Updates Using AUTOTIMESTAMP

Insert (2) and Update (3) operations handle a zero value for an AUTOTIMESTAMP key by retrieving
the current time stamp from the system clock on the database engine server. The engine then uses this
value in the current record for every AUTOTIMESTAMP key that contains a zero.

For Insert Extended (40), the engine retrieves a new time stamp value for each specified record in the
operation. If the AUTOTIMESTAMP key is unique, the engine avoids time stamp duplication among
the records by incrementing the generated value by 1 nanosecond if it matches a previously generated
time stamp within the operation. As with Insert (2), the time stamp generated for each record is used for
all AUTOTIMESTAMP keys in that record.

When an Update Chunk (53) operation attempts to write to the fixed portion of a record that includes
an AUTOTIMESTAMP key, the engine does not retrieve a new time stamp. Instead, the provided key
value is accepted as is and placed in the record. Therefore, using an Update Chunk operation with a zero
value to update an AUTOTIMESTAMP key results in storing the zero value in the record, which is then
interpreted as 1970 UTC. If you wish to update the key with an automatically generated time stamp, use
the Update (3) operation to update the fixed portion of a record.

Restrictions
The following restrictions apply when you create a key of type AUTOTIMESTAMP:

m The NOCASE flag cannot be applied to the key.

s NULL_KEY and MANUAL_KEY are not allowed, since the time stamp cannot be excluded from
the index.

Usage in Function Executor and Maintenance Tools

The use of AUTOTIMESTAMP keys in Function Executor or the Maintenance tool is similar to
AUTOINCREMENT keys. For the files that use them, the key type is listed as Atstamp, which also
appears in the output of butil <filename> -stat and is used for the key type in the description file
for abutil -create command.

BFLOAT

The BFLOAT key type is a single or double-precision real number. A single-precision real number is
stored with a 23-bit mantissa, an 8-bit exponent biased by 128, and a sign bit. The internal layout for a
4-byte float is as follows:
3322222222221111111111
10987654321098765432109876543210
TTTTTT1 TTT T T T T T T T T T T T T T T T 111

1 111111 [1 I N N I N I A I I |
8-bit exponent 23-bit mantissa

Sign

The representation of a double-precision real number is the same as that for a single-precision real
number, except that the mantissa is 55 bits instead of 23 bits. The least significant 32 bits are stored in
bytes 0 through 3.

The BFLOAT type is commonly used in legacy BASIC applications. Microsoft refers to this data type as
MBF (Microsoft Binary Format), and no longer supports this type in the Visual Basic environment. New
database definitions should use FLOAT rather than BELOAT.

390

STRING

The STRING key type is a sequence of characters ordered from left to right. Each character is
represented in ASCII format in a single byte, except when the MicroKernel is determining whether a key
value is null. STRING data is expected to be padded with blanks to the full size of the key.

CURRENCY

The CURRENCY key type represents an 8-byte signed quantity, sorted and stored in Intel binary integer
format. Therefore, its internal representation is the same as an 8-byte INTEGER data type. The
CURRENCY data type has an implied four digit scale of decimal places, which represents the fractional
component of the currency data value.

DATE

The DATE key type is stored internally as a 4-byte value. The day and the month are each stored in 1-
byte binary format. The year is a 2-byte binary number that represents the entire year value. The
MicroKernel places the day into the first byte, the month into the second byte, and the year into a two-
byte word following the month.
3322222222221 111111111
10987654321098765432109876543210
TT T T T T T T T T T T T T T[T T T T T T T[T T T TTT]

year month day

An example of C structure used for date fields would be:

TYPE dateField {

char day;

char month;

integer year;

}

The year portion of a date field is expected to be set to the integer representation of the entire year. For
example, 2,001 for the year 2001.

DECIMAL

The DECIMAL key type is stored internally as a packed decimal number with two decimal digits per
byte. The internal representation for an n-byte DECIMAL field is as follows:

byte 0 byte 1 byte n-1

1111111
0123456789 0123456
LI LI LI LI LI LI

1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
digit digit digit digit digit sign
1 2 3 4 2n-1 nibble

The decimal point for DECIMAL is implied. No decimal point is stored in the DECIMAL field. Your
application is responsible for tracking the location of the decimal point for the value in a DECIMAL
field. All values for a DECIMAL key type must have the same number of decimal places for the database
engine to collate the key correctly. The DECIMAL type is commonly used in COBOL applications.

391

An eight-byte decimal can hold 15 digits plus the sign. A ten-byte decimal can hold 19 digits plus the
sign. The decimal value is expected to be left-padded with zeros.

The sign nibble is either OxF or 0xC for positive numbers and 0xD for negative numbers. By default, the
Relational Engine and the SDK access methods that use it always write OXF as the positive sign nibble for
a DECIMAL. They can interpret both 0xF and 0xC as being positive on a read operation.

A setting in the registry (Windows Registry and Zen Registry) controls what the database engine uses
for the positive sign nibble for a DECIMAL. If you need to change the default positive sign nibble to 0xC,
edit the registry as explained below.

Windows
In Registry Editor, change the value of CommonCOBOLDecimalSign to yes for the following key:
HKEY_LOCAL_MACHINE\SOFTWARE\Actian\Zen\SQL Relational Engine

In most Windows systems, the key is under HKEY_LOCAL_MACHINE\SOFTWARE\Actian\Zen.
However, its location below HKEY_LOCAL_MACHINE\SOFTWARE can vary depending on the
operating system.

Caution Editing the registry is an advanced procedure. If done improperly, the editing could cause
your operating system not to boot. If necessary, obtain the services of a qualified technician to
perform the editing. Actian Corporation does not accept responsibility for a damaged registry.

Linux and macOS

For Linux 32-bit operating systems, run the psregedit utility as follows:

./psregedit -set -key PS_HKEY_CONFIG/SOFTWARE/Actian/Zen/"SQL Relational Engine" -
value ""CommonCOBOLDecimalSign"™ -type PS_REG_STR "YES"

For Linux and macOS 64-bit operating systems, run the psregedit utility as follows:

./psregedit -set -key PS _HKEY_CONFIG_64/SOFTWARE/Actian/Zen/"SQL Relational Engine"
-value "CommonCOBOLDecimalSign'" -type PS_REG_STR "YES"

See also psregedit in Zen User’s Guide.

FLOAT

Caution Precision beyond that supported by the C-language definitions for the FLOAT (4-byte) or
DOUBLE (8-byte) data type will be lost. If you require precision to many decimal points, consider
using the DECIMAL type.

The FLOAT key type is consistent with the IEEE standard for single and double-precision real numbers.
The internal format for a 4-byte FLOAT consists of a 23-bit mantissa, an 8-bit exponent biased by 127,
and a sign bit, as follows:

392

3322222222221111111111
1098765432109 8765432109876543210
LU rrrrrrrrrrrrrrrrrrrrTrd

N 1 N N N N N N N N N N N Ny v B |
8-bit exponent 23-bit mantissa

Sign
A FLOAT key with 8 bytes has a 52-bit mantissa, an 11-bit exponent biased by 1023, and a sign bit. The
internal format is as follows:

bytes 7-4.:

6 6 6555555505505 444444444433333333
2 10987 65432109876543210987605432
rrrrrrrrrrjprrrerrrrrrrrrrrr Tl

6
3

| N N N I [N I N I I I |
11-bit exponent 20-bit mantissa

Sign

bytes 3-0:

3 2 2 2 1
1 7 5 1 1

©o N

3 2 2 2 22 211111111 1
0 8 6 4 3 2 09 87 65432 09 87 6543210
rrrrrrrrrrrrrrrrerrrrrrrrrrrTrTrrd

| N N I N I T N I I O T N N I N I N O IO I I |
32-bit mantissa

GUID

The GUID key type is a 16-byte number that is stored internally as a 16-byte binary value. Its extended
data type value is 27.

GUIDs are commonly used as globally unique identifiers. The corresponding data type for the
Relational Engine is UNIQUEIDENTIFIER.

Note that GUID requires a file format of 9.5 or higher.

GUID Keys

The sort order for the bytes composing the GUID are compared in the following sequence: 10, 11, 12,
13, 14, 15,8,9,6,7,4,5,0, 1, 2, 3.

The key segment length for a GUID must be 16 bytes. See Key Specification Block in Btrieve API Guide.

INTEGER

The INTEGER key type is a signed whole number and can contain any number of digits. Internally,
INTEGER fields are stored in Intel binary integer format, with the high-order and low-order bytes

393

reversed within a word. The MicroKernel evaluates the key from right to left. The sign must be stored in
the high bit of the rightmost byte. The INTEGER type is supported by most development environments.

Table 120 INTEGER Key Type

Length in Bytes | Value Ranges
1 0-255
2 -32768 — 32767
4 -2147483648 — 2147483647
8 -9223372036854775808 — 9223372036854775807

LOGICAL

The LOGICAL key type is stored as a 1 or 2-byte value. The MicroKernel collates LOGICAL key types
as strings. Doing so allows your application to determine the stored values that represent true or false.

LSTRING

The LSTRING key type has the same characteristics as a regular STRING type, except that the first byte
of the string contains the binary representation of the string length. The LSTRING key type is limited to
a maximum size of 255 bytes. The length stored in byte 0 of an LSTRING key determines the number of
significant bytes. The database engine ignores any values beyond the specified length of the string when
sorting or searching for values. The LSTRING type is commonly used in legacy Pascal applications.

MONEY

The MONEY key type has the same internal representation as the DECIMAL type, with an implied two
decimal places.

NUMERIC

Each digit of a NUMERIC key type occupies one byte. NUMERIC values are stored as ASCII strings
right-aligned with leading zeros. The rightmost byte includes an embedded sign with an EBCDIC value.
By default, the sign value for positive NUMERIC data types is an unsigned numeric number.

Optionally, you may specify that you want to shift the value of the sign for positive NUMERIC data
types. The following table compares the sign values in the default (unshifted) and shifted states.

Table 121 Comparison of Shifted and Unshifted Sign Values for NUMERICS

Digit Default (unshifted) Sign Value Shifted Sign Value
Positive Negative Positive Negative
1 1 J A J
2 2 K B K
3 3 L C L
4 4 M D M
5 5 N E N

394

Table 121 Comparison of Shifted and Unshifted Sign Values for NUMERICS

Digit Default (unshifted) Sign Value Shifted Sign Value
Positive Negative Positive Negative
6 6 o F o}
7 7 P G P
8 8 Q H Q
9 9 R | R
0 0 } { }

Enabling the Shifted Format

You must manually specify a setting on the machine running the Zen database engine to enable the
shifted format. The setting DBCobolNumeric must be set to yes. The rest of this topic summarizes use
of this setting on Windows 32-bit, Linux, and macOS platforms.

Windows 32-Bit

Using the Registry Editor, add the DBCobolNumeric setting as a string value to the following key:
HKEY_LOCAL_MACHINE\SOFTWARE\Actian\Zen\Database Names

Set the string value for DBCobolNumeric to yes.

In most Windows systems, the key is HKEY_LOCAL_MACHINE\SOFTWARE\Actian\Zen, but its
location under HKEY_LOCAL_MACHINE\SOFTWARE varies depending on the operating system.

Caution If the Windows registry is edited improperly, Windows may be unable to start. Only a
trained IT person should do the editing. Actian Corporation does not accept responsibility for a
damaged Windows registry.

Stop and restart the database engine or the engine services.

Linux and macOS
Add the DBCobolNumeric setting to bti.ini below the [Database Names] entry:

[Database Names]
DBCobolNumeric=yes

By default, bti.ini is located in the /usr/local/actianzen/etc directory.

Stop and restart the database engine.

Consistent Sign Values for Positive NUMERIC Data

You may already have positive NUMERIC data with the sign value in the default (unshifted) format. If
you set DBCobolNumeric to yes and continue adding data to the same table, mixed formats result.
Leaving your data with mixed formats for the sign value is not recommended.

395

To correct or prevent a condition of mixed formats, use the UPDATE statement to update NUMERIC
columns to themselves. For example, suppose that table t1 contains column c1 that is a NUMERIC data
type. After you set DBCobolNumeric to yes, update c1 as follows: UPDATE TABLE t1 SET c1 = c1.

NUMERICSA

The NUMERICSA key type (sometimes called NUMERIC SIGNED ASCII) is a COBOL data type
identical to NUMERIC, except that the embedded sign has an ASCII instead of an EBCDIC value.

Table 122 Sign Values for NUMERICSA

Digit Default Sign Value
Positive Negative
1 1orQ q
2 20orR r
3 3orS]
4 4orT t
5 50ryU u
6 6orV v
7 7orW w
8 8orX X
9 9orY y
0 OorP p

NUMERICSLB

The NUMERICSLB key type (sometimes called SIGN LEADING with COBOL compiler option -dcb) is
a COBOL data type that has values resembling those of the NUMERIC data type. NUMERICSLB values
are stored as ASCII strings and right justified with leading zeros.

Table 123 Sign Values for NUMERICSLB

Digit Default Sign Value
Positive Negative
1 1 A
2 2 B
3 3 C
4 4 D
5 5 E
6 6 F
7 7 G

396

Table 123 Sign Values for NUMERICSLB

Digit Default Sign Value
Positive Negative
8 8 H
9 9 |
0 0 @

NUMERICSLS

The NUMERICSLS key type (sometimes called SIGN LEADING SEPARATE) isa COBOL data type that

has values resembling those of the NUMERIC data type. NUMERICSLS values are stored as ASCII
strings and left justified with leading zeros. However, the leftmost byte of a NUMERICSLS string is

either “+” (ASCII 0x2B) or “-” (ASCII 0x2D). This differs from NUMERIC values that embed the sign

in the rightmost byte along with the value of that byte.

NUMERICSTB

The NUMERICSTB key type (sometimes called SIGN TRAILING with COBOL compiler option -dcb)
is a COBOL data type that has values resembling those of the NUMERIC data type. NUMERICSTB

values are stored as ASCII strings and right justified with leading zeros.

Table 124 Sign Values for NUMERICSTB

Digit Default Sign Value
Positive Negative

1 1 A
2 2 B
3 3 C
4 4 D
5 5 E
6 6 F
7 7 G
8 8 H
9 9 |
0 0 @

NUMERICSTS

The NUMERICSTS key type (sometimes called SIGN TRAILING SEPARATE) is a COBOL data type
that has values resembling those of the NUMERIC data type. NUMERICSTS values are stored as ASCII
strings and right justified with leading zeros. However, the rightmost byte of a NUMERICSTS string is

397

either “+” (ASCII 0x2B) or “-” (ASCII 0x2D). This differs from NUMERIC values that embed the sign
in the rightmost byte along with the value of that byte.

TIME

The TIME key type is stored internally as a 4-byte value. Hundredths of a second, second, minute, and
hour values are each stored in 1-byte binary format. The MicroKernel places the hundredths of a second
value in the first byte, followed respectively by the second, minute, and hour values. The data format is
hh:mm:ss.nn. Supported values range from 00:00:00.00 to 23:59:59.99.

3322222222221 111111111
10987654321098765432109876543210

hour

minute

second

hundreths

of a second

TIMESTAMP

The TIMESTAMP key type represents a time and date value. In SQL applications, use this data type to
stamp a record with the current time and date of the last update to the record. TIMESTAMP values are
stored in 8-byte unsigned values representing septaseconds (10/-7 second) since January 1, 0001 in a
Gregorian calendar, Coordinated Universal Time (UTC). Supported values range from 0001-01-01
00:00:00.0000000 to 9999-12-31 23:59:59.9999999.

Unlike AUTOTIMESTAMP, a value of zero is not automatically replaced with the current time when a
new record is inserted or the first time an existing record is updated.

Note According to the ODBC standard, scalar functions such as CURRENT_TIMESTAMP() or
NOW() ignore the portion of the data type that represents fractional seconds. It is important to note
that when these functions are used, Zen does not ignore fractional seconds and displays three digits
for milliseconds.

TIMESTAMP supports time and data values made up of the following components: year, month, day,
hour, minute, second, and millisecond. The following table indicates the range of valid values for each
of these components.

YEAR 0001 to 9999

MONTH 01to12

DAY 01 to 31, constrained by the value of MONTH and YEAR in the Gregorian calendar.
HOUR 00 to 23

MINUTE 00 to 59

SECOND 00 to 59

MILLISECOND | 000 to 999. Default setting. Scale can be set to a value of 0 to 7 (septaseconds).

Each TIMESTAMP value contains a complete date and time value with the maximum scale supported
by the local operating system, filled if needed with trailing zeros. When this value is returned, it uses the

398

scale set for the time stamp. For example, the value is returned in milliseconds when the scale is 3 and
microseconds when it is 6.

