A ACTIAN

Distributed Tuning
Objects Guide

Zen vi5

Activate Your Data™

Copyright © 2023 Actian Corporation. All Rights Reserved.

This Documentation is for the end user’s informational purposes only and may be subject to change or withdrawal by
Actian Corporation (“Actian”) at any time. This Documentation is the proprietary information of Actian and is
protected by the copyright laws of the United States and international treaties. The software is furnished under a
license agreement and may be used or copied only in accordance with the terms of that agreement. No part of this
Documentation may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, or for any purpose without the express written permission of Actian. To the extent
permitted by applicable law, ACTIAN PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY
OF ANY KIND, AND ACTIAN DISCLAIMS ALL WARRANTIES AND CONDITIONS, WHETHER EXPRESS
OR IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF
MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OR OF NON-INFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT WILL ACTIAN BE LIABLE TO THE END USER OR ANY THIRD
PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION,
GOODWILL, OR LOST DATA, EVEN IF ACTIAN IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The manufacturer of this Documentation is Actian Corporation.

For government users, the Documentation is delivered with “Restricted Rights” as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Actian, Actian DataCloud, Actian DataConnect, Actian X, Avalanche, Versant, PSQL, Actian Zen, Actian Director,
Actian Vector, DataFlow, Ingres, OpenROAD, and Vectorwise are trademarks or registered trademarks of Actian
Corporation and its subsidiaries. All other trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

Contents

About This Document Xi
Who Should Read This Manual e Xi
Distributed Tuning Objects Introduction 1
What is DTO?. . ..o 1
DTO Objects Model and Objects Relationship 2
CONNECLION . . o . ot ettt e et e e e e e e e e e e e e e e 2
Monitoring and DiagnostiC.ottt e 2
Configurationttt e 2
Catalog and Dictionary.ttt e 2
DTO ObJeCt TIee . . . oot ittt e e e e e e e e e e e e e e e 3
DTO VEISIONS . . . o ettt ettt e e e e e e e e e e e e 3

DT O . 4
WOADTO2 . .o 4
Getting Started with DTO 5
Visual Basic e 5
Active Server Pages 6
Delphi. ... 7
DTO Object SUMMATYo o ettt e e e e e e e et e e 8
Connection ObJeCtot u it e 8
Configuration ObJeCtsttt e 8
Monitoring ODbjJeCtS.ottt e 9
Database and Dictionary Objectst 10
Working with DTO Collections e i 11
Instantiating a Collection 12
Looping through a Collection. 12
Obtaining Number of Members i 13
Obtaining a Specific Member. 14
Where to Find DTO Samples. e 14
Establishing a DTO Session 15
DtoSession ObJecto 16
Propertieso 16
COlIECHIONS . . o . ettt e e e e 16
O CtS .« ottt 16
Methodso 17

Example.o 17
SEE AlSO. . et 18
Methods Detail e 18
Configuring Zen Servers with DTO 23
DtoCategories Collection e 24
Properties . .. o 24
Methods. . ..o e 24
Remarks.o 24
Example.o 24
SEE AlSO. . et 24
DtoCategory ObJECt. . . . oottt e 25
Properties . .. o 25
ColleCtionNS. . . .\ttt e 25
Methods. . . .o 25
Remarks. e 25
Example. . ..o 25
S AlSO. . it e 26
DtoLicenseMgr ObJeCtottt 27
Properties.o 27
COllECHIONS. . . o ettt 27
Methods. . ..o e 27
Remarks.o 27
Example. 27
SEE AlSO. . et 28
Methods Detail 28
DtoSettings Collectiont e 32
Properties 32
Methods. . ..o 32
Remarks. 32
Example. ... 32
S AlSO. . et e 32
DtoSetting ObJectottt 33
Properties 34
COllECHIONS. . . o ettt 36
Methods. . ..o 36
Remarks. 36
Example.o 36
See AlSO. . .o 36

DtoSelectionltems ColleCtion.ottt 37

Properties 37
Methods 37
Remarks 37
Example 37
S AlSO . ot 37
Methods Detail 38
DtoSelectionltem Object e 41
Properties . . .o 41
Methods 41
Remarks 41
Example 41
SC AlSO . .ot 41
DtoServices ObJect.ot e 42
Properties . . .o 42
Methods 42
Remarks 42
Examples 44
SC AlSO . .ot 44
Methods Detail 44
Monitoring Zen Servers with DTO 49
DtoMonitor ObJect oot 50
Properties . . . o 50
COllECtiONS . . .\ttt e 51
OOt .« oottt 51
Methods 51
Example 51
S AlSO . vt 52
DtoOpenFiles Collectiont et e 53
Properties 53
Methods 53
Remarks 53
Example 53
S AlSO . vt 53
DtoOpenFile Objectottt 54
Propertieso 54
Methodso 54
COllECtIONS . . . ottt 55
Remarks o 55

Example. 55

SEE AlSO. o ot 55
DtoFileHandles Collection e 56
Properties 56
Methods. . ..o 56
Remarks. . ..o 56
Example.o 56
SEE AlSO. o ot 56
DtoFileHandle Objecto e 57
Properties 57
Methods. . ..o 57
Remarks. . ..o 57
Example.o 57
SEE AlSO. o ot 58
DtoMkdeClients Collection.t e e 59
Properties 59
Methods. . ..o 59
Remarks. . ..o e 59
Example.o 59
SEE AlSO. o oo 59
DtoMkdeClient ODjJectottt e e e 60
Properties 60
COllECtioNS. . . . oot 60
Methods.o 61
Remarks. 61
Example. 61
See AlSO. . e 61
Methods Detail 61
DtoMkdeClientHandles Collection. 63
Properties 63
Methods. . ..o 63
Remarks. . ..o 63
Example.o 63
SEE AlSO. o oo 63
DtoMkdeClientHandle Object.t e e 64
Properties 64
Methods. . ..o 64
Remarks. 64
Example. e 64
See AlSO. . 65

Vi

DtoCommStat Objectottt e 66

Properties 66
CollECtiONS . . . ottt 66
OB ECtS . vttt 66
Methodso 66
Remarks 67
Example 67
S AlSO . ot 67
DtoProtocolStats Collection. i e 68
Properties 68
Methodso 68
Remarks 68
Example 68
S AlSO . v it 68
DtoProtocolStat Object. oot 69
Properties 69
Methodso 69
Remarks 69
Exampleso 69
S AlSO . vt 69
DtoSqlClients Collectionttt et et 70
Properties 70
Methodso 70
Remarks 70
Example 70
S AlSO . vt 70
DtoSqIClient Objectot 71
Properties 71
Methods 71
Remarks 71
Example 71
S AlSO . vt 72
Methods Detail 72
DtoMkdeVersion ObJect.ottt e 73
Properties . . . o 73
Methods 73
Remarks 73
Example 73
See AlSO . .o e 73
DtoEnginelnformation Object it e 74

Vii

Methods. . . .ot 74
Remarks. 74
Example.o 74
See AlSO. . o e 75
Creating and Maintaining Catalogs and Dictionaries with DTO 77
DtoDatabases Collection. 78
Properties 78
Methods. . ..o 78
Remarks. . ..o 78
Example. . ..o 78
SEE AlSO. o ot 78
Methods Detail 78
DtoDatabase ObjJect.ot e 81
Properties . ..o 81
COllECtiONS. . . . vttt e 81
Methods. . ..o 81
Remarks. . ..o 82
EXamples. 82
SEE AlSO. o oo 82
Methods Detail 83
DtoDSNS ColleCtionot 96
Properties . .. o 96
Methods.o 96
Remarks. 96
Example.o 96
See AlSO. . o e 96
Methods Detail 97
DtoDSN ObjJeCt . . .ottt 99
Properties 99
Methods. . ..o 99
Remarks. . ..o 99
EXamples. 99
SEE AlSO. o oo 100
DtoDictionary ObJectttt 101
Properties 101
ColleCtionS. . . .ot 101
Methods. . ..o e 101
Remarks. 101

viii

Example 102

SEE AlSO . . 102
Methods Detail 102
DtoTables ColleCtion o e e 110
Properties . ..o e 110
Methods 110
Remarks 110
Example 110
SEe AlSO . . oo 111
DtoTable Objectot e 112
Properties . .. oo 112
ColleCtiONSttt 112
Methods 112
Remarks 112
Exampleo 112
SEE AlSO . . 113
DtoColumns ColleCtiont e e e e e 114
Properties 114
Methods 114
Remarks 114
Example 114
SEE AlSO . . 114
Methods Detail 115
DtoColumn Object e 117
Properties . . .o e 117
Methods 117
Remarks 117
Example 117
SEe AlSO . . oo 118
Dtolndexes CollECtiOn vt e 119
Properties . . . oo 119
Methods 119
Remarks 119
Exampleo 119
SEe AlSO . . oo 119
Methods Detail oo 120
DtoIndex ObJect.ttt 123
Properties oo e 123
ColleCtionsSo v 123
Methods 123

Example.o 123
SEE AlSO. . .ttt 124
DtoSegments Collection e 125
Propertieso 125
Methods. . ..o 125
Remarks.o 125
Example.o 125
SEE AlSO. . .ttt 126
Methods Detail 126
DtoSegment Object.ot 129
Properties 129
Methods. . . .ot 129
Remarks.o 129
Example. . ..o 129
S AlSO. . i 130
Distributed Tuning Objects Enumerations 131
Enumerated Types in DTO 131
Btrieve Types . ..ot 132
Column Flags 133
Index FIagsot 133
Segment Flags 133
Table Flagso o 134
DtoResUlt 134
Setting Rank 138
Setting TYPe . o .ot 138
CLENt SIE . . o oottt e e e 138
Client Platform e e e 138
Transaction Stateot 139
Open Modeo 139
DSN Open Mode 140
DSN Translate Optiont 140
LoCK TYPe . .ottt 140
Wit State . ..o 140
Database Code Page 141
Database Flags 141
SQL Connection Status it e e 141
Service ID . ..o 141
Service Status 142

About This Document

This documentation covers the developing of applications using the Distributed Tuning Objects.

Who Should Read This Manual

This document is designed for any user who is familiar with Zen and wants to develop
administrative applications using the Distributed Tuning Objects.

We would appreciate your comments and suggestions about this document. Your feedback can
determine what we write about the use of our products and how we deliver information to you.
Please post your feedback in the community forum on the Zen website.

Xi

https://www.actian.com/data-management/zen-embedded-database/

Xii

Distributed Tuning Objects Introduction

The following topics introduce the functions that comprise the Zen Distributed Tuning Objects:
* Whatis DTO?

* DTO Objects Model and Objects Relationship

* Getting Started with DTO

« DTO Object Summary

* Working with DTO Collections

* Where to Find DTO Samples

You can also go directly to more detailed information on using DTO in Zen:
» Establishing a DTO Session

* Configuring Zen Servers with DTO

* Monitoring Zen Servers with DTO

* Creating and Maintaining Catalogs and Dictionaries with DTO

* Distributed Tuning Objects Enumerations

What is DTO?

Distributed Tuning Objects (DTO throughout the rest of this document) are the COM wrapper for
the Zen Distributed Tuning Interface (DTI throughout the rest of this document). DTO is a
collection of objects encapsulating DTI. DTO also contains some features that go beyond the
capabilities of DTI such as the ability to start and stop the database engines.

DTO enables developers to develop a range of useful, customized server administration tools and
interfaces quickly and easily. The power and flexibility of DTO can be applied to the full range of
database management and database definition tasks such as production, performance tuning, and
metadata administration.

DTO is implemented as a dual interface, in-process server. The developer can use any OLE
Automation controller, or create a COM client using many programming languages such as:

» Microsoft Visual Basic
» Microsoft Active Server Pages (ASP)

* Microsoft Visual C++

* Embarcadero Delphi

e Embarcadero C++ Builder

DTO Objects Model and Objects Relationship

For the purpose of this manual, DTO classes are arranged in the following functional categories:

Connection

In order to be able to configure and monitor the behavior of the database engine, users musts first
connect to it. This category provides functionality necessary to connect to and disconnect from
database engines.

The DtoSession object manages the connection to a database engine.

Monitoring and Diagnostic

This category provides functionality to monitor Zen servers and clients and provides diagnostic
information.

The DtoMonitor object and its descendents provide server monitoring and diagnostic information.
You can also obtain engine information directly from DtoSession with the DtoEnginelnformation
object.

Configuration

This category allows the user to configure the Zen engines and clients. The DtoCategories
collection and its descendents provide this functionality.

You can also add and remove product licenses using the DtoLicenseMgr object.

Catalog and Dictionary

Functionality grouped in this category allows users to create new databases, new data dictionaries
and also define and drop tables, columns, and indexes.

The DtoDictionary class and its descendents provide catalog functionality.

DTO Object Tree

Many DTO objects are exposed as properties of other DTO objects. The relationship provides
developers with a logical structure that simplifies programming with automation controllers. You
can reference objects using the familiar dot notation to access properties and methods.

Ctalatak

CtoSession !
CtoDShe
DtoServices Ctokdonitor Ditobdkdeifersion @

DtoCategories II DtoOpenFiles II [toFileHandles II
—'I DtoLicensetdar (2) Dtosetings m CtokeeClierts CtoMkdeClientHandles
T T —II
T T
——| DtoE nginelnformation @
CtoSal Clients II
[toSelectiontems
—'| DtaComm3tst |—>| DtoProtocolStats ’:I

CtoDatabase
DtoDictionary

DtaTables I

CtoColumns II
Ctolndexes I

DtoSegments I

Key:
(Z) =DTOD2 Only

The DTO object tree contains three main branches, logically grouping objects for Configuration,
Monitor and Catalog.

