
DDF Builder User's Guide

Zen v15

Activate Your Data™

Copyright © 2023 Actian Corporation. All Rights Reserved.

This Documentation is for the end user’s informational purposes only and may be subject to change or withdrawal by
Actian Corporation (“Actian”) at any time. This Documentation is the proprietary information of Actian and is
protected by the copyright laws of the United States and international treaties. The software is furnished under a
license agreement and may be used or copied only in accordance with the terms of that agreement. No part of this
Documentation may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, or for any purpose without the express written permission of Actian. To the extent
permitted by applicable law, ACTIAN PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY
OF ANY KIND, AND ACTIAN DISCLAIMS ALL WARRANTIES AND CONDITIONS, WHETHER EXPRESS
OR IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF
MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OR OF NON-INFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT WILL ACTIAN BE LIABLE TO THE END USER OR ANY THIRD
PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION,
GOODWILL, OR LOST DATA, EVEN IF ACTIAN IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The manufacturer of this Documentation is Actian Corporation.

For government users, the Documentation is delivered with “Restricted Rights” as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Actian, Actian DataCloud, Actian DataConnect, Actian X, Avalanche, Versant, PSQL, Actian Zen, Actian Director,
Actian Vector, DataFlow, Ingres, OpenROAD, and Vectorwise are trademarks or registered trademarks of Actian
Corporation and its subsidiaries. All other trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

iii

iii

Contents

About This Document vii

Who Should Read This Manual . vii

Getting Started with DDF Builder 1

DDF Builder Overview . 2
Why Use DDF Builder . 2
What DDF Builder is Not. 3
Why Not Use ZenCC? . 3
What You Need to Know . 3
Components of DDF Builder . 4

Starting DDF Builder . 6
Starting DDF Builder from a Command Line . 6
Where to Go From Here . 9

Using DDF Builder 11

DDF Builder Concepts . 12
Terminology Review . 12
Security. 13
Previous Database and DDF Versions . 13
DDF Builder Error Detection and Correction . 13
Saving Original and Modified Definitions . 15
Table Definition Editor Pages . 15
Legacy Nulls in DDF Builder. 17
True Nulls in DDF Builder . 17

GUI Reference . 19
Welcome Page . 20
Data Sources Explorer . 21
Btrieve File Editor . 21
Table Definition Editor. 23
Table Page . 24
Indexes Page. 28
Preview Page . 29
Statistics Page. 29
SQL View Page. 30
Add Database . 31
Check Table Consistency . 32

iv

Copy SQL Definition . 34
Export Btrieve Schema . 34
Import Btrieve Schema . 35
Add Data Path . 36
Change Associated Data File. 36
Btrieve Types. 36
Definition Errors . 38
Original Definition . 40

DDF Builder Tasks . 42
General Tasks . 42
Tasks Initiated from Data Sources Explorer . 43

DDF Builder Tutorials 49

Using the DDF Builder Tutorials . 50
Tutorial 1 Overview . 50
Tutorial 2 Overview . 50
Before You Begin . 50

Tutorial 1 – Creating Table Definitions with DDF Builder . 53
Scenario. 53
Goals . 53
What You Need to Know. 53
Create a Zen Database. 54
Open an Existing Btrieve File . 56
Review DDF Builder’s Findings. 58
Define the Record Fields. 59
Review the Index Information. 68
Preview the Defined Data . 69
Conclusion. 70

Tutorial 2 – Modifying Table Definitions with DDF Builder . 71
Scenario. 71
Goals . 71

Lesson 1 – Working with v3.00 DDFs . 72
Scenario. 72
Goals . 72
What You Need to Know. 72
Open the Btrieve File . 72
Understanding the Warning Message . 73
How To Convert My Files. 73
Conclusion. 76

Lesson 2 – Working with Pre v6.x File Formats. 77

v

Scenario . 77
Goals. 77
What You Need to Know . 77
Open the Btrieve File . 77
Understanding the Warning Message . 78
View the Log File . 78
How To Rebuild My Files . 79
Where To Go From Here . 79
Conclusion . 79

Lesson 3 – Invalid Data Types and Sizes . 80
Scenario . 80
Goals. 80
What You Need to Know . 80
Open the Btrieve File . 80
Look for Inconsistencies. 82
Understanding the Errors . 83
Review Data Types and Sizes. 84
Make the Final Changes . 88
Save the Table Definition . 90
Conclusion . 90

Lesson 4 – Overlapping Column Definitions. 91
Scenario . 91
Goals. 91
What You Need to Know . 91
Open the Btrieve File . 91
Look for Inconsistencies. 93
Understanding the Errors . 94
Accept or Reject Changes . 95
Save the Table Definition . 95
Conclusion . 96

Lesson 5 – File/Field Flag Inconsistencies. 97
Scenario . 97
Goals. 97
What You Need to Know . 97
Open the Btrieve File . 97
Look for Inconsistencies. 99
Understanding the Errors . 100
Accept or Reject Changes . 101
Save the Table Definition . 102
Conclusion . 102

vi

Lesson 6 – Index Inconsistencies . 103
Scenario. 103
Goals . 103
What You Need to Know. 103
Open the Btrieve File . 103
Look for Inconsistencies . 105
Understanding the Errors . 106
Name the Index . 107
Save the Table Definition . 107
Conclusion. 108

Lesson 7 – Variable Length Record Mismatch . 109
Scenario. 109
Goals . 109
What You Need to Know. 109
Open the Btrieve File . 109
Look for Inconsistencies . 111
Understanding the Errors . 112
Define the Unknown Field . 113
Save the Table Definition . 113
Conclusion. 114

Lesson 8 – Record Length Mismatch . 115
Scenario. 115
Goals . 115
What You Need to Know. 115
Open the Btrieve File . 115
Look for Inconsistencies . 117
Understanding the Errors . 118
Define the Field. 119
Save the Definition . 120
Conclusion. 120

About This Document vii

About This Document

This documentation is intended as a guide for working with DDF Builder. Topics include an
overview of the utility, components that make up the graphical user interface, and tutorials to aide
you when working with the various issues DDF Builder is designed to detect.

Who Should Read This Manual
This manual provides information for users who use DDF Builder. The procedures described in
this manual are considered advanced and require a certain amount of knowledge about the
structure of your data, as well as some basic knowledge about the transactional and relational
access methods.

Any specific concepts or methods that you may need to know are clearly stated in this manual,
where appropriate. If you do not have an understanding of the suggested information, you should
avoid using DDF Builder until the time when you may obtain that knowledge.

We would appreciate your comments and suggestions about this manual. As a documentation
user, you are in a unique position to provide ideas that can have a direct impact on future releases
of this and other manuals. If you have comments or suggestions, post your request at the
community forum on the Actian website.

Who Should Read This Manual

viii About This Document

Getting Started with DDF Builder 1

Getting Started with DDF Builder

The following topics prepare you to use DDF Builder for relational access to Btrieve files:

• DDF Builder Overview

• Starting DDF Builder

2 Getting Started with DDF Builder

DDF Builder Overview
DDF Builder is a Java utility that allows you to view, create, and change Zen data dictionary files
(DDFs) without making modifications to the underlying data file, called a Btrieve file. Although
DDF Builder provides a variety of functions, the utility’s primary purpose supports the following:

• Creating the table definitions required to enable relational access to existing Btrieve data files

• Modifying existing table definitions to ensure that relational access is enabled correctly for
Btrieve data files

Note: When creating and modifying DDFs with DDF Builder, the Btrieve data file is never
modified.

Other functionality in DDF Builder includes, but is not limited to, the following:

• Creating new Btrieve data files to use with the MicroKernel Engine

• Exporting Btrieve schema to an XML file

• Importing Btrieve schema from an XML file

• Creating SQL statements

Why Use DDF Builder

DDF Builder is a specialized utility that allows you to add relational access to your Btrieve data
files without making changes to the Btrieve data files. Typically DDF Builder is not a utility that
you would use daily. Instead, DDF Builder should be used as needed to add relational access to an
existing Btrieve file by creating table definitions in data dictionary files, or by modifying existing
data dictionary files to connect table definitions that were not properly constructed.

Note: DDFs define the schema for your SQL metadata. DDFs are system tables that allow DDF
Builder to represent SQL access as objects, or SQL tables. Rather than modifying DDFs directly,
you work with the SQL table objects. DDF Builder modifies the DDFs as you create, change, or
delete SQL tables. All of the SQL tables in a database are defined in the same set of DDFs.

Some previous versions of the Table Designer in the Zen Control Center provided two modes in
which to work – Linked and Unlinked. The linked mode allowed you to make changes to both the
table definitions and the data file, and the unlinked mode allowed you to make changes to only the
table definitions. DDF Builder uses a similar unlinked mode by using IN DICTIONARY calls to
modify the DDFs without making changes to the Btrieve file. DDF Builder never writes to the
Btrieve file.

Getting Started with DDF Builder 3

What DDF Builder is Not

DDF Builder is not a means by which you can modify your existing Btrieve data files. If you
intend to modify existing Btrieve files and DDFs that provide relational access, DDF Builder is
not the utility you need to use. Consider using Zen Control Center and other Zen utilities for
changing your existing Btrieve files.

Additionally, DDF Builder is not intended to be used to create or modify keys. Use the Table
Editor in Zen Control Center when working with keys. DDF Builder is intended to create and
modify DDFs.

Why Not Use ZenCC?

Zen Control Center is intended to manipulate the physical data files and the data dictionary files at
the same time, or in linked mode. Using ZenCC to alter only DDFs is not recommended.

What You Need to Know

A thorough understanding of the structure of your data is the most important thing you need to
know when using DDF Builder. Without an understanding of how the data is structured, creating
or modifying table definitions with DDF Builder could be difficult, time consuming and
counterproductive.

Other Helpful Information

It is also helpful if you have a general understanding of the two primary methods in which data is
accessed from Zen databases – transactional and relational. For much of the functionality in DDF
Builder, an understanding of transactional access is beneficial. Other areas of functionality
require that you are familiar with relational database concepts in general.

Note: This book assumes knowledge of the transactional access method and relational concepts.
Listed below are Zen books to add to your understanding before attempting to use DDF Builder.
Also, Zen developer documentation is installed with the Zen database engine.

Transactional Access

With transactional access, an application program navigates up and down along either physical or
logical pathways through data records. Using a transactional API, an application program
provides direct control and allows a developer to optimize data access based on knowledge of the
underlying structure of the data. Using the Btrieve API is an example of transactional access.

4 Getting Started with DDF Builder

Refer to the following books to learn more about transactional access:

• Zen Programmer’s Guide (Developer Reference)

• Btrieve API Guide (Developer Reference)

• Advanced Operations Guide (Advanced Reference)

Relational Access

Relational is an access method in which data is represented as collections of tables, rows, and
columns. The relational model insulates the developer from the underlying data structure and
presents the data in a simple table format. ODBC is an example of a relational access method.

Refer to the following books to further your understanding of relational access:

• SQL Engine Reference (Advanced Reference)

• Advanced Operations Guide (Advanced Reference)

• Zen User’s Guide (General Reference)

• Zen Programmer’s Guide (Developer Reference)

What To Do Next

Changes made to your table definitions with DDF Builder will alter the structure of your DDFs.
As a precaution before using the utility, always back up any of the files (including DDFs) with
which you intend to work. (Btrieve files are also referred to as data files because the data is stored
within the page structure of the file.)

Note: DDF Builder does not allow you to modify the record layout structure of existing Btrieve
files. You can create new Btrieve files with the utility, if you choose.

Disable Security

If you are working with a database that has any of the Zen security models enabled, you should
take the database offline and disable all security before opening the files in DDF Builder.

Components of DDF Builder

In addition to the utility, DDF Builder includes the following components:

Getting Started with DDF Builder 5

Log File

The .log file is where DDF Builder enters reports of any problematic conditions. In a default
installation, the log file is installed in the following directory:

C:\ProgramData\Actian\Zen\rcp\workspace-builder\.metadata

User Documentation

DDF Builder User’s Guide is part of the Zen user documentation.

Tutorial Files

DDF Builder installs a set of files for use with the tutorials included in DDF Builder User’s
Guide. The tutorial files are installed by default in
C:\ProgramData\Actian\Zen\DDFBuilder\tutorials. For documentation, see DDF Builder
Tutorials.

For a list of default installation locations, see Where are the files installed? in Getting Started with
Zen.

6 Getting Started with DDF Builder

Starting DDF Builder
You can start DDF Builder from the Windows operating system, from within the Zen Control
Center (ZenCC), or from a command line.

To start DDF Builder from the Windows Operating System

1. Access DDF Builder from the Start menu or Apps screen.

The DDF Builder main window opens.

To start DDF Builder from ZenCC

1. In ZenCC, click Tools > DDF Builder from the menu bar.

2. The DDF Builder main window opens.

Starting DDF Builder from a Command Line

DDF Builder can be started on Windows, Linux, or macOS by running the executable file from a
command line. See the following topics for details.

Windows

Run the executable file builder.exe to start DDF Builder. See Where are the files installed? in
Getting Started with Zen.

Getting Started with DDF Builder 7

Linux and macOS

Run the executable script file builder to start DDF Builder. The script file is located, by default
installation, in the usr/local/actianzen/bin directory.

We recommend that you start DDF Builder from a command prompt and not by double-clicking
the script file using a file browser application. See Troubleshooting Guide for Running DDF
Builder.

Requirements for Starting DDF Builder on Linux or macOS

The following requirements must be met to start DDF Builder on Linux or macOS:

Requirement Discussion

Zen server or client A compatible Zen server or client must already be installed on the same
machine. See Installing Zen for Linux-based Systems in Getting Started
with Zen.

X server access The xhost command controls which clients can access X Window System
on the current machine. By default, xhost turns on access control. This
means that only the user who starts X Window System could start DDF
Builder.

You may turn off X Window System client restrictions by running xhost
+ in a terminal window.

Java Runtime
Environment (JRE)

The JRE components required to run DDF Builder are installed as part of
Zen. DDF Builder uses the “local” version of the JRE installed as part of
Zen.

Desktop ownership
(macOS only)

Only the user logged in to the Desktop can start DDF Builder.

8 Getting Started with DDF Builder

Troubleshooting Guide for Running DDF Builder

If you have met the requirements to run DDF Builder and still are having difficulty running the
utility, refer to the following guidelines:

Troubleshooting Condition Discussion

You receive the error
“java.lang.UnsatisfiedLinkError."

This error typically occurs if you try to start DDF Builder by
double-clicking the script file using a file browser application.
Start DDF Builder from a command prompt.

This error can result if the LD_LIBRARY_PATH variable is not
set. The builder script sets this variable for you. You may also
explicitly set the variable with the following command:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/

actianzen/lib64

On macOS, the variable is DYLD_LIBRARY_PATH.

You receive the error "SWT no
more handles" when trying to run
DDF Builder as root or as user zen-
svc.

You are not required to log in as user zen-svc or root to run DDF
Builder. However, if you are neither of these users, you must be a
member of group zen-data.

The "SWT no more handles" error is caused by the X server
denying a connection to a client. Before switching to user zen-
svc or root, open a console window and type xhost + to allow
other clients to connect to the X server.

Now you can switch to user zen-svc or root.

Also, sometimes the display environment variables needs to be
set. As user zen-svc or root, type the following command at a
console window:

export DISPLAY=:0.0

or

export DISPLAY=localhost:0.0

You want to view the error log file
for DDF Builder or redirect the
errors to the console window.

The log file of DDF Builder errors is located under the user’s
home directory. For troubleshooting, you may find it more
convenient to redirect the errors to the console window.

To redirect errors to the console window, use the -consoleLog
option when starting DDF Builder:

builder -consoleLog

You receive the following error
message: “Unable to connect to
database engine. Make sure the
target machine is accessible and an
engine is running on the target
machine.”

The context of this error occurs if you attempt to administer the
local server.