For more information about scale for date and time data types, see Scale of Time Stamp Data Types and
Returned Function Values.

You provide the value of a TIMESTAMP in local time and the Relational Engine converts it to
Coordinated Universal Time (UTC) before storing it in a record. When you request a TIMESTAMP
value, the Relational Engine returns it converted back to local time.

7

Caution It is critical that you correctly set time zone information on the computer where the
database engine runs. If you move across time zones or change time zone information, the returned
data will change when it is converted from UTC to local time. The local time and UTC conversions
occur in the Relational Engine using the time zone information where the Relational Engine is
running. The time zone information for sessions that are in time zones different from the Relational
Engine engine are not used in the local time and UTC conversions.

Because time stamp data is converted to UTC before it is stored, the TIMESTAMP type is inappropriate
for use with local time and local date data that reference events external to the database itself, particularly
in time zones where seasonal time changes take place, such as Daylight Savings Time in the United
States.

For example, assume it is October 15, and you enter a time stamp value to track an appointment on
November 15 at 10 a.m. Assume you are in the U. S. Central Time Zone. When the Relational Engine
stores the value, it converts it to UTC using current local time information (UTC-5 hours for CDT). So
it stores the hour value 15. Assume, on November 1, you check the time of your appointment. Your
computer is now in Standard Time, because of the switch that occurred in October, so the conversion is
(UTC-6 hours). When you extract the appointment time, it will show 9 a.m. local time (15 UTC - 6 CST),
which is not the correct appointment time.

The same type of issue will occur if a database engine is moved from one time zone to another.

Because the Relational Engine does not convert DATE and TIME values to UTC, you should almost
always use DATE and TIME columns to record external data. The only reason to use a TIMESTAMP
column is a need for the specific ability to determine the sequential time order of records entered into
the database.

Usage in Function Executor and Maintenance Tools

The use of TIMESTAMP keys in Function Executor or the Maintenance tools is similar to
AUTOINCREMENT keys. For the files that use them, the key type is listed as Tstamp, which also
appears in the output of butil <filename> -stat and is used for the key type in the description file
for a butil -create command.

TIMESTAMP2

The TIMESTAMP?2 key type tracks time in nanoseconds based on the Unix epoch. In SQL applications,
use this data type to stamp a record with the current time and date of the last update to the record. Values
are stored in 8-byte unsigned values representing nanoseconds (10/-9 second) since January 1, 1970 in
a Gregorian calendar, Coordinated Universal Time (UTC). Supported values range from 1970-01-01
00:00:00.000000000 to 2554-07-21 23:34:33.709551615.

399

Unlike AUTOTIMESTAMP, a value of zero is not automatically replaced with the current time when a
new record is inserted or the first time an existing record is updated.

This key type is available starting in Zen v14 SP1 for file formats 9.5 and 13.0. Older database engines
that attempt to open a file that has a record that uses this type will return status code 30 for an
unrecognized Microkernel file.

Note According to the ODBC standard, scalar functions such as CURRENT_TIMESTAMP() or
NOW() ignore the portion of the data type that represents fractional seconds. It is important to note
that when these functions are used, Zen does not ignore fractional seconds and displays nine digits
for nanoseconds.

TIMESTAMP2 supports time and data values made up of the following components: year, month, day,
hour, minute, second, and nanosecond. The following table indicates the range of valid values for each
of these components.

YEAR 1970 to 2554

MONTH 01to 12

DAY 01 to 31, constrained by the value of MONTH and YEAR in the Gregorian calendar.
HOUR 00 to 23

MINUTE 00 to 59

SECOND 00 to 59

NANOSECOND | 000000000 to 999999999. Default setting.

Each TIMESTAMP?2 value contains a complete date and time value with the maximum scale supported
by the local operating system, filled if needed with trailing zeros. When this value is returned, it uses the
scale set for the time stamp. For example, the value is returned in milliseconds when the scale is 3 and
microseconds when it is 6.

For more information about scale for date and time data types, see Scale of Time Stamp Data Types and
Returned Function Values.

You provide the value of a TIMESTAMP?2 in local time and the Relational Engine converts it to
Coordinated Universal Time (UTC) before storing it in a record. When you request a TIMESTAMP2
value, the Relational Engine returns it converted back to local time.

Caution It is critical that you correctly set time zone information on the computer where the
database engine runs. If you move across time zones or change time zone information, the returned
data will change when it is converted from UTC to local time. The local time and UTC conversions
occur in the Relational Engine using the time zone information where the Relational Engine is
running. The time zone information for sessions that are in time zones different from the Relational
Engine engine are not used in the local time and UTC conversions.

Because time stamp data is converted to UTC before it is stored, the TIMESTAMP?2 type is inappropriate
for use with local time and local date data that reference events external to the database itself, particularly

400

in time zones where seasonal time changes take place (such as Daylight Savings Time in the United
States).

For example, assume it is October 15, and you enter a time stamp value to track an appointment on
November 15 at 10 a.m. Assume you are in the U. S. Central Time Zone. When the Relational Engine
stores the value, it converts it to UTC using current local time information (UTC-5 hours for CDT). So
it stores the hour value 15. Assume, on November 1, you check the time of your appointment. Your
computer is now in Standard Time, because of the switch that occurred in October, so the conversion is
(UTC-6 hours). When you extract the appointment time, it will show 9 a.m. local time (15 UTC - 6 CST),
which is not the correct appointment time.

The same type of issue will occur if a database engine is moved from one time zone to another.

Because the Relational Engine does not convert DATE and TIME values to UTC, you should almost
always use DATE and TIME columns to record external data. The only reason to use a TIMESTAMP2
column is a need for the specific ability to determine the sequential time order of records entered into
the database.

Usage in Function Executor and Maintenance Tools

The use of TIMESTAMP2 keys in Function Executor or the Maintenance tools is similar to
AUTOINCREMENT keys. For the files that use them, the key type is listed as TS2, which also appears
in the output of butil <filename> -statand is used for the key type in the description file for a butil
-create command.

UNSIGNED BINARY

UNSIGNED BINARY keys can be any number of bytes up to the maximum key length of 255.
UNSIGNED keys are compared byte-for-byte from the most significant byte to the least significant byte.
The first byte of the key is the least significant byte. The last byte of the key is the most significant.

The database engine sorts UNSIGNED BINARY keys as unsigned INTEGER keys. The differences are
that an INTEGER has a sign bit, while an UNSIGNED BINARY type does not, and an UNSIGNED
BINARY key can be longer than 4 bytes.

WSTRING
WSTRING is a Unicode string that is not null-terminated. The length of the string is determined by the
field length.

WZSTRING

WZSTRING is a Unicode string that is double null-terminated. The length of this string is determined
by the position of the Unicode NULL (two null bytes) within the field. This corresponds to the ZSTRING
type supported in Btrieve.

ZSTRING

The ZSTRING key type corresponds to a C string. It has the same characteristics as a regular string type
except that a ZSTRING type is terminated by a binary 0. The MicroKernel ignores any values beyond
the first binary 0 it encounters in the ZSTRING, except when the MicroKernel is determining whether
a key value is null.

401

The maximum length of a ZSTRING type is 255 bytes, including the null terminator character. If used
as a key for a nullable column, only the first 254 bytes of the string are used in the key. This minor
limitation occurs because the key is limited to 255 bytes total length, and one byte is occupied by the null
indicator for the column, leaving only 254 bytes for the key value.

402

Non-Key Data Types

This topic discusses the internal storage formats of data types that cannot be indexed (used as Btrieve
keys).

BLOB

The Binary Large Object (BLOB) type provides support for binary data fields up to 2 GB in size. This
type consists of 2 parts:

m an 8-byte header in the fixed-length portion of the record. The header contains a 4-byte integer that
identifies the offset to the beginning of the data in the variable-length portion of the record, and a
4-byte integer that specifies the size of the data.

» the binary data itself is stored within the variable-length portion of the record. The size of all BLOB
and CLOB fields must sum to 2 GB or less, because the offset pointer into the variable-length portion
of the record is limited to 2 GB maximum offset. To store the maximum BLOB size of 2 GB, you may
have only 1 BLOB or CLOB field defined in the record.

For additional information, see BINARY and LONGVARBINARY and Limitations on
LONGVARCHAR, NLONGVARCHAR and LONGVARBINARY.

CLOB

The Character Large Object (CLOB) type provides support for character data fields up to 2 GB in size.
This type consists of 2 parts:

m An 8-byte header in the fixed-length portion of the record. The header contains a 4-byte integer that
identifies the offset to the beginning of the data in the variable-length portion of the record, and a
4-byte integer that specifies the size of the data in bytes.

m The character data itself is stored within the variable-length portion of the record. The size of all
BLOB and CLOB fields must sum to 2 GB or less, because the offset pointer into the variable-length
portion of the record is limited to 2 GB maximum offset. To store the maximum BLOB size of 2 GB,
you may have only 1 BLOB or CLOB field defined in the record.

For additional information, see CHAR, NCHAR, VARCHAR, NVARCHAR, LONGVARCHAR, and
NLONGVARCHAR and Limitations on LONGVARCHAR, NLONGVARCHAR and
LONGVARBINARY.

403

404

chapter

SQL Reserved Words

Supported Zen Reserved Words

Reserved words are SQL keywords and other symbols that have special meanings when they are
processed by the Relational Engine. Reserved words are not recommended for use as database, table,
column, variable or other object names. If a reserved word is used as an object name, it must be enclosed
in double-quotes to notify the Relational Engine that the word is not being used as a keyword in the
given context.

You can avoid having to worry about reserved words by always enclosing user-defined object names in
double-quotes.

This appendix contains the following topic:

m Reserved Words
s Words to Avoid

405

Reserved Words

Each of the symbols or words listed below has a special meaning when processed by the Relational
Engine unless it is delimited by double quotation marks. Using one of these words as a table or object
name without the quotation marks will cause an error.

See also the next topic, Words to Avoid.

Symbols
; @

A
ABORT ACCELERATED ADD
AFTER ALL ALTER
AND ANSI_PADDING ANY
AS ASC ATOMIC
AVG

B
BEFORE BEGIN BETWEEN
BORDER BY

C
CALL CACHED_PROCEDURES | CASCADE
CASE CAST CHECK
CLOSE COALESCE COLLATE
COLUMN COMMIT COMMITTED
CONSTRAINT CONVERT COUNT
CREATE CREATESP CREATETAB
CREATEVIEW CROSS CS
CURDATE CURRENT CURSOR
CURTIME

406

DATA_PATH DATABASE DATETIMEMILLISECONDS
DBO DBSEC_AUTHENTICATION | DBSEC_AUTHORIZATION
DCOMPRESS | DDF DECIMALSEPARATORCOMMA
DECLARE DEFAULT DEFAULTCOLLATE
DELETE DENY DESC

DIAGNOSTICS | DICTIONARY DICTIONARY_PATH
DISTINCT DO DROP

DSN

EACH ELSE ENCODING

END ENFORCED EX

EXCLUSIVE EXEC EXECUTE
EXISTING EXISTS EXPR

FETCH FILES FN

FOR FOREIGN FROM

FULL FUNCTION

GLOBAL_QRYPLAN GRANT GROUP

HANDLER HAVING

IF IN INDEX

INNER INOUT INSERT
INTEGRITY INTERNAL INTO

IS ISOLATION

407

JOIN

KEY

408

LEAVE LEFT LEGACYOWNERNAME
LEVEL LIKE LIMIT

LINKDUP LOGIN LOOP

MAX MIN MODE
MODIFIABLE MODIFY

NEW NEXT NO
NO_REFERENTIAL_INTEGRITY NORMAL NOT
NOW NULL

OF OFF OFFSET

oLD ON ONLY

OPEN OPTINNERJOIN OR

ORDER ouT OUTER

OVER OWNER

PAGESIZE PARTIAL PARTITION
PASSWORD PCOMPRESS PRECEDING
PRED PRIMARY PRINT
PROCEDURE PROCEDURES_CACHE | PSQL_MOVE
PSQL_PHYSICAL PSQL_POSITION PUBLIC

QRYPLAN QRYPLANOUTPUT

READ REFERENCES REFERENCING
RELATIONAL RELEASE RENAME
REPEAT REPEATABLE REPLACE
RESTRICT RETURN RETURNS
REUSE_DDF REVERSE REVOKE
RIGHT ROLLBACK ROW

ROWS ROWCOUNT ROWCOUNT2
SAVEPOINT SECURITY SELECT
SERIALIZABLE SESSIONID SET

SIGNAL SIZE SPID
SQLSTATE SSP_EXPR SSP_PRED
START STDEV SUM

SVBEGIN SVEND

T TABLE THEN

TO TOP TRANSACTION
TRIGGER TRIGGERSTAMPMISC | TRUEBITCREATE
TRUENULLCREATE TRY_CAST TS
UNBOUNDED UNCOMMITTED UNION
UNIQUE UNIQUEIDENTIFIER UNTIL

UPDATE USER USING

409

410

V1_METADATA V2_METADATA VALUES
VIEW

WHEN WHERE WHILE
WITH WORK WRITE

Words to Avoid

The following table lists keywords from the SQL-92 and SQL-99 ANSI standards, as well as additional
keywords recognized by Zen. We recommend you avoid using these words as names for tables, columns,
or other objects unless you enclose them in double quotation marks. Actian Corporation reserves the
right to add support for any of these keywords as well as any future ANSI SQL keywords in future

releases, which would then cause them to be included in this list.

If you use double quotation marks to delimit all table, column, and user-defined object names, then you
do not need to worry about possible future conflicts with reserved words.

See also the topic Reserved Words.

Table 125 Words to Avoid as User-Defined Names

ABSOLUTE ACTION ADD

ALL ALLOCATE ALTER

AND ANY ARE

AS ASC ASSERTION

AT AUTHORIZATION AVG

BEGIN BETWEEN BIGIDENTITY
BIT BIT_LENGTH BOTH

BY CASCADE CASCADED
CASE CAST CATALOG
CHAR CHARACTER CHAR_LENGTH
CHARACTER_LENGTH CHECK CLOSE
COALESCE COLLATE COLLATION
COLUMN COMMIT CONNECT
CONNECTION CONSTRAINT CONSTRAINTS
CONTINUE CONVERT CORRESPONDING
COUNT CREATE CROSS
CURRENT CURRENT_DATE CURRENT_TIME
CURRENT_TIMESTAMP CURRENT_USER CURSOR

DATE DAY DEALLOCATE
DEC DECIMAL DECLARE
DEFAULT DEFERRABLE DEFERRED
DELETE DESC DESCRIBE
DESCRIPTOR DIAGNOSTICS DISCONNECT

411

412

Table 125 Words to Avoid as User-Defined Names (Continued)

DISTINCT DOMAIN DOUBLE
DROP ELSE END
END-EXEC ESCAPE EXCEPT
EXCEPTION EXEC EXECUTE
EXISTS EXTERNAL EXTRACT
FALSE FETCH FIRST
FLOAT FOR FOREIGN
FOUND FROM FULL
FUNCTION GET GLOBAL
GO GOTO GRANT
GROUP HAVING HOUR
IDENTITY IMMEDIATE IN
INDICATOR INITIALLY INNER
INPUT INSENSITIVE INSERT
INT INTEGER INTERSECT
INTERVAL INTO IS
ISOLATION JOIN KEY
LANGUAGE LAST LEADING
LEFT LEVEL LIKE
LIMIT LOCAL LOWER
MASK MATCH MAX

MIN MINUTE MODULE
MONTH NAMES NATIONAL
NATURAL NCHAR NEXT

NO NOT NLONGVARCHAR
NULL NULLIF NUMERIC
NVARCHAR OCTET_LENGTH OF
OFFSET ON ONLY
OPEN OPTION OR
ORDER OUTER OUTPUT
OVERLAPS PAD PARTIAL

Table 125 Words to Avoid as User-Defined Names (Continued)

PASSWORD POSITION PRECISION
PREPARE PRESERVE PRIMARY
PRIOR PRIVILEGES PROCEDURE
PUBLIC READ REAL
REFERENCES RELATIVE RESTRICT
REVERSE REVOKE RIGHT
ROLLBACK ROWS SCHEMA
SCROLL SECOND SECTION
SELECT SESSION SESSION_USER
SET SIZE SMALLIDENTITY
SMALLINT SOME SPACE

SQL SQLCODE SQLERROR
SQLSTATE STDEV SUBSTRING
SUM SYSDATETIME SYSUTCDATETIME
SYSTEM_USER TABLE TEMPORARY
THEN TIME TIMESTAMP
TIMESTAMP2 TIMEZONE_HOUR TIMEZONE_MINUTE
TO TRAILING TRANSACTION
TRANSLATE TRANSLATION TRIM

TRUE TRY_CAST UNION

UNIQUE UNKNOWN UPDATE

UPPER USAGE USER

USING VALUE VALUES
VARCHAR VARYING VIEW

WHEN WHENEVER WHERE

WITH WORK WRITE

YEAR ZONE

413

414

System Tables

Zen System Tables Reference

The following topics cover Zen system tables:

. Overview

m System Tables Structure

chapter

415

Overview

The information used by Zen and its components is stored in special tables called system tables.