DTO Versions

The following table shows usage information regarding the two versions of DTO:

Item DTO2 DTO1

x86 x64 x86
DLL name DTO2.DLL w64DTO2.DLL DTO.DLL
Library DTOLib2 DTOLib
ProgID of DtoSession DTO.DtoSession.2 DTO.DtoSession. 1
ProgID of DtoDatabase DTO.DtoDatabase.2 DTO.DtoDatabase.1
ProgID of DtoDictionary DTO.DtoDictionary.2 DTO.DtoDictionary. 1

DTO2

A new DLL was released with Zen V8 SDK that added objects and new properties to existing
objects. In order to maintain backward compatibility, a new DLL was created instead of adding
this to the previous DTO.DLL. Both are installed and registered with Zen SDK and you can use
either one to develop DTO applications. Using the previous DTO.DLL may be important to you if
you cannot recompile your application to use the new DLL. However, if you continue to use the
previous DTO.DLL, you cannot use the new objects or some new properties that were added to
existing objects. DTO2.DLL supports 32-bit development environments, including the .NET
framework.

W64DTO2

The Zen v11 SP1 SDK added 64-bit support for 64-bit environments, including the .NET
framework.

In order to utilize DTO for 64-bit applications, you will need to install the 64-bit server or client
with your 64-bit application. Installing the 64-bit server or client installs the 64-bit version
(W64DTO2.DLL), whereas installing the 32-bit server or client installs the 32-bit version
(DTO2.DLL or DTO.DLL), as described in the previous table.

Understanding How Applications and DLLs Interact

To better understand how applications and DLLs interact, we will examine the following
scenarios.

Assuming we have the following three DLLs:
« DTO.DLL

« DTO2.DLL

« W64DTO2.DLL

And the following application executables:
« ANYCPU.EXE

+ X86.EXE

* X64.EXE

The following tables illustrate the results when you try and run the application executables and
DLLs together, on 32- and 64-bit machines.

32-bit Machine Process

Application Runs as DTO.DLL. DTO2.DLL W64DTO2.DLL
Executable
ANYCPU.EXE 32-bit process Loads Loads BadlmageFormat
Exception
X86.EXE 32-bit process Loads Loads BadlmageFormat
Exception
X64.EXE BadImageFormat Exception
64-bit Machine Process
Application Runs as DTO.DLL DTO2.DLL W64DTO2.DLL
Executable
ANYCPU.EXE 64-bit process BadlmageFormat BadlmageFormat Loads
Exception Exception
X86.EXE 32-bit process Loads Loads BadImageFormat
Exception
X64.EXE 64-bit process BadlmageFormat BadlmageFormat Loads
Exception Exception

Getting Started with DTO

This topic describes how to set up DTO for use in Visual Basic, Active Server Pages (ASP), and
Delphi.

* Visual Basic
» Active Server Pages

* Delphi

Visual Basic

Since DTO is a library of dual interface COM objects, there are two ways of working with these
objects in Visual Basic. If you are using Active Server Pages, you must use the second method.
The first and preferred method is to add the type library to the project. This method allows VB to
do type checking and provides the developer with useful drop down options for object creation
and function parameters (Intellisense).

The other method is to use the CreateObject function. This creates objects at run time and
therefore lacks type checking and the Intellisense feature.

Adding a Reference to DTO to a Project
To add the Distributed Tuning Library to a Visual Basic project:
1. Select References from the Project menu.

2. Scroll through the available entries and select the Pervasive Distributed Tuning Library 1.0
or Pervasive Distributed Tuning Library 2.0 check boxes. For more information on the
difference, see DTO2.

3. Click OK.

VB is now aware of all the objects included in DTO. All the objects are now browsable. To view
the available objects:

1. Select Object Browser from the View menu. Alternatively, you can press F2.

2. Select DTOLib or DTOLib2 from the list of available libraries depending if you want DTO
Version 1 or 2, respectively. For more information on the difference, see DTO?2.

Using the CreateObject Function

You need to use this method when instantiating an object with ASP. The CreateObject syntax
looks like this:

Dim my_session as Object

' For DTO Version 2

Set my_session = CreateObject("DTO.DtoSession.2")
' or use DTO Version 1 for compatibility with

' previous DTO applications

Set my_session = CreateObject("DTO.DtoSession.1")

Most of the DTO objects can later be obtained from the session object.

Active Server Pages
There is no special initialization required to use DTO with ASP. However, note the following:

ASP by default does not save state information between calls. You will need to use the Microsoft
IIS built-in Session object to preserve object references and variable state.

For example, to initialize a DtoSession object with DTO Version 2:

Set Session("my_session") = Server.CreateObject("DTO.DtoSession.2")

Delphi

COM objects in Delphi are used in two ways. As with Visual Basic, the first and preferred setup
method is to import the type library into the Delphi project. The other method allows COM
interfaces to be called directly by using CreateOleObject function. This function will instantiate a
single instance of an Automation object.

Importing the DTO Type Library into a Delphi project
In order to import the type library and generate the necessary Pascal declarations:
1. Select Project | Import Type Library.

2. The Import Type Library dialog box displays the type libraries registered on the system.
Choose Pervasive Distributed Tuning Library 1.0 or Pervasive Distributed Tuning
Library 2.0

3. Enter a location of pascal unit in Unit directory name and press Create Unit. The file
DTOLib_TLB.pas or DTOLib2 TLB.pasfile will be created and included in the project,
depending on whether you use DTO version 1 or 2.

4. Then include the generated pascal unit to the main file by including the following line:

uses DTOLib2_TLB; // Dto Version 2
uses DTOLib_TLB; // Dto Version 1

Example of Using Pascal Declarations

var
Result:DTOResult;
Session:DTOSession;
MySettings:DTOSettings;
MyCategories:DTOCategories;
MyCategory:DTOCategory;
i:integer;
begin
Session:=CoDTOSession.Create;
Result:=Session.Connect
('ServerName', 'UserName', 'Password');
MyCategories:=Session.Categories;
for i:=1 to MyCategories.Count do
MyCategory:=MyCategories.Item[i];
end;

Example of Using Direct COM Calls

Example:

var
Session, Categories, Category: Variant;
I: Integer;

begin
Session := CreateOleObject('DTO.DtoSession');
Session.Connect('ServerName', 'UserName', 'Password');
Categories := Session.Categories;
for I := 1 to Categories.Count do
Category := Categories.Item[I];

end;

DTO Object Summary

The Distributed Tuning Objects Reference is divided into three chapters by functional grouping.
The objects in each chapter are listed in this section.

Connection Object

DtoSession

The DtoSession object is the core of DTO. It is through the DtoSession object that an application
connects to Zen servers. A DTO application creates a DtoSession object and uses the Connect
method when a session is required on a specific database server.

Configuration Objects

DtoCategory

Object DtoCategory and collection DtoCategories group database engine settings and allow the
user further access to the DtoSetting objects.

DtoSetting

Object DtoSetting and collection DtoSettings expose the specific settings for the database
engines, the communication managers, and the local requester components and allow the user to
change these settings. Each category typically exposes a collection of settings.

DtoSelectionltem

Object DtoSelectionItem and collection DtoSelectionItems contain the full range of items in a
setting where selection is allowed. DtoSetting. AllPossibleSelections returns a collection of all
possible values for a given setting.

DtoServices

Object DtoServices allows the user to start and stop Zen database services, and to query the
current status of a service.

DtoLicenseMgr

Object DtoLicenseMgr (DTO?2) allows for adding and removing licenses, as well as viewing
product information .

Monitoring Objects

DtoMonitor

Object DtoMonitor allows the user to retrieve real-time status information of the database
engine and other related services.

Also exposed in DtoMonitor object is information about resource usage such as current, peak, and
maximum settings for file handles, open files, and licenses. A peak value is the maximum value
since the last engine restart.

DtoOpenfFile

Object DtoOpenFile and collection DtoOpenFiles contain information about active files. This
allows user to monitor file access by determining how many files are open, what users have them
open, and other related information.

DtoFileHandle

Object DtoFileHandle and collection DtoFileHandles expose user name/agent ID, connection,
task, site, network address, open mode, record lock type, wait state, and transaction state.

DtoMkdeClient

Object DtoMkdeClient and collection DtoMkdeClients expose the information about active
clients. For a particular client, you can query to see if there is an active session of that client and if
so, get data about that session and optionally terminate the client.

DtoMkdeClientHandle

Object DtoMkdeClientHandle and collection DtoMkdeClientHandles expose handle
information, including the name and associated information for each file.

DtoMkdeVersion

Object DtoMkdeVersion (DTO2) exposes the major and minor version, build number, and target
operating system of the Zen engine.

DtoEnginelnformation

Object DtoEnginelnformation (DTO2) exposes the major and minor version, DTI API version,
and other server and client information.

DtoSqlClient

Object DtoSqlClient and collection DtoSqlClients expose the information about active SQL
users such as count and list of active SQL users, and detail information about each client.

DtoCommStat

Object DtoCommStat exposes the communication statistics. You can query the current, peak,
and maximum values where appropriate.

DtoProtocolStat

Object DtoProtocolStat and collection DtoProtocolStats expose information regarding each
network protocol running on a server.

Database and Dictionary Objects

DtoDatabase

Object DtoDatabase and collection DtoDatabases are responsible for managing the database
catalog information, such as database name, database flags, security, and table definitions.

DtoDSN

Object DtoDSN and collection DtoDSNs represent the Zen DSNs on your server. They can be
used to create new DSNs and to manage existing Zen ODBC DSNis.

DtoDictionary (deprecated)

Object DtoDictionary is the root object for all of the operations affecting dictionary files. Use
this object to open a dictionary, create a dictionary, get table information add a table or drop a
table.

The preferred method of accessing the Tables collection is using the DtoDatabase object.

DtoTable

Object DtoTable and collection DtoTables are responsible for managing the table information,
such as name, columns, and indexes.

DtoColumn

Object DtoColumn and collection DtoColumns are responsible for managing the information
about the columns.

Dtolndex

Object DtoIndex and collection DtoIndexes expose the indexes defined for a table.

DtoSegment

Object DtoSegment and collection DtoSegments contain information on the segments of a given

index for a table.

Working with DTO Collections

Collections are objects that contain other objects.

Instantiating a Collection

Visual Basic

Use the Set keyword to set a variable to the collection object.

Dim result as DtoResult

Dim my_session as New DtoSession

Dim my_databases as DtoDatabases

result = my_session.Connect("myserver", "username", "pw")
if not(result=0) Then

' error handling for Connect method

end if

' Use Set when an object or collection
' is the return type

Set my_databases = my_session.Databases

ASP

When using ASP, you normally need to instantiate only two objects directly: DtoSession and
DtoDictionary. Instantiating an object with Active Server Pages uses the Create Object syntax on
the built-in Server object of 1IS.

Set my_session = Server.CreateObject("DTO.DtoSession.2")

Note: If you want the object to exist between HTTP calls, you must use the IIS built-in object
Session to maintain the object state, as shown in the following example.

Set Session("my_session") = Server.CreateObject("DTO.DtoSession.2")

However, if you create new objects, such as databases, DSNs, tables, columns, indexes, or
segments, you use this same syntax. The progid for each object follows the convention shown in
the preceding example.

For other collections, you can use the Set syntax documented previously for Visual Basic.

Looping through a Collection

Visual Basic

There are two ways to loop through collections in Visual Basic: using a For loop and using a
counter.

The following shows the Visual Basic syntax to loop through a collection using a For/Next
statement.

obtain categories collection

Dim my_categories as DtoCategories

Dim category as DtoCategory

Set my_categories = my_session.Categories

' loop through collection

For Each category In my_categories
settings = category.Settings

Next

The following shows the Visual Basic syntax to loop through a collection using a counter.

Dim column as DtoColumn
Dim table as DtoTable
Set table = dictionary.Tables("Billing")
Dim i as long
for i=1 to table.Columns.count

set column=table.Columns(i)

'perform operations with this column
next i

ASP

Here is sample ASP code that displays a list of categories for Zen configuration:

<%

Set Session("my_session") = Server.CreateObject("DTO.DtoSession.2")
result = Session("my_session").Connect("myserver", "username", "pw")
' Error handling for Connect method not shown

Set my_categories = Session("my_session").Categories
' Now loop through and print categories in a unordered HTML list ()
%>

<% For each category in my_categories %>

<% ' The = (equal) sign displays the variable %>
<% ' in the HTML stream and is a short cut %>
<% ' for the Response.Write() built-in %>

<% ' VBScript method. %>

<%=cat.CategoryId> - <%=cat.Name%></1li>

<% Next %>

Obtaining Number of Members

Visual Basic

Use the Count property to determine the number of objects in the collection.

Dim num_items as Integer

Dim my_session as New DtoSession

Dim result as DtoResult

result = my_session.Connect("myserver", "username",

pw")

' Error handling for Connect method not shown
Set my_databases = my_session.Databases
num_items = my_databases.Count

ASP

Use the Count property to determine the number of objects in the collection.

<%

Set Session("my_session") = Server.CreateObject("DTO.DtoSession.2")
result = Session("my_session").Connect("myserver", "username", "pw")
' Error handling for Connect method not shown

Set my_databases = Session("my_session").Databases

num_items = my_databases.Count

' Now write output to HTML stream

Response.Write("<p>Number of databases = " & num_items)

%>

Obtaining a Specific Member

Visual Basic and ASP

Use the Item property to obtain a specific member object of a collection.

Elements within collections can be accessed using their ordinals. Some collections support
accessing elements using the element's unique property, such as name. All ordinals are 1-based.

Since Item is a default property of the collection object, the following two statements are
identical:

Collection.Item(index)
Collection(index)

Where to Find DTO Samples

The Zen SDK includes a complete DTO sample written in Visual Basic. This sample is included
in your SDK installation of samples and header files at the following location.

The SDK components, code snippets, and samples are available on the Actian website.
For default locations of Zen files, see Where are the files installed? in Getting Started with Zen.

Also look at the Actian website for other developer information and resources pertaining to the
DTO access method.

Establishing a DTO Session

This topic provides information about establishing a session using the Distributed Tuning
Objects:

* DtoSession Object

15

DtoSession Object

Object DtoSession is the root object for most DTO operations. It represents and manages a
connection to a Zen database engine.

Properties

Connected Returns a Boolean indicating whether the Session object is connected to the Zen engine.
True = connected

False = not connected

Error Returns error of the last method call. Pass the result of the method call and a dtoResult
string will be returned that explains the error. See DtoResult for a listing of these error
codes.

ServerName Gets or sets the server name of a DtoSession object.

UserName Sets the user name for an object.

Password Sets the password for a session.