To administer the local server, you must be a member of the zen-
data group or be the root user. See Zen Account Management on
Linux, macOS, and Raspbian in Getting Started with Zen.

Getting Started with DDF Builder 9

Clearing the DDF Builder Cache

DDF Builder caches certain information to improve efficiency. On occasion, you may need to
clear the cache for troubleshooting purposes as directed by technical support or to ensure that all
files are reloaded. The cache can be cleared only by starting DDF Builder with a parameter from
the command line.

Note: Clearing the cache when starting DDF Builder provides no advantage under normal usage.
For normal usage, start the utility as discussed in Starting DDF Builder.

To clear DDF Builder cache

1. Exit DDF Builder if it is running.

2. Open a command prompt.

3. Change directory to the Zen\bin\ folder in the Zen installation directory.

4. Enter builder -clean and press Enter.

This clears the cache and starts DDF Builder.

Where to Go From Here

Now that you have a general understanding of DDF Builder, see Using DDF Builder for an
introduction to the user interface.

You receive the error: “GTK IM
Module SCIM: Cannot connect to
Panel!” then trying to run DDF
Builder as a user other than root.

On some Linux operating systems, it is necessary to specify the
environment variable GTK_IM_MODULE.

To resolve this problem, before starting DDF Builder, run the
following command at the console window:

export GTK_IM_MODULE=scim-bridge

Troubleshooting Condition Discussion

10 Getting Started with DDF Builder

Using DDF Builder 11

Using DDF Builder

The following topics cover concepts of use, the user interface, and things you can do with DDF
Builder:

• DDF Builder Concepts

• GUI Reference

• DDF Builder Tasks

12 Using DDF Builder

DDF Builder Concepts
This section contains conceptual information about working with DDF Builder. The following
sections are included:

• Terminology Review

• Security

• Previous Database and DDF Versions

• DDF Builder Error Detection and Correction

• Saving Original and Modified Definitions

• Table Definition Editor Pages

• Legacy Nulls in DDF Builder

• True Nulls in DDF Builder

Terminology Review

Before you begin working with DDF Builder, you should review the terminology used throughout
the manual. Some of the terms used are specific to the relational database model, whereas some of
the information is from the transactional database methodology. Because DDF Builder is
designed to create relational table definitions from transactional data, the utility brings together
these two models in one place. This information is useful because terminology used in the
transactional model may be referred to differently in the relational model. The following table
lists the terms used throughout this manual.

Terms Definition

Database A collection of files that includes a set of DDFs with table definitions, a set of
data files and a DSN.

File

Table

The Btrieve physical file or SQL table name.

Dictionary

Data Dictionary

System Catalog

System Tables

A set of DDF files that can contain table definitions of the data (metadata).

Table Definition Entry in the DDFs that corresponds to a Btrieve file.

Using DDF Builder 13

Security

When using DDF Builder with security-enabled databases, it is recommended that you turn off all
security prior to opening the files in DDF Builder. Failure to turn off security results in DDF
Builder sending secure login and password requests each time a call is executed. This could
become excessive and counterproductive, depending on the number of calls needed to create or
modify the table definition.

Previous Database and DDF Versions

DDF Builder is supported on PSQL v9 and later versions. DDFs created with Scalable SQL v4.00
and later are supported along with Btrieve data files v6.x and later.

Scalable SQL v3.xx and Earlier

If you have DDFs that were created with Scalable SQL v3.xx or earlier, you must convert your
DDFs before you can open them with DDF Builder.

For step-by-step instructions, see Lesson 1 – Working with v3.00 DDFs.

Btrieve v5.x and Earlier

DDF Builder supports version 6.x files but does not support files created prior to version 6.x. If
you have Btrieve data files that were created with Btrieve v5.x or earlier, you must rebuild the
files before you can open them with DDF Builder.

For step-by-step instructions, see Lesson 2 – Working with Pre v6.x File Formats.

DDF Builder Error Detection and Correction

When you open an existing table definition associated with a Btrieve file, DDF Builder goes
through a set of comparisons and checks. From these comparisons and checks, DDF Builder may

DDFs

System Tables

System Objects

Files with a .DDF extension. DDFs are system tables that provide the means for
defining files within the constraints of a relational database (the metadata).

Key

Index

Specified data used to sort a table or file in a particular order and to optimize
searches on particular values.

Terms Definition

14 Using DDF Builder

make certain adjustments to the table definition, if errors are detected. Any changes made to the
table definition are recorded in the Definition Errors window.

Note: DDF Builder always retains the original table definition, so the changes made by DDF
Builder are never automatically saved to your table definition. You may save either the modified
or the original table definition with a different name to retain both definitions.

So that you can understand the assessments and potential changes DDF Builder makes, take a
moment to look at the steps DDF Builder goes through.

First, DDF Builder reviews the Btrieve file and examines the pertinent details, such as record
length, indexes, index segments, and so forth. Next, DDF Builder opens the existing DDFs and
looks at the information contained in the DDFs in comparison to the Btrieve file. These two sets
of details are then systematically compared to each other for matches and mismatches.

DDF Builder uses the details found in the Btrieve file as the basis for detecting and fixing any
errors or problems. The following examples help clarify.

Example 1 - Index Inconsistencies

You have a Btrieve file that contains a key. The table definition does not contain a corresponding
index. Since DDF Builder cannot alter your Btrieve file, the key defined in the Btrieve file is
carried over to your table definition as an index.

For information on dealing with this type of situation, refer to Lesson 6 – Index Inconsistencies.

Example 2 - Record Length Mismatch

Your Btrieve file contains records defined with a total length of 120 bytes, yet your table
definition only defines a total of 100 bytes. Since DDF Builder cannot alter the Btrieve record, a
column is added to the table definition for the 20 bytes unaccounted for in the definition.

For information on dealing with this type of situation, refer to Lesson 8 – Record Length
Mismatch.

Example 3 - Flag Inconsistencies

The Btrieve file contains a flag on a key that does not match the flags set on the corresponding
SQL index in the table definition. Again, because DDF Builder cannot change the Btrieve file, the
flag setting on the SQL index in the table definition is changed to reflect the setting in the Btrieve
file.

Using DDF Builder 15

For information on dealing with this type of situation, refer to Lesson 5 – File/Field Flag
Inconsistencies.

Note: The topic DDF Builder Tutorials provides step-by-step instructions on dealing with the
various situations you may encounter when working with DDF Builder.

DDF Builder cannot repair every problem. For a complete list of the issues that DDF Builder
detects and repairs, see Definition Errors List.

Saving Original and Modified Definitions

Although DDF Builder makes recommended changes to your existing table definitions, you are
not required to keep the changes, nor are you required to discard your original table definition if
you accept the changes.

You can save both your modified and original table definitions by saving one of the definitions
with a different name. If you accept the changes made by DDF Builder, you may save either the
modified or the original table definition with a different name.

If you reject the changes made by DDF Builder, your original table definition is retained with the
original name.

Table Definition Editor Pages

The Table Definition Editor is made up of several pages of information that you use for viewing,
creating, and modifying table definitions. The Table Definition Editor contains the following
pages:

• Table Page

• Indexes Page

• Preview Page

• Statistics Page

• SQL View Page

Table Page

The Table page is where you do most of the work when creating or modifying table definitions.
The Table page includes the raw data view and the grid data view.

16 Using DDF Builder

Raw Data View

The raw data view displays data in your Btrieve file in a combined ASCII and hexadecimal view.
Record length, offsets, and field sizes are also shown in this view.

The raw data view provides you with the visual indicators you may need to determine columns
and null indicators, as well as identify unknown fields and bytes.

Tip... For information on the visual indicators used in the raw data view, refer to The following
table lists the attributes displayed in the raw data view..

Grid Data View

The grid data view is similar in feature and functionality to the grid window view in the SQL
Editor in Zen Control Center.

Fields used in indexes cannot have their size or type modified; only the field name can be
modified in the grid data view. To add indexes, drop indexes, or change other index information,
you would need to modify the Btrieve file directly using the Btrieve Maintenance Utility.

Tip... For information on the visual indicators used in the grid data view, refer to The following
table lists the attributes displayed in the grid data view..

Indexes Page

The Indexes page allows you to see the indexes and index segments that DDF Builder detected in
the Btrieve file. You may not add or modify any indexes or index segments from this page. Only
index name changes are allowed on the Indexes page. If you change the name of an indexed field
on the Table page, the name is updated in real-time on the Indexes page.

Note: For the steps needed to name an index, see Name an Index.

Alternate Collating Sequence (ACS) Files

When working with Btrieve files that use alternate collating sequence (ACS) files, the ACS file
must reside in the same directory as the Btrieve file and must have an .alt extension, as in
upper.alt.

Preview Page

The Preview page provides a look at file data formatted using the current table definition. As you
make changes to the table definition, the preview changes accordingly.

Using DDF Builder 17

The Preview page is read-only. You may not edit any of the information displayed on this page.
Although this page is read-only, you may move through the records by using the arrow buttons
located at the bottom of the page.

Statistics Page

The Statistics page displays the Btrieve file statistics for any file open in the Table Definition
Editor. The information presented on this page would be the same information reported if a
statistics report were generated on the file using the Btrieve Maintenance utility.

SQL View Page

The SQL View page displays the underlying SQL statements that apply to the creation or
modification of your table definitions. As you modify your table definition, the underlying SQL
statements are updated immediately on the SQL View page.

The information on this page is read-only and cannot be altered on this page. You may select and
copy the statements to use elsewhere, if needed.

Caution! Do not reuse any statement that contains a reference to any of the Zen dictionary
system objects. These objects are easily identified by their X$<tablename> and include a
proprietary comment prohibiting reuse.

Legacy Nulls in DDF Builder

Versions of Zen prior to Pervasive.SQL 2000 only provided support for legacy nulls. Files that
use legacy nulls are recognized by DDF Builder, but no action is required to deal with this type of
null when working with DDF Builder.

True Nulls in DDF Builder

In Pervasive.SQL 2000, support was added for true nulls. With true nulls, a leading byte, known
as a null indicator byte, is included to designate the corresponding column as having a null or non-
null value

Working with True Nulls

When defining record fields within DDF Builder, it is important to know the fields in the record
that are nullable, since marking a section of the record as nullable adds an extra byte to the field.
This is because in a Btrieve file, nullable portions of the record are designated as such by the use

18 Using DDF Builder

of the null indicator byte. In the raw data view of the Table Definition Editor, the null indicator
byte is indicated in the byte immediately preceding the field or column. When the Null check box
is selected, the null indicator byte becomes active and the size of the field is automatically
reduced by one byte to accommodate for that byte.

Note: If you are working with files created prior to Pervasive.SQL 2000, nulls are most likely not
an issue.

Creating Nullable Fields

Creating nullable fields in DDF Builder requires that you consider the size of the field and the one
byte needed for the null indicator. This means that a nullable field intended to be 25 bytes would
actually be defined as 26, reserving one byte for the null indicator. Once you designate a field as
nullable, the size is automatically reduced in DDF Builder by one.

Note: For examples of working with nullable and non-nullable columns, see the examples in
Tutorial 1, Create a Nullable Column in the raw data view and Change a Non-Nullable Column to
Nullable in the grid data view.

Using DDF Builder 19

GUI Reference
DDF Builder provides a graphical user interface (GUI). The GUI includes various editors, views,
and wizards with which you display and work with objects.

The object being edited is represented by a tab on top of the editor. The tab contains the name of
the object. Data modified within an editor must be explicitly saved.

Views can be opened only one at a time. Actions performed within a view are applied
immediately. No explicit save is required.

Wizards contain one or more dialogs and guide you through a task to obtain a specific result.

The following table lists the editors, views, and wizards that DDF Builder provides.

GUI Component Editor View Wizard Description

Data Sources Explorer X Data Sources Explorer

Btrieve File Editor X Btrieve File Editor

Table Definition Editor X Table Definition Editor

SQL Editor X SQL Editor in Zen User’s Guide1

Grid Window View X Grid Window View in Zen User’s Guide1

Text Window View X Text Window View in Zen User’s Guide1

Outline X Outline Window View in Zen User’s

Guide1

Add Database X Add Database

Check table consistency
(Check Database and
Check Tables)

X2 Check Table Consistency

Copy SQL Definition X Copy SQL Definition

Export Btrieve Schema X Export Btrieve Schema

Import Btrieve Schema X Import Btrieve Schema

Change Associated Data
File

X Change Associated Data File

Btrieve Types X Btrieve Types

Definition Errors X Definition Errors

20 Using DDF Builder

Welcome Page

When you start DDF Builder, it displays the Welcome tab, where you can access a variety of
information and perform common tasks, such as adding a new server and creating a new database.
The information provided includes the following:

• Getting Started with Zen DDF Builder

• Zen DDF Builder Tutorials

• Actian Knowledge Base

• Common Tasks

If Welcome tab is closed, you can open it in the DDF Builder menu by selecting Help >
Welcome.

Original Definition X Original Definition

1DDF Builder and ZenCC share common components. Because of this, some editors, views, and
wizards are documented in other Zen books and not in DDF Builder User’s Guide.
2The Check Database and Check Table action is similar to a wizard except that you make your selection
in Data Sources Explorer rather than in a dialog. The results generated by checking consistency are
similar to a view.

GUI Component Editor View Wizard Description

Using DDF Builder 21

Data Sources Explorer

DDF Builder uses a file explorer, a tree of objects called the Data Sources Explorer. The objects
include databases, data paths, Btrieve files, and SQL tables. The objects are referred to as nodes in
the tree.

Nodes can be expanded or collapsed to reveal or conceal subordinate nodes. The expand/collapse
icon appears to the left of the node if a lower node is available.

Btrieve File Editor

Btrieve File Editor creates the file and key specification for a new Btrieve file. DDFs are not
automatically created for a new Btrieve file. You must add them separately, if you want them (see
SQL Tables).

Tip... To create both a Btrieve file and its DDFs, use SQL Editor in Zen Control Center.

22 Using DDF Builder

How to Access

In Data Sources Explorer, right-click a data path under the Data Paths node and select Create
Btrieve File to open the Btrieve File Editor.

A Btrieve file must be located on physical storage, which is why the editor is invoked from a data
path.

Features

Btrieve File Editor contains two tabs: one for specifying the characteristics of the file and one for
specifying characteristics of the keys. The Apply button on each tab saves the specifications for
that tab. Click File > Save to save the editing changes for both tabs.

At a minimum, you must supply a file name and a record length to create a Btrieve file. You
specify these on the File Specifications tab.

As stated in What You Need to Know, this book assumes that you thoroughly understand the
transactional access method and relational concepts. This section does not attempt to explain the
controls on the Btrieve File Editor tabs. The following table provides links to related
documentation if you need to further your understanding of Btrieve files.

Using DDF Builder 23

Restrictions

Only one Btrieve file can be created at a time. On the Key Specifications tab, click Apply after
adding or changing each segment of a segmented key. This saves the changes to each segment
before you create or edit the next segment.

Table Definition Editor

The Table Definition Editor creates new or changes existing schemas for SQL metadata. Note that
Table Definition Editor is resembles Table Editor in Zen Control Center (ZenCC) and is used in
similar ways. For more information, see Table Editor.

How to Access

Do one of the following in Data Sources Explorer:

• Right-click a Btrieve file name and select Create Table Definition.

• Double-click a SQL table name to edit an existing table definition.

• Right-click a SQL table name and select Edit Table Definition.

Tab Advanced Reference
Documentation

Developer Reference Documentation

File Specifications In Advanced Operations Guide:

• File Size

• Owner Names and Security

• System Data

• File Information Editor

In Zen Programmer’s Guide:

• Btrieve Fundamentals

• Designing the Database

Key Specifications In Advanced Operations Guide:

• Methods for Handling Duplicate
Keys

In Zen Programmer’s Guide:

• Btrieve Fundamentals

• Designing the Database

• Working with Records

• Creating a Database

24 Using DDF Builder

Features

The Table Definition Editor, like the Table Editor in Zen Control Center (ZenCC), uses tabs or
pages to display different views of table definition information. Some of the pages contain read-
only information, while others provide the work area in which you will create and modify your
table definitions.