Caution Do not attempt to modify system tables with DELETE, UPDATE, or INSERT statements,
or user-defined triggers. System tables should never be altered directly.

Do not write your applications to query system tables directly. Some columns in system tables may not
be documented. Your application can retrieve information stored in system tables by using any of the
following methods:

= System Stored Procedures

m Transact-SQL statements and functions

m Functions provided in the Zen APIs

The Zen APIs are documented in the developer documentation. The development components are
designed to remain compatible with the database engine from release to release. The format of the

system tables depends on the internal architecture of the database engine, which may change from

release to release. Applications that directly access undocumented columns of system tables may have to
be changed if the internal architecture of Zen changes.

The following list of system tables gives the names of associated files and identifies system table contents.

Note Some data in the system tables cannot be displayed. User passwords, for example, are displayed
in their encrypted form.

Table 126 System Tables

System Table Dictionary File Contents
v1' V22

X$Attrib ATTRIB.DDF PVATTRIB.DDF Column attributes definitions.

X$Depend DEPEND.DDF PVDEPEND.DDF Trigger dependencies such as tables, views,
and procedures

X$Field FIELD.DDF PVFIELD.DDF Column and named index definitions.

X$File FILE.DDF PVFILE.DDF Names and locations of the tables in your
database.

X$Index INDEX.DDF PVINDEX.DDF Index definitions.

X$Proc PROC.DDF PVPROC.DDF Stored procedure definitions.

X$Relate RELATE.DDF PVRELATE.DDF Referential integrity (RI) information.

X$Rights RIGHTS.DDF PVRIGHTS.DDF User and group access rights definitions.

X$Trigger TRIGGER.DDF PVTRIG.DDF Trigger information.

Table 126 System Tables (Continued)

System Table Dictionary File Contents

v1' V22
X$User USER.DDF PVUSER.DDF User names, group names, and passwords.
X$View VIEW.DDF PVVIEW.DDF View definitions.

1Applies to version 1 (V1) metadata. See Zen Metadata.

2Applies to version 2 (V2) metadata. See Zen Metadata.

Zen creates all of the system tables when you create a database.

Two other system tables that you may encounter are VARIANT.DDF and OCCURS.DDF (for a V1

database) and PVVARIANT.DDF and PVOCCURS.DDF (for a V2 database).These two system files are
used for COBOL support and do not require any direct intervention by a user. Future versions of the

utilities for COBOL may implement a different architecture, in which case these system tables may no
longer be required. See also SQL Access for COBOL Applications.

417

System Tables Structure

This topic discusses the structure of the system tables:

= V1 Metadata System Tables
m V2 Metadata System Tables

V1 Metadata System Tables

X$Attrib

The X$Attrib system table is associated with the file ATTRIB.DDE. X$Attrib contains information about
the column attributes of each column in the database. There is an entry for each column attribute you
define. The structure of X$Attrib is described in X$Attrib System Table Structure.

Table 127 X$Attrib System Table Structure

Column Name | Type Size Case Insensitive | Description
Xa$ld USMALLINT 2 not applicable Corresponds to Xe$ld in X$Field.
Xa$Type CHAR 1 No D (default)

L (logical positioning)
O (column collation)

C (character); H (heading); M (mask); R (range); or

V (value)'
Xa$ASize USMALLINT 2 not applicable Length of text in Xa$Attrs.
Xa$Attrs LONGVARCHAR <=2048 not applicable Text that defines the column attribute.

(NOTE)

"Attribute type C, H, M, R and V are legacy validation types valid only in a Pervasive.SQL 7 or Scalable SQL environment.
Zen releases newer than Pervasive.SQL 7 use only the D (default), L (logical positioning), and O (column collation) attributes.

When you define multiple attributes for a single column, the X$Attrib system table contains multiple
entries for that column ID — one for each attribute you define. If you do not define column attributes for
a particular column, that column has no entry in the X$Attrib table. The text in the Xa$Attrs column
appears exactly as you define it with Zen. One index is defined for the X$Attrib table, as explained in
X$Attrib System Table Index Definitions:

Table 128 X$Attrib System Table Index Definitions

Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented

0 0 Xa$ld No not applicable Yes

0 1 Xa$Type No No No

418

X$Depend

The X$Depend system table is associated with the file DEPEND.DDE X$Depend contains information

about trigger dependencies such as tables, views, and procedures. The structure of X$Depend is as

follows:

Table 129 X$Depend System Table Structure

Column Name Type Size Case Insensitive | Description

Xd$Trigger CHAR 30 Yes Name of trigger. It corresponds to Xt$Name in
X$Trigger.

Xd$DependType UNSIGNED 1 not applicable 1 for Table, 2 for View, 3 for Procedure.

Xd$DependName | CHAR 30 Yes Name of dependency with which the trigger is
associated. It corresponds to either Xf§Name in
X$File, Xv$Name in X$View, or Xp$Name in
X$Proc.

Two indexes are defined for the X$Depend table as follows:

Table 130 X$Depend System Table Index Definitions

Index Number | Segment Number | Column Name Duplicates Case Insensitive | Segmented
0 0 Xd$Trigger No Yes Yes
0 1 Xd$DependType No not applicable Yes
0 2 Xd$DependName No Yes No
1 0 Xd$DependType Yes not applicable Yes
1 1 Xd$DependName Yes Yes No

Index Number corresponds to the value stored in the Xi$Number column in the X$Index system table.
Segment Number corresponds to the value stored in the Xi$Part column in the X$Index system table.

X$Field

The X$Field system table is associated with the file FIELD.DDE X$Field contains information about all
the columns and named indexes defined in the database. The structure of X$Field is as follows:

Table 131 X$Field System Table Structure

Column Name

Type Size

Case Insensitive

Description

0 through 26:

column data type

227: constraint name
255: index name

Xe$ld USMALLINT 2 not applicable Internal ID assigned by Zen, unique for each field in
the database

Xe$File USMALLINT 2 not applicable ID of table to which this column or named index
belongs. It corresponds to Xf$ld in X$File.

Xe$Name CHAR 20 Yes Column name or index name

Xe$DataType UTINYINT 1 not applicable Control field:

419

Table 131 X$Field System Table Structure (Continued)

Column Name

Type

Size

Case Insensitive

Description

Xe$Offset

USMALLINT

2

not applicable

Column offset in table. Index number if named index.
Offsets are zero-relative.

Index Number corresponds to the value stored in the
Xi$Number column in the X$Index system table.

Xe$Size

USMALLINT

not applicable

Column size, representing the internal storage, in
bytes, required for the field.

Size does not include the NULL byte for TRUE NULL
fields.

Xe$Dec

UTINYINT

not applicable

Column decimal place (for DECIMAL, NUMERIC,
NUMERICSA, NUMERICSTS, MONEY, or
CURRENCY types). Relative bit positions for
contiguous bit columns. Fractional seconds for
AUTOTIMESTAMP, TIMESTAMP, and
TIMESTAMP2 data types.

Xe$Flags

USMALLINT

not applicable

Flags word.

Bit O is the case flag for string data types.
If bit 0 = 1, the field is case insensitive.

If bit 2 = 1, the field allows null values.

Bit 3 of Xe$flag is used to differentiate a
Pervasive.SQL v7 1-byte TINYINT
(B_TYPE_INTEGER unsigned) from Relational
Engine's 1-byte TINYINT (B_TYPE_INTEGER, but
signed).

If bit 3 =1 and Xe$datatype = 1 and Xe$size =1, then
it means that TINYINT column is created by the
Relational Engine and is a signed 1-byte TINYINT.

If bit 3 = 0 and Xe$datatype = 1 and xe$size = 1 then
it means that TINYINT column is created by the
legacy SQL engine and is an unsigned 1-byte
TINYINT.

If bit 11 = 1, the field is interpreted as a wide
character NLONGVARCHAR field rather than a
character LONGVARCHAR field.

If bit 12 = 1, the field is interpreted as BINARY.

If bit 13 = 1, the field is interpreted as DECIMAL with
even-digit precision.

Column Xe$File corresponds to column Xf$Id in the X$File system table and is the link between the
tables and the columns they contain. For example, the following query returns all field definitions in
order for the Billing table:

SELECT "X$Field".*
FROM X$File,X$Field
WHERE Xf$ld=Xe$File AND Xf$Name = "Billing" AND Xe$DataType <= 26

ORDER BY Xe$0Offset

The integer values in column Xe$DataType are codes that represent the Zen data types. See Zen

Supported Data Types for the codes.

420

Table 132 X$Field System Table Index Definitions

Five indexes are defined for the X$Field table as follows:

Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented
0 0 Xe$ld No not applicable No

1 0 Xe$File Yes not applicable No

2 0 Xe$Name Yes Yes No

3 0 Xe$File No not applicable Yes

3 1 Xe$Name No Yes No

4 0 Xe$File Yes not applicable Yes

4 1 Xe$Offset Yes not applicable Yes

4 2 Xe$Dec Yes not applicable No

X$File

The X$File system table is associated with the file FILE.DDE. For each table defined in the database,
X$File contains the table name, the location of the associated table, and a unique internal ID number
that Zen assigns. The structure of X$File is as follows:

Table 133 X$File System Table Structure

Column Name Type Size Case Insensitive | Description

Xf$ld USMALLINT 2 not applicable Internal ID assigned by Zen

Xf$Name CHAR 20 Yes Table name

Xf$Loc CHAR 64 No File location (path name)

Xf$Flags UTINYINT 1 not applicable File flags. If bit 4=1, the file is a dictionary file. If bit
4=0, the file is user-defined. If bit 6=1, the table
supports true nullable columns.

Xf$Reserved CHAR 10 No Reserved

Two indexes are defined for the X$File table.
Table 134 X$File System Table Index Definitions
Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented
0 0 Xf$ld No not applicable No
1 0 Xf$Name No Yes No

421

X$Index

The X$Index system table is associated with the file INDEX.DDE. X$Index contains information about
all the indexes defined on the tables in the database. The structure of X$Index is as follows:

Table 135 X$Index System Table Structure

Column Name Type Size Case Insensitive | Description

Xi$File USMALLINT 2 not applicable Unique ID of the table to which the index belongs. It
corresponds to Xf$ld in X$File.

Xi$Field USMALLINT 2 not applicable Unique ID of the index column. It corresponds to
Xe$ld in X$Field.

Xi$Number USMALLINT 2 not applicable Index number (range 0 — 119).

Xi$Part USMALLINT 2 not applicable Segment number (range 0 — 119).

Xi$Flags USMALLINT 2 not applicable Index attribute flags.

The Xi$File column corresponds to the Xf$Id column in the X$File system table. The Xi$Field column
corresponds to the Xe$Id column in the X$Field system table. Thus, an index segment entry is linked to
a file and to a field.

The Xi$Flags column contains integer values that define the index attributes. The following table
describes how Zen interprets each bit position when the bit has the binary value of 1. Bit position 0 is the
rightmost bit in the integer.

Table 136 Xi$Flags Bit Positions

Bit Decimal Description

Position Equivalent

0 1 Index allows duplicates.

1 2 Index is modifiable.

2 4 Indicates an alternate collating sequence.

3 8 Null values are not indexed (refers to Btrieve NULLs, not SQL true NULLS).

4 16 Another segment is concatenated to this one in the index.

5 32 Index is case-insensitive.

6 64 Index is collated in descending order.

7 128 Index is a named index if bit 0 is 0. If bit 0 is 1 and bit 7 is 1, the index uses the repeating
duplicates key method. If bit 0 is 1 and bit 7 is 0, the index uses the linked duplicates key
method. See also LINKDUP. For a detailed discussion of linked duplicates method and
repeating duplicates method, see Methods for Handling Duplicate Keys in Advanced
Operations Guide.

8 256 Index is a Btrieve extended key type.

9 512 Index is partial.

13 8192 Index is a foreign key.

14 16384 Index is a primary key referenced by some foreign key.

422

The value in the Xi$Flags column for a particular index is the sum of the decimal values that correspond
to the index attributes. Three indexes are defined for the X$Index table as follows:

Table 137 X$Index System Table Index Definitions

Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented
0 0 Xi$File Yes not applicable No

1 0 Xi$Field Yes not applicable No

2 0 Xi$File No not applicable Yes

2 1 Xi$Number No not applicable Yes

2 2 Xi$Part No not applicable No

Index Number corresponds to the value stored in the Xi$Number column in the X$Index system table.
Index numbering starts at zero. Segment Number corresponds to the value stored in the Xi$Part column
in the X$Index system table.

To see the information about the index segments defined for the Billing table, for example, issue the
following query:

SELECT Xe$Name,Xe$Offset, ""X$Index'.*

FROM X$File,X$Index,X$Field

WHERE Xf$ld=Xi$File and Xi$Field=Xe$ld and Xf$Name = "Billing"”
ORDER BY Xi$Number,Xi$Part

X$Proc

The X$Proc system table is associated with the file PROC.DDE X$Proc contains the compiled structure
information for every stored procedure defined. The structure of X$Proc is as follows:

Table 138 X$Proc System Table Structure

Column Name Type Size Case Insensitive | Description
Xp$Name CHAR 30 Yes Stored procedure name.
Xp$Ver UTINYINT 1 not applicable Version ID. This is reserved for future use.
Xp$id USMALLINT 2 not applicable 0-based Sequence Number.
Xp$Flags UTINYINT 1 not applicable 1 for stored statement, 2 for stored procedure or 3 for
external procedure.
Xp$Misc LONGVARCHAR <=990 | not applicable Internal representation of stored procedure.
(LVAR)

Note Stored statements and external procedures were supported in versions prior to Pervasive.SQL
2000i. Only stored procedures have been supported since Pervasive.SQL 2000i.

423

One index is defined for the X$Proc table as follows:
Table 139 X$Proc System Table Index Definitions

Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented
0 0 Xp$Name No Yes Yes
0 1 Xp$ld No not applicable No

A single stored procedure may be stored in multiple entries in X$Proc, linked by Xp$Name.

X$Relate

The X$Relate system table is associated with the file RELATE.DDE X$Relate contains information about
the referential integrity (RI) constraints defined on the database. X$Relate is automatically created when
the first foreign key is created, since this results in a relationship being defined.

The structure of X$Relate is as follows:

Table 140 X$Relate System Table Structure

Column Name Type Size Case Insensitive | Description
Xr$PId USMALLINT 2 not applicable Primary table ID.
Xr$Iindex USMALLINT 2 not applicable Index number of primary key in primary table.
Xr$FId USMALLINT 2 not applicable Dependent table ID.
Xr$FIndex USMALLINT 2 not applicable Index number of foreign key in dependent table.
Xr$Name CHAR 20 Yes Foreign key name.
Xr$UpdateRule UTINYINT 1 not applicable 1 for restrict.
Xr$DeleteRule UTINYINT 1 not applicable 1 for restrict, 2 for cascade.
Xr$Reserved CHAR 30 No Reserved.
Five indexes are defined for the X$Relate table as follows:
Table 141 X$Relate System Table Index Definitions
Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented
0 0 Xr$PId Yes not applicable No
1 0 Xr$Fid Yes not applicable No
2 0 Xr$Name No Yes No
3 0 Xr$PId No not applicable Yes
3 1 Xr$Name No Yes No
4 0 Xr$Fld No not applicable Yes
4 1 Xr$Name No Yes No

424

X$Rights

The X$Rights system table is associated with the file RIGHTS.DDE X$Rights contains access rights
information for each user. Zen uses this table only when you enable the security option. The structure
of X$Rights is as follows:

Table 142 X$Rights System Table Structure

Column Name | Type Size Case Insensitive | Description

Xr$User USMALLINT 2 not applicable User ID

Xr$Table USMALLINT 2 not applicable Table ID

Xr$Column USMALLINT 2 not applicable Column ID

Xr$Rights UTINYINT 1 not applicable Table or column rights flag

The Xr$User column corresponds to the Xu$ld column in the X$User table. The Xr$Table column

corresponds to the Xf$Id column in the X$File table. The Xr$Column column corresponds to the Xe$Id

column in the X$Fi

eld table.