Collections
DtoCategories Collection
DtoDatabases Collection

DtoDSNs Collection

Objects
DtoMonitor Object
DtoServices Object
DtoLicenseMgr Object

DtoEnginelnformation Object

Methods

Connect method
Disconnect method

GetSetting method

Remarks

A DtoSession object is the starting point for all operations except dictionaries. You use
DtoSession to make connection to servers, obtain configuration information such as categories
and settings, explore databases and DSNs, and to monitor Zen usage information.

To use DtoSession, first instantiate your object and use the Connect method to specify a server for
the session object.

The user name and password you use for the session connect is for the machine only. This does
not authenticate you to any Zen database.

Note: If instantiating this object using ASP or if you use the CreateObject method in Visual
Basic, the progid of DtoSession is "DTO.DtoSession.2" (DTO version 2) or “DTO.DtoSession.1”
(DTO version 1). See DTO2 for information on the differences between the two versions.

Example

' instantiate session object

Dim my_session as New DtoSession
' connect to a server

result = my_session.Connect("myserver", "username", "password")
' check for good connection using the Error property

if Not (result = Dto_Success)

Then Msgbox"Could not connect to the server. Error was "+ my_session.Error(result)
' now use your session object to obtain
' category and database collections

Dim my_categories as DtoCategories

Dim my_databases as DtoDatabases

Set my_categories = my_session.Categories
Set my_databases = my_session.Databases

17

See Also

DtoCategories Collection
DtoServices Object
DtoMonitor Object
DtoDatabases Collection

DtoDSNs Collection

Methods Detail

Connect method

Open a connection to a server.

Syntax

Dim result as DtoResult
result = Object.Connect([server], [username], [password])

Arguments

Object DtoSession object

server (optional) Name of the server to which you want to connect. If omitted, an attempt to
connect to the local server is made. You can also first set the ServerName property and
call the method without specifying this parameter.

username (optional) User name for the server. You can also first set the UserName property and
call the method without specifying this parameter.

password (optional) Password for the user. You can also first set the Password property and call

the method without specifying this parameter.

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
to obtain a description for the result.

Remarks

Since connections to servers can fail for a variety of reasons, be sure to check the return value for
this method and take appropriate action programmatically.

If user name and password are not specified, an attempt will be made to login as a guest. If such
an attempt is successful, some functionality will not be available.

Check the isConnected property in order to see whether the session is currently connected.

Examples

Dim result as DtoResult
Dim my_session as New DtoSession
result = my_session.Connect("myserver", "smook", "1234")

Dim result as DtoResult

Dim my_session as New DtoSession
my_session.UserName="smook"
my_session.Password="1234"

my_session.ServerName="myserver"
result = my_session.Connect

Disconnect method

End a connection to a server.

Syntax

result = Object.Disconnect

Arguments

Object DtoSession object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
to obtain a description for the result.

Remarks

This method should be called for every server to which you are connected prior to using the
session object to connect to another server, or exiting the application.

Example

Dim result as DtoResult

Dim my_session as New DtoSession
result = my_session.Connect("myserver", "username",
'

pw")

' perform operations here

result = my_session.Disconnect

GetSetting method

Obtains a DtoSetting object using a setting id.

Syntax

Set my_setting = Object.GetSetting(setting id)

Arguments

Object DtoSession object

setting id A valid setting id. Each DtoSetting object has a property SettingID that uniquely
identifies it. If you are trying to obtain all settings for a particular category, use the
Settings property of the DtoCategory Object. This method is useful if you already know
a particular setting you wish to obtain and you have previously stored its setting_id.

Return Values

my_setting DtoSetting object. If the given setting cannot be found, NULL is returned.

Remarks

This method is useful for obtaining a specific setting without having to first obtain a category and
then searching through a DtoSettings collection.

Example

Dim oSession As New DtoSession
Dim Result As dtoResult
Result = oSession.Connect("localhost", "", "")

Dim oSetting As DtoSetting

Dim settingFileversion As Integer

settingFileversion = 97

Set oSetting = oSession.GetSetting(settingFileversion)

If oSetting Is Nothing Then

MsgBox "Invalid setting"

Else

Dim new_selections As New DtoSelectionItems

' =9.5"'1 =9.0 '2=8.x '3=7.x"'4=6.x"'5-=13.0
'These are file format values

20

new_selections.Add oSetting.AllPossibleSelections.GetByID(®)
oSetting.Value = new_selections
End If

22

Configuring Zen Servers with DTO

The following topics provide information about the objects that comprise the configuration group

of the Distributed Tuning Objects:

DtoCategories Collection
DtoCategory Object
DtoLicenseMgr Object
DtoSettings Collection
DtoSetting Object
DtoSelectionltems Collection
DtoSelectionltem Object
DtoServices Object

23

DtoCategories Collection

This object is a collection of DtoCategory objects representing all the setting categories available
for a particular DtoSession object.

Properties

Count Returns number of members in a collection.

Item Returns a specific member of a collection.

Methods

None

Remarks
This collection allows retrieving individual items by passing a 1-based ordinal.

Use the Count property to find the number of members in the collection.

num_categories = my_categories.Count

Use the Item property to retrieve the one-based index of a collection.

Set first_item = my_categories(1)

Example

' instantiate session object and connect to server

Dim my_session as new DtoSession

Dim result as DtoResult

result = my_session.Connect("myserver", "username", "password")

' now obtain categories collection
Dim my_categories as DtoCategories
Set my_categories = my_session.Categories

See Also
DtoCategory Object

DtoSession Object

24

DtoCategory Object

This object allows you to perform operations on a particular category from a DtoCategories
collection.

Properties
CategorylD Returns unique category ID for a DtoCategory.
Name Returns name of the category
Session Returns session of the category
Collections

DtoSettings Collection

Methods

None

Remarks

To get a list of settings for a category, use the Settings property to return a DtoSettings collection.

You can then use the DtoSetting objects contained therein to obtain information relating to a
particular setting.

Example

' instantiate session object and connect to server

Dim my_session as new DtoSession

Dim result as DtoResult

Dim category as DtoCategory

Dim my_categories as DtoCategories

Dim settings as DtoSettings

result = my_session.Connect("myserver", "username", "password")
' now obtain categories collection

Set my_categories = my_session.Categories

' loop through collection

For Each category In my_categories
Set settings = category.Settings

Next

25

See Also

DtoCategories Collection

DtoSession Object

26

DtoLicenseMgr Object

DTO2 only: This object allows you to authorize and deauthorize product licenses, initiate a
license validation action, and retrieve an XML string of product information.

Properties

None

Collections

None

Methods

AddLicense
DeleteLicense
GetProductInfo

ValidateLicenses

Remarks

Obtain from Session object

Example

' instantiate session object and connect to server
Dim my_session as new DtoSession

Dim result as DtoResult

Dim my_licmgr as DtolLicenseMgr

result = my_session.Connect("myserver", "username", "password")

now obtain License Manager object
Set my_licmgr = my_session.LicenseMgr

' Add a license

result = my_licmgr.AddLicense(“ERXVD3U4ZS9KR94QPDHV5BN2”)

See Also

DtoSession Object

Methods Detail

AddLicense

Authorizes a license.

Syntax

result = LicenseManager.AddLicense(License)

Arguments
LicenseManager DtoLicenseMgr object
License A valid license key to authorize on the engine you are currently connected to

with a DtoSession object.

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property of
the DtoSession Object to obtain a description for the result.

Example

' instantiate session object and connect to server

Dim my_session as new DtoSession

Dim result as DtoResult

Dim my_licmgr as DtolLicenseMgr

result = my_session.Connect("myserver", "username", "password")

now obtain License Manager object
Set my_licmgr = my_session.LicenseMgr

' Add a license

result = my_licmgr.AddLicense(“ERXVD3U4ZS9KR94QPDHV5BN2”’)

DeleteLicense

Deauthorizes a license.

28

Syntax

result = LicenseManager.DeletelLicense(License)

Arguments

LicenseManager DtoLicenseMgr object

License A valid license key to deauthorize from the engine you are currently connected to
with a DtoSession object.

Return Values

result DtoResult long value indicating the result of the method call. Use the Error
property of the DtoSession Object to obtain a description for the result.

Remarks

None

Example

' instantiate session object and connect to server

Dim my_session as new DtoSession

Dim result as DtoResult

Dim my_licmgr as DtolLicenseMgr

result = my_session.Connect("myserver", "username", "password")

now obtain License Manager object
Set my_licmgr = my_session.LicenseMgr

Delete a license

result = my_licmgr.DeleteLicense(“ERXVD3U4ZS9KR94QPDHV5BN2”)

GetProductinfo

Retrieves a list of all Zen products found by the License Manager.

Syntax

result = LicenseManager.GetProductInfo

Arguments

LicenseManager DtoLicenseMgr object

29

Return Values

result Returns a list of products, in an XML formatted string.

Remarks

For information about the XML formatted string, see Remarks for PvGetProductsInfo() in
Distributed Tuning Interface Guide.

Example

' instantiate session object and connect to server
Dim session As New DtoSession

Set session = New DtoSession

Dim result As dtoResult

result = session.Connect("server", "user", "password")

If result <> Dto_Success Then

MsgBox "Error on connect." & CStr(result)
Exit Sub

End If

Dim xmlstring As String

xmlstring = session.LicenseMgr.GetProductInfo
RichTextBox1.TextRTF = xmlstring

ValidateLicenses

Initiates a check of the validity of all keys on the computer specified by the session connection.

Syntax

result = LicenseManager.ValidatelLicenses

Arguments

LicenseManager DtoLicenseMgr object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error
property of the DtoSession Object to obtain a description for the result.

Remarks

ValidateLicenses returns only the result from requesting a validation check. It does not return any
information about the state of the keys. You must separately call GetProductInfo to get the XML
string of product information that includes information about the state of the keys.

30

Example

instantiate session object and connect to server
Dim my_session as new DtoSession
Dim result as DtoResult
Dim my_licmgr as DtolLicenseMgr

result

my_session.Connect("myserver", "username", "password")

' now obtain License Manager object
Set my_licmgr = my_session.LicenseMgr

result

initiate a validation check of all keys

my_licmgr.ValidatelLicenses

DtoSettings Collection

This collection contains DtoSetting objects which represent all the settings for a particular
DtoCategory object.

Properties

Count Returns number of members in a collection.

Item Returns a specific member of a collection.

Methods

None

Remarks

Use the Count property to find the number of members in the collection.

This collection allows retrieving individual items by passing a variant containing either the 1-
based ordinal or the setting name.

Note: Individual settings can also be obtained using the GetSetting method of DtoSession
Object, thus saving a loop through the categories and settings.

Example

Dim my_categories as DtoCategories
Set my_categories = my_session.Categories

Dim my_settings as DtoSettings

Dim first_setting as DtoSetting

Set my_settings = my_categories.Settings
Set first_setting = my_settings(1)

See Also

DtoCategories Collection

DtoCategory Object

32

DtoSetting Object

This object represents a configuration setting.

33

Properties

AllPossibleSelections

Returns DtoSelectionltems Collection or DtoSelectionltem Object
representing all the possible items in a single or multiple type setting.
This property is only valid for a setting with property Type of
'dtoSingleSelection' or 'dtoMultiSelection', which corresponds to property
TypeNames of 'Single Selection' and 'Multiple Selection'.

Category Returns DtoCategory object associated with this setting.

DefaultValue Returns default value for the setting.
The returned value is a variant based on the Type of the setting.
A Type of Single selection returns a DtoSelectionltem object.
A Type of Multiple selection returns a DtoSelectionltems collection.

Factor Returns factor value of the setting.
For example, many settings are stored by Zen in bytes, but for the purpose of
changing the setting the user might input a value in kilobytes.
If a setting returned 16384 for the Value property and the Factor property
returned 1024, your program should divide 16384 by 1024 and return 16 to the
user. Then query the FactorString property to get the new units. In this case, it
would be kilobytes.
Before setting the Value property , you should multiply the user-supplied
value by Factor.

FactorString Returns units for the Value property adjusted for the Factor property. For
example, if the UnitString property returns "bytes," the FactorString property
will return "kbytes," and Factor property will return "1024".

FalseString Returns false value for a Boolean type setting.
This property is only valid for a Boolean type setting. Use the Type property
to determine if the setting is Boolean.

Help Returns help text associated with a setting.

IsClient Returns a Boolean of whether the setting is applicable to Zen Client or

Enterprise Server.
True = Client

False = Server

34

Max

Returns maximum value of a Long type setting.

This property is only valid for a Long type setting. Use the Type property to
determine if the setting is Long.

If this property returns a negative number, interpret it as follows:
/* Maximum valid memory or disk size */P. MAX MEM DISK SIZE -129

/* Maximum size limited by available disk space */
P MAX LIMITED BY DISK -2

/* Maximum size limited by available memory */
P MAX LIMITED BY MEMORY -1

Min

Returns minimum value of a Long type setting.

This property is only valid for a Long type setting. Use the Type property to
determine if the setting is Long.

This property returns -1 if the property is not applicable.

Name

Returns name of the setting.

Rank

Returns rank of a setting. The rank groups settings according to whether they
apply to advanced users only.

0 = Normal
1 = Advanced

Session

Returns session associated with this object.

SettingID

Returns unique identifier for a setting.

TrueString

Returns true value for a Boolean type setting.

This property is only valid for a Boolean type setting. Use the Type property
to determine if the setting is Boolean.

Type

Returns setting type (Setting Type enumeration)
0 = Boolean

1 =Long

2 = String

3 = Single selection

4 = Multiple selection

TypeName

Returns setting type in string form
Boolean

Long

String

Single selection

Multiple selection

35

UnitString

Returns measure of a long type setting.
For example: seconds, bytes

To adjust the Value for a more user-friendly range of values, use the Factor
and FactorString properties.

Value

Gets or sets the value of a setting.

The returned value is a variant based on the Type of the setting.

A Type of Single selection returns a DtoSelectionltem object.

A Type of Multiple selection returns a DtoSelectionltems collection.

When setting this property for a Long type setting, check to see that the value
is within the limits for the particular setting by querying the Min and Max
properties.

Collections

DtoSelectionltems Collection

Methods

None

Remarks

Use the Type property to find the type of the setting. Note that, depending on the type:

» The properties TrueString and FalseString apply to Boolean type settings (0) only.