Restrictions

You cannot change the size, offset, or data type for a column if the column is used in a key in the
Btrieve file. DDF Builder does not change nor permit changing the layout structure of an existing
Btrieve file.

Table Page

The Table page in Table Definition Editor provides two metadata views – raw and grid. The raw
view displays information in the Btrieve file, while the grid view displays it as a SQL table.

Using DDF Builder 25

How to Access

Select the Table page by clicking the Table tab at the bottom of the Table Definition Editor.

Raw Data View

The raw data view shows both the hexadecimal and ASCII values of data records. This view also
displays the record length and the offset and size for selected bytes. Offset and size are adjusted as
bytes are selected in this view.

Raw Data View in Table Definition Editor

Field, column, null and unknown indicators appear at the top of the raw data view. Field
indicators show where each field within the record begins. Null indicators show where the null
indicator byte is located. Unknown fields and bytes are also displayed in the raw data view.

The following table lists the attributes displayed in the raw data view.

Attribute Description

Error Message Displays any error or warning condition

Record Length Displays the entire length of the record, excluding the variable portion.

Offset Displays the beginning and ending position of the selected bytes or field.

Size Displays the size (in bytes) of the selected bytes or field.

26 Using DDF Builder

Grid Data View

The grid data view shows the schema structure of a table as a grid of rows and columns. Each
field is represented in a row on the grid. Each row consists of cells that show the attributes for
each field. Most of the attributes are editable and can be saved as changes to the schema.

The following table lists the attributes displayed in the grid data view.

Data Indicators Displays the field/column indicator () to show where each field within the record
begins.

Displays the null indicator () if the field is designated as nullable. This byte
represents the null indicator byte.

Displays the unknown field indicator () if the field has not yet been defined.

Displays the unknown byte indicator () if the bytes have not yet been defined.

Attribute Description

Column
Indicator

Displays the key icon () if the field is used in a key (index) definition.

Displays the unknown icon () if the field is unknown.

Displays the variable icon () if the field is an unknown variable-length portion.

Field Displays the table field name.

Offset Displays the offset, or cumulative, position of the field within the record, starting at 0.

View Only

Size Displays the size (in bytes) of the field.

Btrieve Type Displays the Btrieve data type for the field.

SQL Type Displays the SQL data type for the field.

View Only

Precision Displays the number of significant digits for floating point values.

Attribute Description

Using DDF Builder 27

How the Two Views Work Together

Selecting a cell in the grid data view displays the corresponding bytes for that field in the raw data
view, just as selecting individual bytes in the raw data view, selects the corresponding elements in
the grid data view.

If you try to select past the field definition, an error message appears, and both rows in the grid
data view are selected. Both error and warning messages appear in this are of the raw data view.

Table Definition Editor Error Message

Table Definition Editor Caution/Warning Message

Scale Displays the number of significant digits that are to the right of the decimal point for
floating point values.

Null Selected if the field uses true Null values.

Case Selected if the field is case insensitive.

Preview Displays the field contents formatted with the applied data type.

View Only

Attribute Description

28 Using DDF Builder

Indexes Page

The Indexes tab is read-only, with the exception of changing the SQL index name. You cannot
change the structure of any of the indexes on this tab. Index additions or changes to a SQL table
must be made with Zen Control Center. See Table Editor in Zen User’s Guide.

How to Access

Select the Indexes page by clicking the Indexes tab at the bottom of the Table Definition Editor.

Indexes Page in Table Definition Editor

Features

Name changes made on the Tables page to columns specified as indexes are updated and shown
immediately on the Indexes page.

Restrictions

Only the SQL index name may be edited from the Indexes page.

When working with Btrieve files that use alternate collating sequence (ACS) files, the ACS file
must reside in the same directory as the Btrieve file and must have an .alt extension (for example,
upper.alt).

Using DDF Builder 29

Preview Page

The Preview page shows file data in a readable layout of columns and rows.

How to Access

Select the Preview page by clicking the Preview tab at the bottom of the Table Definition Editor.

Preview Page in Table Definition Editor

Features

You navigate among data records with the buttons at the bottom center of the page. The file
position appears to the right of these buttons. The file position shows how many records are being
displayed out of the total number of records. For example, “100-199/1314” indicates that the page
displays records 100 through 199 out of a total of 1,314 records.

Changes made on the Tables page to any of the column definitions are reflected immediately on
the Preview page.

Information on this page is read-only and cannot be modified.

Statistics Page

The Statistics page displays the file and key specifications for a Btrieve file. The information is
read-only; you cannot change it in the view.

30 Using DDF Builder

How to Access

Select the Statistics page by clicking the Statistics tab at the bottom of the Table Definition
Editor.

Statistics Page in Table Definition Editor

Features

Statistics provides a convenient way to look at the structural characteristics of a Btrieve file. This
is particularly useful if you are considering exporting the file schema but are unfamiliar with the
file and key specifications.

See also Export Btrieve Schema.

Note: The statistics information is based solely on information in the physical Btrieve file; it
does not show any metadata information.

SQL View Page

The SQL View page displays the SQL statement needed to create the current table definition.

Using DDF Builder 31

How to Access

Select the SQL View page by clicking the SQL View tab at the bottom of the Table Definition
Editor.

SQL View Page in Table Definition Editor

Features

Most SQL statements created here can be copied and reused in the Zen Control Center for
creating new schemas based on the ones you created with DDF Builder. SQL statements that you
use in the Zen Control Center can also be saved for future use.

Restrictions

Although the SQL statements created here can be copied and reused, they are not saved, nor is a
means for automatically saving them currently offered in DDF Builder. To save the statement,
you must copy from this window and save the statement in a text editor.

Caution! Do not reuse any statement that contains a reference to any of the Zen dictionary
system objects. These objects are easily identified by their X$<tablename> and include a
proprietary comment prohibiting reuse.

Add Database

The Add Database Wizard creates a new database. This wizard is shared with Zen Control Center
(ZenCC). See Databases and New Database GUI Reference in Zen User’s Guide.

32 Using DDF Builder

Check Table Consistency

DDF Builder provides the ability to check the consistency of a table. A consistency check uses a
set of validation rules to compare a physical data file against the metadata in its data dictionary
files.

Consistency check validates conditions such as the following:

• Dictionary files have compatible version information.

• Tables have a valid name, ID, and an existing, accessible physical file.

• Columns have valid names, correct total record length, and no overlapping definitions.

• Indexes are correct in name, number, size, data type, offset, and attributes.

You can check the consistency of all tables at once or of tables selected individually. The check
reports a count of the validation messages, errors, and warnings by object. An object is the
database, a table, or a data dictionary file (DDF).

Validation messages grouped under the heading Passed list the consistency checks that were
validated. Errors are grouped under Error and warnings under Warning.

Error messages are always displayed. If an object has both errors and warnings, the warnings are
also listed under Error.

You can display or hide the validation messages and the warnings.

Icons on the results view identify the different types of messages:

An error indicates a problem in the table definition that will, in most cases, cause a failure or
incorrect data to be returned when the data file is accessed. For example, an index defined in the
DDFs but not in the data file results in an error. A SQL query that causes the engine to optimize
on that particular index generates a failure because no such index actually exists in the data file.

Warnings are indicative of possible problems, but the problem may not cause any failures. For
example, an index defined in a data file without a corresponding DDF entry results in a warning.
SQL access does not know about the index and will not try to use it. The result may be a slow
query, but the query eventually returns the correct results.

Using DDF Builder 33

How to Access

In Data Sources Explorer, right-click the name of a database and select Check Database, or right-
click a SQL table name under either the Data Paths or SQL Tables node, then select Check
Tables. You can select multiple tables by holding down the Shift or Control key then clicking the
desired table names.

DBCheck (consistency check results) View

Features

You can undock the DBCheck pane and move it to another place in the DDF Builder window. The
pane can be minimized and maximized.

The pane also provides icons for saving the consistency check results to a text file and for hiding
validation check messages and warnings by filtering them.

34 Using DDF Builder

Error Message Tips

A tip appears if you click on an error message. The tip provides comments about the message and
may include a suggested corrective action. The tips are also written to the text file if you save the
DBCheck results to a file.

Copy SQL Definition

The Copy SQL Definition Wizard creates a new SQL table by using the schema of an existing
SQL table as its source. The wizard also creates the Btrieve file associated with the new SQL
table.

How to Access

In Data Sources Explorer, right-click a SQL file name and select Copy SQL Definition.

Features

The wizard requires that you specify the following:

• Server on which the database engine is running.

• Database in which you want to include the new table.

• Name of the new table. By default, this name becomes the name of the associated Btrieve file.
You cannot use an existing table name for the copy.

Note: The new table does not include data, but you can export it from the source table and then
import it into the new table. See Importing Data with Import Data Wizard and Exporting Data
with Export Data Wizard.

Export Btrieve Schema

The Export Btrieve Schema Wizard creates an XML file that specifies the schema of a source
Btrieve file. You can use this XML file to create a new Btrieve file based on the structure of an
existing Btrieve file. See Import Btrieve Schema.

Using DDF Builder 35

Data in the source file is not exported. If you want to export data, see Exporting Data with Export
Data Wizard.

How to Access

In Data Sources Explorer, right-click a Btrieve file name under the Data Paths node, then click
Export Btrieve Schema.

Features

By default, the wizard uses the source file name for the exported XML file name. The wizard adds
the file extension .xml and writes the output file to the same directory as the source file. You can
change the default name and location of the output file.

The wizard also provides a preview of the XML content before you export it.

Import Btrieve Schema

The Import Btrieve Schema Wizard creates a Btrieve file based on the structure of another Btrieve
file. The structure must be a schema of the source file in XML format.

Data from the source file is not imported. If you want to import data, see Importing Data with
Import Data Wizard.

How to Access

In Data Sources Explorer, right-click a data path under the Data Paths node, then select Import
Btrieve Schema.

A Btrieve file must be located on physical storage, which is why the wizard is invoked from a data
path.

Features

Since the wizard is invoked from the context of a known data path, you do not specify a path for
the target file, only for a file name. The file name length must be less than or equal to 255 bytes.
The name cannot contain spaces unless the Embedded Spaces client configuration option is
enabled. The option is enabled by default. See Embedded Spaces under Application
Characteristics properties for clients in Advanced Operations Guide.

36 Using DDF Builder

Add Data Path

Data paths are added to the Data Sources Explorer by using Add Data Path. A data path
represents a location in physical storage where Btrieve files reside. Each database must have at
least one data path identified for it.

DDFs that you create for Btrieve files are located in the original data path for the database
because all SQL tables for an entire database are defined in the same set of DDFs.

How to Access

In Data Sources Explorer, right-click the Data Paths node, then click Add Data Path.

Features

The existing directory can be empty or contain files.

Use the Delete command to remove a data path from Data Sources Explorer (right-click Data
Paths or a database name, then click Delete). The directory is not deleted from physical storage.

Change Associated Data File

DDF Builder allows you to change the data file associated with a selected table definition (SQL
Table).

How to Access

In Data Sources Explorer, right-click the SQL Table which you want to change the associated data
file, then click Change Associated Data File. You may enter or browse to select the full path
name for the data file you want associated.

Features

When changing the data file associated with a particular SQL table, you may enter the filename or
use the browse button to select a file, based on the location.

Btrieve Types

DDF Builder provides a separate view for displaying the Btrieve data types and sizes, along with
the corresponding SQL data types to which they map.

Using DDF Builder 37

The Btrieve Types view can be used to analyze data. When you highlight bytes in the raw data
view, the Btrieve Types view displays the data as it would appear for data types compatible with
the size. When a particular column is selected in the Table Definition Editor, the Btrieve Types
view also displays a preview of the formatted data.

How to Access

The Btrieve Types tab is located in the left pane of the DDF Builder window, next to the Data
Sources Explorer tab. Click the Btrieve Types tab to display the view.

Features

The Btrieve Types pane is useful when you are trying to resolve incorrect data type and size
conflicts by comparing and previewing data. To support this task, you can undock the Btrieve
Types pane and move it to a more convenient place in the DDF Builder window.

A preview column is also provided, showing how the selected data would appear as that particular
data type. Previewing the data in each column can also be used to determine the size of a data
type.

38 Using DDF Builder

Definition Errors

Anytime that DDF Builder detects problems and alters your existing table definition, the
Definition Errors window automatically opens. If you close this window, you can later review the
changes by opening it.

How to Access

In the DDF Builder menu, select Window > View Definition Errors.

If no errors have occurred, the menu command is grayed out.

Features

The issues listed in the Definition Errors window give specific information regarding the
problems addressed by DDF Builder. The original table definition is also provided in a read-only
mode in the Original Definitions pane. You can open these panes side-by-side to make it easier to
compare them.

Definition Errors List

The following table lists the possible table definition errors that can be detected by DDF Builder
in your existing definitions. A general description of what caused the error and how DDF Builder
has modified the table definitions as a result are also provided.

The Message Displays... What it means...

DDFBLDR-1: No corresponding Btrieve key for
this SQL index. Index ignored.

The Btrieve file does not contain a key to
correspond with a SQL index in the existing table
definition.

The index in the SQL table is ignored.

Using DDF Builder 39

DDFBLDR-2: No corresponding SQL index found
for this Btrieve key. Index added.

The Btrieve file contains a key that is not defined
as a SQL index in the existing table definition.

An index is added to the table definition that
corresponds with the key in the Btrieve file.

DDFBLDR-3: SQL segment null flag does not
match corresponding Btrieve segment null flag.

The Btrieve file contains a segment with a null
flag that is not present in your SQL file segment.

OR

The SQL file contains a segment with a null flag
that is not present in your Btrieve file.

DDFBLDR-4: SQL column overlaps another
column. The column’s size has been truncated.

The existing table definition contains a SQL
column that overlaps another column in the table.

DDFBLDR-5: No corresponding SQL column
found for Btrieve segment. New column added.

The Btrieve file contains a segment that has no
corresponding SQL column in the existing table
definition.

DDFBLDR-6: Undefined bytes in table definition.
Unknown column added.

The existing table definition does not account for
the same number of bytes found in your Btrieve
file. The table definition contains some undefined
bytes.

An new unknown column is added to the table
definition to account for the undefined bytes in
your Btrieve file.

DDFBLDR-7: SQL column type does not match
Btrieve segment type. Column type changed.

The Btrieve file segment uses a different type than
what was found in your SQL table column.

The data type in your SQL table column is
changed to the same data type as the Btrieve file
segment.

DDFBLDR-8: SQL column null flag does not
match Btrieve segment null flag. Column null flag
changed.

The existing table definition contains a SQL
column with a different null flag setting than what
DDF Builder found in the corresponding Btrieve
segment.

DDFBLDR-9: SQL column case flag does not
match Btrieve segment case flag. Column case flag
changed.

The existing table definition contains a SQL
column with a different case flag setting than what
DDF Builder found in the corresponding Btrieve
segment.

The Message Displays... What it means...

40 Using DDF Builder

Original Definition

Anytime that DDF Builder detects problems and alters an existing table definition, its original
table definition is retained until the changes are saved. If you make changes to an existing table
definition, the original definition is also retained until your changes are saved. The original table
definition can be viewed by opening the Original Definition view.

DDFBLDR-10: SQL column defined across a
Btrieve segment boundary. Column ignored.

The existing table definition contains a SQL
column defined across the boundary of a segment
in your Btrieve file.

The SQL column defined across the segment
boundary is ignored in the existing table
definition.

DDFBLDR-11: SQL column type is not
compatible with the column size. Column type
changed to Unknown.

The existing table definition contains a SQL
column with a data type that is not compatible
with the column size.

The SQL column type is changed to unknown;
size is not changed.