Note For any row in the system table that describes table rights, the value for Xr$Column is null.

The Xr$Rights column contains integer values whose rightmost 8 bits define the user access rights. The
following table describes how Zen interprets the value. Values from this table may be combined into a
single Xr$Rights value.

Table 143 Xr$Rights System Table Bit Position Definitions

Hex Value Decimal Equivalent | Description

1 1 Reorganization in progress.
0x90 144 References rights to table.

0xAO0 160 Alter Table rights.

0x40 64 Select rights to table or column.
0x82 130 Update rights to table or column.
0x84 132 Insert rights to table or column.
0x88 136 Delete rights to table or column.

A decimal equivalent of 0 implies no rights.

The value in the Xr$Rights column for a particular user is the bit-wise intersection of the hex values

corresponding to the access rights that apply to the user. It is not the sum of the decimal values.

For example, the value in Xr$Rights for a user with all rights assigned would be represented as follows:

144 | 160 | 64 | 130 | 132 | 136 = 254

425

Three indexes are defined for the X$Rights table as follows:
Table 144 X$Rights System Table Index Definitions

Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented
0 0 Xr$User Yes not applicable No

1 0 Xr$User No not applicable Yes

1 1 Xr$Table No not applicable Yes

1 2 Xr$Column No not applicable No

2 0 Xr$Table Yes not applicable Yes

2 1 Xr$Column Yes not applicable No

X$Trigger

The X$Trigger system table is associated with the file TRIGGER.DDE X$Trigger contains information
about the triggers defined for the database. The structure of X$Trigger is as follows:

Table 145 X$Trigger System Table Structure

Column Name Type Size Case Insensitive | Description
Xt$Name CHAR 30 Yes Trigger name.
Xt$Version USMALLINT 2 not applicable Trigger version. A 4 indicates Scalable SQL v4.
Xt$File USMALLINT 2 not applicable File on which trigger is defined. Corresponds to
Xf$Id in X$File.
Xt$Event UNSIGNED 1 not applicable 0 for INSERT, 1 for DELETE, 2 for UPDATE.
Xt$ActionTime UTINYINT 1 not applicable 0 for BEFORE, 1 for AFTER.
Xt$ForEach UTINYINT 1 not applicable 0 for ROW (default), 1 for STATEMENT.
Xt$Order USMALLINT 2 not applicable Order of execution of trigger.
Xt$Sequence USMALLINT 2 not applicable 0-based sequence number.
Xt$Misc LONGVARCHAR | <=405 | not applicable Internal representation of trigger.
(LVAR) 4

A trigger that is long enough may require multiple entries in Trigger. DDF. Each entry has the same
trigger name in the Xt$Name field, and is used in the order specified by the Xt$Sequence field.

Three indexes are defined for the X$Trigger table as follows:

426

Table 146 X$Trigger System Table Index Definitions

Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented
0 0 Xt$Name No Yes Yes

0 1 Xt$Sequence No not applicable No

1 0 Xt$File No not applicable Yes

Table 146 X$Trigger System Table Index Definitions (Continued)

Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented
1 1 Xt$Name No Yes Yes

1 2 Xt$Sequence No not applicable No

2 0 Xt$File Yes not applicable Yes

2 1 Xt$Event Yes not applicable Yes

2 2 Xt$ActionTime Yes not applicable Yes

2 3 Xt$ForEach Yes not applicable Yes

2 4 Xt$Order Yes not applicable Yes

2 5 Xt$Sequence Yes not applicable No

The trigger may be stored in more than one entry in X$Trigger, linked by Xt$Name and ordered by
Xt$Sequence.

X$User

The X$User system table is associated with the file USER.DDE X$User contains the name and password
of each user and the name of each user group. Zen uses this table only when you enable the security
option. The following table shows the structure of X$User.

Table 147 X$User System Table Structure

Column Name Type Size Case Insensitive | Description

Xu$ld USMALLINT 2 not applicable Internal ID assigned to the user or group.
Xu$Name CHAR 30 Yes User or group name.

Xu$Password CHAR 9 No User password (encrypted)

Xu$Flags USMALLINT 2 not applicable User or group flags.

Note For any row in the X$User system table that describes a group, the column value for
Xu$Password is NULL.

The Xu$Flags column contains integer values whose rightmost 8 bits define the user or group attributes.
The following table describes how Zen interprets each bit position when the bit has the binary value of
1. Bit position 0 is the rightmost bit in the integer.

Table 148 Xu$Flags System Table Bit Position Definitions

Bit Decimal Equivalent | Description
Position

0 1 Reserved.

1 2 Reserved.

427

Table 148 Xu$Flags System Table Bit Position Definitions

Bit Decimal Equivalent | Description

Position

2 4 Reserved.

3 8 Reserved.

4 16 Reserved.

5 32 Reserved.

6 64 Name is a group name.

7 128 User or group has the right to define tables in the dictionary.

The value in the Xu$Flags column for a particular user or group is the sum of the decimal values
corresponding to the attributes that apply to the user or group.

Two indexes are defined for the X$User table, as shown in the following table.

Table 149 X$User System Table Index Definitions

Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented

0 0 Xu$ld Yes not applicable No

1 0 Xu$Name No Yes No
X$View

The X$View system table is associated with the file VIEW.DDE. X$View contains view definitions,
including information about joined tables and the restriction conditions that define views. You can
query the X$View table to retrieve the names of the views that are defined in the dictionary.

The first column of the X$View table contains the view name. The second and third columns describe
the information found in the LVAR column, Xv$Misc. The structure of X$View is as follows:

Table 150 X$View System Table Structure

Column Name Type Size Case Insensitive | Description
Xv$Name CHAR 20 Yes View name.
Xv$Ver UTINYINT 1 not applicable Version ID. This is reserved for future use.
Xv$ld UTINYINT 1 not applicable Sequence number.
Xv$Misc LONGVARCHAR | <=2000 | not applicable Zen internal definitions.
(LVAR)

Two indexes are defined for the X$View table as follows:

Table 151 X$View System Table Index Definitions

428

Index Number

Segment Number

Column Name

Duplicates

Case Insensitive

Segmented

0

0

Xv$Name

Yes

Yes

No

Table 151 X$View System Table Index Definitions

Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented
1 0 Xv$Name No Yes Yes
1 1 Xv$Ver No not applicable Yes
1 2 Xv$id No not applicable No

A single view may be stored in multiple X$View entries, linked by Xv§Name and ordered by Xv$Id.

429

V2 Metadata System Tables

X$Attrib

The X$Attrib system table is associated with the file PVATTRIB.DDE X$Attrib contains information
about the column attributes of each column in the database. There is an entry for each column attribute
you define. The following table shows the structure of X$Attrib.

Table 152 X$Attrib System Table Structure for V2 Metadata

Column Name Type Size Case Insensitive | Description
Xa$ld UINTEGER 4 | not applicable Corresponds to Xe$ld in X$Field
Xa$Type CHAR 4 | No D (default)
L (logical positioning)
O (column collation)
Xa$ASize USMALLINT 2 | Not applicable Length of text in Xa$Attrs
Xa$Attrs LONGVARCHAR 32,763 | not applicable Text that defines the column attribute
(NOTE)

When you define multiple attributes for a single column, the X$Attrib system table contains multiple
entries for that column ID — one for each attribute you define. If you do not define column attributes for
a particular column, that column has no entry in the X$Attrib table. The text in the Xa$Attrs column
appears exactly as you define it with Zen. One index is defined for the X$Attrib table as shown in the

next table.

Table 153 X$Attrib System Table Index Definitions for V2 Metadata

Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented
0 0 Xa$ld No not applicable Yes
0 1 Xa$Type No No No

430

X$Depend

The X$Depend system table is associated with the file PVDEPEND.DDE X$Depend contains
information about trigger dependencies for such objects as tables, views, and procedures. The structure
of X$Depend is as follows:

Table 154 X$Depend System Table Structure for V2 Metadata

Column Name Type Size Case Insensitive | Description

Xd$Trigger CHAR 128 | Yes Name of trigger. It corresponds to Xt$Name in
X$Trigger.

Xd$DependType UTINYINT not applicable 1 for Table, 2 for View, 3 for Procedure.

Xd$DependName | CHAR 128 | Yes Name of dependency with which the trigger is
associated. It corresponds to either Xf$Name in
X$File, Xv$Name in X$View, or Xp$Name in
X$Proc.

Two indexes are defined for the X$Depend table as follows:

Table 155 X$Depend System Table Index Definitions for V2 Metadata

Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented
0 0 Xd$Trigger No Yes Yes
0 1 Xd$DependType No not applicable No
1 0 Xd$DependType Yes not applicable Yes
1 1 Xd$DependName | Yes Yes No

431

X$Field

The X$Field system table is associated with the file PVFIELD.DDE X$Field contains information about
all the columns and named indexes defined in the database. The structure of X$Field is as follows:

Table 156 X$Field System Table Structure for V2 Metadata

Column Name Type Size Case Insensitive | Description

Xe$ld UINTEGER 4 | not applicable Internal ID assigned by Zen, unique for each field in
the database.

Xe$File UINTEGER 4 | not applicable ID of table to which this column or named index
belongs. It corresponds to Xf$ld in X$File.

Xe$Name CHAR 128 | Yes Column name or index name.

Xe$Datatype UTINYINT 1 not applicable 0 through 26: column data type

227: constraint name
255: index name

Xe$Offset UINTEGER 4 | not applicable Column offset in table. Index number if named index.
Offsets are zero-relative.

Index Number corresponds to the value stored in the
Xi$Number column in the X$Index system table.

Xe$Size UINTEGER 4 | not applicable Column size, representing the internal storage, in
bytes, required for the field.

Xe$Dec USMALLINT 2 | not applicable Column decimal place (for DECIMAL, NUMERIC,
NUMERICSA, NUMERICSTS, MONEY, or
CURRENCY types). Relative bit positions for
contiguous bit columns. Fractional seconds for
AUTOTIMESTAMP, TIMESTAMP, and
TIMESTAMP2 data types.

432

Table 156 X$Field System Table Structure for V2 Metadata (Continued)

Column Name Type Size Case Insensitive | Description

Xe$Flags UINTEGER 4 | not applicable Flags word.

Bit 0 is the case flag for string data types.
If bit 0 = 1, the field is case insensitive.

If bit 2 = 1, the field allows null values.

Bit 3 of Xe$flag is used to differentiate a
Pervasive.SQL v7 1-byte TINYINT
(B_TYPE_INTEGER unsigned) from Relational
Engine's 1-byte TINYINT (B_TYPE_INTEGER, but
signed).

If bit 3 =1 and Xe$datatype = 1 and Xe$size =1, then
it means that TINYINT column is created by the
Relational Engine and is a signed 1-byte TINYINT.

If bit 3 = 0 and Xe$datatype = 1 and xe$size = 1 then
it means that TINYINT column is created by the
legacy SQL engine and is an unsigned 1-byte
TINYINT.

If bit 11 = 1, the field is interpreted as a wide
character NLONGVARCHAR field rather than a
character LONGVARCHAR field.

If bit 12 = 1, the field is interpreted as BINARY.

If bit 13 = 1, the field is interpreted as DECIMAL with
even-byte precision.

Column Xe$File corresponds to column Xf$Id in the X$File system table and is the link between the
tables and the columns they contain. For example, the following query returns all field definitions in
order for the Billing table:

SELECT "X$Field".*

FROM X$File,X$Field

WHERE Xf$ld=Xe$File AND XF$Name = "Billing" AND Xe$DataType <= 26
ORDER BY Xe$Offset

The integer values in column Xe$DataType are codes that represent the Zen data types. See Zen
Supported Data Types for the codes.

Five indexes are defined for the X$Field table, as shown in the following table.

Table 157 X$Field System Table Index Definitions for V2 Metadata

Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented
0 0 Xe$ld No not applicable No

1 0 XeS$File Yes not applicable No

2 0 Xe$Name Yes Yes No

3 0 Xe$File No not applicable Yes

3 1 Xe$Name No Yes No

4 0 XeS$File Yes not applicable Yes

433

Table 157 X$Field System Table Index Definitions for V2 Metadata

Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented
4 1 Xe$Offset Yes not applicable Yes
4 2 Xe$Dec Yes not applicable No

X$File

The X$File system table is associated with the file PVFILE.DDE For each table defined in the database,
X$File contains the table name, the location of the associated table, and a unique internal ID number
that Zen assigns. The structure of X$File is shown in the following table.

Table 158 X$File System Table Structure for V2 Metadata

Column Name Type Size Case Insensitive | Description

Xf$id UINTEGER 4 | not applicable Internal ID assigned by Zen

Xf$Name CHAR 128 | Yes Table name

Xf$Loc CHAR 250 | No File location (path name)

Xf$Flags UINTEGER 4 | not applicable File flags. If bit 4=1, the file is a dictionary file. If bit
4=0, the file is user-defined. If bit 6=1, the table
supports true nullable columns.

Xf$Reserved CHAR 16 | No Reserved

Two indexes are defined for the X$File table.

Table 159 X$File System Table Index Definitions for V2 Metadata

Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented

0 0 Xf$ld No not applicable No

1 0 Xf$Name No Yes No
X$Index

The X$Index system table is associated with the file PVINDEX.DDEF. X$Index contains information
about all the indexes defined on the tables in the database. The structure of X$Index is as follows:

Table 160 X$Index System Table Structure for V2 Metadata

Column Name Type Size Case Insensitive | Description

Xi$File UINTEGER 4 | not applicable Unique ID of the table to which the index belongs. It
corresponds to Xf$ld in X$File.

Xi$Field UINTEGER 4 | not applicable Unique ID of the index column. It corresponds to
Xe$ld in X$Field.

Xi$Number UINTEGER 4 | not applicable Index number (range 0 — 119).

Xi$Part UINTEGER 4 | not applicable Segment number (range 0 — 119).

Xi$Flags UINTEGER 4 | not applicable Index attribute flags.

134

The Xi$File column corresponds to the Xf$Id column in the X$File system table. The Xi$Field column
corresponds to the Xe$Id column in the X$Field system table. Thus, an index segment entry is linked to
a file and to a field.

435

The Xi$Flags column contains integer values that define the index attributes. The following table
describes how Zen interprets each bit position when the bit has the binary value of 1. Bit position 0 is the
rightmost bit in the integer.

Table 161 Xi$Flags Bit Positions for V2 Metadata

Bit Decimal Equivalent | Description
Position

0 1 Index allows duplicates.

1 2 | Index is modifiable.

2 4 | Indicates an alternate collating sequence.

3 8 | Null values are not indexed (refers to Btrieve legacy nulls, not SQL true NULLs).

4 16 | Another segment is concatenated to this one in the index.

5 32 | Index is case-insensitive.

6 64 | Index is collated in descending order.

7 128 | Index is a named index if bit 0 is 0. If bit 0 is 1 and bit 7 is 1, the index uses the repeating
duplicates key method. If bit 0 is 1 and bit 7 is 0, the index uses the linked duplicates key
method. See also LINKDUP. For a detailed discussion of linked duplicates method and
repeating duplicates method, see Methods for Handling Duplicate Keys in Advanced
Operations Guide.

8 256 | Index is a Btrieve extended key type.

13 8,192 | Index is a foreign key.
14 16,384 | Index is a primary key referenced by some foreign key.

436

The value in the Xi$Flags column for a particular index is the sum of the decimal values that correspond
to the index attributes. Three indexes are defined for the X$Index table as follows:

Table 162 X$Index System Table Index Definitions for V2 Metadata

Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented
0 0 Xi$File Yes not applicable No

1 0 Xi$Field Yes not applicable No

2 0 Xi$File No not applicable Yes

2 1 Xi$Number No not applicable Yes

2 2 Xi$Part No not applicable No

Index Number corresponds to the value stored in the Xi$Number column in the X$Index system table.
Index numbering start at zero. Segment Number corresponds to the value stored in the Xi$Part column
in the X$Index system table.

To see the information about the index segments defined for the Billing table, for example, issue the
following query:
SELECT Xe$Name,Xe$Offset, ""X$Index'.*

FROM X$File,X$Index,X$Field

WHERE Xf$1d=Xi$File and Xi$Field=Xe$ld and Xf$Name = "Billing~
ORDER BY Xi$Number,Xi$Part

437

X$Proc

The X$Proc system table is associated with the file PVPROC.DDEF. X$Proc contains the compiled
structure information for every stored procedure defined. The structure of X$Proc is as follows:

Table 163 X$Proc System Table Structure for V2 Metadata

Column Name Type Size Case Insensitive | Description

Xp$Name CHAR 128 | Yes Stored procedure name

Xp$Ver UTINYINT 1 not applicable Version ID. This is reserved for future use.