» The properties Factor, FactorString, Max, Min, and UnitString apply to Long type settings

(1) only.

Example

Set my_settings = my_category.Settings
Set first_setting = my_settings(1)

See Also

DtoCategories Collection

DtoCategory Object

36

DtoSelectionltems Collection

A collection of DtoSelectionltem objects representing the possible values of a selection type

setting.

Properties

Count Returns number of members in a collection.

Item Returns a specific member of a collection.

Methods
Add method
GetByld method

Remove method

Remarks

The property AllPossibleSelections of object DtoSetting Object returns the DtoSelectionItems

collection.

Use the Count property to find the number of members in the collection.

Example

Set first_setting = my_settings(1)

type = first_setting.Type

' only call this for selection type settings
' see Setting Type enumeration

' for a list of setting types

if (type = dtoSingleSel) OR (type = dtoMultiSel)
Set all_the_selections = first_setting.AllPossibleSelections

See Also

DtoCategories Collection

DtoSetting Object

37

Methods Detail

Add method

Add an item to a DtoSelectionltems collection.

Syntax

result = Collection.Add(Object)

Arguments
Collection DtoSelectionltems Collection to which to add object.
Object A DtoSelectionltem object that you want to add.

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

Remarks

This method takes a parameter of type DtoSelectionltem. Therefore, you are responsible for first
instantiating the object and setting its properties before adding it to the collection.

Example

Dim Result As dtoResult
Dim Session As New DtoSession
Result = Session.Connect("nik-ntws", "", "")
Dim my_setting As DtoSetting
Dim SetID As Long
SetID = 26
Set my_setting = Session.GetSetting(SetID)
If my_setting Is Nothing Then
MsgBox " Setting is wrong"
Exit Sub
End If

' Start to assign new values:

' Add Item with ItemID 1

new_selections.Add my_setting.AllPossibleSelections.Item(1)
' TCP

my_setting.Value = new_selections

38

GetByld method

Returns a DtoSelectionltem object from a DtoSelectionltems collection given an id.

Syntax

my_selection_item = Collection.GetById(id)

Arguments
Collection DtoSelectionltems collection
id The id of the item you wish to retrieve from the collection. The id for a particular
selection item can be obtained with the ItemlId property of the DtoSelectionltem
object.

Return Values

my_selection_item DtoSelectionltem Object corresponding to id.

Example

Dim Result As DtoResult
Dim Session As New DtoSession
Result = Session.Connect("nik-ntws", "", "")
Dim my_setting As DtoSetting
Dim SetID As Long
SetID = 26
Set my_setting = Session.GetSetting(SetID)
If my_setting Is Nothing Then
MsgBox " Setting is wrong"
Exit Sub
End If

Dim new_selections As New DtoSelectionItems
new_selections.Add my_setting.AllPossibleSelections.GetByID(3) 'Microsoft TCP/IP

my_setting.Value = new_selections

Remove method

Removes an item from a DtoSelectionltems collection

Syntax

result = Collection.Remove(item)

39

Arguments

Collection DtoSelectionltems collection

item Variant that can contain the index (starting with 1) of the item you wish to remove
from the collection or the name of the selection item.

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

Remarks

This method takes a parameter of type DtoSelectionltem

Example

Dim Result As DtoResult
Dim Session As New DtoSession
Result = Session.Connect("nik-ntws", "", "")
Dim my_setting As DtoSetting
Dim SetID As Long
SetID = 26
Set my_setting = Session.GetSetting(SetID)
If my_setting Is Nothing Then
MsgBox " Setting is wrong"
Exit Sub
End If

Dim new_selections As New DtoSelectionItems
new_selections.Add my_setting.AllPossibleSelections.GetByID(3) ''Microsoft TCP/IP
new_selections.Remove(1)

my_setting.Value = new_selections

40

DtoSelectionltem Object

An object representing a possible value of a selection type setting.

Properties

ItemID Returns unique ID of a selection item.

Setting Returns setting to which this selection item applies.

String Returns value of a selection item.

Methods

None

Remarks

The AllPossibleSelections property of the DtoSetting Object returns the DtoSelectionltems
collection.

Example

Set first_setting = my_settings.Item(1)

Dim type as dtoSettingType
type = first_setting.Type

' only call this for selection type settings
' see Setting Type enumeration
' for a list of setting types

if (type = dtoSingleSel) OR (type = dtoMultiSel) then

Dim all_the_selections as DtoSelectionItems

Dim selection as DtoSelectionitem

Set all_the_selections = first_setting.AllPossibleSelections

Dim String_text as String

For each selection in all_the_selections
String_text = selection.String

Next

See Also

DtoSelectionltems Collection
DtoSetting Object

DtoServices Object

This object is a collection of DtoService objects, representing the Zen services running on the
server.

Properties
Status Returns status of a service. You must pass the service of which you want the
status:
dtoServiceTransactional
dtoServiceRelational
dtoServicelDS
StatusString Returns string representation of the current status.
Methods

RestartAllServices method
StartRelational method
StartTransactional method
StopRelational method
StopTransactional method
StartDXAgent
StartDXReplication
StopDXAgent

StopDXReplication

Remarks

The methods of DtoServices control the Zen engine services running on the machine you
connected to with the DtoSession object. All these methods return the enumeration DtoResult.

This object lets you start and stop the Zen engine services running on Windows platforms. Also,
you can query the current status of Zen services using the Status or StatusString properties.

42

Security Information Regarding DtoServices Object

This object uses the same user name and password as the DtoSession object to connect to a
Windows server.

When using the methods of this object from a web application hosted by Microsoft Internet
Information Service (IIS), you must set properties on the directory where the DTO web
application resides so that IIS allows DTO to run in the same process as the IIS service.
Otherwise, you can obtain the current state of the services, but using the start or stop methods
returns DTO error 431 (access denied). To set the IIS folder properties needed for the methods
of the DTO Services object, perform the following procedure on folders where DTO web
applications are located. See the Microsoft IIS documentation for more information on IIS
configuration.

To configure IIS to allow starting and stopping of services from a DTO web application

1.
2.

Click Start, select Settings and point to Control Panel.
Double-click Administrative Tools.

Double-click Internet Service Manager.

Browse to the folder containing your DTO ASP application.
Right-click the folder in the left pane and select Properties.
Click the Directory tab.

Specify Low (IIS Process) in the Application Protection field in the dialog for IIS directory
properties for DTO Services Methods.

webpzgl Properties K E3

Directory | Documentsl Directory Securityl HTTF Headersl Cuistom Errorsl
‘wihen connecting ta this resource, the content should come from:
& The designated directory
€01 &5 shiare [aeated aranother computes
4 redirection to a URL

Local Path: wwebpsgl

¥ Script source access V' Log visits

¥ Read ¥ Irdes this resource
™ white

™ Directary browsing

Application Settings

Application name: Iwebpsql Remove |
Starting point: <Default Web Site> \webpsgl

Configuratian... |
E=ecute Permissions: IScriptS and Executables j

Application Protection !Low (5 Process) ; 'l Urilad |

43

Examples

This example connects to a server and restarts
' Zen services.

Dim my_session as new DtoSession
Dim my_services as DtoServices
Dim result as DtoResult

result = my_session.Connect("myserver", "username", "password")

Set my_services = my_session.Services
result = my_services.RestartAllServices

This example connects to a server and starts the

' DataExchange (DX) Agent service and the DX replication

' service.

Dim my_session as new DtoSession

Dim my_services as DtoServices

Dim resultl as DtoResult

Dim result2 as DtoResult

result = my_session.Connect("myserver", "username", "password")
Set my_services = my_session.Services

resultl = my_services.StartDXReplication
result2 = my_services.StartDXAgent

See Also

DtoSession Object

DtoSetting Object

Methods Detail

RestartAllServices method

Stops and then restarts the services for transactional, relational, DataExchange (DX) agent, and
DX replication.

Syntax

result = Services.RestartAllServices

Arguments

Services DtoServices object

44

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

StartRelational method

Starts the Relational service. As of Zen v14, this is the same as the StartTransactional method.

Syntax

result = Services.StartRelational

Arguments

Services DtoServices object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

StartTransactional method

Starts the Btrieve transactional engine service. As of Zen v14, this is the same as the
StartRelational method.

Syntax

result = Services.StartTransactional

Arguments

Services DtoServices object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

45

StopRelational method

Stops the Relational engine service. As of Zen v14, this is the same as the StopTransactional
method.

Syntax

result = Services.StopRelational

Arguments

Services DtoServices object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

StopTransactional method

Stops the Btrieve transactional engine service. As of Zen v14, this is the same as the
StopRelational method.

Syntax

result = Services.StopTransactional

Arguments

Services DtoServices object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

StartDXAgent

Starts the DataExchange (DX) agent service. The DX agent is a component that detects critical
replication failures and notifies administrators by e-mail. See DataExchange documentation for
more information.

46

You can start the DX agent service before the DX replication service, but the agent returns a
message informing you that replication is stopped. This is expected behavior because the
replication service is not yet running.

Syntax

result = Services.StartDXAgent

Arguments

Services DtoServices object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

StartDXReplication

Starts the DataExchange (DX) replication service (the Replication Engine). The Replication
Engine captures and shares changes from one Zen database to other databases in a DataExchange
replication network. See DataExchange documentation for more information.

Starting the replication service also starts the transactional and the relational services.
Syntax
result = Services.StartDXReplication

Arguments

Services DtoServices object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error
property of the DtoSession Object to obtain a description for the result.

47

StopDXAgent

Stops the DataExchange (DX) agent service. The DX agent is a component that detects critical
replication failures and notifies administrators by email. See DataExchange documentation for
more information.

Syntax

result = Services.StopDXAgent

Arguments

Services DtoServices object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

StopDXReplication

Stops the DataExchange (DX) Replication Engine. The Replication Engine captures and shares
changes from one Zen database to other databases in a DataExchange replication network. See
DataExchange documentation for more information.

Syntax

result = Services.StopDXReplication

Arguments

Services DtoServices object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

48

Monitoring Zen Servers with DTO

The following topics provide information about the objects that comprise the monitoring group of
the Distributed Tuning Objects:

DtoMonitor Object
DtoOpenFiles Collection
DtoOpenFile Object
DtoFileHandles Collection
DtoFileHandle Object
DtoMkdeClients Collection
DtoMkdeClient Object
DtoMkdeClientHandles Collection
DtoMkdeClientHandle Object
DtoCommStat Object
DtoProtocolStats Collection
DtoProtocolStat Object
DtoSqlClients Collection
DtoSqlClient Object
DtoMkdeVersion Object
DtoEngineInformation Object

49

DtoMonitor Object

This object provides usage information about a Zen server. It is the root object of all other

monitoring operations.

Properties

CurClients Returns current number of clients for a session.

CurFilesInUse Returns current number of files in use for a session.

CurHandlesInUse Returns current number of handles in use for a session.

CurLicensesInUse Returns current number of licenses in use for a session.

CurLicDatalnUseMB Returns current value in megabytes (MB) of data in use. DTO2 only.

CurLocksInUse Returns current number of locks in use for a session.

CurSessionCountInUse Returns current number of sessions in use (current session count). DTO2
only.

CurThreads Returns number of threads for a session.

CurTransInUse Returns current number of open transactions for a session.

EngineUpTimeSecs Returns how long in seconds the database engine has been running. DTO2
only.

MaxClients Returns maximum number of clients for a session.

MaxFiles Returns maximum number of files for a session.

MaxHandles Returns maximum number of handles for a session.

MaxLicenses Returns user license count for a session.

MaxLicDataMB Returns maximum allowed size in megabytes (MB) for data in use (data in
use limit). The hex value OXFFFFFFFF means unlimited. DTO2 only.

MaxSessionCount Returns maximum number of sessions allowed by a license (session count
limit). The hex value OXFFFFFFFF means unlimited. DTO2 only.

MaxThreads Returns maximum number of threads for a session.

MaxTrans Returns maximum number of transactions for a session.

PeakClients Returns highest number of clients for a session

PeakFilesInUse Returns highest number of files in use for a session

PeakHandlesInUse Returns highest number of handles in use for a session

50

PeakLicensesInUse Returns highest number of licenses in use for a session

PeakLicDataInUseMB Returns peak value in megabytes (MB) of concurrent data in use. DTO2
only.

PeakLocksInUse Returns highest number of locks in use for a session

PeakSessionCountlnUse Returns peak number of concurrent sessions in use. DTO2 only.

PeakThreads Returns highest number of threads for a session.
PeakTransInUse Returns highest number of transactions in use for a session.
Collections

DtoMkdeClients Collection
DtoOpenFiles Collection

DtoSqlClients Collection

Objects

DtoCommStat Object
DtoSession Object

DtoMkdeVersion Object

Methods

None

Example

' Instantiate session and connect to server

Dim my_session as new DtoSession

Dim result as DtoResult

result = my_session.Connect("myserver", "username", "password")

' Now get DtoMonitor object from DtoSession
Dim session_monitor as DtoMonitor
Set session_monitor = my_session.Monitor

' Now get current files in use
Dim current_files as long
current_files = session_monitor.CurFilesInUse

See Also
DtoOpenFiles Collection
DtoMkdeClients Collection

DtoMonitor Object

52

DtoOpenFiles Collection

A collection of DtoOpenFile objects representing currently open files.

Properties

Count Returns number of members in a collection.

Item Returns a specific member of a DtoOpenFiles collection.

Methods

None

Remarks

Use the Count property to find the number of members in the collection.

You can obtain a DtoOpenFiles collection through the properties of the DtoMonitor Object object.

Example

' Instantiate session and connect

Dim my_session as new DtoSession

Dim result as DtoResult

result = my_session.Connect("myserver", "username", "password")

' Get monitor from session

Dim my_monitor as DtoMonitor

Set my_monitor = my_session.Monitor
' Now get open files from monitor

Dim my_openfiles as DtoOpenFiles
Set my_openfiles = my_monitor.OpenFiles

See Also

DtoMonitor Object

53

DtoOpenFile Object

An object representing an open file.