DDFBLDR-12: Variable length column can only
be the last column in a table. Column type changed
to Unknown.

The existing table definition defines a variable
length record portion in a column that is not last in
the table.

The SQL column type is changed to unknown.

DDFBLDR-13: Invalid bit mask detected. Bit
mask value corrected.

The table definition contains incorrect bit masks
that do not equal the sizes needed to complete the
byte. The bit masks have been changed in the table
definition so their sizes are correct and total the
byte.

DDFBLDR-14: No compatible SQL type for
Btrieve WSTRING or WZSTRING. Column type
set to SQL CHAR. Column not usable.

The Btrieve file contains columns defined with the
WSTRING or WZSTRING type. These types do
not map to a SQL data type. These columns are
not usable and have been changed to CHAR type.

The Message Displays... What it means...

Using DDF Builder 41

How to Access

In the DDF Builder menu, select Window > View Original Definition.

If no changes have occurred, the menu command is grayed out.

Features

The original table definition is provided in a read-only mode in this tab. This window may be
moved so that comparisons to the updated table definition may be viewed.

You can always retain the original table definition by saving either the modified or the original
definition with a different name. To do this, click File > Save As and enter a different name.

42 Using DDF Builder

DDF Builder Tasks
This section explains the tasks that you can accomplish with DDF Builder. They are divided into
the following categories:

General Tasks

General tasks apply to the overall use of the tool.

To start DDF Builder

See Starting DDF Builder

Accessing User Documentation

To access DDF Builder online help

1. Start DDF Builder

2. Click the part of the user interface that interests you

3. Press F1.

4. If you click another area of the user interface, you may need to press F1 again to refresh the
help view.

You can also select Help > Zen Documentation Library. Because DDF Builder and Zen Control
Center (ZenCC) share common components, such as SQL Editor, online help opened within DDF
Builder may also display information about other Zen features.

DDF Builder Log File

To access DDF Builder Log file

1. Start DDF Builder and click Help > DDF Builder Log.

Category Description

General Tasks Orient you to the overall use of DDF Builder

Tasks Initiated from Data Sources
Explorer

Allow you to access editors, views, and wizards

Using DDF Builder 43

The log file opens in your system text editor.

To clear DDF Builder Log file

1. Start DDF Builder and click Help > Clear DDF Builder Log.

A dialog box opens for you to confirm the action.

2. Click Yes to confirm and the log file is deleted.

The next time you start DDF Builder, a new log file is automatically created.

To see added or deleted nodes in Data Sources Explorer

1. Right-click the node for which you want to see the addition or deletion.

2. Click Refresh.

The context of the Refresh command applies to the node from which you invoke it. If you
want to refresh all nodes in Data Sources Explorer, execute the command from the Engines
node (the top of the tree).

Tasks Initiated from Data Sources Explorer

Most tasks in DDF Builder are initiated by selecting a command relevant to a node in Data
Sources Explorer. The commands invoke an editor, a view, or a wizard. The following tables
direct you to tasks based on what action you want to take. The tables are categorized by areas of
interest:

• Btrieve Files

• Data

• Database

• Data Sources Explorer

• Online Help

• SQL Queries

• SQL Tables

Note: When using DDF Builder with security-enabled databases, you should always take the
database offline and turn off all security prior to working with the files in DDF Builder.

44 Using DDF Builder

Btrieve Files

If You Want To… Then… Notes

Create a new Btrieve file
with an editor.

Right-click a data path under the
Data Paths node.

Click Create Btrieve File .

DDF Builder does not automatically
create DDFs for the new file.

See Btrieve File Editor.

Export the Btrieve file
structure to an XML file.

Right-click a Btrieve file name
under the Data Paths node.

Click Export Btrieve Schema

.

The data in the Btrieve file is not
exported.

See Export Btrieve Schema.

Create a new file based
on the structure of
another Btrieve file, as
specified in a XML file.

Right-click a data path under the
Data Paths node.

Click Import Btrieve Schema

.

The data in the Btrieve file is not
imported.

See Import Btrieve Schema.

Specify a directory where
you want a Btrieve file
located.

Right-click the Data Paths folder

.

Click Add Data Path .

Any DDFs that you create for the
Btrieve file are located in the original
data path for the database. This is
because all SQL tables are defined in
the same set of DDFs.

See Add Data Path.

Remove a data path
directory from Data
Sources Explorer.

Right-click a data path under the
Data Paths node.

Click Delete .

Neither the directory nor any files in it
are deleted from physical storage.

View the Btrieve file
statistics with which the
SQL table is associated.

Right-click a SQL table name
under either the Data Paths or
SQL Tables node.

Click Edit Table Definition .

Click Statistics tab.

The table names appear under the
SQL Tables node, or under Data
Paths node.

See Statistics Page.

Change the Btrieve (data)
file associated with the
selected SQL table.

Right-click a SQL table name
under either the Data Paths or
SQL Tables node.

Click Change Associated Data

File .

Only one data file may be associated
with a particular table.

Using DDF Builder 45

Data

Database

If You Want To… Then… Notes

Check the consistency for
all tables at once

Right-click Databases node.

Click Check Database.

See Check Table Consistency.

Check the consistency for
one or more tables
individually

Right-click a SQL table name
under either the Data Paths or
SQL Tables node.

Click Check Tables.

The names appear under the SQL
Tables node, or under a Btrieve file
name (Data Paths node) if the
Btrieve file has DDFs.

You can select multiple tables by
holding down the Shift or Control
key then clicking the desired table
names.

See Check Table Consistency.

Specify in Data Sources
Explorer a directory
where you want data files
to reside or where they
already reside

Right-click the Data Paths folder

.

Click Add Data Path .

See Add Data Path.

Remove from Data
Sources Explorer a
directory where data files
reside

Right-click a data path listed
under the Data Paths node.

Click Delete .

Neither the directory nor any files in it
are deleted from physical storage.

If You Want To… Then… Notes

Create a new database Right-click Databases node.

Click Add Database.

See Add Database.

Remove a database from
Data Sources Explorer

Right-click Databases node.

Click Delete .

The database is not deleted from
physical storage.

46 Using DDF Builder

Data Sources Explorer

Online Help

SQL Queries

If You Want To… Then… Notes

Update the tree to show
additions to or deletions
from nodes

Right-click any node except for
the name of a SQL table.

Either click Refresh or press
F5.

The context of the Refresh command
applies to the node from which you
invoke it. If you want to refresh all
nodes in Data Sources Explorer,
execute the command from the
Engines node at the top of the tree.

If You Want To… Then… Notes

Access the user
documentation

Press F1 (or Shift F1 for Linux)
within an editor, view, or wizard
(or click Help > DDF Builder
Help Contents).

See the Note in Accessing User
Documentation.

If You Want To… Then… Notes

Execute a SELECT
statement for all records
in a SQL table (SELECT
* FROM)

or

Access an editor in which
you can type SQL
statements to execute
against a SQL table

Right-click a SQL table name
under either the Data Paths or
SQL Tables node.

Click SQL Editor .

By default, SQL Editor executes a
SELECT * FROM statement when it
opens.

SQL table names display as
subordinate nodes under SQL Tables
and under the Btrieve file name
(provided the Btrieve file has DDFs).

See Add Database.

Execute SQL statements
in SQL Editor or in
Outline View

See Execution Tasks in Zen
User’s Guide.

You can perform numerous tasks with
SQL Editor. See SQL Editor Tasks in
Zen User’s Guide for a complete list.

Using DDF Builder 47

SQL Tables

If You Want To… Then… Notes

Create a new table
definition with an editor

Right-click a Btrieve file name
under the Data Paths node.

Click Create Table Definition

.

You can create one or more SQL
tables for a Btrieve file. Each SQL
table appears as a subordinate node
under the Btrieve file name.

See Table Definition Editor.

Create a new table based
on the schema of another
SQL table

Right-click a SQL table name
under either the Btrieve file or
SQL Tables node.

Click Copy SQL Definition .

The table names appear under the
SQL Tables node, or under a Btrieve
file name (Data Paths node) if the
Btrieve file has DDFs.

See Copy SQL Definition.

Modify a table definition Right-click a SQL table name
under either the Data Paths or
SQL Tables node.

Click Edit Table Definition .

The names appear under the SQL
Tables node, or under a Btrieve file
name (Data Paths node) if the
Btrieve file has DDFs.

See Table Definition Editor.

Remove a table from
Data Sources Explorer

Right-click a SQL table name
under either the Data Paths or
SQL Tables node.

Click Delete .

The table is not deleted from physical
storage.

The table names appear under the
SQL Tables node, or under a Btrieve
file name (Data Paths node) if the
Btrieve file has DDFs.

Change the Btrieve (data)
file associated with the
SQL table.

Right-click a SQL table name
under either the Data Paths or
SQL Tables node.

Click Change Associated Data

File .

Only one data file may be associated
with a particular table.

View the Btrieve file
statistics with which the
SQL table is associated

Right-click a SQL table name
under either the Data Paths or
SQL Tables node.

Click Edit Table Definition .

Click Statistics tab.

The table names appear under the
SQL Tables node, or under Data
Paths node.

See Statistics Page.

48 Using DDF Builder

DDF Builder Tutorials 49

DDF Builder Tutorials

The following tutorials provide learning materials for using DDF Builder:

• Using the DDF Builder Tutorials

• Tutorial 1 – Creating Table Definitions with DDF Builder

• Tutorial 2 – Modifying Table Definitions with DDF Builder

• Lesson 1 – Working with v3.00 DDFs

• Lesson 2 – Working with Pre v6.x File Formats

• Lesson 3 – Invalid Data Types and Sizes

• Lesson 4 – Overlapping Column Definitions

• Lesson 5 – File/Field Flag Inconsistencies

• Lesson 6 – Index Inconsistencies

• Lesson 7 – Variable Length Record Mismatch

• Lesson 8 – Record Length Mismatch

50 DDF Builder Tutorials

Using the DDF Builder Tutorials
This chapter provides you with two tutorials for using DDF Builder. Each tutorial provides you
with basic information as to the structure of the data, a sample scenario in which the file is used,
the goal of the tutorial, and the general steps needed to achieve the goals for each exercise.

Note: Whether you are creating or modifying table definitions with DDF Builder, you must have
some knowledge about the structure of your data. It is helpful if you know the column definitions,
as well as the offsets and sizes of the fields in the Btrieve file. DDF Builder attempts to guide you
with the construction of column definitions, but there are limitations as to how much guidance it
can provide.

Tutorial 1 Overview

The first tutorial addresses the situation where you have a Btrieve file without the necessary table
definitions needed to provide relational access. Since there are no DDFs for the Btrieve file, you
first need to create DDFs. This tutorial steps you through creating a new database with empty
DDFs and adding a table definition to them for the Btrieve file.

Working through this tutorial also provides you with some fundamental knowledge for working
with the DDF Builder interface. If this is your first time to work with DDF Builder you may want
to first become familiar with the interface and where components are located by reviewing
Chapter , Using DDF Builder.

Tutorial 2 Overview

The second tutorial addresses a bit more complex situation where you modify existing table
definitions because they contain outdated or incorrect table definition information. This tutorial
steps you through reviewing the existing table definitions and making necessary changes to the
DDFs associated with a set of Btrieve files.

The second tutorial is made up of several files and lessons, each focusing on a different issue that
you may encounter when trying to modify DDFs using DDF Builder. Some of the issues are
automatically addressed by DDF Builder; some require you to make the modifications manually.

Before You Begin

There are only a few things you need to do to start using these tutorials. This section reviews what
you need to do to begin using the tutorials in this chapter.

DDF Builder Tutorials 51

Back Up Your Files

Creating or modifying table definitions with DDF Builder alters the structure of your database. As
a precaution, you should always back up any files with which you intend to work. This includes
both data files and any existing dictionary files.

Although opening your Btrieve files with DDF Builder only makes modifications to your DDFs
and not your existing Btrieve files, it is still a good idea to backup all of your files or work from a
copy of them. Existing table definitions could potentially be corrupted by a partial edit of the
DDFs, leaving your definitions broken and unusable.

Note: If you intend to make modifications to existing Btrieve files and your DDFs that provide
relational access, DDF Builder is not the utility to use. Zen Control Center allows you to change
your DDFs and Btrieve files.

DDF Builder uses IN DICTIONARY calls to write table definitions to the DDFs. The Btrieve file
is never written to when using DDF Builder.

Once you have backed up your data files or created a copy from which to work, you are ready to
proceed with locating the files used by the tutorials.

Locate the Tutorial Files

The DDF Builder installation created the folders and files on your system for using the tutorials
included in this chapter. The tutorial files are installed in the following locations from the default
Application Data directory.

Note: For more information on the default Zen installation directories, see Where are the files
installed? of Getting Started with Zen.

Create Data Source Names (DSN)

In order to access the tutorial databases within DDF Builder, you will need to make certain that
each database has an associated Data Source Name (DSN) created.

<Application Data>\DDFBuilder DDF Builder Application Files

<Application Data>\DDFBuilder\tutorials\tutorial1 Tutorial 1 Files

<Application Data>\DDFBuilder\tutorials\tutorial2\v3 Tutorial 2 Files (Lessons 1 and 2)

<Application Data>\DDFBuilder\tutorials\tutorial2 Tutorial 2 Files (Lessons 3 through 8)

52 DDF Builder Tutorials

Tutorial 1 walks you through creating a DSN at the time you create the database. This is because
in Tutorial 1, you only have a Btrieve file with which to begin, so the database, DDFs and DSN all
have to be created from scratch.

Tutorial 2 requires that you create two DSNs in order to see the files and folders within the DDF
Builder interface. One DSN points to the Tutorial 2 database and the other points to the V3
database located in the Tutorial2 folder.

The following table lists the options for creating the Tutorial 2 and V3 database DSNs in ODBC
Data Source Administrator.

Tip... If you need help creating a DSN using the ODBC Data Source Administrator, see the Zen
User’s Guide for assistance.

Now that you have backed up your files, located the tutorial files, and created your DSNs, you are
ready to start Tutorial 1.

Data Source Name Description Database Name

Tutorial2 ODBC Access Tutorial2

V3 ODBC Access V3

DDF Builder Tutorials 53

Tutorial 1 – Creating Table Definitions with DDF
Builder

Scenario

In this tutorial you have a Btrieve data file for which you need to provide ODBC access to create
reports.

To do this, a table definition needs to be created for the file. Table definitions are stored in DDF
files of the database. To your knowledge, there are no table definitions for this file, so you are
starting from scratch.

Goals

The goal of this tutorial is to walk you through the steps necessary to provide relational access to
a Btrieve file without any table definitions. To achieve the goal for this tutorial, you perform the
following tasks using DDF Builder:

1. Create a Zen database

2. Open an Existing Btrieve file

3. Review DDF Builder’s Findings

4. Define the Record Fields

5. Save Your Table Definitions

6. Review the Index Information

7. Preview the Defined Data

Tip... As you step through creating table definitions, you learn fundamental tasks for working
with DDF Builder. This tutorial is designed to call out those tasks within these instructions so that
you can become familiar with the common tasks for using DDF Builder.

What You Need to Know

Any time you work with DDF Builder to create or modify table definitions, you need some
knowledge as to the structure of the data. Some of this information is stored in the Btrieve file
itself, such as record length and index information. The column information, however, is not
stored in the Btrieve file. The column information may have been provided by the software

54 DDF Builder Tutorials

vendor or the application developer. You can still attempt to create or modify table definitions by
careful inspection of the data, but you should not use this utility without significant knowledge
about the structure of your data.

For this tutorial, you know the data structure. Take a look at the structure for this file.

The Btrieve data file named CREATE_NEW.MKD has a record length of 110 bytes and contains
six fields. Its data structure is defined as follows:

The file contains a nonduplicatable key (unique index) set on the ID field; the index is named
indx_id.

Now that you understand the data structure, you can get started. Begin by creating an empty
database using DDF Builder, which provides a set of empty DDFs to define for the Btrieve file.