Xp$ld UINTEGER 4 | not applicable Internal ID assigned by Zen

Xp$Flags UINTEGER 4 | not applicable 1 for stored statement, 2 for stored procedure or 3 for
external procedure

Xp$Trustee INTEGER 4 | not applicable 0 for a trusted stored procedure and -1 for a non-
trusted stored procedure. See Trusted and Non-
Trusted Objects.

Xp$Sequence USMALLINT 2 | not applicable A sequence number. A procedure that exceeds
32,765 bytes requires multiple entries in
PVPROC.DDF to handle the overflow. Each entry
has the same procedure name in the Xp$Name field
and is assigned a sequence number. The
Xp$Sequence field is used to correctly order the
multiple entries.
The sequence starts at zero (the first sequence
number is zero).

Xp$Misc LONGVARCHAR 32,765 | not applicable Internal representation of stored procedure

(LVAR)

Note Stored statements and external procedures were supported in versions of Zen prior to
Pervasive.SQL 2000i. Only stored procedures have been supported since Pervasive.SQL 2000i.

Four indexes are defined for the X$Proc table as follows:

Table 164 X$Proc System Table Index Definitions for V2 Metadata

Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented
0 0 Xp$Name Yes Yes No

1 0 Xp$Name No Yes Yes

1 1 Xp$Ver No not applicable Yes

1 2 Xp$Sequence No not applicable No

2 0 Xp$ld Yes not applicable No

3 0 Xp$id No not applicable Yes

3 1 Xp$sequence No not applicable No

438

X$Relate

The X$Relate system table is associated with the file PVRELATE.DDE X$Relate contains information
about the referential integrity (RI) constraints defined on the database. X$Relate is automatically created
when the first foreign key is created, since this results in a relationship being defined.

The structure of X$Relate is as follows:

Table 165 X$Relate System Table Structure for V2 Metadata

Column Name Type Size Case Insensitive | Description

Xr$PId UINTEGER 4 | not applicable Primary table ID.

Xr$Index UINTEGER 4 | not applicable Index number of primary key in primary table.
Xr$Fid UINTEGER 4 | not applicable Dependent table ID.

Xr$FIndex UINTEGER 4 | not applicable Index number of foreign key in dependent table.
Xr$Name CHAR 128 | Yes Foreign key name.

Xr$UpdateRule UTINYINT 1 not applicable 1 for restrict.

Xr$DeleteRule UTINYINT 1 not applicable 1 for restrict, 2 for cascade.

Xr$Reserved CHAR 250 | No Reserved.

Five indexes are defined for the X$Relate table as follows:

Table 166 X$Relate System Table Index Definitions for V2 Metadata

Index Segment | Column Name Duplicates | Modifiable | Case Insensitive | Segmented

Number | Number

0 0 Xr$PId Yes No not applicable No

1 0 Xr$Fid Yes No not applicable No

2 0 Xr$Name No No Yes No

3 0 Xr$PId No Yes not applicable Yes

3 1 Xr$Name No Yes Yes No

4 0 Xr$Fld No Yes not applicable Yes

4 1 Xr$Name No Yes Yes No
X$Rights

The X$Rights system table is associated with the file PVRIGHTS.DDE. X$Rights contains access rights
information for each user. Zen uses this table only when you enable the security option. The structure
of X$Rights is as follows:

Table 167 X$Rights System Table Structure for V2 Metadata

Column Name

Type

Size

Case Insensitive

Description

Xr$User

UINTEGER 4

not applicable

User ID

439

Table 167 X$Rights System Table Structure for V2 Metadata

Column Name Type Size Case Insensitive | Description

Xr$Object UINTEGER 4 | not applicable Table identification corresponding to Xf$ld, view
identification corresponding to Xv$Id or stored
procedure identification corresponding to Xp$Id

Xr$Type UINTEGER 4 | not applicable 1 for Tables, 3 for Procedures and 4 for Views

Xr$Column UINTEGER 4 | not applicable Column ID

Xr$Rights UINTEGER 4 | not applicable Rights flag for table, column, views or stored
procedures

The Xr$User column corresponds to the Xu$ld column in the X$User table. The Xr$Object column
corresponds to one of the following:

m Xf$Id column in the X$File table
s Xv$Id column in X$Views table
= Xp$Id column in X$Proc table.

The Xr$Column column corresponds to the Xe$Id column in the X$Field table.

Note For any row in the system table that describes table rights, view rights, or stored procedure
rights, the value for Xr$Column is null.

The Xr$Rights column contains integer values whose rightmost 8 bits define the user access rights. The
following table describes how Zen interprets the value. Values from this table may be combined into a
single Xr$Rights value.

Table 168 Xr$Rights Bit Positions for V2 Metadata

Hex Value | Decimal Description
Equivalent
1 1 Object owner right
0x90 144 References rights to table
0xAO0 160 Alter table rights
0x40 64 Select rights to view, table or column
0x82 130 Update rights to view, table or column
0x84 132 Insert rights to view, table or column
0x88 136 Delete rights to table or column
0xCO0 192 Execute and call rights to a stored procedure

A decimal equivalent of 0 implies no rights.

The value in the Xr$Rights column for a particular user is the bit-wise intersection of the hex values
corresponding to the access rights that apply to the user. It is not the sum of the decimal values.

440

For example, the value in Xr$Rights for a user with all rights assigned is represented as follows:
144 | 160 | 64 | 130 | 132 | 136 = 254
The value in Xr$Rights for a user with all rights assigned for a view is represented as follows:
64| 130 | 132 | 136 = 206
The value in Xr$Rights for a user with all rights assigned for a stored procedure is represented as follows:
192 =192
Three indexes are defined for the X$Rights table as follows:
Table 169 X$Rights System Table Index Definitions for V2 Metadata

Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented
0 0 Xr$User Yes not applicable No

1 0 Xr$User No not applicable Yes

1 1 Xr$Object No not applicable Yes

1 2 Xr$Type No not applicable Yes

1 3 Xr$Column No not applicable No

2 0 Xr$Object Yes not applicable Yes

2 1 Xr$Type Yes not applicable Yes

2 2 Xr$Column Yes not applicable No

441

X$Trigger

The X$Trigger system table is associated with the file PVTRIG.DDE X$Trigger contains information
about the triggers defined for the database. The structure of X$Trigger is as follows:

Table 170 X$Trigger System Table Structure for V2 Metadata

Column Name Type Size Case Insensitive | Description

Xt$Name CHAR 128 | Yes Trigger name.

Xt$Version UTINYINT 1 not applicable Trigger version. A 4 indicates Scalable SQL v4.

Xt$File UINTEGER 4 | not applicable File on which trigger is defined. Corresponds to
Xf$ld in X$File.

Xt$Event UTINYINT 1 not applicable 0 for INSERT, 1 for DELETE, 2 for UPDATE.

Xt$ActionTime UTINYINT 1 not applicable 0 for BEFORE, 1 for AFTER.

Xt$ForEach UTINYINT 1 | not applicable 0 for ROW (default), 1 for STATEMENT.

Xt$Order USMALLINT 2 | not applicable Order of execution of trigger.

Xt$Sequence USMALLINT 2 | not applicable A sequence number. A trigger that exceeds 4,054
bytes requires multiple entries in PVTRIG.DDF to
handle the overflow. Each entry has the same
procedure name in the Xt§Name field and is
assigned a sequence number. The Xt$Sequence
field is used to correctly order the multiple entries.
The sequence starts at zero (the first sequence
number is zero).

Xt$Misc LONGVARCHAR 4,054 | not applicable Internal representation of trigger.

(LVAR)

442

Table 171 X$Trigger System Table Index Definitions for V2 Metadata

Three indexes are defined for the X$Trigger table.

Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented
0 0 Xt$Name No Yes Yes
0 1 Xt$Sequence No not applicable No
1 0 Xt$Name No Yes Yes
1 1 Xt$File No not applicable Yes
1 2 Xt$Sequence No not applicable No
2 0 Xt$File Yes not applicable Yes
2 1 Xt$Event Yes not applicable Yes
2 2 Xt$ActionTime Yes not applicable Yes
2 3 Xt$ForEach Yes not applicable Yes
2 4 Xt$Order Yes not applicable Yes
2 5 Xt$Sequence Yes not applicable No
X$User

The X$User system table is associated with the file PVUSER.DDE. X$User contains the name and
password of each user and the name of each user group. Zen uses this table only when you enable the
security option. The structure of X$User is as follows:

Table 172 X$User System Table Structure for V2 Metadata

Column Name Type Size Case Insensitive | Description

Xu$ld UINTEGER 4 | not applicable Internal ID assigned to the user or group.
Xu$Name CHAR 128 | Yes User or group name.

Xu$Password CHAR 153 | No User password (encrypted)

Xu$Flags UINTEGER 4 | not applicable User or group flags.

Note For any row in the X$User system table that describes a group, the column value for
Xu$Password is NULL.

443

The Xu$Flags column contains integer values whose rightmost 8 bits define the user or group attributes.
The following table describes how Zen interprets each bit position when the bit has the binary value of
1. Bit position 0 is the rightmost bit in the integer.

Table 173 Xu$Flags Bit Positions for V2 Metadata

Bit Decimal Description

Position | Equivalent

0 1 Reserved.

1 2 Reserved.

2 4 Reserved.

3 8 Reserved.

4 16 Reserved.

5 32 Reserved.

6 64 Name is a group name.

7 128 User or group has the right to define tables in the dictionary
8 256 User or group has the right to define view in the dictionary
9 512 User or group has the right to define stored procedures in the dictionary

The value in the Xu$Flags column for a particular user or group is the sum of the decimal values
corresponding to the attributes that apply to the user or group.

Two indexes are defined for the X$User table as follows:

Table 174 X$User System Table Index Definitions for V2 Metadata

Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented

0 0 Xu$ld Yes not applicable No
1 0 Xu$Name No Yes No
X$View

The X$View system table is associated with the file PVVIEW.DDE. X$View contains view definitions,
including information about joined tables and the restriction conditions that define views. You can
query the X$View table to retrieve the names of the views that are defined in the dictionary.

The first column of the X$View table contains the view name. The second and third columns describe
the information found in the LVAR column, Xv$Misc. The structure of X$View is as follows:

Table 175 X$View System Table Structure for V2 Metadata

Column Name Type Size Case Insensitive | Description

Xv$Name CHAR 128 | Yes View name

Xv$Version UTINYINT 1 | not applicable Version ID. Reserved for future use.
Xv$ld UINTEGER 4 | not applicable Internal ID assigned by Zen

444

Table 175 X$View System Table Structure for V2 Metadata

Column Name

Type

Size

Case Insensitive

Description

Xv$Trustee

INTEGER

not applicable

0 for a trusted view and -1 for a non-trusted view.
See Trusted and Non-Trusted Objects.

Xv$Sequence

USMALLINT

not applicable

A sequence number. A view that exceeds
32,765bytes requires multiple entries in
PVVIEW.DDF to handle the overflow. Each entry has
the same view name in the Xv§Name field and is
assigned a sequence number. The Xv$Sequence
field is used to correctly order the multiple entries.

The sequence starts at zero (the first sequence
number is zero).

Xv$Misc

LONGVARCHAR
(LVAR)

32,76

not applicable

Zen internal definitions.

Three indexes are defined for the X$View table as follows:

Table 176 X$View System Table Index Definitions

Index Number | Segment Number | Column Name Duplicates | Case Insensitive | Segmented
0 0 Xv$Name Yes Yes No

1 0 Xv$Name No Yes Yes

1 1 Xv$Version No not applicable Yes

1 2 Xv$Sequence No not applicable No

2 0 Xv$id Yes not applicable No

3 0 Xv$ld No not applicable Yes

3 1 Xv$Sequence No not applicable No

445

446

SQL Access for COBOL
Applications

Providing SQL Access for COBOL Applications

This appendix includes the following sections:

m Overview of Zen Support for COBOL

s Components

m Using SQL Access

» Example of How to Execute a Sample XML File

chapter

447

Overview of Zen Support for COBOL

The Zen Relational Engine includes support for COBOL OCCURS clauses, partial REDEFINES, and
variable record layouts.

A partial REDEFINES clause identifies a portion of the data within a record (such as a 05 level within a
01 level). A variable record layout is also referred to as a REDEFINES because the entire record is being
redefined. To avoid confusion with terminology, this topic refers to partial REDEFINES and to variable
record layouts.

You do not need to change your COBOL application to take advantage of the SQL access.

You enable SQL access by describing the handling of data in your application to the Zen Relational
Engine. In developer terms, you define the metadata to the Relational Engine.

Note that this topic applies only to COBOL applications that include OCCURS, partial REDEFINES, or
variable record layouts.

Restrictions

The following restrictions currently apply to providing SQL access for COBOL applications.

m OCCURS cannot be nested within OCCURS.

m OCCURS cannot be nested within partial REDEFINES.

m Partial REDEFINES cannot be nested within partial REDEFINES.
m Partial REDEFINES cannot be nested within OCCURS.

= Only one index can be defined for an OCCURS. Additional indexes cannot be defined for the items
within the OCCURS.

m The only data types supported are those defined for the MicroKernel and Relational engines. The
data types are described in the XML control file by using only the transactional data types. See
cobolschemaexec.xsd in Table 178 for a discussion of the XML control file. For a discussion of data
types, see Zen Supported Data Types.

SQL Statements

The following table lists the use of SQL statements with data tables created from OCCURS, partial
REDEFINES, or variable record layouts.

Table 177 Use of SQL Statements With COBOL Data Constructs

Statement Use with Use with Notes
OCCURs and | Variable
partial Record
REDEFINES | Layouts

ALTER TABLE No No

CREATE INDEX No No

CREATE INDEX IN No Yes

DICTIONARY

CREATE TRIGGER | No No

DELETE No Yes

448

Table 177 Use of SQL Statements With COBOL Data Constructs (Continued)

Statement Use with Use with Notes
OCCURs and | Variable
partial Record

REDEFINES | Layouts

DROP TABLE Yes Yes A DROP TABLE statement removes all of the entries from the system
tables. The data file itself is not deleted or modified. Also, when you
drop a main table, a message informs you to drop any dependent tables
if any are detected. A dependent table depends on a main table and
results from conditions such as an OCCURS that contains an index or
from partial REDEFINES. Once you drop the dependent tables, you can
drop the main table.

INSERT INTO No No

UPDATE Yes Yes An UPDATE statement cannot update a column on which a table filter
has been defined. A table filter is a logical expression associated with a
table. Table filters are defined as part of your metadata in the XML files.

all other SQL Yes Yes See SQL Grammar in Zen.

statements listed in

SQL Engine

Reference.

449

Components

Zen installs the following components to provide SQL access for COBOL applications.

Table 178 Components Installed to Provide SQL Access for COBOL Applications

Component

Purpose

Location’

w3cobolschemaexec100.dll

32-bitlibrary of routines used by Schema
Executor

Windows server: file_path\Zen\bin\

wb4cobolschemaexec.dll

64-bit library of routines used by Schema
Executor

Windows server: file_path\Zen\bin\

Linux:
libpsqglcobolschemaexec100.so

macOS:
libpsglcobolschemaexec100.dylib

32-bit and 64-bit library of routines used
by Schema Executor

Linux server: /usr/local/actianzen/lib

cobolschemexecmsgrb.dll

Message resource bundle used by 32-bit
library of routines

Windows server: file_path\Zen\bin\

w64 cobolschemaexecmsgrb.dll

Message resource bundle used by 64-bit
library of routines

Windows server: file_path\Zen\bin\

Linux:
libpsglcobolschemaexecmsgrb.so

macOS:
libpsglcobolschemaexecmsgrb.dylib

Message resource bundle used by 32-bit
and 64-bit library of routines

Linux server: /usr/local/actianzen/lib

cobolschemaexec.xsd

Control file (document type definition)
used by Schema Executor when
processing XML files

Windows server:
file_path\Zen\schemas

Linux or macOS server:
/user/local/actianzen/schemas/

cobolschemaexec.log

Default logging file for messages
produced by Schema Executor when
processing of XML files

Window server:
file_path\Zen\logs

Linux or macOS server:
/usr/local/actianzen/logs/

cobolschemaexec.exe

Utility that populates the system tables
used by the Relational Engine to
interpret the ISAM data as normalized
SQL tables.