Properties
ActiveCursors Returns number of active cursors for an open file.
AFLIndex Returns AFL Index for an open file.
ContinuousOps Returns whether an open file is using continuous operations.
FileName Returns file name associated with an open file.
IsLocked Returns whether an open file is locked.
0 = Not locked
1 = Locked
IsReadOnly Returns whether an open file is read-only.
0 = Not read-only
1 = Read-only
IsTrans Returns whether an open file is in a transaction state .
0=No
1 =Yes
Monitor Returns DtoMonitor object associated with the open file.
OpenMode Returns open mode of the open file.
OpenModeName Returns a text version of OpenMode.
PageSize Returns page size of an open file.
PhysFileSizeKB Returns physical size of the file in kilobytes (KB). DTO2 only.
Referentiallntegrity Returns whether referential integrity is set for an open file.
0=No
1 =Yes
TimeStamp Returns time stamp of an open file.
TTSFlag Reserved for future use.
Methods
None

54

Collections

DtoFileHandles Collection

Remarks

This object represent a currently opened file. For a collection of all open files, use the
DtoOpenFiles Collection.

Example

Dim my_session as new DtoSession
Dim is_read_only as Boolean

Dim my_monitor as DtoMonitor

Dim my_openfiles as DtoOpenFiles
Dim first_file as DtoOpenFile
Dim result as DtoResult

result = my_session.Connect("myserver", "username", "password")
Set my_monitor = my_session.Monitor

Set my_openfiles = my_monitor.OpenFiles

Set first_file = my_openfiles(1)

is_read_only = first_file.IsReadOnly

See Also
DtoOpenFiles Collection

DtoMonitor Object

55

DtoFileHandles Collection

A collection of DtoFileHandle objects representing all the file handles for an open file.

Properties

Count Returns number of members in a collection.

Item Returns a specific member of a DtoFileHandles collection.

Methods

None

Remarks

Use the Count property to find the number of members in the collection.

Example

Dim my_session as new DtoSession
Dim my_monitor as DtoMonitor

Dim my_openfiles as DtoOpenFiles
Dim first_file as DtoOpenFile
Dim my_handles as DtoFileHandles
Dim result as DtoResult

result = my_session.Connect("myserver", "username", "password")
Set my_monitor = my_session.Monitor

Set my_openfiles = my_monitor.OpenFiles

Set first_file = my_openfiles.Item(1)

Set my_handles = first_file.FileHandles

See Also
DtoFileHandle Object
DtoOpenFile Object

DtoMonitor Object

56

DtoFileHandle Object

An object representing a file handle for an open file.

Properties
ClientIndex Returns index for a file handle.
IsLocked Returns whether a file handle is locked.
IsWaiting Returns waiting status for a file handle.
OpenMode Returns open mode for the file handle.
OpenModeName Returns a text version of OpenMode.
TransState Returns transaction state.
UserName Returns user name associated with the file handle.

Methods

None

Remarks

Use the DtoFileHandles Collection to obtain a list of all file handles for an open file.

Example

Dim my_session as new DtoSession
Dim my_openfiles as DtoOpenFiles
Dim first_file as DtoOpenFile

Dim my_handles as DtoFileHandles
Dim first_handle as DtoFileHandle
Dim locked_state as Boolean

Dim result as DtoResult

result = my_session.Connect("myserver", "username", "password")
Set my_monitor = my_session.Monitor

Set my_openfiles = my_monitor.OpenFiles

Set first_file = my_openfiles.Item(1)

Set my_handles = first_file.FileHandles

Set first_handle = my_handles.Item(1)

locked_state = first_handle.IsLocked

57

See Also
DtoFileHandles Collection
DtoOpenFile Object

DtoMonitor Object

58

DtoMkdeClients Collection

A collection of MicroKernel Engine client objects.

Properties

Count Returns number of members in a collection.

Item Returns a specific member of a DtoMkdeClients collection.

Methods

None

Remarks

Use the Count property to find the number of members in the collection.

Example

Instantiate session and connect

Dim my_session as new DtoSession

Dim result as DtoResult

result = my_session.Connect("myserver", "username", "password")
' Get monitor object from session

Dim my_monitor as DtoMonitor

Set my_monitor = my_session.Monitor

' Now get MicroKernel Engine Clients from monitor

Dim my_mkdeclients as DtoMkdeClients
Set my_mkdeclients = my_monitor.MkdeClients

See Also
DtoMkdeClient Object

DtoMonitor Object

59

DtoMkdeClient Object

An object representing an active MicroKernel Engine client.

Properties
BtrvID Returns Btrieve ID of a MicroKernel Engine client.
CacheAccesses Returns number of cache accesses for a MicroKernel Engine client.
ClientPlatform Returns client platform enumeration for a MicroKernel Engine client. See

Client Platform for possible values.
ClientPlatformName Returns a text version of ClientPlatform.
ClientSite Returns client site for a MicroKernel Engine client.
ConnectionNumber Returns connection number for a MicroKernel Engine client.
CurrentLocks Returns current number of locks for a MicroKernel client.
DiskAccesses Returns number of disk accesses for a MicroKernel Engine client.
NetAddress Returns address of a MicroKernel Engine client.
NumCursors Returns number of cursors for a MicroKernel Engine client.
RecordsDeleted Returns number of deleted records for a MicroKernel Engine client.
RecordsInserted Returns number of inserted records for a MicroKernel Engine client.
RecordsRead Returns number of read records for a MicroKernel Engine client.
RecordsUpdated Returns number of updated records for a MicroKernel Engine client.
ServiceAgentID Returns service agent identification of a MicroKernel Engine client
TaskNumber Returns task number of a MicroKernel Engine client.
TransLevel Returns transaction level of a MicroKernel Engine client.
TransState Returns transaction state enumeration. See Transaction State for possible
values.

UserName Returns MicroKernel Engine client user name.

Collections

DtoMkdeClientHandles Collection

DtoMonitor Object

60

Methods

Disconnect method

Remarks

To obtain all the MicroKernel Engine clients, use the DtoMkdeClients Collection.

Example

Instantiate session and connect

Dim my_session as new DtoSession

Dim result as DtoResult

result = my_session.Connect("myserver", "username", "password")
' Get monitor object from session

Dim my_monitor as DtoMonitor

my_monitor = my_session.Monitor

' Now get MicroKernel Engine Clients from monitor
Dim my_mkdeclients as DtoMkdeClients
Set my_mkdeclients = my_monitor.MkdeClients

retrieve first client and query a property
Dim first_client as DtoMkdeClient

Dim num_locks as long

Set first_client = my_mkdeclients.Item(1)
num_locks = first_client.CurrentLocks

See Also
DtoMkdeClientHandles Collection

DtoMkdeClients Collection

Methods Detail

Disconnect method

Disconnects a specific MicroKernel Engine client.

Syntax

result = Object.Disconnect

Arguments

In Object DtoMkdeClient object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property of
the DtoSession Object to obtain a description for the result.

Remarks

Call this method for every MicroKernel Engine client that you wish to disconnect.

Example

Dim result as DtoResult
result = my_mkdeclient.Disconnect

62

DtoMkdeClientHandles Collection

A collection of DtoMkdeClientHandle objects.

Properties
Count Returns number of members in a collection.
Item Returns a specific member of a DtoMkdeClientHandles collection.

Methods

None

Remarks

Use the Count property to find the number of members in the collection.

Example

Instantiate session and connect

Dim my_session as new DtoSession

Dim result as DtoResult

result = my_session.Connect("myserver", "username", "password")

' Get monitor object from session
Dim my_monitor as DtoMonitor

Set my_monitor = my_session.Monitor
' Now get MicroKernel Engine Clients from monitor
Dim my_mkdeclients as DtoMkdeClients

Set my_mkdeclients = my_monitor.MkdeClients

' retrieve first client and get its client handles
Dim first_client as DtoMkdeClient

Dim my_clienthandles as DtoMkdeClientHandles

Set first_client = my_mkdeclients(1)

' to get all handles, use ClientHandles collection
Set my _clienthandles = first_client.ClientHandles

' determine number of members in the collection

Dim num_clienthandles as Long
num_clienthandles = my_clienthandles.Count

See Also

DtoMkdeClientHandle Object
DtoMonitor Object

63

DtoMkdeClientHandle Object

An object representing a MicroKernel client handle.

Properties
FileName Returns file name associated with a MicroKernel client handle
LockType Returns locks status enumeration of a MicroKernel client handle. See Lock
Type for possible values.
OpenMode Returns open mode enumeration of the MicroKernel client handle. See Open
Mode for possible values.
OpenModeName Returns a text version of OpenMode.
TransState Returns transaction state.
WaitState Returns wait status enumeration for a MicroKernel client handle. See Wait State
for possible values.
Methods
None
Remarks
To obtain all the MicroKernel client handles for a specific client, use the DtoMkdeClientHandles
Collection.
Example

' Instantiate session and connect
Dim my_session as new DtoSession

Dim result as DtoResult

result = my_session.Connect("myserver", "username", "password")

Get monitor object from session

Dim my_monitor as DtoMonitor
Set my_monitor = my_session.Monitor

Now get MicroKernel Engine Clients from monitor

Dim my_mkdeclients as DtoMkdeClients

Set my_mkdeclients

my_monitor.MkdeClients

' retrieve first client and get its client handles
Dim first_client as DtoMkdeClient
Dim my_clienthandles as DtoMkdeClientHandles

64

Set first_client = my_mkdeclients(1)
Set my_clienthandles = first_client.MkdeClientHandles

' determine number of members in the collection
Dim num_clienthandles as long
num_clienthandles = my_clienthandles.Count

get first client handle and query file name
Dim first_clienthandle as DtoMkdeClientHandle
Dim fileName as string

Set first_clienthandle = my_clienthandles(1)
fileName = first_clienthandle.FileName

See Also
DtoMkdeClientHandles Collection
DtoMkdeClient Object

DtoMonitor Object

65

DtoCommStat Object

An object that represents usage information for a server.

Properties
CurActiveThreads Returns current number of active threads for a session.
CurQueuedRequests Returns number of queued requests for a session.
CurRemoteSessions Returns number of queued requests for a session or protocol.
MaxActiveThreads Returns maximum number of active threads for a session.
MaxQueuedRequests Returns maximum number of queued requests for a session.
MaxRemoteSessions Returns maximum number of remote sessions for a session.
PeakActiveThreads Returns highest number of active threads for a session
PeakQueuedRequests Returns highest number of queued requests for a session.
PeakRemoteSessions Returns highest number of remote sessions for a session
RequestsProcessed Returns total number of requests processed for a session
Total TimeOuts DTO2 only: Returns total number of communication time outs.
TotalRecoveries DTO2 only: Returns total number of reconnects using the Zen auto reconnect

feature. See Advanced Operations Guide for more information.
Collections

DtoProtocolStats Collection

Objects

DtoMonitor Object

Methods

None

66

Remarks

All the properties for this object return values of type Long integer.

Example

' Instantiate session and connect

Dim my_session as new DtoSession

Dim result as DtoResult

result = my_session.Connect("myserver", "username", "password")

' Get monitor object from session

Dim my_monitor as DtoMonitor

Set my_monitor = my_session.Monitor

' Get comm stat object

Dim my_commstat as DtoCommStat

Set my_commstat = my_monitor.MkdeCommStat
' Get total number of requests processed

Dim requests as long
requests = my_commstat.RequestsProcessed

See Also
DtoMonitor Object
DtoProtocolStats Collection

DtoProtocolStat Object

67

DtoProtocolStats Collection

A collection of DtoProtocolStat objects.

Properties

Count Returns number of members in a collection.

Item Returns a specific member of a collection.

Methods

None

Remarks

Use the Count property to find the number of members in the collection.

Example

Instantiate Session and connect

Dim my_session as new DtoSession

Dim result as DtoResult

result = my_session.Connect("myserver", "username", "password")
' Get Monitor object from Session
Dim my_monitor as DtoMonitor

Set my_monitor = my_session.Monitor
' Get Comm stat object from Monitor

Dim my_commstat as DtoCommStat

Set my_commstat = my_monitor.MkdeCommStat

' Now get Protocol stats collection from Comm stat
Dim my_protocols as DtoProtocolStats
Set my_protocols = my_commstat.ProtocolStats

See Also

DtoProtocolStat Object

DtoMonitor Object

68

DtoProtocolStat Object

Provides information about a communications protocol.

Properties
CurRemoteSessions Returns number of queued requests for a session or protocol.
PeakRemoteSessions Returns highest number of remote sessions for a session or protocol.
ProtocolID Returns ID of a protocol. Only the following return code is currently
supported: 4 — WINSOCK TPC/IP
RequestsProcessed Returns total number of requests processed for a session or protocol.
Methods
None
Remarks

To access a particular protocol using this object, you must first obtain a DtoProtocolStats
Collection using the DtoMonitor Object and the DtoCommStat Object

All the properties for this object return values of type Long integer.

Examples

To obtain the number of requests processed using this protocol:

num_requests = Object.RequestsProcessed

To obtain the current number of remote sessions:

RemoteSess_count = Object.CurRemoteSessions

See Also
DtoProtocolStats Collection
DtoCommStat Object

DtoMonitor Object

DtoSqlClients Collection

A collection of DtoSqlClient objects, representing all the SQL clients on a server.

Properties

Count Returns number of members in a collection.

Item Returns a specific member of a collection.

Methods

None

Remarks

Note: This collection cannot be obtained by a Workstation engine.

Use the Count property to find the number of members in the collection.

Example

' Instantiate session and connect

Dim my_session as new DtoSession

Dim result as DtoResult

result = my_session.Connect("myserver", "username", "password")

' Get monitor object from session
Dim my_monitor as DtoMonitor

Set my_monitor = my_session.Monitor
' Now get SQL Clients from monitor

Dim my_sqlclients as DtoSqlClients
Set my_sqlclients = my_monitor.SqlClients

See Also
DtoSqlClient Object

DtoMonitor Object

70

DtoSqlClient Object

Allows you to query information about and disconnect a SQL client.