Create a Zen Database

Before you can create DDFs for an existing Btrieve file, you must first create a database. Begin by
starting DDF Builder if it is not already running. See Starting DDF Builder.

To create a database

1. In the Data Sources Explorer, expand the tree for the machine where you are creating the
database. This should be the same machine where DDF Builder is installed.

2. Right-click the Databases icon and click Add Database.

Field Size Data Type Precision Scale Null Case Index

ID 4 Int N Y

First Name 20 String Y Y

Last Name 20 String N Y

DOB 4 Date Y

Address 50 String Y Y

Income 8 Currency 8 2 Y

DDF Builder Tutorials 55

The New Database Wizard opens for you to create a new database.

3. Complete the New Database Wizard using the following parameters:

• Database Name: Tutorial1

• Location:

<Application Data>\DDFBuilder\tutorials\tutorial1\

• Bound: not checked

• Create dictionary files: checked

• Relational integrity enforced: checked

• Long Metadata (V2 Metadata): checked

• Database code page: Server Default

• Create 32-bit Engine DSN: checked

The New Database dialog should look similar to the following:

Tip... Creating the database in these steps also creates a Data Source Name (DSN). When you
have finished working with the tutorials, you may want to delete the DSN and database created
here.

56 DDF Builder Tutorials

4. Click Finish to create the database and the empty DDF files in the location you specified.

Once the database is created, it appears as a new node on the databases tree in the Data Sources
Explorer.

The database node includes the Data Paths, SQL Tables, and System Objects folders. The Data
Paths folder contains the locations of your Btrieve files. The SQL Tables folder contains any
relational tables for the database, and the System Objects folder is the holder for your system
dictionary tables, and in this case, empty data dictionary files.

Creating a Zen database using these parameters was the first step in creating table definitions for
the Btrieve file. The database you just created contains dictionary files (DDFs), but these files
currently contain only definitions for the structure of the DDFs themselves. Once you open the
Btrieve file in DDF Builder, you can add a table definition to the DDFs created for this database
so that the data in the Btrieve file can be accessed.

Notice that the database contains no SQL Tables – only the CREATE_NEW.MKD Btrieve file
used for this tutorial. That is because there are no user tables defined. The empty DDFs are
located in the System Objects folder, separate from the data files. As you create table definitions,
you also will create corresponding SQL tables that will access the table definitions. Continue with
opening the Btrieve file in DDF Builder.

Open an Existing Btrieve File

Now that you have created DDF files in the same location as the Btrieve file, open the file in DDF
Builder and see how the utility deciphers the data structure.

To open the Btrieve file

1. In DDF Builder, select the local machine and the database you just created.

DDF Builder Tutorials 57

The Data Sources Explorer lists the Data Path and shows the directory location where the .mkd
file was installed. This is the same location where you created the database. Your Tutorial1
database directory structure in the Data Sources Explorer should look similar to the following:

2. Right-click the CREATE_NEW.MKD folder containing the file, and select Create Table
Definition.

When you select to create the table definition, DDF Builder displays the New Table Definition
dialog for you to associate a new table name with this set of table definitions. Think of this table
as your corresponding relational table to your transactional file. When you have finished creating
your table definitions, this SQL table should mirror the same structure as your original Btrieve
file.

58 DDF Builder Tutorials

3. Enter CREATE_NEW as your Table name and click OK.

Once you provide a name for the table and click OK, DDF Builder begins to analyze the Btrieve
file so that it can be opened. DDF Builder determines any known keys or indexes in the file and
displays them as such inside the Table Definition Editor. Your display of the Table Definition
Editor should look similar to the following:

Now that you have successfully opened the file, look at what DDF Builder found in more detail.

Review DDF Builder’s Findings

DDF Builder analyzes the data based on the file’s general statistics and the known keys or indexes
in the file. In the file, DDF Builder detected a key in the first four bytes of the record and
determined that the key is made up of an integer Btrieve data type. The key is illustrated in the
Table Definition Editor with the key icon in the first column of the display.

The remaining parts of the record cannot be deciphered by DDF Builder, so they are grouped
together and illustrated in the Table Definition Editor with the question mark icon and assigned a
Btrieve type of Unknown.

DDF Builder Tutorials 59

Creating the table definitions for the Btrieve file involves splitting the unknown fields found by
DDF Builder into the various fields you need – defining the particulars of each field as you go
along.

Before you begin defining the record fields, you should make sure you understand how nulls are
treated in the Table Definition Editor.

Note: This tutorial uses true nulls, but it is important to note that much older versions of Zen did
not provide support for true nulls – only legacy nulls. True nulls were first introduced in
Pervasive.SQL 2000. If you are working with files created prior to Pervasive.SQL 2000, you may
want to skip the following section on nulls.

A Note About Nulls

When you define record fields in this tutorial, it is important to first make note if the field is
nullable, since marking a section of the record as nullable adds an extra byte to the field. This is
because in a Btrieve file, nullable portions of the record are designated by the use of the null
indicator byte. In the raw data view of the Table Definition Editor, the null indicator byte is
indicated in the byte immediately preceding the field or column. When the Null check box is
selected, the null indicator byte becomes active and the size of the field is automatically reduced
by one byte to accommodate for the null indicator byte.

Say you wanted to create a nullable field 50 bytes in size. You would select the field size as 51
bytes to accommodate for the null indicator byte. Once you select that the field is nullable, the
size is automatically reduced to 50.

This information is helpful as you define the record fields.

Note: For more information on working with nulls in DDF Builder, see Legacy Nulls in DDF
Builder and True Nulls in DDF Builder.

Define the Record Fields

As you saw when you opened the Btrieve file, DDF Builder determined the index of four bytes
and left an unknown field of 106 bytes. You define the unknown field into record fields.

To define the record fields

Although DDF Builder determined most of the attributes for the first field, a field name could not
be determined, so go ahead and name the first field.

60 DDF Builder Tutorials

Name a Field

1. In the grid data view, select the unnamed_0 row, and enter the values needed to reflect the
following information:

• Field: ID

• Null: not checked

• Offset: 0

• Size: 4

• Btrieve Type: Integer

• SQL Type: INTEGER

• Precision: 0

• Scale: 0

• Case: not checked

DDF Builder determined a lot of the attributes for this row, so entering the field is the only
change you will need to make. Be certain to verify all the values of the row.

Your screen should now reflect two rows in the grid data view – the key row you just named
ID and the unknown _1 row found by DDF Builder.

Now you are ready to parse out and define the unknown data.

The next field to define is nullable. The following steps outline how to select data from the raw
data view and create a nullable column from that data.

Create a Nullable Column in the raw data view

1. In the raw data view, beginning at offset 4, select 21 bytes of data.

Tip... To find offset 4, locate the question mark just above the first record in the raw data view, or
position the cursor until the Offset indicator shows 4.

2. Right-click and select Create Nullable Column.

DDF Builder Tutorials 61

Tip... Creating a column, whether in the raw data view or the grid data view, automatically
creates a new column out of the remaining bytes in the record.

You may notice that although you selected 21 bytes, the grid data view shows the size as 20.
This is because of the null indicator byte mentioned earlier. The null indicator byte is shown in
the raw data view as the § symbol and accounts for the extra byte.

Now the editor shows three fields – the four byte integer (ID), the nullable column you just
created (unnamed_1), and the new unknown field comprised of the remaining bytes
(unnamed_2).

Before you go on, be sure and complete the definition for the nullable column you just
created.

3. Select the unnamed_1 row in the grid data view.

4. Enter the values needed to reflect the following information:

• Field: FirstName

62 DDF Builder Tutorials

• Null: checked

• Offset: 5

• Size: 20

• Btrieve Type: String

• SQL Type: Char(20)

• Precision: 0

• Scale: 0

• Case: checked

Tip... The number of bytes selected in the raw data view, along with creating the column as
nullable, predetermined the size and null selections. The size also limits which data types you can
select for the column.

Notice that the unknown field indicator is no longer displayed in the grid data view, once the
Btrieve Type is set and the field is defined.

Continue defining the unknown fields in the file by splitting the unknown row into multiple
columns within the grid data view.

Split a Column in the grid data view

1. Select the unnamed_2 row in the grid data view.

2. Right-click and select Split Column.

When you split the column, the result is two columns of equal, or near equal, size. This means that
the 85 byte column is now two columns, one with 42 and the other with 43 bytes.

DDF Builder Tutorials 63

3. Select the unnamed_2 row.

4. Enter the values needed to reflect the following information:

• Field: LastName

• Null: not checked

• Offset: 25

• Size: 20

• Btrieve Type: String

• SQL Type: Char(20)

• Precision: 0

• Scale: 0

• Case: checked

64 DDF Builder Tutorials

When you change the size from 42 to 20, DDF Builder adds the extra 22 bytes to the unnamed_3
row.

You may have already noticed that the SQL Preview column displays the data as it is defined.
This provides you a preview of how the data is interpreted by DDF Builder based on your table
definitions.

5. Right-click and select Split Column to split the unnamed_3 row.

Splitting the column changed unnamed_3 to 32 bytes and created unnamed_4 with 33 bytes.

Now define the unnamed _3; this field is nullable.

6. Select the Null checkbox so that the null indicator byte is reserved at the first of the record.

Notice how selecting the Null checkbox automatically decremented the size to 31.

DDF Builder Tutorials 65

7. Select the unnamed_3 row.

8. Enter the values needed to reflect the following information:

• Field: DOB

• Null: checked

• Offset: 46

• Size: 4

• Btrieve Type: Date

• SQL Type: Date

• Precision: 0

• Scale: 0

• Case: not checked

Your table definition should now look similar to the following:

When you changed the size to 4, DDF Builder combined the remaining bytes with the next field.

Now, there is one unknown field left with a size of 60 bytes. The data structure indicates that two
more fields need defining. Use the raw data view to create the column.

Create a Column from the raw data view

1. Starting at offset 50, select 51 bytes in the raw data view.

Tip... To find offset 50, locate the question mark just above the first record in the raw data view,
or position the cursor until the Offset indicator shows 50.

66 DDF Builder Tutorials

2. Right-click and select Create Column.

You created a not null column, but really you need a null column instead. Change the non-
nullable column to nullable now using the grid data view.

Change a Non-Nullable Column to Nullable in the grid data view

1. Select the unnamed_4 row, and select the Null checkbox.

Checking the Null checkbox reserves the null byte indicator and reduces the size to 50 bytes.

2. Enter the rest of the values needed to reflect the following field information:

• Field: Address

• Null: checked

• Offset: 51

DDF Builder Tutorials 67

• Size: 50

• Btrieve Type: String

• SQL Type: Char(20)

• Case: checked

Your table definitions should now look similar to the following:

Lastly, define the last field in the file.

3. Select unnamed_5 row in the grid data view, then make the following changes in this order:

• Null: checked

• Field: Income

• Btrieve Type: Currency

By selecting the Null checkbox first, you automatically set the size correctly. If you had first
changed the size to 8, DDF Builder would have created a new unknown column from the last
remaining byte.

You have now finished defining the fields for your file. Your table definition should look like the
following:

Before you proceed, be sure and save your table definition.

4. Select File > Save, or click the Save icon on the toolbar.

68 DDF Builder Tutorials

You have now successfully created your table definition in your DDFs. When you saved your
work, SQL tables were created under the SQL Tables node of the Data Sources Explorer.

Now that you have created the table definitions, take a look at the index.

Review the Index Information

Now take a look at the indexes DDF Builder found in the file.

1. Click the Indexes tab in the Table Definition Editor.

DDF Builder can detect any index created in the file, but because Btrieve does not use index
names, the index has no associated name in DDF Builder.

Although the Indexes page is primarily read-only, you can enter or alter the index name.

DDF Builder Tutorials 69

Name an Index

1. Select the index_0 entry in the Indexes column by double-clicking the field.

2. Enter indx_id as the name of the index from the data structure.

3. Before you proceed, be sure and save your index changes. Click File > Save to do so.

That is the extent of what DDF Builder allows you to do to Indexes.

You should always preview the data once you have completed your table definitions.

Preview the Defined Data

Next, take a moment to double-check the data in the file for which you have just created table
definitions.

1. With DDF Builder still open, click the Preview tab in the Table Definition Editor.

Your Preview page should look like the following:

70 DDF Builder Tutorials

The Preview page offers you a look at how the data in the file is formatted using the table
definitions you just created. As you can see, all of the data appears reasonable for the column
names and the type of data that should display.

The buttons at the bottom of this page allow you to move through the data in the file so that
you can verify all of the records, or perhaps find data in an unexpected format that you may
need to deal with to complete your table definitions.

If you find that some of your data does not display as you had expected, see next section,
Tutorial 2 – Modifying Table Definitions with DDF Builder.

If you make any changes to your already saved table definitions, be sure and save your work
before closing DDF Builder.

Conclusion

Congratulations! You have completed Tutorial 1 and now have a set of DDFs that allow you to
access the data in your Btrieve file using relational access.

The next tutorial deals with making modifications to a set of already created DDFs for a Btrieve
file. The next tutorial also discusses some of the problems with DDFs that DDF Builder
automatically detects.

Tip... Remember, this tutorial created a new database and a DSN. If you need to remove these
from your system, you may want to do that now.

DDF Builder Tutorials 71

Tutorial 2 – Modifying Table Definitions with DDF
Builder
Scenarios involving out-of-date or incorrect DDFs are numerous. For this reason, this tutorial is
made up of several lessons to represent a range of situations with a Btrieve file or existing table
definition. Each lesson is designed to address one problem so that you may begin to extrapolatae
the particulars of other situations.

This tutorial is organized in a way that allows you work through the exercises in each lesson,
breaking them apart into manageable chunks of related information. You can also refer to this
tutorial later as a kind of troubleshooting review to find a list of possible situations that you may
encounter. From that list, you can proceed to the exact lesson that covers that situation and review
possible solutions.

Scenario

You have a collection of Btrieve data files that have DDFs available, but the table definitions in
the DDFs are outdated and need modifying. It may be a case of your receiving out-of-date files
from the vendor, or the application was modified without making the proper updates to the DDFs.

Goals

The goal of this tutorial is to open all of the Btrieve files and existing table definitions. You need
to review DDF Builder’s findings, make any necessary changes and save the table definitions
using DDF Builder. The table definitions should mirror the database schema and provide an
accurate representation of the data in the Btrieve files.

The following lists lessons in this tutorial and the conditions they represent.

• Lesson 1 – Working with v3.00 DDFs

• Lesson 2 – Working with Pre v6.x File Formats

• Lesson 3 – Invalid Data Types and Sizes

• Lesson 4 – Overlapping Column Definitions

• Lesson 5 – File/Field Flag Inconsistencies

• Lesson 6 – Index Inconsistencies

• Lesson 7 – Variable Length Record Mismatch

• Lesson 8 – Record Length Mismatch

72 DDF Builder Tutorials

Lesson 1 – Working with v3.00 DDFs

Scenario

In this lesson, you have a database with an existing set of table definitions. The table definitions
were created with a much older version of Zen and are no longer compatible with the version of
Pervasive.SQL 2000 supported in this release of DDF Builder.

Caution! DDF Builder supports version 4.xx DDFs but does not support DDFs created prior to
Scalable SQL version 4.xx.

Goals

The goal is to try and open the DDFs with DDF Builder. This tutorial explains how DDF Builder
handles these files and provides you with a solution so that you can convert your files to a version
compatible with DDF Builder.

What You Need to Know

The files to use for this lesson reside in a folder named V3. Assuming you installed using the
default installation locations, this folder is located at:

<Application Data>\DDFBuilder\tutorials\tutorial2\v3

You must create a DSN for this database before continuing.

Note: Refer to Create Data Source Names (DSN) if you need information about creating the
DSN.

Open the Btrieve File

Begin by starting DDF Builder, if it is not already running.