Also referred to as Schema Executor.

file_path\Zen\bin\

cobolschemaexec

Utility that populates the system tables
used by the Relational Engine to
interpret the ISAM data as normalized
SQL tables.

Also referred to as Schema Executor.

Linux or macOS installation:
/usr/local/actianzen/bin/

SampleMainTable.xml

Sample XML template that defines data
for a simple table.

See also Example of How to Execute a
Sample XML File.

Windows server and client:
file_path\Zen\samples\cobolschemaexec

Linux or macOS installation:
lusr/local/actianzen/samples/
cobolschemaexec

450

Table 178 Components Installed to Provide SQL Access for COBOL Applications

Component

Purpose

Location’

SampleMainWithOccurs.xml

Sample XML template used to define

data that contains OCCURS constructs.

See also Example of How to Execute a
Sample XML File.

Windows server and client:
file_path\Zen\samples\cobolschemaexec

Linux or macOS installation:
lusr/local/actianzen/samples/
cobolschemaexec

SampleMainWithRedefines.xml

Sample XML template used to define
data that contains REDEFINES
constructs.

See also Example of How to Execute a
Sample XML File.

Windows server and client:
file_path\Zen\samples\cobolschemaexec

Linux or macOS installation:
lusr/local/actianzen/samples/
cobolschemaexec

SampleVariantRecord.xml

XML template used to define data that
contains variable record layouts.

See also Example of How to Execute a
Sample XML File.

Windows server and client:
file_path\Zen\samples\cobolschemaexec

Linux or macOS installation:
lusr/local/actianzen/samples/
cobolschemaexec

A log file on a Windows client or a
Linux client is optional and may be
specified when Schema Executor is
run

See Schema Executor Command
Format

Same as current directory if no path is
specified. Otherwise, location depends on
user-supplied path.

For default locations of Zen files, see Where are the files installed? in Getting Started with Zen.

451

Using SQL Access

Complete the following tasks to take advantage of SQL access:
1 Manually edit the appropriate XML template to describe the data layout.
2 Copy the data files specified in the XML templates to the database folder.

3 Execute the utility to populate the system tables used by the Relational Engine (use the XML to
create normalized data).

4 Optionally, if you are a COBOL applications developer, ensure that you deploy any new system
tables created by Schema Executor.

Step 1: Modify the Sample XML Templates

Zen includes sample XML templates that you use to define the layout of data as required by your COBOL
application. See Table 178. In developer terms, you describe your metadata in the XML files.

» To Modify an XML Template

1 Open the XML template in a text editor.

2 Modify the XML as described in the file comments.

3 Save the modified template with a path and file name of your choosing.

Step 2: Copy the Data File Specified in the XML Template

Copy the data files specified in the XML file to the data file location of the database before you run
Schema Executor. The database is the one to which you need to add the tables.

For example, you want to add a table (specified in the XML as mytable.mkd) to a database test that has
its data files under c:\data\test. Copy the data file mytable.mkd to c:\data\test before you run Schema
Executor.

Step 3: Run the Schema Executor Utility
Zen includes a command line utility called the Schema Executor, also referred to as SchemaExec.
Schema Executor performs the following actions:

m Parses the XML files that you manually edited.

m Populates existing system tables that the Relational Engine uses to interpret the data as normalized
SQL tables (a database created with zen contains all of the required system tables to support SQL
access)

m Creates additional system tables and populates them if you run the utility against a database created
with a version of Zen prior to the current version.

» To Process an XML File with Schema Executor
See also Example of How to Execute a Sample XML File.

1 Access a command prompt at the operating system.

452

2 Execute Schema Executor at the command line (see Table 178 for where this executable is installed
by default).

Provide the required options, XMLfilename and databasename, and any desired optional options.
See Schema Executor Command Format.

If errors occur during the processing of the XML content, review the errors reported in the Schema
Executor log file. See Log Messages. Execute the utility with the corrected XML until no errors result
from the processing.

Schema Executor Command Format

cobolschemaexec XMLfilename databasename [-s servername] [-u login_id] [-p password] [-i
svr_loginid] [-c svr_password) [-1log file] [-h | -?]

453

Table 179 Options for Schema Executor Utility

Option Meaning

XMLfilename The file name of the XML schema that defines the layout of the data. Required option. See Step 1: Modify
the Sample XML Templates.

databasename The name of the Zen database accessed by your application. Required option. If the database specified
does not exist, the utility prompts for a path and file name.

See also Creating a New Database with Schema Executor.

-S servername The name or IP address of the server running the Zen database engine. You may use “localhost” as the
name if running SchemaExec on the same machine as the database engine. If servername is not
specified, the local machine is assumed to be the server.

-u login_id The user name required to access a secure database. See Zen Security in Advanced Operations Guide
for a discussion of the Zen security models.

-p password The password required to access a secure database. See Zen Security in Advanced Operations Guide
for a discussion of the Zen security models.

-i svr_loginid The login name required to access the operating system on a remote machine. This option is required if
SchemaExec is processing an XML file located on a remote server.

-c svr_password | The password required to access the operating system on a remote machine. This option is required if
SchemaExec is processing an XML file located on a remote server.

-l log_file Log file to use for messages produced during processing of the XML file.

If you execute SchemaExec on a machine running the Zen database engine, a default log is created
automatically. You do not need to use the -l log_file option. The default log is named
cobolschemaexec.log.

If you execute SchemaExec on a client machine (a machine not running the Zen database engine), you
can specify a log file for the client machine.

See Log Messages.

-h or -? Display command usage. Ignore all other options.

Note The required options XMLfilename and databasename are positional and must appear in that
order.

Example Usage
The following examples illustrate usage of Schema Executor.
For default locations of Zen files, see Where are the files installed? in Getting Started with Zen.

m Database already exists (with server running on local host):

cobolschemaexec file_path\Zen\samples\cobolschemaexec\test.xml demodata\
m Database does not exist (with server running on local host):

cobolschemaexec file_path\Zen\samples\cobolschemaexec\test.xml mytest

The utility prompts as follows:

CB103 : Could not connect to mytest
Do you want to create database (y/n) ?

454

If you press y, the utility prompts for a database path:

Please enter the Database Path:

Provide an existing path or the utility returns an error. Ensure that the database file (for example, a.MKD
file) being used in the XML file is available in the path.
m Database exists on a remote server:
cobolschemaexec File_path\Zen\samples\cobolschemaexec\test_.xml demodata -s
TestMachine -i testuser -c testuser

This example assumes that a user testuser (with password "testuser") exists on the remote machine
(TestMachine) with administrative privileges, and that the database file being used in the XML file is
available in the data file directory of the database on the remote machine.

455

m Database does not exist on a remote server:

cobolschemaexec file_path\Zen\samples\cobolschemaexec\test.xml mytest -s
RemoteMachine -i testuser -c testuser

This example assumes that a user testuser (with password "testuser") exists on the remote machine
(TestMachine) with administrative privileges.

The utility prompts as follows:

CB103 : Could not connect to mytest
Do you want to create database (y/n) ?

If you press y, the utility prompts for a database path:
Please enter the Database Path:

Provide an existing path or the utility returns an error. Ensure that the database file (for example, a.MKD
file) being used in the XML file is available in the path.

Creating a New Database with Schema Executor

If the utility option databasename specifies a database that does not exist, Schema Executor prompts you
whether to create a new database. If you specify “yes,” the utility prompts for a location of the new
database. The location (path and folder name) must already exist for Schema Executor to create the
database.

Note that Schema Executor also expects to find the data files for databasename in the default folder. The
utility informs you if it finds no data files. Manually copy the data files to the default folder and run
Schema Executor again to process the XML.

Log Messages

This section lists the codes that may appear in a log file after processing an XML file with Schema
Executor.

The success code is CB100 : Schemaexec completed successfully.
The following table lists the error codes.

Table 180 Possible Error Codes in a CobolSchemaExec Log File

Error Code | Description

CB001 Unknown error

CB002 Property name attribute missing

CB003 Both MAINTABLE and VARIANTRECORDTABLES not supported
CB004 Occurs Table Name specified is invalid.

CB005 Occurs Count specified is invalid.

CB006 Occurs Mapping Index specified is invalid.

CB007 TableName - Duplicate table name

CB008 FieldName - Duplicate field name

CB009 IndexName - Duplicate index name

456

Table 180 Possible Error Codes in a CobolSchemaExec Log File (Continued)

Error Code | Description

CB010 TableName parameter is not specified.

CB012 Identifier contains invalid characters.

CB013 Offset has to be a nonnegative integer.

CB014 Identifier length cannot exceed 20 characters.

CB016 Precision has to be greater than zero.

CB017 Invalid precision specified for FieldName

CB018 Scale cannot be greater than precision for FieldName.

CB019 Log and XML file names must be different.

CB022 TableFilter cannot have more than 255 characters.

CB023 FieldName is not a field of TableName.

CB024 TableFilters should be defined for all REDEFINES Table or for NONE.
CB025 Incorrect Parent Element

CB028 Identifier name identifiername should start with an alphabetic character.
CB029 Identifier name identifiername cannot be a keyword.

CB050 DataFile doesn't exist at DatabasePath.

CBO051 OCCURS/REDEFINES length must be a nonnegative integer.

CB052 Length of Btrievefilename cannot exceed 64 characters.

CB057 No index specified for ParentTableName

CB099 Parser error

CB100 Schemaexec finished successfully.

CB101 Invalid value for command line argument argument

CB102 Value for Password cannot be specified without Login.

CB103 Could not connect to DatabaseName

CB105 Could not create database DatabaseName in the dictionary path Databasepath
CB106 Could not create the specified DSN

CB108 Could not close the database databasename

CB109 Could not read data from XML file

CB110 Could not drop the database

457

Step 4: Optionally, Deploy the System Tables

If you are a COBOL applications developer, ensure that you deploy all of the system tables with your
application. Such deployment is nothing new and is mentioned only because you may have additional
system tables. For example, Schema Executor creates additional system tables and populates them if you
run the utility against a database created with a version of Zen prior to the current version. Therefore,
you may have a few additional system tables (DDF files) to deploy.

458

Example of How to Execute a Sample XML File

The sample XML and data files are provided under file_path\Zen\samples\cobolschemaexec. For default
locations of Zen files, see Where are the files installed? in Getting Started with Zen.

To execute the XML file SampleMainTable.xml using Schema Executor perform the following steps.
1 Copy maintbl._mkd to the data file folder of the database to which you wish to connect.

For example, suppose that a database named test exists with a data file location of c:\data\test. Copy
maintbl.mkd to c:\data\test.

2 Openacommand prompt at the Zen\bin\ directory.
3 Execute the following command at a DOS prompt:
cobolschemaexec file_path\Zen\samples\cobolschemaexec\samplemaintable._xml test

4 On successful execution of Schema Executor, the table maintbl (as specified in the XML file) is
created in the test database.

5 You man now perform SQL operations on table maintbl using ZenCC.

Additional Notes

This section provides notes pertaining to SELECT statements and table filters.

SELECT Statements
A SELECT query on an OCCURS table returns the following:
m Columns of the OCCURS table

m Column of the main table that comprises the mapping index
s OCCURS counter that indicates the number of occurrences of the OCCURS clause

For example, if you perform the query SELECT * FROM FIELD for the tables created by the execution
of Schema Executor on the sample XML file

file_path\Zen\samples\cobolschemaexec\ SampleMainWithOccurs.xml
then the utility returns columns Id, OccursCounter, Field_1, Field_2, and Field_3.

A SELECT query on a REDEFINES table returns all of the columns of the parent table and the columns
of the REDEFINES table.

For example, if you perform the query SELECT * FROM Redefined_group for the tables created by the
execution of Schema Executor on the sample XML file

file_path\Zen\samples\ cobolschemaexec\SampleMainWithRedefines.xml

then the utility returns columns Id, Account_Num, Category, Redef_Struct_Num (all columns of the
parent table), and Redefined_field_1 (column of the REDEFINES table).

Table Filters

A table filter is a filter condition for a particular table. In the sample XML files it is referred to as
TABLEFILTER.

459

s A TABLEFILTER may have an expression with left and right operands, both being column names.
For example, Cust_Num = My_Cust_Num, where both Cust_Num and My_Cust_Num are column
names.

Insert a space between the operands and the operator.

m Ifa constant value is used in the expression for a TABLEFILTER, the value must be specified within
single quotes.

Example: Cust_Num = "100" (where Cust_Num is the column name)

m Use the following XML entities when specifying a TABLEFILTER in an XML file.

XML Entity Used For

< less than (<)

> greater than (>)
& ampersand (&) (AND)
" double quotes (")
' single quotes (')

Examples of Valid TABLEFILTER Usage
Cust_Num = "100" (equivalent to Cust_Num = 100)

Cust_Num &lIt; 100" (equivalent to Cust_Num < 100)
Cust_Num > 100" (equivalent to Cust_Num > 100)
Cust_Num <> "100* (equivalent to Cust_Num <> 100)

a" = Category | Account_Num <= "al23" (equivalent to "a"=category OR account_num
<= "al23")

"a®" = Category & Account_Num = "al23" (equivalent to "a" = category AND
account_num = "al23")

Cust_Num = My_cust_Num (where both the operands are column names)

460

chapter

Query Plan Viewer

A Utility to Help You Optimize Queries

Perhaps the most complex aspect of SQL performance is query optimization. The database engine
performs query optimization automatically, but the query structure itself can affect the overall
performance and how the engine optimizes.

Nearly all queries can be written more than one way and yet return the same result set. For example,
consider the simple query SELECT * FROM tablel. Assume that tablel has five columns named coll,
col2, and so forth. You could write the query as SELECT coll, col2, col3, col4, col5 FROM tablel
to give the same result set.

Visually comparing these two queries, SELECT * appears much simpler than listing each column by
name. However, listing each column by name in the query delivers a very slight performance boost. The
reason is that with SELECT *, the asterisk symbol must be parsed into the column names. Such parsing
is not needed when the query itself has already performed that task.

The best way to improve performance is to minimize the time required to run queries against the
database. This appendix cannot discuss every possible query optimization because queries can be quite
complex and can vary tremendously in structure. However, you can better determine how to optimize
your queries by using Query Plan Viewer.

Query Plan Viewer is a graphical utility with which you can view query plans selected by the database
engine. A query plan can be viewed for a SELECT, INSERT, UPDATE, or DELETE statement. Query
Plan Viewer is compatible with wide character data.

461

Query Plan Settings

Two SQL statements let you control whether you want to create a query plan and what name to give the
plan. Both statements apply only to the SQL session.

You can execute the statements in Zen Control Center or from any utility that can send SQL statements

to the Zen database engine.

Table 181 Query Plan SQL Statements for Settings

SQL Statement

Discussion

SET QRYPLAN=<on | off>

Instructs the database engine to create a query plan for use with Query
Plan Viewer, or not.

SET QRYPLANOUTPUT=<NULL | file_name>

Sets the location and name of the query plan file. NULL specifies not to
create a query plan file. A single query plan file can contain plans resulting
from multiple queries. For your reference, the query plan file contains the
code page identifier of the encoding used for each query. Regardless
which database encoding a query used, Query Plan Viewer correctly
displays wide character data.

By default, Query Plan Viewer looks for the file name extension .qpf. You
may use whatever file name extension you want, or omit one.

Example: You want to create a query plan named select_salary and store
the query plan file in a directory named mydirectory on drive D off of the
root:

SET QRYPLANOUTPUT='d:\mydirectory\select_salary.qpf'

The database engine creates the query plan output file, so the path must
be a location on the machine where the database engine is running. The
path should not reference client-side locations or client drive mappings.

See also Examining Query Plans and Evaluating Query Performance.

462

Graphical User Interface

Query Plan Viewer contains two windows: the Query Viewer and the Plan Viewer.

COUNT(*) from sTUDENT, eNROLLS. CLASS,

COURSE where STUDENT.ID = ENROLLS. STUDENT_ID AND s
eNROLLS.CLASS_ID = CLASS.ID AND CLASS.NAME = {]
COURSE.NAME Bt
-~ FCalc
el b
o Y
cnt” '
IT
Filter (Normal)
=
_Join (Range)

Query Viewer

The Query Viewer displays the SQL query. Only one query plan can be viewed at a time but multiple
plans can be opened concurrently. The Query Viewer also contains menu commands to open a query
plan file, to navigate to the desired query plan when two or more plans are open concurrently, and to
export a query plan.

The Query Viewer can be resized as necessary. It includes a vertical scrollbar for ease in viewing the SQL
query.