Properties
AppDesc Returns a description of the application that created a SQL client.
ConnectTime Returns connection time for the SQL client.
CurStatusTime Returns time since the last status.
DSN Returns DSN associated with a SQL Client.
HostName Returns host name for a SQL client.
1P Returns IP for a SQL Client.
ProcessID Returns process ID for a SQL client.
Status Returns status of a SQL client.
Threadld Returns thread identification of a SQL client
UserName Returns user name associated with the SQL client.
Methods

Disconnect method

Remarks

Use the DtoSqlClients Collection to obtain all the current SQL clients.

Example

' Instantiate session and connect
Dim my_session as new DtoSession

Dim result as DtoResult

result = my_session.Connect("myserver", "username", "password")

' Get monitor object from session
Dim my_monitor as DtoMonitor

Set my_monitor =

my_session.Monitor

' Now get SQL Clients from monitor
Dim my_sqlclients as DtoSqlClients

Set my_sqlclients

my_monitor.SqlClients

' Pick first client from collection and find
' the DSN associated with it

Dim first_sqlclient as DtoSqlClient

Dim DSNname as string

Set first_sqlclient = my_sqlclients(1)
DSNname = first_sqlclient.DSN

See Also

DtoSqlClients Collection

DtoMonitor Object

Methods Detail

Disconnect method

Disconnects a specific SQL Client.

Syntax

result = Object.Disconnect

Arguments

Object DtoSqlClient object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property of
the DtoSession Object to obtain a description for the result.

Remarks

Call this method for every SQL client you wish to disconnect.

Example

result = my_sqlclient.Disconnect

72

DtoMkdeVersion Object

DTO2 only: An object representing the version of the MicroKernel Engine.

Properties
MajorVersion Returns major version of the engine.
MinorVersion Returns minor version of the engine.
BuildNumber Build number of the MicroKernel Engine release
OSTarget Target operating system returns NTSV for Windows and UXSV for Unix
systems.
Methods
None
Remarks

You can obtain a DtoMkde Version object through the properties of the DtoMonitor Object.

Example

' Instantiate session and connect

Dim my_session as new DtoSession

Dim result as DtoResult

result = my_session.Connect("myserver", "username", "password")

' Get monitor from session

Dim my_monitor as DtoMonitor

Set my_monitor = my_session.Monitor

' Now get the MkdeVersion object from monitor

Dim my_mkdeversion as DtoMkdeVersion
MajorVer = my_mkdeversion.MajorVersion

See Also

DtoMonitor Object

73

DtoEnginelnformation Object

DTO2 only: An object representing information about the database engine.

Properties
MajorVersion Returns major version of the engine.
MinorVersion Returns minor version of the engine.
dbuApiVersion Version of the DTI/DTO interface
IsServerEngine Returns true if target is a server engine (as opposed to a workgroup engine)
ServerClientType Returns one of the following:
0 =UNKNOWN_ENGINE CLIENT
1 =NT_SERVER
3 =WIN32 _CLIENT
4 =UNIX SERVER
5=CACHE _ENGINE CLIENT
6 = VXWIN_SERVER
7 =VXLINUX SERVER
9 =REPORT_ENGINE
Methods
None
Remarks

You can obtain a DtoEnginelnformation object through the properties of the DtoSession Object.

Example

' Instantiate session and connect

Dim my_session as new DtoSession

Dim result as DtoResult

result = my_session.Connect("myserver", "username", "password")

' Get engine information from session
Dim my_engineInfo as DtoEngineInformation
Set my_engineInfo = my_session.EngineInformation

' Now get the client type from the engine info object
clientType = my_engineInfo.ServerClientType

74

See Also

DtoSession Object

75

76

Creating and Maintaining Catalogs and
Dictionaries with DTO

The following topics provide information about the objects that comprise the Catalog group of the
Distributed Tuning Objects:

DtoDatabases Collection
DtoDatabase Object
DtoDSNs Collection
DtoDSN Object
DtoDictionary Object
DtoTables Collection
DtoTable Object
DtoColumns Collection
DtoColumn Object
Dtolndexes Collection
Dtolndex Object
DtoSegments Collection

DtoSegment Object

77

DtoDatabases Collection

Properties

Count Returns number of members in a collection.

Item Returns a specific member of a DtoDatabases collection.
Methods
Add method

Remove method

Remarks

Use the Count property to find the number of members in the collection.

Example

' instantiate session object and connect to a server

Dim my_session as New DtoSession

Dim result as DtoResult

result = my_session.Connect("myserver", "username", "password")

' now use your session object to obtain db collection
Dim my_databases as DtoDatabases
Set my_databases = my_session.Databases

See Also

DtoDatabase Object

DtoSession Object

Methods Detail

Add method

Add an item to a DtoDatabases collection.

78

Syntax

result = Collection.Add(Object, [dsnName])

Arguments

Collection DtoDatabases collection to which to add object.

Object A new DtoDatabase object

dsnName Optional. Will create a standard server DSN for the new database

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property of
the DtoSession Object to obtain a description for the result.

Remarks

This method takes a parameter of type object. Therefore, you are responsible for first instantiating
the object and setting its properties before adding it to the collection.

This method will add the given database to the collection and to the underlying DBNAMES.CFG
file on the server.

Example

Dim result As dtoResult
Dim database As DtoDatabase

Set database = New DtoDatabase

' Set properties for new database

database.Name = "MyDemodata"

database.DdfPath = "C:\test"

database.DataPath = "C:\test"

database.Flags = dtoDbFlagCreateDDF + dtoDbFlagRI

result = my_session.Databases.Add(database)
If NOT result = Dto_Success Then

MsgBox "Error"+ Session.Error(result)
End If

Remove method

Removes an item from a DtoDatabases collection.

Syntax

Collection.Remove(database,[deleteDDF])

79

Arguments

Collection Collection from which to remove object.

database A variant that can contain the index (starting with 1) or the database name of the item
you wish to remove from the collection

deleteDDF Set to True to delete dictionary files.
Set to False to leave dictionary files intact.

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

Remarks

This method removes the item from the databases collection and from the underlying
DBNAMES.CFG file.

Example
Dim result As dtoResult
result = my_session.Databases.Remove("MyDemodata",1)
If NOT result = Dto_Success Then
MsgBox "Error"+ my_session.Error(result)
End If

80

DtoDatabase Object

Properties

DataPath Gets or sets the location of the data for a database.

DbCodePage Gets or sets the database code page. This property is an enumeration. See Database
Code Page for a list of values. The value zero specifies the server encoding (the code
page of the server running the database engine).

DbFlags Gets or sets the database flags for a database. This property is an enumeration. See
Database Flags for a list of values.

DdfPath Gets or sets the dictionary path for a database.

Name Gets or sets the name of the database.

Secured Returns whether the database has security enabled. (0=unsecure, 1=secure)

Session Gets or sets the Session object associated with this DtoDatabase object.

Collections

DtoTables Collection

Methods

AddUserToGroup

AlterUserName

AlterUserPassword

Close

Copy
CreateGroup
CreateUser
DropGroup
DropUser

Open

RemoveUserFromGroup
Secure

UnSecure

Remarks

The Secure and UnSecure methods can only be used when the database is closed.

Examples

The following example shows how to instantiate the session object and connect to the server.

instantiate session object and connect to server

Dim my_session as New DtoSession

Dim result as DtoResult

result = my_session.Connect("myserver", "username", "password")

' now use your session object to obtain db collection
Dim my_databases as DtoDatabases

Set my_databases = my_session.Databases

' get first database and query its dictionary path
Dim first_database as DtoDatabase

Dim dictionarypath as string

Set first_database = my_databases(1)
dictionarypath = first_database.DdfPath

The following example shows how to retrieve and set a code page using the DBCodePage
property with the "Demodata" sample database.

Dim m_dtoSessionl As New DtoSession

Dim result As dtoResult

result = m_dtoSessionl.Connect("localhost", "", "")

Dim sCodePage As String

sCodePage = m_dtoSessionl.Databases("DEMODATA").DBCodePage

MsgBox "Code Page for database (before change): " & CStr(sCodePage)
If result = Dto_Success Then

Rem Set the code page for the database by passing in

Rem the code page number (for example, ©, 932, 1252,

Rem and so forth).

m_dtoSessionl.Databases("DEMODATA").DBCodePage = ©

End If

MsgBox "Code Page for database: " & CStr(m_dtoSessionl.Databases("DEMODATA").DBCodePage)
m_dtoSessionl.Disconnect

See Also

DtoDatabases Collection

82

Methods Detail

AddUserToGroup

Adds an existing user to an existing group in the database.

Syntax

result = Object.AddUserToGroup(username, groupname)

Arguments
Object Dtodatabase object
username User name to add to the group
groupname Group name to which the user is added

Return Values

result DtoResult long value indicating the result of the method call.

Remarks

This function fails if the specified group or user do not already exist in the database, or if the user

is a member of another group.

The following preconditions must be met

* You must first create a session, then Open a database successfully as user Master.
» The associated database has database-level security enabled.

» The user and group already exist in the specified database.

» The user is not a member of another group.

The following post condition must be met:

* (Close the database to free the resources.

Example

Function AddUserToGroup(sUserName As String, sGroupName As String) As Boolean

Dim res As dtoResult

Dim m_dbn As New DtoDatabase
Dim m_dbn.Session = m_dto
Dim m_dbn.Name = "demodata"

83

res = m_dbn.Open("Master", "1234")
If res = Dto_Success Then
'Open worked, let's add the user to the group
res = m_dbn.AddUserToGroup(sUserName, sGroupName)
If res <> Dto_Success Then
LogResult ("Error on Add User to Group: " & CStr(res))
Else
LogResult ("User " & sUserName & " added to group " & sGroupName & ".")
End If
End If
m_dbn.Close
End Function

AlterUserName

Alters an existing user's name in the specified database.

Syntax

result = Object.AlterUserName(username, new_username)

Arguments
Object Dtodatabase object
username Name of existing database user

new_username New name for the database user. If set to NULL, the function fails.

Return Values

result DtoResult long value indicating the result of the method call.

Remarks

* You must first create a session, then Open a database successfully as user Master.
» The associated database has database-level security enabled.
» The user name must already exist in the specified database.

» The new user name cannot already exist in the specified database.

The following post condition must be met:

* Close the database to free the resources.

Example

Function AlterUserName(sUserName As String, sNewUserName As String) As Boolean
Dim res As dtoResult

84

Dim m_dbn As New DtoDatabase
Dim m_dbn.Session = m_dto
Dim m_dbn.Name = "demodata"
res = m_dbn.Open("Master", "1234")
If res = Dto_Success Then
'Open worked, let's alter the username
res = m_dbn.AlterUserName(sUserName, sNewUserName)
If res <> Dto_Success Then
LogResult ("Error on Alter Username: " & CStr(res))
Else
LogResult ("Alter Username completed. New user name is " & sNewUserName)
End If
End If
m_dbn.Close
End Function

AlterUserPassword
Alters an existing user's password.

Syntax

result = Object.AlterUserPassword(username, new_password)

Arguments
Object Dtodatabase object
username Name of the database user whose password is to be changed

new_password New password for the user. If set to NULL, the password is cleared.

Return Values

result DtoResult long value indicating the result of the method call.

Remarks

* You must first create a session, then Open a database successfully as user Master.

» The associated database has database-level security enabled.

* The user name must already exist in the specified database.

The following post condition must be met:

* (Close the database to free the resources.

Example

Function AlterUserPassword(sUser As String, sNewPassword As String) As Boolean
Dim res As dtoResult

85

Dim m_dbn As New DtoDatabase
Dim m_dbn.Session = m_dto
Dim m_dbn.Name = "demodata"
res = m_dbn.Open("Master", "1234")
If res = Dto_Success Then
'Open worked, let's alter the user's password
res = m_dbn.AlterUserPassword(sUser, sNewPassword)
If res <> Dto_Success Then
LogResult ("Error on Alter User Password: " & CStr(res))
Else
LogResult ("Alter User Password successful.")
End If
End If
m_dbn.Close
End Function

Close

Closes a set of data dictionary files that were opened using the Open method.

Syntax

result = Object.Close

Arguments

Object DtoDatabase object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

Remarks

Call this method after the database has been opened using Open method. Error information can be
obtained using Error property.

Example

Dim m_database as new DtoDatabase
Dim result as DtoResult

result = m_database.Open(“dbuser”,”’pwd”)

' perform operations here

result = m_database.Close

86

Copy

Creates a new database based on the current one.

Syntax

result = Object.Copy(username, password, newDBname, newDictionaryPath, newDataPath)

Arguments

Object DtoDatabase object

username Database user name for the database. If the database does not have security
enabled, set to an empty string.

password Password for database user. If the database does not have security enabled, set
to an empty string.

newDBname Database name for the copied database.

newDictionaryPath Absolute path to the directory in which the dictionary files are to be created.
This directory must already exist.

newDataPath Data path for the database. Pass an empty string to use the default data path

(that is, the same as the dictionary path)

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

Remarks

Referential integrity is preserved in the copied database.

More information on the errors returned by the method can be obtained using the Error property.

Example

Dim Database As New DtoDatabase

Dim result as DtoResult

Database.Session = my_session ' assume session exists
Database.Name = “DEMODATA”
¢ no user name or password, unsecure database

result = Database.Copy("

""" "DEMODATA2", "D:\DEMODATA2", "D:\DEMODATA2")

If NOT result = Dto_Success Then
MsgBox "Error"+ Session.Error(result)

End If

87

CreateGroup

Creates a new user group in the existing database.

Syntax

result = Object.CreateGroup(groupname)

Arguments
Object Dtodatabase object
groupname Name of the group that you want to add to the database

Return Values

result DtoResult long value indicating the result of the method call.

Remarks

* You must first create a session, then Open a database successfully as user Master.
» The associated database has database-level security enabled.

* A group with the same name cannot already exist in the specified database.

The following post condition must be met:

* (Close the database to free the resources.

Example

Function CreateGroup(sGroupName As String) As Boolean
Dim res As dtoResult
Dim m_dbn As New DtoDatabase
Dim m_dbn.Session = m_dto
Dim m_dbn.Name = "demodata"
res = m_dbn.Open("Master", "1234")
If res = Dto_Success Then
'Open worked, let's create the user.
res = m_dbn.CreateGroup(sGroupName)
If res <> Dto_Success Then
LogResult ("Error on Create Group: " & CStr(res))
Else
LogResult ("Group " & sGroupName & " created.")
End If
End If
m_dbn.Close
End Function

88

CreateUser

Creates a new user in an existing database. Optionally sets a password and assign the new user to
an existing group.