1. In the DDF Builder Data Sources Explorer, expand the Databases node to see all of the
available databases.

2. Locate the V3 database in the list.

DDF Builder Tutorials 73

3. Double-click the V3 database icon.

The following message opens:

4. Click OK to close the message window.

You are unable to open these files because they were originally created with a version of the
product that is no longer supported.

Understanding the Warning Message

DDF Builder is unable to open Scalable SQL v3.00 data dictionary files because the format used
at that time (Scalable SQL 3.01) is no longer supported.

Tip... DDF Builder is supported on PSQL v9 and later versions. DDFs created with Scalable
SQL v4.00 and later are supported along with Btrieve data files v6.x and later.

How To Convert My Files

If you have older DDFs you need to convert them to the new format. Use the following steps.

1. Backup your existing, old database by copying the data files and DDFs to a different storage
location.

74 DDF Builder Tutorials

2. Export the table schema for all tables in your old database using Zen Control Center (ZenCC).
See To export a database schema in Zen User’s Guide. Ensure that you select the export
option “add IN DICTIONARY clause to CREATE statements.”

3. Ensure that the CREATE INDEX statements in the export file put the index segments in the
correct order for each table.

The indexes for the tables must be in the same order as in the original data files. The exported
table schemas put the indexes in alphabetical order, so you may need to rearrange the
statements.

To determine the sequential order of the indexes, you can use the butil -stat command against
the original data file. See Viewing Data File Statistics in Advanced Operations Guide.
Another method is to use the dbo.fSQLStatistics catalog function. See dbo.fSQLStatistics in
SQL Engine Reference.

4. Typically, because you are converting old files, you need to add the following line to the
export schema file as the first line in the file:

SET TRUENULLCREATE = OFF;

Add the following line as the last line of the file:

SET TRUENULLCREATE = ON;

5. Create a new database with ZenCC. See To create a new database in Zen User’s Guide.

6. In ZenCC SQL Editor, execute the CREATE TABLE SQL statements in the export schema
file against the new database to create all of the tables. See To open a SQL script in Zen
User’s Guide.

7. Copy the old Zen data files – not the DDFs – from the old database to the storage location for
the new database data files.

You should be able to access your existing data via SQL (for example, with ZenCC).

8. Use DDF Builder to build table definitions for any Btrieve files that did not have a definition
and to correct problem definitions. See also Conversion Notes.

9. If required, rebuild your data files (it is likely they are a pre 6.x file format). For information
on rebuilding your Btrieve data files, proceed to the next section, Lesson 2 – Working with Pre
v6.x File Formats.

Conversion Notes

The steps above are the most direct for simple data files. Try the steps first to determine the results
of the conversion.

DDF Builder Tutorials 75

You may encounter two situations that require additional effort:

• Alternating Collating Sequences

• Table Definitions That Require Using ZenCC and DDF Builder

Alternating Collating Sequences

If a table column uses an alternating collating sequence (ACS), you must manually modify the
CREATE TABLE statement. ZenCC does not include an ACS when you export a table schema.

To determine if a column uses an ACS, check table consistency with DDF Builder (see Check
Table Consistency). If a message informs you of an attribute mismatch with physical key file
segment, then the column uses an ACS.

The following example is a modified CREATE TABLE statement in which collating was added
manually:

SET TRUENULLCREATE = OFF;
CREATE TABLE "PATAPP" IN DICTIONARY USING 'PATAPP.DTA' (

"ID" CHAR(6) NOT NULL COLLATE 'UPPER.alt',
"Appointment Date" DATE NOT NULL,
"Appointment Time" TIME NOT NULL,
"AMPM" CHAR(4) NOT NULL COLLATE 'UPPER.alt',
"Doctor" CHAR(12) NOT NULL,
"Code" CHAR(3) NOT NULL COLLATE 'UPPER.alt',
"Amount Paid" MONEY(14,2) NOT NULL,
"Date Paid" DATE NOT NULL);

CREATE INDEX "index_0" IN DICTIONARY ON "PATAPP" (
"Appointment Date" ,
"AMPM" ,
"Appointment Time");

CREATE INDEX "index_1" IN DICTIONARY ON "PATAPP" (
"ID");

CREATE INDEX "index_2" IN DICTIONARY ON "PATAPP" (
"Code");

SET TRUENULLCREATE = ON;

Also, if the indexes are not in the correct sequence for the table, you must rearrange the CREATE
INDEX statements to put the index segments in the correct sequence.

Table Definitions That Require Using ZenCC and DDF Builder

Some table definitions may be so difficult to resolve that you have to use both ZenCC and DDF
Builder. If columns are marked as “unknown” in DDF Builder, you may need to view the table in
ZenCC Table Editor, then define the columns similarly in DDF Builder. Using both utilities and a
back-and-forth method, you should be able to complete the table definitions.

76 DDF Builder Tutorials

Conclusion

This lesson introduced you to how DDF Builder handles Scalable SQL v3.01 DDFs and provided
you with a solution for converting your files so that they may work with current versions of the
software.

You also learned that databases created with Scalable SQL v3.01 DDFs are likely to contain
Btrieve data files with a pre v6.x file format and must be rebuilt before using DDF Builder.

DDF Builder Tutorials 77

Lesson 2 – Working with Pre v6.x File Formats

Scenario

In this lesson, you have Btrieve files with an existing set of table definitions. Btrieve files in a pre
v6.x format are no longer compatible with the version of Zen supported in this release of DDF
Builder.

Caution! DDF Builder supports 6.x files but does not support files created before that version.

Goals

The goal is to try and open the files with DDF Builder. This tutorial explains how DDF Builder
handles pre v6.x file formats and v6.x and later file formats. This tutorial also provides a solution
to make the files compatible with DDF Builder.

What You Need to Know

The files to use for this lesson and the remaining lessons in this tutorial reside in a folder named
Tutorial2. Assuming you installed using the default installation locations, this folder is located at:

<Application Data>\DDFBuilder\tutorials\tutorial2

You must create a DSN for this database before continuing.

The files specific to this lesson are KO.BTR and KO.MKD.

Note: See Create Data Source Names (DSN) for information about creating the DSN.

Open the Btrieve File

Begin by starting DDF Builder, if it is not already running.

1. In the DDF Builder Data Sources Explorer, expand the Databases node to see all of the
available databases.

2. Locate the Tutorial2 database in the list.

78 DDF Builder Tutorials

3. Double-click the Tutorial2 database icon.

The following message appears:

4. Click OK to close the message window.

You are unable to open all of the files because some files in the folder are pre v6.x.

Understanding the Warning Message

DDF Builder is unable to open files that are version 5.x and earlier because that format is no
longer fully supported. To use the pre v6.x files, you must rebuild the files to a 6.x version or
greater file format.

Tip... DDF Builder is supported on PSQL v9 and later.

Before you rebuild the version 5.x and earlier files, check the log file to determine exactly which
files you need to rebuild.

View the Log File

The files you need to rebuild are listed in the DDF Builder log file.

DDF Builder Tutorials 79

To access the log file

1. With DDF Builder running, click Help.

2. Click DDF Builder Log File.

The Log file opens in the default text editor on your system. The following is a sample from the
log file for this lesson.

Notice that the log file lists each pre v6.x file, including the full data path for the file. Using this
data path, you can locate the files that need rebuilding.

How To Rebuild My Files

Use the Zen Rebuild Utility to rebuild your files to version 6.x or later. The Rebuild Utility is
installed as one of the core utilities of Zen and is available from the Tools menu of the Zen
Control Center.

Where To Go From Here

The Rebuild Utility is available from the Zen Control Center. For information on using this utility,
see “Converting Data Files,” in the Advanced Operations Guide.

Conclusion

This lesson introduced you to how DDF Builder handles pre 6.x version file formats and provided
you with a solution for rebuilding your files to work with them in DDF Builder.

80 DDF Builder Tutorials

Lesson 3 – Invalid Data Types and Sizes

Scenario

In this lesson, you have a Btrieve file with incorrect data types and sizes. As a result of this, the
data does not format in a way that is understandable.

Goals

The goal is to open the file’s existing table definitions with DDF Builder. You will inspect all the
data types and sizes using the Btrieve Types view and make the modifications needed so that the
data is formatted using the correct data type for the field size.

What You Need to Know

For this lesson, use the file named Type_Size.MKD. This file resides in a directory named
Tutorial2. Assuming you installed using the default installation locations, this folder is located
here:

<Application Data>\DDFBuilder\tutorials\tutorial2

This directory is part of the Tutorial2 database.

Note: You must have a Data Source Name (DSN) that points to this database in order to access
the data in this tutorial. If you have not yet created this DSN, refer to Create Data Source Names
(DSN).

Open the Btrieve File

You should have DDF Builder already running from the last lesson. If not, begin by starting DDF
Builder.

1. In the DDF Builder expand the Data Sources Explorer nodes, and locate the Tutorial2
database in the list.

DDF Builder Tutorials 81

2. Double-click the Tutorial2 database icon to expand the nodes.

3. Expand the nodes until the Type_Size.MKD file and the associated SQL table display.

4. Double-click the type_size SQL table, or right-click and select Edit Table Definition.

The Table Definition Editor opens and displays the following message:

This message tells you that DDF Builder has analyzed your existing table definitions and
found problems with those definitions. As a result of this, DDF Builder had to make some
modifications to open and display the existing table definitions.

5. Click OK to clear the message and display the table definition.

82 DDF Builder Tutorials

Tip... For a complete list of possible definition errors, refer to Definition Errors List.

Look for Inconsistencies

Begin by looking at the DDF Builder interface to review the inconsistencies with which you are
dealing. Specifically, look at the grid data view and the Definition Errors window.

The grid data view of the Table Definition Editor shows your existing table definition with the
modifications that DDF Builder made.

Note: DDF Builder changes are not automatically saved. Any modifications made by DDF
Builder must be saved.

In this example, DDF Builder gives visual indications as to the columns that need attention by
adding the unknown column indicator to the fields that are new or that DDF Builder changed to
an unknown type.

Tip... For more information on the attributes in the grid data view, refer to The following table
lists the attributes displayed in the grid data view..

A list of the issues DDF Builder detected and changed display in the Definition Errors view.

The original table definition, before DDF Builder made any changes, is available from the
Original Definition view.

DDF Builder Tutorials 83

Understanding the Errors

The Definition Errors view gives the following information:

• Where the problems are located

• What problems DDF Builder found

• What changes, if any, DDF Builder made to the original table definition

The Definition Errors lists three problems:

The first error shows that the file contains a group of bytes that were undefined in the original
table definition. DDF Builder created a new column from these undefined bytes and named the
column unnamed_6.

The file also contains two fields (Age and dob) where the column data type was invalid for the
column size. In both cases, the type for these fields has been changed to Unknown. Before you
look at the Age column in depth, first review what DDF Builder can and cannot determine.

Where the
problem is
located...

The problem DDF Builder found... What needs to be done now...

Column:
unnamed_6

DDFBLDR-6: Undefined bytes in table
definition. Unknown column added.

You must define the Unknown
column that DDF Builder added
to account for the undefined
bytes.

Column: Age DDFBLDR-11: SQL column type is not
compatible with the column size. Column
type changed to Unknown.

You must define the column type
that DDF Builder changed to
Unknown.

Column: dob DDFBLDR-11: SQL column type is not
compatible with the column size. Column
type changed to Unknown.

You must define the column type
that DDF Builder changed to
Unknown.

84 DDF Builder Tutorials

Invalid Type and Size

DDF Builder cannot confirm the size of a field based on the specified data type, but can only
verify that the types available are valid for the defined size. DDF Builder can detect the problems
found, make generic changes, and record the changes made, but it cannot determine if the type
selected is correct.

DDF Builder limits the data types from which you can select, based on the field size. So when
looking at the first invalid type and size in the Age column, for example, the size is four bytes.
The Btrieve Type list in the grid data view is only populated with data types that can have a four
byte size. Instead of trying each of the data types DDF Builder lets you select from, look at the
data in the Btrieve Types view and the Preview page to determine an appropriate data type.

Next review the data types that can allow four bytes and preview the data in the file to see which
data type is the most suitable.

Review Data Types and Sizes

To get a close look at the data with the possible data types for the field size, use the Btrieve Types
view on the left side of the Table Definition Editor.

1. With the Table Definition Editor open, select the Age column so that the row is highlighted.

Tip... Selecting the Age column in the table definition allows you to see specific data in the
Btrieve Types tab, as discussed next.

2. Now, click the Btrieve Types tab on the left side of the DDF Builder interface. The Btrieve
Types tab view should look similar to the following:

DDF Builder Tutorials 85

Tip... For more information about the Btrieve Types view, see Btrieve Types.

3. Carefully review the data as it appears in the Preview column of the Btrieve Types view.

The Btrieve Types view only shows data types that can be four bytes in size. This is extremely
helpful because it allows you to filter out all other data types that are invalid.

Knowing that the column represents an age and is four bytes in size, you can see that only
three possible data types can work with the data.

86 DDF Builder Tutorials

Next, you can eliminate Auto Increment as a possible data type, since you know that using the
Auto Increment data type automatically increases each new record by a value of one.

By a process of elimination you are now down to two possible data types from the Btrieve
Types list – Integer and Unsigned Binary.

The Integer and Unsigned Binary data types are very similar in nature. Try each of these data
types and see how the data gets interpreted. First, select Integer as the Btrieve data type for the
Age column.

4. Select Integer from the Btrieve Type list.

DDF Builder Tutorials 87

You can see in the grid data view’s Preview column, that the data looks acceptable. Take a
moment though, and look at all the data in the file via the Preview page.

5. Click the Preview page in the Table Definition Editor. You can see all of the data in the file in
a readable layout.

Looking at all the data in the file helps to reconcile the invalid data type with more
confidence, since you can quickly look at all the records in the file.

You can see that using the Integer data type, the data is formatted in what appears to be a
suitable manner. Be sure though, and run the same review using the Unsigned Binary data
type.

6. Select Unsigned Binary from the Btrieve Type list.

Again, the grid data view’s Preview column shows the data in an acceptable format. Be
certain though, and look at all the data in the file via the Preview page, as you did when you
used the Integer data type.

7. Click the Preview page in the Table Definition Editor to see all of the data in the file in a
readable layout.

88 DDF Builder Tutorials

Both the Integer and the Unsigned Binary data types format the data in a manner that is acceptable
and understandable, and both these data types support 1, 2, 4, and 8 bytes. So it seems there is no
compelling reason to select one data type over another. This example clearly shows that you must
know the basic and underlying structure of your data if you are creating or modifying table
definitions.

Make the Final Changes

Now that you have reviewed the possible data types and the formatted data, select the Integer data
type for the Age column.

This resolves the first table definition error. You cannot save the table definition though, until you
resolve the other errors.

Tip... You cannot save your table definitions until you resolve all Unknown types and account
for every byte in the record.

The next two fields are side by side, and you should look at them collectively. To resolve the two
remaining table definition errors, you need to consider them as a single error.

First, you know that DDF Builder noted that the dob field had a defined data type (Date) that is
invalid for the column’s size of two bytes. As a result, DDF Builder changed the data type to
Unknown.

DDF Builder Tutorials 89

Secondly, there were two bytes that were undefined in the original table definition. DDF Builder
created a new column (unnamed_6) from these two bytes and gave them an Unknown type.

The intended data type for the dob field is Date, and the Date data type requires a field of four
bytes. By merging both the dob and the unnamed_6 columns, you can create a four-byte field that
is appropriate for the Date data type. You need to verify though, as you did with the previous
error, that the data is understandable and acceptable using the Date data type and with the two
columns merged.

1. In the Table Definition Editor, select both the dob column and the unnamed_6 column (use
the Shift key).

2. Right-click and select Merge Columns.

The two columns are merged into one, making a four-byte column.

3. Select Date from the Btrieve Type list.

Once you enter this information and tab through the rest of the column fields, notice that adding
the Date data type formatted the data appropriately in the visible record.