The Query Viewer window uses a font suitable for wide character data. Query Plan Viewer checks the
system fonts available and chooses the first available one of the following:

m Consolas

= Lucida Console

= Andale Mono

m Courier New

Plan Viewer

The Plan Viewer contains a graphical representation of the query plan in a tree form with nodes that
represent different components of the query.

The Plan Viewer can be resized as necessary. It includes vertical and horizontal scrollbars for ease in
viewing the query plan tree in different sizes. It contains menu commands and keyboard shortcuts to
resize the tree as necessary and to zoom in and out on the tree.

Different types of nodes appear in the Query Viewer depending on the query. Each node represents a
step in the execution of a query. For example, nodes can represent selection from a base table, joining
the results from two tables into a single result set, calculating an aggregate value, determining group
break occurrences and combining group results into a single result set.

463

Nodes

The following table summarizes the nodes.

Table 182 Plan Viewer Nodes

Node Symbol Node Meaning
Represents data coming from a table in the database. The name displayed under the
rectangle is the name of the table. If present, the name shown under the table indicates the
I:I index used to retrieve data from the table. An asterisk to the right of the index name indicates
that the index contains unique values.
T1
(ndx2)

Filter (Normal)

Represents a row selection operation. The word in parentheses can be either "Normal" or
"Range:"

» A Normal filter is applied after the row is returned from the downstream node.

» ARange filter appears only directly above a base table. The Range filter causes a
restricted record retrieval from the table based on an index value.

L

Distinct

Performs a distinct operation. This node normally appears at the top or close to the top of the
plan tree. Eliminates duplicates from the result set before returning rows from the query.

L

Group Break

Detects group breaks based on a GROUP BY clause.

©
.
o
=
©

Works with Group Break node to assist in correctly accumulating aggregates for SELECT and
HAVING clauses.

O

Join (Outer)

Performs a JOIN between two nodes. The value in parentheses indicates the type of JOIN
performed:

» "OQuter" indicates left for right outer join without any indexes.
» "OuterRange" indicates left or right outer join using an index.
* "Normal" indicates a Cartesian join.

+ "Range" indicates an inner join using an index.

€]

Performs aggregate value accumulation. This node is used for MIN, MAX, AVG, COUNT,
SUM, and STDEYV, and for these aggregates when the DISTINCT clause is used with them.
The word inside the node indicates the type of aggregate being accumulated.

When an aggregate is accumulated in conjunction with a GROUP BY clause, the aggregate
nodes appear between the group break and group nodes.

O

FCalc

Handles accumulating aggregates when no GROUP BY clause is present.

464

Table 182 Plan Viewer Nodes (Continued)

Node Symbol Node Meaning

VAN

SubQuery

Handles data retrieval from a single subquery of the main query. This node never appears
when you view the root query plan, only when you view a subquery.

Handles creation of temporary tables and data retrieval from temporary tables. References to
the base table under this node are changed to reference columns of the temporary table.

Ordered Temp Table

Processes the UNION and UNION ALL operations. Cycles through the underlying query
execution plans to retrieve data for the UNION result set. The Plan Viewer displays unions
v with the first query as the root query, the second query as Subquery 1, and so forth.

Union

Note If you change the aspect ratio of the Plan Viewer while resizing it, the aspect ratio of the node
symbols change accordingly. Consequently, they do not always look identical to the examples in the
table.

Node Details

If you double-click the following query plan nodes, a pop-up window appears, showing more detailed
information:

m Table
» Filter
m Subquery

= Ordered temporary table

Double-clicking the other nodes provides no detailed information for them. When you mouse over a
node with additional available details, the cursor changes to a hand.

465

The following table explains the type of detailed information displayed.

Node Type Detailed Information

Table * Name of table
» Total rows in table
» Estimated number of rows to be read

* Range information. Range information is used only when the base table is on the right side of
a JOIN and the retrieval of data from the table can be optimized through the use of an index.
Range information includes:

* Column or columns retrieved

» Value used to initiate range retrieval (the value normally comes from another table and column)
and the value to terminate retrieval

+ Initial operations to perform, such as greater than (GT), greater than or equal to (GE), less than
(LT), and so forth

* Method of comparison to determine when to stop (GT, GE, and so forth)

Filter (Normal) Text representation of conditions used to evaluate row. If present, wide character data is displayed
correctly.
Filter (Range) » Information about index used

* How filter is reducing set of rows returned
* Type of first read from table (GT, GE, and so forth)
+ Condition that must evaluate to TRUE to stop reading more records (GT, GE, and so forth)

Subquery Type of subquery and optimizations being performed for subquery

Ordered temp table |+ List of columns included in the temporary table

+ Column indication of whether column is used to order rows of the temporary table (a key) or is
a value to pass up the tree

The Plan Viewer also contains menu commands to view the plan at different zoom levels and to display
subqueries, if any.

466

Query Plan Viewer Tasks

This section discusses the following tasks:

»

»

To create a query plan

To start Query Plan Viewer

To view a query plan

To export a query plan to an XML file

To adjust the display size of a query plan in the Plan Viewer
To scroll through a query plan in the Plan Viewer

To reload a changed query plan

To view details of a query plan node

To view a subquery on a query plan

To create a query plan
Execute SET QRYPLAN = on to turn on the creation of a query plan.

Execute the SET QRYPLANOUTPUT statement and specify the location and name of the query
plan file.

See Query Plan Settings.

Execute a SQL SELECT, INSERT, UPDATE, or DELETE statement (which creates its corresponding
query plan).

Execute SET QRYPLAN = off to turn off the creation of query plans.

To start Query Plan Viewer
Do one of the following actions:

+ In Zen Control Center, click Tools > Query Plan Viewer.

+ Execute the file w3sqlqpv.exe located in the Zen\bin directory.

To view a query plan
In the Query Viewer, click File > Open.
Navigate to the location of the desired query plan file, then select the file and click Open.

The title bar of the Query Viewer informs you how many query plans are open and which plan you
are viewing.

If you have more than one query plan open, use the View menu commands to navigate among the
plans:

+ First or Ctrl+FE Displays the earliest loaded query plan.

+ Last or Ctrl+L. Displays the latest loaded query plan.

+ Next or Ctrl+N. Displays the next latest query plan.

+ Prev(ious) or Ctrl+P. Displays the next earliest query plan.

+ Goto or Ctrl+G. Displays the query plan based on the ordinal number of the loaded plans.

467

» To export a query plan to an XML file

1 In the Query Viewer, select File > Export XML.

2 Navigate to the location of the desired query plan XML file, select the file then click Open.

Note You can specify the name of a new XML file in the same dialog box.

Tip The Export XML menu item is enabled only if the query plan is loaded into the viewer.

The following table explains the schema of an XML file derived from a SQL query.

name: Root Query or
Subquery X

Element and Attributes Explanation Parent Element Child Elements
<QPF filename=filename> QPF file on which XML file is based, Header Information <Query>
) one per XML file
filename: path and name of
QPF file
<Query number=number> Query in the <QPF> file, at least one | <QPF> <sQL>
per XML file
number: query number <TreeRoot>
displayed in Query Plan
Viewer. First is 1, second is
2, and so forth.
<sQL> SQL statement used to generate plan. | <Query>
If your SQL scripts declare a Unicode
character string literal prefixed with an
uppercase N, the prefix appears in the
<SQL> element. See also child
<Properties> for <Filter>.
<TreeRoot name=name> Indicates root query or subquery <Query> All Node Elements:

<Join>

<Filter>

<Base>

<Distinct>

<Set>

<FCalc>

<Group>
<GroupBreak>
<OrderedTempTable>
<Union>

<Subquery>

Node Elements

468

Each is anode in the query plan tree (a
part of the SQL statement)

<TreeRoot> or the <Child>,
<LeftChild>, or <RightChild>
of another node element

Element and Attributes Explanation Parent Element Child Elements
<Join> <TreeRoot> <Text>
<Properties>
<LeftChild>
<RightChild>
<Filter> If your SQL scripts declare a Unicode | <TreeRoot> <Text>
character string literal prefixed with an
uppercase N, the prefix does not <Properties>
appear in the <Properties> child <Child>
element. See also <SQL>.
<Base> Represents a leaf in diagram tree <TreeRoot> <Text>
<Properties>
<Distinct> <TreeRoot> <Properties>
<Child>
<Set> <TreeRoot> <Text>
<Properties>
<SetString>
<Child>
<FCalc> <TreeRoot> <Properties>
<LeftChild>
<RightChild>
<Group> <TreeRoot> <Properties>
<Child>
<GroupBreak> <TreeRoot> <Properties>
<Child>
<OrderedTempTable> <TreeRoot> <Properties>
<Child>
<Union> <TreeRoot> <Properties>
<Child>
<Subquery> <TreeRoot> <Properties>
<Child>
Node Element Children Varies. Provide additional information | Varies
about node or link to child of node tag.
<Text> <Join>
<Filter>
<Set>

Optionally, <Base>

469

Element and Attributes

Explanation

Parent Element

Child Elements

<Properties>

All node elements

<SetString>

<Set>

<Child>

<Filter>

<Distinct>

<Set>

<Group>
<GroupBreak>
<OrderedTempTable>
<Union>

<Subquery>

<LeftChild >

<Join>

<FCalc>

<RightChild>

<Join>

optionally, <FCalc>

» To adjust the display size of a query plan in the Plan Viewer

Click View then a desired sizing command:

+ Autofit. Sizes the query plan so that the entire plan is viewable in the Plan Viewer. The view

resizes if you resize the window. Autofit is the default when you view a query plan.

+ 100%, 50%, or 25%. Sizes the query plan to the specified percentage.

+ Percent. Sizes the query plan to the percent you specify.

+ ZoomIn (-) or Zoom Out (+). Enlarges the size of the query plan (zoom in) or reduces the size

of the query plan (zoom out). You can zoom between 5% and 500%.

» To scroll through a query plan in the Plan Viewer

Click View then a desired scroll command:

+ Scroll Right or Right Arrow. Scrolls toward the right side of the pane.

+ Scroll Left or Left Arrow. Scrolls toward the left side of the pane.
+ Scroll Up or Up Arrow. Scrolls toward the top of the pane.

+ Scroll Down or Down Arrow. Scrolls toward the bottom of the pane.

» To reload a changed query plan
In the Query Viewer, click File > Refresh.
This re-reads the currently loaded query plan file.

» To view details of a query plan node

In the Plan Viewer, double-click one of the following nodes:

470

»

+ Table

+ Filter

+ Subquery

+ Ordered temporary table

See Node Details.

To view a subquery on a query plan

In the Plan Viewer, click Subquery then the number of the subquery (the first subquery in the main
query corresponds to Subquery 1, the second subquery corresponds to Subquery 2 and so forth). A
query plan can contain any number of subqueries, or none. All subqueries for a query plan appear
on the Subquery menu. When you select a subquery, its name appears in parentheses in the Plan

Viewer title.

471

Examining Query Plans and Evaluating Query Performance

Query Plan Viewer is particularly useful in the development stage of a project for you to test your queries

and

see how the database engine executes them. You can prepare each of your queries, generate a query

plan file and then examine each plan. Based on the information for each query, you can add or remove
indexes and then see the affect of the changes. You can also modify the queries to see if a change in the

synt

ax of the statement affects its performance.

Creating Example Query Plans for Comparison

As an example, you can demonstrate the use of Query Plan Viewer using the following steps and a few
tables from the Demodata database sample database provided with Zen.

For comparison, you will delete an index from the Enrolls table, execute a query and create a query plan

file,
1

add the index back to Enrolls, then execute the query again and create a comparison query plan file.

In Zen Control Center (ZenCC), execute the SQL statements to turn on the creation of a query plan
and specify the following name of the query plan file: examplel.qpf. See Query Plan Settings.

In ZenCC, execute the following query for the Demodata database:
DROP INDEX Enrolls.ClassID

Since Demodata is optimized when installed, you need to drop the index from the Class_ID column
of the Enrolls table.

In ZenCC, execute the following query for the Demodata database:

SELECT Student.ID, Class.Name, Course.Credit_Hours FROM Student, Enrolls, Class,
Course WHERE Student.ID = Enrolls.Student_Ild AND Enrolls.Class_ID = Class.ID
AND Class_Name = Course.Name

This query retrieves all enrolled students, the classes in which they are enrolled, and the credit hours
for each course.

In ZenCC, specify the following name of the query plan file: example2.qpf. See Query Plan Settings.
In ZenCC, execute the following query for the Demodata database:

CREATE INDEX ClasslID ON Enrolls(Class_ID)

In ZenCC, execute the following query for the Demodata database:

SELECT Student.ID, Class.Name, Course.Credit_Hours FROM Student, Enrolls, Class,
Course WHERE Student.ID = Enrolls.Student_Id AND Enrolls.Class_ID = Class.ID
AND Class.Name = Course.Name

Notice that the query runs faster.

Viewing the Example Query Plans

In Query Plan Viewer, use File > Open to open examplel.qpf(). You should see something like the
following:

472

=
AN

Filter (Normal)

/Jom (Range)

-

Filter (Normal) Course
(Course_Name *)
/Join (Range)
Filter (Normal) Class
(UK_ID ™)

Join (Range)
Student Enrolls

(StudentlD)

For comparison, open example2.qpf in Query Plan Viewer. You should see something like the following:

>
AN

Filter (Normal)

/Join (Range)

=

Filter (Normal) Student
(StudentlD =)
/Join (Ramge)li|
Filter (Normal) Enrolls
(ClassID)

Join (Range)

Class Course
(Course_Name *)

Note the following about this plan:

m Records are scanned from the Course table.

m Records are retrieved from the Class table based on the Course.Name value using the Class.Name
index.

473

m Records are retrieved from the Enrolls table based on the Class.ID value scanning through the
Enrolls table.

m Records are retrieved from the Student table based on the Enrolls.Student_Id using the Student.ID
index.

m The selection of data from Enrolls uses the newly created index ClassID.

In a similar manner to this example, you can compare your own queries to determine which syntax and
structure is right for your needs.

474

	SQL Engine Reference
	About This Document
	Who Should Read this Manual
	Conventions
	For More Information

	SQL Overview
	Working with SQL in Zen
	Data Definition Statements
	Creating, Modifying, and Deleting Tables
	Creating and Deleting Views
	Creating and Deleting Indexes
	Creating and Deleting Triggers
	Creating and Deleting Stored Procedures
	Creating and Deleting User-Defined Functions (UDF)

	Data Manipulation Statements
	Retrieving Data
	Modifying Data
	Creating and Deleting Views
	Executing Stored Procedures
	Executing System Stored Procedures
	Executing Triggers

	Data Control Statements
	Enabling and Disabling Security
	Creating and Deleting Users and Groups
	Granting and Revoking Rights

	Zen Metadata
	Comparison of Metadata Versions

	Relational Engine Limits
	Fully Qualified Object Names
	Delimited Identifiers in SQL Statements
	Examples

	SQL Syntax Reference
	Literal Values
	String Values
	Examples
	Number Values
	Date Values
	Examples
	Time Values
	Examples
	Time Stamp Values
	Examples

	SQL Grammar in Zen
	ADD
	Remarks
	See Also

	ALL
	Remarks
	Examples
	See Also

	ALTER (rename)
	Syntax
	Remarks
	Examples
	See Also

	ALTER GROUP
	Syntax
	Remarks
	Examples
	See Also

	ALTER TABLE
	Syntax
	Remarks
	IN DICTIONARY
	USING
	WITH REPLACE
	MODIFY COLUMN and ALTER COLUMN
	PSQL_MOVE
	RENAME COLUMN
	ON DELETE CASCADE
	Examples
	See Also

	ALTER USER
	Syntax
	Remarks
	Examples
	See Also

	ANY
	Remarks
	Examples
	See Also

	AS
	Remarks
	Examples
	See Also

	BEGIN [ATOMIC]
	Remarks
	Examples
	See Also

	CALL
	Remarks
	Examples
	See Also

	CASCADE
	Remarks
	See Also

	CASE (expression)
	Syntax
	Arguments
	Remarks
	Examples
	See Also

	CASE (string)
	Remarks
	Examples
	See Also

	CLOSE
	Syntax
	Remarks
	Examples
	See Also

	COALESCE
	Syntax
	Returned Value Types
	Restrictions
	Supported Combination Types and Result Data Types
	Examples

	COMMIT
	Syntax
	Examples
	See Also

	CREATE DATABASE
	Syntax
	Remarks
	Database Name and IF NOT EXISTS Clause
	Dictionary Path
	Data Path
	Referential Integrity
	BOUND
	Dictionary Files
	Security
	Metadata Version
	Encoding
	Valid Code Page Names and Numbers