Syntax

result = Object.CreateUser(username, [password], [groupname])

Arguments
Object Dtodatabase object
username Name of the user to add to the database
password User password. If set to NULL, no password is set.
groupname Database group name to which to assign the user. If set to NULL, user is not assigned
to a group.
Return Values
result DtoResult long value indicating the result of the method call.

Remarks

The following preconditions must be met:
* You must first create a session, then Open a database successfully as user Master.
» The associated database has database-level security enabled.

* Auser with the same name cannot already exist in the specified database.

The following post condition must be met:

* (Close the database to free the resources.

Example

Function CreateUser(sUserName As String, sPassword As String, sGroupName As String) As Boolean
Dim res As dtoResult
Dim m_dbn As New DtoDatabase
Dim m_dbn.Session = m_dto
Dim m_dbn.Name = "demodata"
res = m_dbn.Open("Master", "1234")
If res = Dto_Success Then
‘Open worked, let's create the user.
res = m_dbn.CreateUser(sUserName, sPassword, sGroupName)
If res <> Dto_Success Then
LogResult ("Error on Create User: " & CStr(res))

89

Else
LogResult ("User " & sUserName & " created in group " & sGroupName & ".")
End If
End If
m_dbn.Close
End Function

DropGroup
Removes an existing group from the database.

Syntax

result = Object.DropGroup(groupname)

Arguments
Object Dtodatabase object
groupname Name of the group that you want to remove from the database

Return Values

result DtoResult long value indicating the result of the method call.

Remarks

* You must first create a session, then Open a database successfully as user Master.
» The associated database has database-level security enabled.

» A group with the same name cannot already exist in the specified database.

* The group cannot contain any members.

The following post condition must be met:

* (Close the database to free the resources.

Example

Function DropGroup(sGroupName As String) As Boolean
Dim res As dtoResult
Dim m_dbn As New DtoDatabase
Dim m_dbn.Session = m_dto
Dim m_dbn.Name = "demodata"
res = m_dbn.Open("Master", "1234")
If res = Dto_Success Then

'Open worked, let's drop the group.

res = m_dbn.DropGroup(sGroupName)

If res <> Dto_Success Then

LogResult ("Error on Drop Group: " & CStr(res))

90

Else
LogResult ("Group " & sGroupName & " dropped.")
End If
End If
m_dbn.Close
End Function

DropUser
Removes an existing user from the database.

Syntax

result = Object.DropUser(username)

Arguments
Object Dtodatabase object
username Name of the user that you want to remove from the database

Return Values

result DtoResult long value indicating the result of the method call.

Remarks

* You must first create a session, then Open a database successfully as user Master.

» The associated database has database-level security enabled.

» Auser with the same name must already exist in the specified database.

The following post condition must be met:

* (Close the database to free the resources.

Example

Function DropUser(sUserName As String) As Boolean
Dim res As dtoResult
Dim m_dbn As New DtoDatabase
Dim m_dbn.Session = m_dto
Dim m_dbn.Name = "demodata"
res = m_dbn.Open("Master", "1234")
If res = Dto_Success Then
'Open worked, let's drop the user.
res = m_dbn.DropUser(sUserName)
If res <> Dto_Success Then
LogResult ("Error on Drop User: " & CStr(res))
Else
LogResult ("Drop User for

& sUserName & " completed.")

End If
End If
m_dbn.Close
End Function

Open
Opens a connection to the database with the given username and password.

Syntax

result = Object.Open(username, password)

Arguments
Object DtoDatabase object
username User name for the database. If database is not secured, set to an empty string.
password Password for the database. If database is not secured, set to an empty string

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

Remarks

This operation is used in order to open a set of dictionary files. This set must contain FILE.DDF,
INDEX.DDF and FIELD.DDF. It may also contain a number of optional DDF files. Remember to
call the Close method to free memory. Once the database is opened, no one else can make changes
to it until the Close method is called.

You cannot issue the Secure or UnSecure methods while the database is open.

More information on the errors returned by the method can be obtained using the Error property
of the DtoSession Object.

Example

Dim m_session as new DtoSession

Dim m_database as new DtoDatabase

Dim result as DtoResult

result = m_session.Connect("myserver","user","pwd")
m_database.Session = m_session

m_database.Name = "DEMODATA"

result = m_database.Open("dbuser","pwd")

92

RemoveUserFromGroup

Removes an existing user from an existing group.

Syntax

result = Object.RemoveUserFromGroup(groupname, username)

Arguments
Object Dtodatabase object
groupname Database group name
username Database user name

Return Values

result DtoResult long value indicating the result of the method call.

Remarks

* You must first create a session, then Open a database successfully as user Master.
» The associated database has database-level security enabled.
» The user and group already exist in the specified database.

» The user is not a member of another group.

The following post condition must be met:

* (Close the database to free the resources.

Example

Function RemoveUserFromGroup(sUserName As String, sGroupName As String) As Boolean
Dim res As dtoResult
Dim m_dbn As New DtoDatabase
Dim m_dbn.Session = m_dto
Dim m_dbn.Name = "demodata"
res = m_dbn.Open("Master", "1234")
If res = Dto_Success Then
'Open worked, let's remove the user from the group
res = m_dbn.RemoveUserFromGroup(sGroupName, sUserName)
If res <> Dto_Success Then

LogResult ("Error on Remove User From Group: " & CStr(res))
Else
LogResult ("Remove user " & sUserName & " from group " & sGroupName & " completed.")
End If
End If
m_dbn.Close

93

End Function

Secure

Enables security for a database.

Syntax

result = Object.Secure(user, password)

Arguments
Object DtoDatabase object
user User should be set to Master for securing the database.
password Password for the Master user.

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

Remarks

When you enable database security, you must specify Master as the database user name and
choose a password. Security for the database is enforced based on the access rights defined for the
database, and should match behavior seen in SQL or ODBC access methods.

Ensure that the database is closed when attempting to enable security.

More information on the errors returned by the method can be obtained using the Error property
of the DtoSession Object.

Example

Dim m_database as new DtoDatabase

Dim result as DtoResult

m_database.Name = "DEMODATA"

m_database.Session = my_session ' assume session exists
result = m_database.Secure("Master", "password")

UnSecure

Disables security for a database.

94

Syntax

result = Object.UnSecure(user, password)

Arguments
Object DtoDatabase object
user User should be set to “Master” to unsecure the database.
password Password for the Master user.

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property of
the DtoSession Object to obtain a description for the result.

Remarks

When you disable database security, you must specify Master as the database user name and
provide the Master user password.

Ensure that the database is closed when attempting to disable security.

More information on the errors returned by the method can be obtained using the Error property
of the DtoSession Object.

Example

Dim m_database as new DtoDatabase

Dim result as DtoResult

m_database.Name = "DEMODATA"

m_database.Session = my_session ' assume session exists
result = m_database.UnSecure("Master", "password")

95

DtoDSNs Collection

A collection of DtoDSN objects.

Properties

Count Returns number of members in a collection.

Item Returns a specific member of a DtoDSNs collection.
Methods
Add method

Remove method

Remarks

Use the Count property to find the number of members in the collection.

Example

' instantiate session object
Dim my_session as New DtoSession
Dim result as DtoResult

' connect to a server
result = my_session.Connect("myserver", "username", "password")

' now get DSNs collection
Dim my_dsns as DtoDSNs
Set my_dsns = my_session.DSNs

See Also
DtoDSN Object

DtoSession Object

96

Methods Detail

Add method

Add an item to a DtoDSNs collection and creates a DSN on the server.

Syntax

result = Collection.Add(Object)

Arguments
Collection DtoDSNss collection to which to add object.
Object A new DtoDSN object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

Remarks

This method takes a parameter of type object. Therefore, you are responsible for first instantiating
the object and setting its properties before adding it to the collection.

Example

Dim result As dtoResult
Dim DSNs As DtoDSNs
Dim dsn As DtoDSN

Set dsn = New DtoDSN

' Set properties for new dsn
dsn.Name = "MyDemodata_DSN"
dsn.Description = "a sample DSN"
dsn.Dbname = "MyDemodata"
dsn.Openmode = dtoNormalDSNOpenMode

result = my_session.DSNs.Add(dsn)
If NOT result = Dto_Success Then

MsgBox "Error"+ my_session.Error(result)
End If

Remove method

Removes a DSN item from a DtoDSNSs collection and deletes it from the server.

97

Syntax

result = Collection.Remove(dsn)

Arguments
Collection Collection from which to remove object.
dsn A variant containing either the index (starting with 1) or the name of the item you

wish to remove from the collection

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

Remarks

This method does not remove the associated database or database name.

Example

Dim result As dtoResult
Dim DSNs As DtoDSNs
result = my_session.DSNs.Remove("MYDSN")
If NOT result = Dto_Success Then

MsgBox "Error"+ my_session.Error(result)
End If

98

DtoDSN Object

An object representing a Zen DSN.

Properties

DbName Gets or sets the Dbname associated with the DSN.

Description Gets or sets the description of the DSN.

Name Gets or sets the name of the DSN.

OpenMode Gets or sets the open mode enumeration of the DSN.
See DSN Open Mode for possible values.

Session Gets or sets the DtoSession object associated with this DtoDSN object.

Translate Gets or set the encoding translation, which specifies how character data is translated
between the database engine and a client application. This property is an enumeration.
See DSN Translate Option for a list of values.

Methods

None

Remarks

To obtain information about a particular database, use the DtoDatabase Object.

Examples

To Query the DbName Associated with a DSN

' instantiate session object

Dim my_session as New DtoSession

' connect to a server

my_session.Connect("myserver", "username", "password")
' now use your session object to obtain db collection
my_dsns = my_session.DSNs

first_dsn = my_dsns.Item(1)

dsn_dbname = first_dsn.DbName

To Add a New DSN

' instantiate session object

99

Dim my_session as New DtoSession

Dim result as dtoResult

' connect to a server

result = my_session.Connect("myserver", "username", "password")
now use your session object to obtain DSN collection

Dim my_dsns as DtoDSNs

Set my_dsns = my_session.DSNs

' Populate new DtoDSN object

Dim NewDSN as New DtoDSN

NewDSN.DbName = "DEMODATA"

NewDSN.Description = "A DSN for the DEMODATA db"

NewDSN.Name = "Demodata_DSN"

' now add the new DSN to the collection
result = my_dsns.Add(NewDSN)

To Get or Set the Encoding Translation

Dim m_dtoSessionl As New DtoSession

Dim result As dtoResult

result = m_dtoSessionl.Connect("localhost", "", "")

Dim sTranslate As String

Dim iTranslate As Integer

iTranslate = m_dtoSessionl.DSNs("DEMODATA").Translate

If iTranslate = @ Then sTranslate = "None"

If iTranslate = 1 Then sTranslate "OEM/ANSI Conversion"
If iTranslate = 2 Then sTranslate = "Automatic"

MsgBox "DSN Translate Setting (before change): & sTranslate
If result = Dto_Success Then

Rem set the encoding translation.
m_dtoSessionl.DSNs("DEMODATA").Translate = 1

End If

iTranslate = m_dtoSessionl.DSNs("DEMODATA").Translate

If iTranslate = @ Then sTranslate = "None"

If iTranslate = 1 Then sTranslate = "OEM/ANSI Conversion"

If iTranslate = 2 Then sTranslate "Automatic"

MsgBox "DSN Translate Setting (after change): " & sTranslate
m_dtoSessionl.Disconnect

See Also

DtoDSNs Collection

DtoSession Object

DtoDictionary Object

An object representing a Zen dictionary. This object is deprecated in favor of DtoDatabase Object.
DtoDictionary can still be used only if you can specify the path to the dictionary on the Open
method.

Properties

Path Returns path of the dictionary object.

Collections

DtoTables Collection

Methods

Open method
Create method
Close method
AddTable method
DropTable method
Reload method

Delete method

Remarks

All of the operations affecting dictionary files have to be done through this object. The user can
open a dictionary, create a dictionary, get table information add a table or drop a table using this
object.

Note: If instantiating this object using ASP or if you use the CreateObject method in Visual
Basic, the progid of DtoDictionary is "DTO.DtoDictionary.2" for DTO2, or
“DTO.DtoDictionary.1” for DTO version 1. See DTO2 for more information on the differences
between the two versions.

Example

Dim result as DtoResult
Dim dictionary as New DtoDictionary
result = dictionary.Open("d:\MyDemodata")

See Also

DtoTables Collection

DtoTable Object

Methods Detail

Open method

Opens a set of data dictionary files using either a database name or a dictionary path.

Syntax

result = Object.Open(path, [user], [password])

Arguments
Object DtoDictionary object
path Absolute path to the directory containing dictionary files or name of the named
database if local.
You cannot use a named database for this argument if you are connected to a remote
server.
user Optional user name for the DDF set
password Optional password for the DDF set
Return Values
result DtoResult long value indicating the result of the method call. Use the Error

property of the DtoSession Object to obtain a description for the result.

Remarks

Note: The path argument may either contain a path to the directory containing the DDF files or it
can use a name of the database contained in the local DBNAMES.CFG. See DtoDatabases
Collection in order to create and maintain database names.

This operation is used in order to open a set of dictionary files. This set must contain FILE.DDF,
INDEX.DDF and FIELD.DDF. It may also contain a number of optional DDF files. Remember to
call the Close method to free memory. Once the dictionary set is opened no one else can make
changes to it until the Close method is called.

More information on the errors returned by the method can be obtained using the Error property
of the DtoSession Object.

Example

Dim dictionary as new DtoDictionary
Dim result as DtoResult

result = dictionary.Open("d:\MyDemodata")
Create method
Creates an empty set of data dictionary files.

Syntax

result = Object.Create(path, [user], [password])

Arguments
Object DtoDictionary object
path The absolute path to the directory in which the dictionary files to be created.
user Optional user name for the DDF set.
password Optional password for the DDF set.

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

103

Remarks

If the directory contained in path argument does not exist, an attempt will be made to create it. If
operation is successful a set containing file.ddf, field.ddf, index.ddf will be created.