It is a good idea to check the Preview page to see how all the data is handled with the Date data
type.

4. Click the Preview tab at the bottom of the grid data view.

90 DDF Builder Tutorials

Looking at the dob column in the Preview page, you can see that all of the data is formatted in an
acceptable and understandable format.

Save the Table Definition

Now that you have completed the table definition, you must save your work for the changes to
take effect. Before you save the work, take one final look at the table definitions. Your data grid
view should look similar to the following:

You can take a quick glance and see that all of the Btrieve Types have been defined, you have no
undefined fields remaining and every byte is accounted for. You can now save your table
definition.

1. From the menu bar, click File > Save.

Conclusion

This lesson introduced you to how DDF Builder handles data types and sizes that are not
compatible with each other. It showed you how invalid data types and sizes might be displayed
within an existing table definition and provided you with some sample solutions for modifying
your table definitions so that the sizes and data types are compatible and information is proper and
accurate.

DDF Builder Tutorials 91

Lesson 4 – Overlapping Column Definitions

Scenario

In this lesson you have an existing table definition that contains two column definitions that share
some of the same bytes in the file. This creates an overlapping column definition that must be
corrected.

Goals

The goal is to open the file with DDF Builder and see if DDF Builder makes any updates to the
definitions. You will inspect any changes that DDF Builder implements and discuss changes
needed to fix the overlapping column definition.

Note: DDF Builder recommends solutions to fix the overlapping column definitions in your file
and allows you to save those changes.

What You Need to Know

For this lesson, use the file named OVERLAP.MKD. This file resides in a folder named Tutorial2.
Assuming you installed using the default installation locations, this folder is located at:

<Application Data>\DDFBuilder\tutorials\tutorial2

This folder is part of the Tutorial2 database.

Note: You must have a Data Source Name (DSN) that points to this database in order to access
the data in this tutorial. If you have not yet created this DSN, refer to Create Data Source Names
(DSN).

Open the Btrieve File

You should have DDF Builder already running from the last lesson. If not, begin by starting DDF
Builder.

1. In the DDF Builder expand the Data Sources Explorer nodes, and locate the Tutorial2
database in the list.

92 DDF Builder Tutorials

2. Double-click the Tutorial2 database icon to expand the nodes.

3. Expand the nodes until the OVERLAP.MKD file and the associated SQL table display.

4. Double-click the overlap SQL table, or right-click and select Edit Table Definition.

The Table Definition Editor opens and displays the following message:

This message tells you that DDF Builder has analyzed your existing table definitions and found
problems with those definitions. As a result of this, DDF Builder had to make some modifications
to open and display the existing table definitions.

DDF Builder Tutorials 93

5. Click OK to clear the message and display the table definition.

Tip... For a complete list of possible definition errors, refer to Definition Errors List.

Look for Inconsistencies

Begin by looking at the DDF Builder interface to see the differences between the original
definition and the modifications that DDF Builder made, as well as reviewing the errors reported.

The Table Definition Editor’s grid data view shows the existing table definition with the
modifications made by DDF Builder.

No unknown icons or other visual indicators bring to your attention the fields that are altered or
added.

The Definition Errors window displays the issues DDF Builder detected and changed.

The original table definition, before DDF Builder made any changes, is always available from the
Original Definition view.

Note: DDF Builder changes are not automatically saved. Any modifications made by DDF
Builder must be saved.

94 DDF Builder Tutorials

In a moment compare the original definition to the modified definition, but first take a look at the
error DDF Builder reported.

Understanding the Errors

The Definition Errors view tells the following:

• where the problems are located

• what problems DDF Builder found

• what changes, if any, DDF Builder made to the original table definition

The Definition Errors lists one problem; look at that problem a bit more in-depth.

The error DDF Builder reported is an overlapping column definition. This means the table
definition contains definitions for two columns that share some of the same bytes.

DDF Builder automatically reduced the size of the firstName column so that it no longer overlaps
with the next column. Now the column lengths match and no bytes are defined across multiple
columns.

You can see the overlapping columns by comparing the grid data view with the original
definition.

Where the
problem is
located...

The problem DDF
Builder found...

What needs to be done now...

Column:
firstName

DDFBLDR-4: SQL
column overlaps another
column. The column’s
size has been truncated.

The column that DDF Builder named (firstName)
overlaps another column. To eliminate the
overlapping columns and make certain that both
the table definition and the Btrieve file have the
same record length, DDF Builder shortened the
column size.

DDF Builder Tutorials 95

Notice in the original definition the firstName field has a size of 30, compared to a size of 20 in
the modified definition. The original definition shows both a first name (Joe) and last name
(Smith) in the Preview column. The modified definition, with the smaller size, only shows the
first name in the Preview column, as you would expect.

Accept or Reject Changes

Making comparisons between the original definition and the definition that DDF Builder
modifies, along with verifying how the data is formatted, helps you determine whether or not to
accept the changes made by DDF Builder.

As a result of the changes that DDF Builder made, the data appears more in a manner that you
would expect, and you can be assured that column lengths match.

Now that you have reviewed the differences in the files, understand the changes that DDF Builder
made, and can verify the data is proper, you are ready to accept the changes.

Save the Table Definition

Any time that changes are made to your table definitions, whether they are made by you or by
DDF Builder, they must be saved in order for them to take effect. Before you save the table
definition, it is a good idea to take one final look at the definition and the Preview tab to make
certain that all fields are defined and every byte is accounted for.

96 DDF Builder Tutorials

Note: You cannot save a table definition with fields that contain a Btrieve Type of Unknown or
that contain bytes that are unaccounted for.

You can see all of the Btrieve Types are defined and every byte in the record is accounted for.
You can now save your table definition.

1. From the menu bar, click File > Save to save the table definition.

The table definition DDF Builder modified to fix the overlapping column definition is now saved
as your current definition.

Conclusion

This lesson introduced you to how DDF Builder deals with overlapping column definitions and
the kind of changes DDF Builder implements to resolve overlapping columns. It showed you
ways to compare the definition modified by DDF Builder with the original definition to determine
if changes should be accepted or rejected.

DDF Builder Tutorials 97

Lesson 5 – File/Field Flag Inconsistencies

Scenario

In this lesson, you have a Btrieve file with flags set for a field that are inconsistent with the SQL
column flags set in the table definition.

Goals

The goal is to open the file with DDF Builder and see if DDF Builder makes any updates to the
definitions. You will inspect any changes that DDF Builder implements and discuss changes, if
any, that are needed to fix the flag inconsistencies.

What You Need to Know

For this lesson, used the file named FLAGS.MKD. This file resides in a folder named Tutorial2.
Assuming you installed using the default installation locations, this folder is located at:

<Application Data>\DDFBuilder\tutorials\tutorial2

This folder is part of the Tutorial2 database.

Note: You must have a Data Source Name (DSN) that points to this database in order to access
the data in this tutorial. If you have not yet created this DSN, refer to Create Data Source Names
(DSN).

Open the Btrieve File

You should have DDF Builder already running from the last lesson. If not, begin by starting DDF
Builder.

1. In the DDF Builder expand the Data Sources Explorer nodes, and locate the Tutorial2
database in the list.

98 DDF Builder Tutorials

2. Double-click the Tutorial2 database icon to expand the nodes.

3. Expand the nodes until the FLAGS.MKD file and the associated SQL table display.

4. Double-click the flags SQL table, or right-click and select Edit Table Definition.

The Table Definition Editor opens and displays the following message:

This message tells you that DDF Builder analyzed your existing table definitions and found
problems with those definitions. As a result of this, DDF Builder had to make some modifications
to open and display the existing table definitions.

DDF Builder Tutorials 99

5. Click OK to clear the message and display the table definition.

Tip... For a complete list of possible definition errors, refer to Definition Errors List.

Look for Inconsistencies

Begin by looking at the DDF Builder interface to review the inconsistencies with which you are
dealing. First look at the grid data view and the Definition Errors window.

The grid data view of the Table Definition Editor shows your existing table definition with the
modifications that DDF Builder made.

Note: DDF Builder changes are not automatically saved. Any modifications made by DDF
Builder must be saved.

For this lesson, DDF Builder does not give any visual indications as to the columns that need
attention. No unknown column indicators suggest that any of the fields have been altered.

Tip... For more information on the attributes in the grid data view, refer to The following table
lists the attributes displayed in the grid data view..

A list of the issues DDF Builder detected and changed display in the Definition Errors view.

Now, take a moment to look at the original table definition. The original table definition, before
DDF Builder made any changes, is available from the Original Definition view.

100 DDF Builder Tutorials

Before you proceed with the details of the inconsistencies in the table definitions, make sure that
you understand the definition errors reported by DDF Builder.

Understanding the Errors

The Definition Errors view tells the following:

• where the problems are located

• what problems DDF Builder found

• what changes, if any, DDF Builder made to the original table definition

The Definition Errors list one problem:

The error indicates a Case flag set on a SQL column but the flag was not set on the corresponding
Btrieve segment. Since DDF Builder does not change the Btrieve file, the SQL table has been
modified to match the specifics of the Btrieve file. To make certain this is the situation, compare
the current table definition to the original definition.

The definition error lists the problem is with the lastName column’s Case setting. If you compare
the lastName fields of the current and original table definition, you can quickly see the difference.

Where the
problem is
located...

The problem DDF Builder found... What needs to be done now...

Column:
lastName

DDFBLDR-9: SQL column CASE
flag does not match Btrieve segment
CASE flag. Column CASE flag
changed.

You need to verify if the field should
have the CASE flag set or not and
either accept or reject the DDF
Builder changes.

DDF Builder Tutorials 101

From the comparison, you can determine the following:

• The original, or existing, definition did not have the Case flag set on the lastName field.

• The current definition (updated by DDF Builder) does have the Case flag set on the lastName
field.

DDF Builder made changes based upon the Btrieve file. Remember, DDF Builder cannot change
your Btrieve file, only the table definitions that determine the structure of your Btrieve file. That
being the case, DDF Builder changed the original definition (without the Case flag) to allow for
the lastName field to use the Case flag.

Note: The lastName field is used as an index. You cannot clear the Case flag from the lastName
field because it is an index.

Accept or Reject Changes

You have determined the cause of the definition error and understand what changes DDF Builder
made. Now you need to either accept or reject the changes that DDF Builder made to the table
definition.

If the changes DDF Builder made are incorrect, you would reject the changes and create a new
table definition from scratch, since you are unable to change the Case setting for a field marked as
an index.

However, for the purpose of this lesson, accept the changes that DDF Builder made. You want the
Case flag set on the lastName field.

102 DDF Builder Tutorials

Save the Table Definition

Now that you have reviewed the table definition error and changes, you must save your work in
order for the change to take effect. Before you save your work, take one final look at the table
definition. Your data grid view should look similar to the following:

Take a quick glance and verify that all of the Btrieve Types are defined, there are no undefined
fields remaining and every byte is accounted for. You can now save your table definition.

1. From the menu bar, click File > Save to save the table definition.

Your updated table definition is now saved to use the Case flag setting on the lastName field.

Conclusion

This lesson introduced you to how DDF Builder handles flag settings that differ from the Btrieve
file and the existing table definition. It showed you how the grid data view and the original
definitions view can be used to compare changes made by DDF Builder. This lesson also showed
you that altering a field set as an index is not allowed in DDF Builder. Strategies for rejecting or
accepting the changes made by DDF Builder were also discussed.

DDF Builder Tutorials 103

Lesson 6 – Index Inconsistencies

Scenario

In this lesson, you have a Btrieve file with indexes set that are inconsistent with the indexes set in
the table definition.

Goals

The goal is to open the file with DDF Builder and see if DDF Builder updates any of the
definitions. You will inspect any changes that DDF Builder implements and discuss changes that
are needed to fix the index inconsistencies.

Tip... DDF Builder recommends solutions to fix the inconsistencies in your indexes and allows
you to save those changes.

What You Need to Know

For this lesson, use the file named INDEX_INC.MKD. This file resides in a folder named
Tutorial2. Assuming you installed using the default installation locations, this folder is located at:

<Application Data>\DDFBuilder\tutorials\tutorial2

This folder is part of the Tutorial2 database.

Note: You must have a Data Source Name (DSN) that points to this database in order to access
the data in this tutorial. If you have not yet created this DSN, refer to Create Data Source Names
(DSN).

Open the Btrieve File

You should have DDF Builder already running from the last lesson. If not, begin by starting DDF
Builder.

1. In the DDF Builder expand the Data Sources Explorer nodes, and locate the Tutorial2
database in the list.

104 DDF Builder Tutorials

2. Double-click the Tutorial2 database icon to expand the nodes.

3. Expand the nodes until all the files display.

4. Double-click the index_inc SQL table, or right-click and select Edit Table Definition.

The Table Definition Editor opens and displays the following message:

This message tells you that DDF Builder has analyzed your existing table definitions and found
problems with those definitions. As a result of this, DDF Builder had to make some modifications
to open and display the existing table definitions.

DDF Builder Tutorials 105

5. Click OK to clear the message and display the table definition.

Tip... For a complete list of possible definition errors, refer to Definition Errors List.

Look for Inconsistencies

Begin by looking at the DDF Builder interface to review the inconsistencies found. Start by doing
a quick comparison of the grid data view to the original definition.

For this lesson, DDF Builder does not give any visual indications as to the columns that need
attention. No unknown column indicators suggest that any of the fields have been altered.

Interestingly enough, you can compare these two definitions and find no differences. Although
DDF Builder has made changes, they do not appear in the table definition views because the
issues DDF Builder corrected are in the indexes.

Before you look at the index information in detail, take a moment to review the problems listed in
the Definition Errors window. A list of the issues DDF Builder detected and changed display in
the Definition Errors view.

106 DDF Builder Tutorials

Note: DDF Builder changes are not automatically saved. Any modifications made by DDF
Builder must be saved.

Understanding the Errors

The Definition Errors view tells the following:

• where the problems are located

• what problems DDF Builder found

• what changes, if any, DDF Builder made to the original table definition

Tip... DDF Builder cannot alter your Btrieve file. Any changes made are to the table definition
and not the Btrieve file.

The Definition Errors lists two problems:

The first error shows that the existing table definition contains an index that does not exist in the
Btrieve file. Because DDF Builder cannot change the Btrieve file – only alter table definitions –
the index is ignored. This is important to know so that you do not try and use an index that does
not exist.

The second error is the opposite situation. The existing table definition does not contain an index
that is defined in the Btrieve file. DDF Builder added a SQL index to represent the index in the
Btrieve file that was previously undefined.

Assign a name to the index that DDF Builder created, and accept the changes made to the table
definition index.

Where the
problem is
located...

The problem DDF Builder
found...

What needs to be done now...

Index: indx_id DDFBLDR-1: No
corresponding Btrieve key for
this SQL index. Index
ignored.

A corresponding key does not exist in the
Btrieve file for a SQL index found in the table
definition. Therefore, DDF Builder ignored
the index, and the only action is to confirm the
changes made by DDF Builder.

Index: index_0 DDFBLDR-2: No
corresponding SQL index
found for this Btrieve key.
Index added.

The Btrieve file has the key and DDF Builder
has added the corresponding index in the table
definition. You need to verify the index in the
table definition and accept the changes DDF
Builder made.

DDF Builder Tutorials 107

Note: In the event you have indexes created by DDF Builder that are no longer needed, you may
benefit from dropping the index from the file and the table definition. Similarly, you may find that
you need to add indexes that were not defined when DDF Builder modified your table definitions.
In either case, refer to the Zen Programmer’s Guide for information on adding and dropping
indexes.

Name the Index

1. Select the Indexes tab in the Table Definition Editor.

2. Double-click the index_0 entry in the Index column.

3. Enter index_lname as the name of the index.

Note: To see the indexes defined on the Btrieve file, click the Statistics tab.

Save the Table Definition

Now that you verified the index DDF Builder added to the table definition, save your work for the
changes to take effect. Before you save your work, take one final look at the table definition.