	Examples
	See Also

	CREATE FUNCTION
	Syntax
	Remarks
	Restrictions
	Limits
	Supported Scalar Input Parameters and Returned Data Types
	Examples
	Invoking a Scalar User-Defined Function
	Limits
	Examples of User-Defined Functions
	See Also

	CREATE GROUP
	Syntax
	Remarks
	Examples
	See Also

	CREATE INDEX
	Syntax
	Remarks
	Index Segments
	UNIQUE
	PARTIAL
	Limitations of PARTIAL

	Examples
	NOT MODIFIABLE
	USING
	IN DICTIONARY
	Examples
	See Also

	CREATE PROCEDURE
	Syntax
	Remarks
	Trusted and Non-Trusted Stored Procedures
	Memory Caching
	Caching Exclusions

	Data Type Restrictions
	Limits
	Examples
	Using Stored Procedures
	General Stored Procedure Engine Limitations
	Limits to SQL Variables and Parameters
	Limits to Cursors
	Limits when using Long Data
	See Also

	CREATE TABLE
	Syntax
	Remarks
	Limitations on Record Size
	Example of Limitation on Record Size

	Delete Rule
	Update Rule
	IN DICTIONARY
	USING
	WITH REPLACE
	DCOMPRESS
	PCOMPRESS
	PAGESIZE
	LINKDUP
	Examples
	See Also

	CREATE (temporary) TABLE
	Syntax
	Remarks
	Compatibility with Previous Releases
	TEMPDB Database
	Table Names of Local Temporary Tables
	Transactions
	SELECT INTO
	Restrictions on SELECT INTO
	Caching of Stored Procedures
	Examples of Temporary Tables
	See Also

	CREATE TRIGGER
	Syntax
	Remarks
	Examples
	See Also

	CREATE USER
	Syntax
	Remarks
	Examples
	See Also

	CREATE VIEW
	Syntax
	Remarks
	ORDER BY
	Trusted and Non-Trusted Views
	Examples of Trusted and Non-Trusted Views
	See Also

	DECLARE
	Remarks
	Examples
	See Also

	DECLARE CURSOR
	Syntax
	Remarks
	Examples
	See Also

	DEFAULT
	Syntax
	Remarks
	Data Types Compatible with the DEFAULT Keyword
	Scalar Functions as Default Column Values

	Examples
	See Also

	DELETE (positioned)
	Syntax
	Remarks
	Examples
	See Also

	DELETE
	Syntax
	Remarks
	FROM Clause
	Examples

	DISTINCT
	Examples
	See Also

	DROP DATABASE
	Syntax
	Remarks
	Secured Databases
	DELETE FILES
	Examples
	See Also

	DROP FUNCTION
	Syntax
	Remarks
	Examples
	See Also

	DROP GROUP
	Syntax
	Remarks
	Examples
	See Also

	DROP INDEX
	Syntax
	Remarks
	Partial Indexes
	Examples
	See Also

	DROP PROCEDURE
	Syntax
	Remarks
	Examples
	See Also

	DROP TABLE
	Syntax
	Remarks
	Examples
	See Also

	DROP TRIGGER
	Syntax
	Remarks
	Examples
	See Also

	DROP USER
	Syntax
	Remarks
	Examples
	See Also

	DROP VIEW
	Syntax
	Remarks
	Examples
	See Also

	END
	Remarks

	EXECUTE
	Syntax
	Remarks
	Examples
	See Also

	EXISTS
	Syntax
	Remarks
	Examples
	See Also

	FETCH
	Syntax
	Remarks
	Examples
	See Also

	FOREIGN KEY
	Remarks
	Examples
	See Also

	GRANT
	Syntax
	Remarks
	GRANT LOGIN TO
	Constraints on Permissions
	By Object Type
	ALL Keyword

	GRANT and Data Security
	Granting Privileges to Users and Groups
	Granting Access Using Owner Names

	Permissions on Views and Stored Procedures
	Trusted and Non-Trusted Objects

	Examples
	See Also

	GROUP BY
	See Also

	HAVING
	Examples
	See Also

	IF
	Syntax
	Remarks
	Examples
	See Also

	IN
	Remarks
	Examples
	See Also

	INSERT
	Syntax
	Remarks
	INSERT ON DUPLICATE KEY UPDATE
	Inserting Data Longer Than the Maximum Literal String
	Examples
	Examples for INSERT
	Examples for INSERT ON DUPLICATE KEY UPDATE
	Errors When Using DEFAULT
	See Also

	JOIN
	Syntax
	LEFT OUTER
	Vendor Strings

	Examples
	Algorithm

	See Also

	LEAVE
	Remarks
	Examples
	See Also

	LIKE
	Syntax
	Remarks
	Examples

	LOOP
	Remarks
	Examples
	See Also

	NOT
	Remarks
	Examples
	See Also

	OPEN
	Syntax
	Remarks
	Examples
	See Also

	PARTIAL
	Remarks
	See Also

	PRIMARY KEY
	Remarks
	Examples
	See Also

	PRINT
	Remarks
	Examples
	See Also

	PUBLIC
	Remarks
	Examples
	See Also

	RELEASE SAVEPOINT
	Syntax
	Remarks
	Examples
	See Also

	RESTRICT
	Remarks
	See Also

	REVOKE
	Syntax
	Examples
	See Also

	ROLLBACK
	Syntax
	Remarks
	Examples
	See Also

	SAVEPOINT
	Syntax
	Remarks
	Examples
	See Also

	SELECT
	Syntax
	Remarks
	FOR UPDATE
	Constraints

	GROUP BY
	SQL Windowing Functions
	Limitations
	Considerations

	Dynamic Parameters
	Aliases
	SUM and DECIMAL Precision
	Subqueries
	Subquery Optimization
	UNION in Subquery
	Table Subqueries

	Using Table Hints
	Table Hint Restrictions

	Examples
	FOR UPDATE
	Approximate Numeric Literal
	Between Predicate
	Correlation Name
	Exact Numeric Literal
	In Predicate
	Set Function
	Date Literal
	Time Literal
	Time Stamp Literal
	String Literal
	Date Arithmetic
	IF
	Multidatabase Join
	Left Outer Join
	Right Outer Join
	Cartesian Join
	DISTINCT in Aggregate Functions
	TOP or LIMIT
	Cursor Types and TOP or LIMIT
	TOP or LIMIT Examples

	Table Hint Examples

	See Also

	SELECT (with INTO)
	Syntax
	Remarks
	Examples
	See Also

	SET
	Syntax
	Remarks
	Examples
	See Also

	SET ANSI_PADDING
	Syntax
	Remarks
	Restrictions
	Examples
	See Also

	SET CACHED_PROCEDURES
	Syntax
	Remarks
	Registry Setting
	Caching Exclusions

	Examples
	See Also

	SET DECIMALSEPARATORCOMMA
	Syntax
	Remarks
	Examples
	See Also

	SET DEFAULTCOLLATE
	Syntax
	Remarks
	Using ACS Files
	Using ISR Table Names

	ACS, ISR, and ICU Examples
	See Also

	SET LEGACYTYPESALLOWED
	Syntax
	Remarks
	Example

	SET OWNER
	Syntax
	Remarks
	Examples
	See Also

	SET PASSWORD
	Syntax
	Remarks
	Password Characteristics

	Examples
	See Also

	SET PROCEDURES_CACHE
	Syntax
	Remarks
	Registry Setting
	Caching Exclusions

	Examples
	See Also

	SET ROWCOUNT
	Syntax
	Remarks
	Examples
	See Also

	SET SECURITY
	Syntax
	Remarks
	User Permissions

	Examples
	See Also

	SET TIME ZONE
	Syntax
	Remarks
	A Note about Time Stamp Data Types

	Examples
	See Also

	SET TRUEBITCREATE
	Syntax
	Remarks
	Example

	SET TRUENULLCREATE
	Syntax
	Remarks
	Examples

	SIGNAL
	Remarks
	Syntax
	Examples
	See Also

	SQLSTATE
	Remarks
	See Also

	START TRANSACTION
	Syntax
	Remarks
	Examples
	See Also

	UNION
	Remarks
	Examples
	See Also

	UNIQUE
	Remarks
	See Also

	UPDATE
	Syntax
	Remarks
	Updating Data Longer Than the Maximum Literal String
	FROM Clause

	Examples
	See Also

	UPDATE (positioned)
	Syntax
	Remarks
	Examples
	See Also

	USER
	Remarks
	Example
	See Also

	WHILE
	Syntax
	Remarks
	Examples
	See Also

	Grammar Element Definitions
	SQL Statement List
	Predicate
	Expression

	Global Variables
	@@IDENTITY and @@BIGIDENTITY
	Examples

	@@ROWCOUNT
	Examples

	@@SESSIONID
	Example

	@@SPID
	Example

	@@VERSION
	Example

	Other Characteristics
	Temporary Files
	When Are Temporary Files Created?
	In-Memory Temporary File
	On-Disk Temporary File
	Btrieve Temporary File

	Working with NULL Values
	Working with Binary Data
	Creating Indexes
	Comma as Decimal Separator
	Client-Server Considerations
	Changing the Locale Setting

	Examples
	Example A – Server locale uses a comma for decimal separator
	Example B – Server locale uses the period for decimal separator

	Scalar Functions
	Bitwise Operators
	Truth Table

	Arithmetic Operators
	Date Arithmetic
	Example

	String Functions
	Examples

	Numeric Functions
	Examples

	Time and Date Functions
	Time and Date Function Examples

	System Functions
	System Function Examples

	Logical Functions
	Logical Function Examples

	Conversion Functions
	Conversion Function Examples

	System Stored Procedures
	Zen System Stored Procedures
	psp_columns
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Result Set
	Error Conditions

	psp_column_attributes
	Syntax
	Arguments
	Returned Result Set
	Examples
	Result Set
	Result Set
	Result Set
	Error Conditions

	psp_column_rights
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Result Set
	Result Set

	Error Conditions

	psp_fkeys
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Error Conditions

	psp_groups
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Error Conditions

	psp_help_sp
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Error Conditions

	psp_help_trigger
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Error Conditions

	psp_help_udf
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Error Conditions

	psp_help_view
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Error Conditions

	psp_indexes
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Error Conditions

	psp_pkeys
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Error Conditions

	psp_procedure_rights
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Error Conditions

	psp_rename
	Syntax
	Arguments
	Example
	Error Conditions

	psp_stored_procedures
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Error Conditions

	psp_tables
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Result Set
	Error Conditions

	psp_table_rights
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Error Conditions

	psp_triggers
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Error Conditions

	psp_udfs
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Error Conditions

	psp_users
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Error Conditions

	psp_view_rights
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Result Set
	Error Conditions

	psp_views
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Error Conditions

	Performance Reference
	Restriction Analysis
	Modified CNF Conversion
	Restrictions that Cannot be Converted
	Conditions Under Which Conversion is Avoided

	Restriction Optimization
	Single Predicate Optimization
	Closed Range Optimization
	Modified Disjunct Optimization
	Conjunct Optimization
	Disjunctive Normal Form Optimization
	Modified Conjunctive Normal Form Optimization
	Closing Open Ended Ranges through Modified CNF Optimization
	Single Join Condition Optimization
	Conjunct with Join Conditions Optimization
	Modified Conjunctive Normal Form with Join Conditions Optimization
	Closing Join Condition Open Ended Ranges through Modified CNF Optimization
	Multi-Index Modified Disjunct Optimization

	Push-Down Filters
	Efficient Use of Indexes
	DISTINCT in Aggregate Functions
	DISTINCT Preceding Selection List
	Relaxed Index Segment Order Sensitivity
	Relaxed Segment Ascending Attribute Sensitivity
	Search Update Optimization

	Temporary Table Performance
	Row Prefetch
	Terminology
	Aggregate Function
	Closed Range
	Conjunct
	Conjunctive Normal Form (CNF)
	Disjunct
	Disjunctive Normal Form (DNF)
	Expression
	Index
	Join Condition
	Leading Segments
	Modified Conjunctive Normal Form (Modified CNF)
	Modified Disjunct
	Open-Ended Range
	Predicate
	Restriction

	System Catalog Functions
	Zen System Catalog Functions
	Return Status
	Summary

	dbo.fSQLColumns
	Syntax
	Arguments
	Returned Result Set
	Example

	dbo.fSQLForeignKeys
	Syntax
	Arguments
	Returned Result Set
	Example

	dbo.fSQLPrimaryKeys
	Syntax
	Arguments
	Returned Result Set
	Example

	dbo.fSQLProcedures
	Syntax
	Arguments
	Returned Result Set
	Example

	dbo.fSQLProcedureColumns
	Syntax
	Arguments
	Returned Result Set
	Example

	dbo.fSQLSpecialColumns
	Syntax
	Arguments
	Returned Result Set
	Example

	dbo.fSQLStatistics
	Syntax
	Arguments
	Returned Result Set
	Example

	dbo.fSQLTables
	Syntax
	Arguments
	Returned Result Set
	Example

	dbo.fSQLDBTableStat
	Syntax
	Argument
	Returned Result Set
	Example

	String Search Patterns
	Examples

	Data Types
	Zen Supported Data Types
	Data Type Ranges
	Operator Precedence
	Parentheses

	Data Type Precedence
	Numeric Data Types
	Character Data Types
	Data Types with No Precedence

	Precision and Scale of Decimal Data Types
	Scale of Time Stamp Data Types and Returned Function Values
	Truncation

	Notes on Data Types
	CHAR, NCHAR, VARCHAR, NVARCHAR, LONGVARCHAR, and NLONGVARCHAR
	BINARY and LONGVARBINARY
	Limitations on LONGVARCHAR, NLONGVARCHAR and LONGVARBINARY
	DATETIME
	Format of DATETIME
	Compatibility of Date and Time Data Types

	UNIQUEIDENTIFIER
	Declaring Variables
	Converting UNIQUEIDENTIFIER to Another Data Type

	Representation of Infinity

	Legacy Data Types
	Btrieve Key Data Types
	AUTOINCREMENT
	Restrictions

	AUTOTIMESTAMP
	Inserts and Updates Using AUTOTIMESTAMP
	Restrictions
	Usage in Function Executor and Maintenance Tools

	BFLOAT
	STRING
	CURRENCY
	DATE
	DECIMAL
	Windows
	Linux and macOS

	FLOAT
	GUID
	GUID Keys

	INTEGER
	LOGICAL
	LSTRING
	MONEY
	NUMERIC
	Enabling the Shifted Format
	Windows 32-Bit
	Linux and macOS

	Consistent Sign Values for Positive NUMERIC Data

	NUMERICSA
	NUMERICSLB
	NUMERICSLS
	NUMERICSTB
	NUMERICSTS
	TIME
	TIMESTAMP
	Usage in Function Executor and Maintenance Tools

	TIMESTAMP2
	Usage in Function Executor and Maintenance Tools

	UNSIGNED BINARY
	WSTRING
	WZSTRING
	ZSTRING

	Non-Key Data Types
	BLOB
	CLOB

	SQL Reserved Words
	Reserved Words
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Words to Avoid

	System Tables
	Overview
	System Tables Structure
	V1 Metadata System Tables
	X$Attrib
	X$Depend
	X$Field
	X$File
	X$Index
	X$Proc
	X$Relate
	X$Rights
	X$Trigger
	X$User
	X$View

	V2 Metadata System Tables
	X$Attrib
	X$Depend
	X$Field
	X$File
	X$Index
	X$Proc
	X$Relate
	X$Rights
	X$Trigger
	X$User
	X$View

	SQL Access for COBOL Applications
	Overview of Zen Support for COBOL
	Restrictions
	SQL Statements

	Components
	Using SQL Access
	Step 1: Modify the Sample XML Templates
	Step 2: Copy the Data File Specified in the XML Template
	Step 3: Run the Schema Executor Utility
	Schema Executor Command Format
	Example Usage

	Creating a New Database with Schema Executor
	Log Messages

	Step 4: Optionally, Deploy the System Tables

	Example of How to Execute a Sample XML File
	Additional Notes
	SELECT Statements
	Table Filters
	Examples of Valid TABLEFILTER Usage

	Query Plan Viewer
	Query Plan Settings
	Graphical User Interface
	Query Viewer
	Plan Viewer
	Nodes
	Node Details

	Query Plan Viewer Tasks
	Examining Query Plans and Evaluating Query Performance
	Creating Example Query Plans for Comparison
	Viewing the Example Query Plans