108 DDF Builder Tutorials

All of the Btrieve Types have been defined, there are no undefined fields remaining and every
byte is accounted for. You can now save your table definition.

1. From the menu bar, click File > Save to save the table definition.

Conclusion

Congratulations, you have successfully saved your table definition. This lesson introduced you to
some of the inconsistencies in indexes that DDF Builder recognizes. It also covered the
modifications that DDF Builder makes and how you save the updated table definition.

DDF Builder Tutorials 109

Lesson 7 – Variable Length Record Mismatch

Scenario

In this lesson, you have a Btrieve file with a different variable length record than the variable
length record set in the table definition.

Goals

The goal is to open the file with DDF Builder and see if DDF Builder makes any updates to the
definitions. You will inspect any changes that DDF Builder implements and discuss changes
needed to make to fix the variable length record mismatch.

Note: Currently DDF Builder does not recommend solutions to fix the variable length record
mismatch.

What You Need to Know

For this lesson, use the file named VARTABLE.MKD. This file resides in a folder named
Tutorial2. Assuming you installed using the default installation locations, this folder is located at:

<Application Data>\DDFBuilder\tutorials\tutorial2

This folder is part of the Tutorial2 database.

Note: You must have a Data Source Name (DSN) that points to this database in order to access
the data in this tutorial. If you have not yet created this DSN, refer to Create Data Source Names
(DSN).

Open the Btrieve File

You should have DDF Builder already running from the last lesson. If not, begin by starting DDF
Builder.

1. In the DDF Builder expand the Data Sources Explorer nodes, and locate the Tutorial2
database in the list.

110 DDF Builder Tutorials

2. Double-click the Tutorial2 database icon to expand the nodes.

3. Expand the nodes until all the files display.

4. Double-click the vartable SQL table, or right-click and select Edit Table Definition.

The Table Definition Editor opens and displays the following message:

This message tells you that DDF Builder has analyzed your existing table definitions and found
problems with those definitions. As a result of this, DDF Builder had to make some modifications
to open and display the existing table definitions.

DDF Builder Tutorials 111

5. Click OK to clear the message and display the table definition.

Tip... For a complete list of possible definition errors, refer to Definition Errors List.

Look for Inconsistencies

Begin by looking at the DDF Builder interface to review the differences between the original
definition and the modifications that DDF Builder made, as well as reviewing the errors reported.

The Table Definition Editor’s grid data view shows the modified table definition.

Note: DDF Builder changes are not automatically saved. Any modifications made by DDF
Builder must be saved.

DDF Builder gives you visual indications as to the columns that need attention by adding the
unknown column indicator to the fields that are altered or added. In addition, the variable column
indicator is added to columns that contain an unknown variable.

Tip... For more information on the attributes in the grid data view, refer to The following table
lists the attributes displayed in the grid data view..

A list of the issues DDF Builder detected and changed display in the Definition Errors view.

The original table definition, before DDF Builder made any changes, is available from the
Original Definition view.

112 DDF Builder Tutorials

Understanding the Errors

The Definition Errors view tells the following:

• where the problems are located

• what problems DDF Builder found

• what changes, if any, DDF Builder made to the original table definition.

The Definition Errors lists two problems:

The DDFBLDR-12 error results from a variable length field that does not occur as the last column
in the table definition. Because the file contained a variable length field in a place other than the
last column, DDF Builder changed the data type of this field to Unknown.

Tip... Lesson 3 – Invalid Data Types and Sizes provides a step-by-step tutorial specifically
dealing with the situation where the column data type is invalid for the column size.

Where the problem
is located...

The problem DDF
Builder found...

What needs to be done now...

Column: Name DDFBLDR-12:
Legacy variable
length column can
only be the last
column in a table.
Column TYPE
changed to
Unknown.

The existing SQL table definition contains a
NOTE or LVAR data type column in the middle of
the table. DDF Builder changed the data type to
Unknown because variable length columns must
be the last column in the table. You must define
the column that DDF Builder changed to
Unknown.

Index: UK_ID DDFBLDR-1: No
corresponding
Btrieve key for this
SQL index. Index
ignored.

A corresponding key does not exist in the Btrieve
file for a SQL index found in the table definition.
Therefore, DDF Builder ignored the index, and the
only action is to confirm the changes made by
DDF Builder.

DDF Builder Tutorials 113

To fix the variable length field issue, define the unknown field with an appropriate data type, as
discussed in the next section.

The last error reported is an index that DDF Builder found in the existing table definition that
does not have a corresponding key in the Btrieve file. In the course of this lesson, this error is not
addressed, only the variable length field. For information on resolving errors pertaining to
indexes, see Lesson 6 – Index Inconsistencies.

Define the Unknown Field

Define the unknown field in the grid data view of the Table Definition Editor.

1. Click to select the Name field.

2. Select String from the Btrieve Type list.

Note: Editing columns in a variable portion of a table is not recommended if your definition
contains BLOB or CLOB data types.

Save the Table Definition

You have defined the Unknown field and fixed all of the issues, now save the table definition.

Before you save your work, take one final look at the table definition.

The table definition shows no undefined fields remaining and every byte is accounted for. You
can now save your table definition.

114 DDF Builder Tutorials

1. From the menu bar, click File > Save to save the table definition.

Conclusion

Congratulations, you have successfully saved your table definition and corrected your variable
length field. This lesson introduced you to how DDF Builder deals with variable length fields that
are not at the end of the record. It also showed you how to define the field and create a valid table
definition for the file.

DDF Builder Tutorials 115

Lesson 8 – Record Length Mismatch

Scenario

In this lesson, you have a Btrieve file with a different record length than the record length set in
the table definition.

Goals

The goal is to open the file with DDF Builder and see if DDF Builder makes any updates to the
definitions. You will inspect any changes that DDF Builder implements and discuss changes that
are needed to fix the record length mismatch.

Tip... DDF Builder recommends solutions to fix the record length mismatch and allows you to
save those changes.

What You Need to Know

For this lesson, use the file named rec_length.mkd. This file resides in a folder named Tutorial2.
Assuming you installed using the default installation locations, this folder is located at:

<Application Data>\DDFBuilder\tutorials\tutorial2

This folder is part of the Tutorial2 database.

Note: You must have a Data Source Name (DSN) that points to this database in order to access
the data in this tutorial. If you have not yet created this DSN, refer to Create Data Source Names
(DSN).

Open the Btrieve File

You should have DDF Builder already running from the last lesson. If not, begin by starting DDF
Builder.

1. In the DDF Builder expand the Data Sources Explorer nodes, and locate the Tutorial2
database in the list.

116 DDF Builder Tutorials

2. Double-click the Tutorial2 database icon to expand the nodes.

3. Expand the nodes until all the files display.

4. Double-click the rec_length SQL table, or right-click and select Edit Table Definition.

The Table Definition Editor opens and displays the following message:

This message tells you that DDF Builder has analyzed the existing table definitions and found
problems with those definitions. As a result of this, DDF Builder had to make some modifications
to open and display the existing table definitions.

DDF Builder Tutorials 117

5. Click OK to clear the message and display the table definition.

Tip... For a complete list of possible definition errors, refer to Definition Errors List.

Look for Inconsistencies

Begin by looking at the DDF Builder interface to review the differences between the original
definition and the modifications that DDF Builder made, as well as reviewing the errors reported.

The Table Definition Editor’s grid data view shows the modified table definition.

Note: DDF Builder changes are not automatically saved. Any modifications made by DDF
Builder must be saved.

DDF Builder gives you visual indications as to the columns that need attention by adding the
unknown column indicator to the fields that are altered or added.

Tip... For more information on the attributes in the grid data view, refer to The following table
lists the attributes displayed in the grid data view..

A list of the issues DDF Builder detected and changed display in the Definition Errors view.

The original table definition, before DDF Builder made any changes, is available from the
Original Definition view.

118 DDF Builder Tutorials

Understanding the Errors

The Definition Errors view tells the following:

• where the problems are located

• what problems DDF Builder found

• what changes, if any, DDF Builder made to the original table definition.

The Definition Errors lists one problem:

The error reported by DDF Builder indicates a record length mismatch.

Tip... You can see the original record length for the Btrieve file by clicking the Statistics tab.

This means that the table definition did not contain fields to account for all the bytes in the record.
DDF Builder created a new column with the unknown data type to account for these bytes.

Defining and accounting for all of the bytes creates a table definition that accurately matches the
Btrieve file. Look at the bytes at the bottom of the grid data view in the row named unnamed_6.

Where the problem
is located...

The problem DDF Builder
found...

What needs to be done now...

Column: unnamed_6 DDFBLDR-6: Undefined
bytes in table definition.
Unknown column added.

You must define the Unknown column
that DDF Builder added to account for the
undefined bytes.

DDF Builder Tutorials 119

Now define the unknown field so that the record lengths match between the file and the table
definition.

Define the Field

Next, define the unknown field in the grid data view of the Table Definition Editor.

1. Click to select the last row in the grid data view.

2. Select the unnamed_6 Field and enter City for the field name.

3. Check the Null check box.

4. Change the Size to reflect 50 bytes.

5. In the Btrieve Type column, select String from the list.

6. Select Case check box.

Your table definition should now look similar to the following:

7. Now, click to select the unnamed_7 row in the grid data view.

8. Select the unnamed_7 Field and enter Income for the field name.

9. In the Btrieve Type column select Money from the list.

10. Leave the Precision at 10; the Scale should remain at 2.

Your table definition should now look similar to the following:

120 DDF Builder Tutorials

Now that all the unknown fields are defined and every byte is accounted for, save the table
definition.

Save the Definition

Save the table definition so that you save your work and apply the changes.

1. From the menu bar, click File > Save to save the table definition.

Conclusion

Congratulations, you have successfully saved your table definition and corrected the record length
mismatch. This lesson introduced you to how DDF Builder deals with differing record lengths. It
also showed you how to define the field, split the column by resizing and create a valid table
definition for the file.

	Contents
	About This Document
	Who Should Read This Manual

	Getting Started with DDF Builder
	DDF Builder Overview
	Why Use DDF Builder
	What DDF Builder is Not
	Why Not Use ZenCC?
	What You Need to Know
	Other Helpful Information
	Transactional Access
	Relational Access
	What To Do Next
	Disable Security

	Components of DDF Builder
	Log File
	User Documentation
	Tutorial Files

	Starting DDF Builder
	Starting DDF Builder from a Command Line
	Windows
	Linux and macOS
	Requirements for Starting DDF Builder on Linux or macOS
	Troubleshooting Guide for Running DDF Builder
	Clearing the DDF Builder Cache

	Where to Go From Here

	Using DDF Builder
	DDF Builder Concepts
	Terminology Review
	Security
	Previous Database and DDF Versions
	Scalable SQL v3.xx and Earlier
	Btrieve v5.x and Earlier

	DDF Builder Error Detection and Correction
	Example 1 - Index Inconsistencies
	Example 2 - Record Length Mismatch
	Example 3 - Flag Inconsistencies

	Saving Original and Modified Definitions
	Table Definition Editor Pages
	Table Page
	Raw Data View
	Grid Data View
	Indexes Page
	Alternate Collating Sequence (ACS) Files
	Preview Page
	Statistics Page
	SQL View Page

	Legacy Nulls in DDF Builder
	True Nulls in DDF Builder
	Working with True Nulls
	Creating Nullable Fields

	GUI Reference
	Welcome Page
	Data Sources Explorer
	Btrieve File Editor
	How to Access
	Features
	Restrictions

	Table Definition Editor
	How to Access
	Features
	Restrictions

	Table Page
	How to Access
	Raw Data View
	Raw Data View in Table Definition Editor
	Grid Data View
	How the Two Views Work Together
	Table Definition Editor Error Message
	Table Definition Editor Caution/Warning Message

	Indexes Page
	How to Access
	Indexes Page in Table Definition Editor
	Features
	Restrictions

	Preview Page
	How to Access
	Preview Page in Table Definition Editor
	Features

	Statistics Page
	How to Access
	Statistics Page in Table Definition Editor
	Features

	SQL View Page
	How to Access
	SQL View Page in Table Definition Editor
	Features
	Restrictions

	Add Database
	Check Table Consistency
	How to Access
	DBCheck (consistency check results) View
	Features
	Error Message Tips

	Copy SQL Definition
	How to Access
	Features

	Export Btrieve Schema
	How to Access
	Features

	Import Btrieve Schema
	How to Access
	Features

	Add Data Path
	How to Access
	Features

	Change Associated Data File
	How to Access
	Features

	Btrieve Types
	How to Access
	Features

	Definition Errors
	How to Access
	Features
	Definition Errors List

	Original Definition
	How to Access
	Features

	DDF Builder Tasks
	General Tasks
	Accessing User Documentation
	DDF Builder Log File

	Tasks Initiated from Data Sources Explorer
	Btrieve Files
	Data
	Database
	Data Sources Explorer
	Online Help
	SQL Queries
	SQL Tables

	DDF Builder Tutorials
	Using the DDF Builder Tutorials
	Tutorial 1 Overview
	Tutorial 2 Overview
	Before You Begin
	Back Up Your Files
	Locate the Tutorial Files
	Create Data Source Names (DSN)

	Tutorial 1 – Creating Table Definitions with DDF Builder
	Scenario
	Goals
	What You Need to Know
	Create a Zen Database
	Open an Existing Btrieve File
	Review DDF Builder’s Findings
	A Note About Nulls

	Define the Record Fields
	Name a Field
	Create a Nullable Column in the raw data view
	Split a Column in the grid data view
	Create a Column from the raw data view
	Change a Non-Nullable Column to Nullable in the grid data view

	Review the Index Information
	Name an Index

	Preview the Defined Data
	Conclusion

	Tutorial 2 – Modifying Table Definitions with DDF Builder
	Scenario
	Goals

	Lesson 1 – Working with v3.00 DDFs
	Scenario
	Goals
	What You Need to Know
	Open the Btrieve File
	Understanding the Warning Message
	How To Convert My Files
	Conversion Notes
	Alternating Collating Sequences
	Table Definitions That Require Using ZenCC and DDF Builder

	Conclusion

	Lesson 2 – Working with Pre v6.x File Formats
	Scenario
	Goals
	What You Need to Know
	Open the Btrieve File
	Understanding the Warning Message
	View the Log File
	How To Rebuild My Files
	Where To Go From Here
	Conclusion

	Lesson 3 – Invalid Data Types and Sizes
	Scenario
	Goals
	What You Need to Know
	Open the Btrieve File
	Look for Inconsistencies
	Understanding the Errors
	Invalid Type and Size

	Review Data Types and Sizes
	Make the Final Changes
	Save the Table Definition
	Conclusion

	Lesson 4 – Overlapping Column Definitions
	Scenario
	Goals
	What You Need to Know
	Open the Btrieve File
	Look for Inconsistencies
	Understanding the Errors
	Accept or Reject Changes
	Save the Table Definition
	Conclusion

	Lesson 5 – File/Field Flag Inconsistencies
	Scenario
	Goals
	What You Need to Know
	Open the Btrieve File
	Look for Inconsistencies
	Understanding the Errors
	Accept or Reject Changes
	Save the Table Definition
	Conclusion

	Lesson 6 – Index Inconsistencies
	Scenario
	Goals
	What You Need to Know
	Open the Btrieve File
	Look for Inconsistencies
	Understanding the Errors
	Name the Index
	Save the Table Definition
	Conclusion

	Lesson 7 – Variable Length Record Mismatch
	Scenario
	Goals
	What You Need to Know
	Open the Btrieve File
	Look for Inconsistencies
	Understanding the Errors
	Define the Unknown Field
	Save the Table Definition
	Conclusion

	Lesson 8 – Record Length Mismatch
	Scenario
	Goals
	What You Need to Know
	Open the Btrieve File
	Look for Inconsistencies
	Understanding the Errors
	Define the Field
	Save the Definition
	Conclusion