Remember to call Close method to free memory. Once the dictionary set is created other clients
cannot open it or make changes to it until Close method is called.

More information on the errors returned by the method can be obtained using the Error property.
Unlike Open method the path parameter can only contain an absolute path.
Example

Dim Dictionary As New DtoDictionary
Dim result as DtoResult

result = Dictionary.Create("C:\TEST", "login", "password")
If NOT result = Dto_Success Then

MsgBox "Error"+ Session.Error(result)
End If

Close method

Closes a set of data dictionary files. Opened using Open method or created using Create method.

Syntax

result = Object.Close

Arguments

Object DtoDictionary object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

Remarks

Call this method after the dictionary has been opened using Open method or created using Create
method. Error information can be obtained using Error property.

Example

Dim dictionary as new DtoDictionary
Dim result as DtoResult

result = dictionary.Open("d:\MyDemodata")
' perform operations here

result = dictionary.Close

AddTable method

Adds table information to data dictionary files and creates a data file to match the definition.

Note: In the same directory, no two files should share the same file name and differ only in their
file name extension. For example, do not create a data file Invoice.btr and another one
Invoice.mkd in the same directory. This restriction applies because the database engine uses the
file name for various areas of functionality while ignoring the file name extension. Since only the
file name is used to differentiate files, files that differ only in their file name extension look
identical to the database engine.

Syntax

result = Object.AddTable(table)

Arguments
Object DtoDictionary object
table DtoTable object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

Remarks

This method adds the table definition to the ddf files and attempts to create the data file specified
in Location property of table. If Location property is left blank then this method will attempt to
create a data file named tableName.mkd. If a table with such name already exists a number will be
appended to the name and another attempt will be made.

In order for this operation to complete successfully at least one column must be defined.

Example

The following example shows how to create a dictionary object and then add a table to it.

Dim Dictionary As New DtoDictionary
Dim Table As DtoTable

Dim Tables As DtoTables

Dim result As dtoResult

Dim Columns As DtoColumns

Dim Indexes As DtoIndexes

Dim Column As DtoColumn

Dim Index As DtoIndex

Dim Segments As DtoSegments

Dim Segment As DtoSegment

result = Dictionary.Create("C:\TEST", "login", "password")
If NOT result = Dto_Success Then

MsgBox "Error"+ Session.Error(result)
End If

Tooskskokokokok ok Begin AddTable 3k ok ok ok ok ok ok ok ok ok ok >k ok k %k k %k k k

Set Table = New DtoTable

Set Column = New DtoColumn
With Column

.Decimal = @

.Flags = dtoColumnNullable
ISR = "M

.Name = "F_Int"

.Number = 0

.Size = 4

.Type = dtoTypeInteger

End With

Table.Columns.Add Column

Set Column = New DtoColumn

With Column

.Decimal = 4

.Flags = dtoColumnNullable + dtoColumnCaseInsensitive

ISR = """

.Name = "F_Str"
.Number = 1

.Size = 55

.Type = dtoTypelString
End With

Table.Columns.Add Column

Set Column = New DtoColumn
With Column
.Decimal = 4
.Flags = dtoColumnCaseInsensitive

ISR = "M

.Name = "F_Str_Second"
.Number = 2

.Size = 100

.Type = dtoTypelLString
End With

Table.Columns.Add Column

Set Column = New DtoColumn
With Column

.Decimal = 10

.Flags = dtoColumnDefault

ISR = ""

.Name = "F_Float"
.Number = 3

.Size = 8

.Type = dtoTypeBFloat

End With
Table.Columns.Add Column

'Add Indexes
Set Index = New DtoIndex

result = Index.AddSegment("F_Int",)

Set Segment = New DtoSegment
Segment.Number = ©
Segment.ColumnName = "F_Int"

Segment.Flags = dtoSegmentAscending

Index.Segments.Add Segment

Index.Name = "FintInd"
Index.Number = ©
Index.Flags = dtoIndexModifiable
Table.Indexes.Add Index

'Add second Index:
Set Index = New DtoIndex
Set Segment = New DtoSegment
Segment.Number = @
Segment.ColumnName = "F_Str"

Segment.Flags = dtoSegmentAscending

Index.Segments.Add Segment

Set Segment = New DtoSegment
Segment.Number = 1

Segment.ColumnName = "F_Str_Second"
Segment.Flags = dtoSegmentAscending

Index.Segments.Add Segment

Index.Name = "FStrTagInd"
Index.Number = 1

Index.Flags = dtoIndexModifiable
Table.Indexes.Add Index

Table.Overwrite = true

Table.Flags = dtoTableTrueNullable

Table.Name = "Table3"

result = Dictionary.AddTable(Table)

If NOT result = Dto_Success Then

MsgBox "Error"+ Session.Error(result)

End If

DropTable method

Remove a table from the current dictionary.

Syntax
result = Object.DropTable(tableName, [deleteFile])
Arguments
Object DtoDictionary object.
tableName Name of the table to be dropped.

107

deleteFile A boolean value indicating whether the underlying data file should be deleted.

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

Remarks

Note that the dictionary has to be opened successfully for this operation to succeed.

Example

result = Dictionary.DropTable("Table3", true)
If NOT result = Dto_Success Then
MsgBox "Error"+ Session.Error(result)
End If

Reload method
Refreshes a dictionary object.

Syntax

result = Object.Reload

Arguments

Object DtoDictionary object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

Delete method

Deletes dictionary object and the corresponding DDF files.

Syntax

result = Object.Delete

Arguments

Object DtoDictionary object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

109

DtoTables Collection

Returns a collection of DtoTable objects.

Properties
Count Returns number of members in a collection.
Item Returns a specific member of a collection. You can pass an ordinal value or a table
name.
Methods
None
Remarks

This collection only includes the user defined tables and does not include system tables. The
dictionary has to be successfully opened. In order to add or drop tables from the collection use
AddTable and DropTable.

Use the Count property to find the number of members in the DtoTables collection.

Example

Using DtoDatabase

Before obtaining the Tables collection, you must first invoke the Open method on the database
object, even if the database is not secured.

Dim m_session as new DtoSession
Dim m_database as new DtoDatabase
Dim table as new DtoTable

Dim result as DtoResult

result = m_session.Connect("server","user","password")
m_database.Name = "demodata"

m_database.Session = m_session

' Open database, assuming database not secured

result = m_database.Open("","")

For each table in m_database.Tables
if table.Name = “Billing” then

' found the billing table

End If

next

m_database.Close

Using DtoDictionary

Dim dictionary as new DtoDictionary
Dim table as new DtoTable

Dim result as DtoResult

Dim location as string

'find location of Mytable table
result = dictionary.Open("d:\MyDemodata")

For Each table In dictionary.Tables
If table.Name = "Mytable" Then
location = table.Location
exit For
End If
next

See Also
DtoDatabase Object
AddTable method
DropTable method
DtoTable Object

close the db if you open it

DtoTable Object

An object representing a table in a database.

Properties
Flags Gets or sets the flags associated with this table. See Table Flags for possible values.
Location Gets the file name of the table. To determine the path of this file, use the properties of
the DtoDatabase Object.
Name Gets or sets the name of the table.
Overwrite If True, this table can overwrite a table with the same name during an AddTable
method call.
True = overwrite table
False = do not overwrite table and return an error
Collections

DtoColumns Collection

Dtolndexes Collection

Methods

None

Remarks

DtoTable object contains two collection objects: Columns and Indexes. All operations involving
columns and indexes are accomplished using these objects.

To add a new table to a dictionary, use the AddTable method.

To remove a table from a dictionary, use the DropTable method.

Example

For an example of creating a new DtoTable object, see AddTable method.

Dim dictionary as new DtoDictionary

Dim table as new DtoTable
Dim result as DtoResult
Dim location as string

'determine file name of Mytable table
result = dictionary.Open("d:\MyDemodata")

For Each table In dictionary.Tables
If table.Name = "Mytable" Then
location = table.Location
End If
next

See Also
DtoTables Collection
DtoColumn Object

Dtolndex Object

13

DtoColumns Collection

A collection of DtoColumn objects representing all the columns in a table.

Properties

Count Returns number of members in a collection.

Item Returns a specific member of a DtoColumns collection.
Methods
Add method

Remove method

Clear method

Remarks
You obtain this collection from a property of the DtoTable Object object.

Use the Count property to find the number of members in the collection.

Example

Dim dictionary as new DtoDictionary
dictionary.Open("d:\MyDemodata")
students_table = dictionary.GetTable("STUDENT")
students_cols = students_table.Columns

See Also
Dtolndexes Collection
DtoColumn Object
DtoTable Object

Methods Detail

Add method

Add an item to a DtoColumns collection.

Syntax

result = Collection.Add(Object)

Arguments
Collection DtoColumns collection to which to add object.
Object A new DtoColumn object.

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

Remarks

This method takes a parameter of type DtoColumn. Therefore, you are responsible for first
instantiating the object and setting its properties before adding it to the collection.

Note: You cannot use this method to add columns to preexisting Zen tables. This method does
not alter data or DDF files, and can only be used to add columns in memory before a table is
created. See the example for AddTable method as a reference.

Remove method

Removes an item from a DtoColumns collection.

Syntax

Collection.Remove(column)

Arguments

Collection DtoColumns collection from which to remove object.

15

column A variant containing either the index (starting with 1) or the name of the item
you wish to remove from the DtoColumns collection

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

Remarks

You can pass either a column name or the 1-based ordinal of the item in the DtoColumns
collection.

Note: You cannot use this method to remove columns from preexisting Zen tables. This method
does not alter data or DDF files, and can only be used to remove columns in memory before a
table is created. See the example for AddTable method as a reference.

Clear method

Removes all items from a DtoColumns collection.

Syntax

result = Collection.Clear

Arguments

In Collection DtoColumns or Dtolndexes collection obtained from a DtoTable object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

Remarks

This method removes all the columns from a table in memory.

Note: You cannot use this method to remove columns from preexisting Zen tables. This method
does not alter data or DDF files, and can only be used to remove all columns in memory before a
table is created. See the example for AddTable method as a reference.

DtoColumn Object

This object represents a table column.

Properties
Decimal Gets or sets the decimal places for a column
Flags Gets or sets the flags for a column
ISR Gets or sets the ISR for a column
Name Gets or sets the Name for a column
Number Gets or sets the ordinal of a column
Size Gets or sets the size of the column
Type Gets or sets column type. An enumerated value. See Btrieve Types for possible values.
TypeName Returns a string value containing the type name.
Methods
None
Remarks

This object allows you to display properties of a specific table column.

Example

' Instantiate and open dictionary

Dim dictionary as new DtoDictionary

Dim result as DtoResult

result = dictionary.Open("d:\MyDemodata")

' Get STUDENT table from MyDemodata database
Dim students_table as DtoTable
Set students_table = dictionary.Tables("STUDENTS")

' Get columns collection from STUDENT table
Dim students_cols as DtoColumns
Set students_cols = students_table.Columns

' Retrieve first column and get its name
Dim first_col as DtoColumn

Set first_col = students_cols(1)

name = first_col.Name

n7

See Also

DtoColumns Collection

DtoTable Object

18

Dtolndexes Collection

A collection of Dtolndex objects representing the indexes of a table.

Properties
Count Returns number of members in a collection.
Item Returns a specific member of a Dtolndexes collection. You can pass either a 1-based
ordinal or the name of the Index.
Methods
Add method

Remove method

Clear method

Remarks

Use the Count property to find the number of members in the collection.

Example

' Instantiate and open dictionary

Dim dictionary as new DtoDictionary

Dim result as DtoResult

result = dictionary.Open("d:\mydemodata")

' Get STUDENT table from MYDEMODATA database

Dim students_table as DtoTable

Set students_table = dictionary.Tables("STUDENT")
' Retrieve DEMODATA indexes collection

Dim students_idx as DtoIndexes
Set students_idx = students_table.Indexes

See Also

Dtolndex Object

DtoTable Object

19

Methods Detail

Add method

Add an item to a collection.

Syntax

result = Collection.Add(Object)

Arguments
Collection Collection to add object to.
Object A new Dtolndex object to add to the Dtolndexes collection.

Return Values

result DtoResult long value indicating the result of the method call. Use the Error
property of the DtoSession Object to obtain a description for the result.

Remarks

This method takes a parameter of type Dtolndex. Therefore, you are responsible for first
instantiating the object and setting its properties before adding it to the collection.

Note: You cannot use this method to add indexes to preexisting Zen tables. This method does not
alter data or DDF files, and can only be used to add indexes in memory before a table is created.
See the example for AddTable method as a reference.

Remove method

Removes an item from a collection.

Syntax

result = Collection.Remove(index)

Arguments

Collection Collection from which to remove object.

index A variant containing either the index (starting with 1) or the name of the item you wish
to remove from the Dtolndexes collection

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

Remarks

You can pass either a name or a 1-based ordinal to the Remove method.

Note: You cannot use this method to remove indexes from preexisting Zen tables. This method
does not alter data or DDF files, and can only be used to remove indexes in memory before a table
is created. See the example for AddTable method as a reference.

Clear method

Removes all items from a DtoColumns or Dtolndexes collection.

Syntax

result = Collection.Clear

Arguments

Collection Dtolndexes collection obtained from a DtoTable object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error property
of the DtoSession Object to obtain a description for the result.

Remarks

This method removes all the indexes from a table in memory.

Note: You cannot use this method to remove indexes from preexisting Zen tables. This method
does not alter data or DDF files, and can only be used to remove all indexes in memory before a
table is created. See the example for AddTable method as a reference.

Dtolndex Object

This object represents an index for a table.

Properties
Flags Gets or sets the column name for the index segment. This is an enumerated value.
See Index Flags for possible values.
Name Gets or sets the name of the index.
Number Gets or sets the 0-based number of the index.
Tag Gets the index tag. It contains the names of all the columns that comprise the index.
Collections

DtoSegments Collection

Methods

None

Remarks

Only 119 segments are allowed per index. Note that the combined size of all the columns in
segments of an index cannot be more then 255 bytes.

Only the last column in an index segment can have a partial index flag. Index segments that are

not the last segment in the index and that use the partial index flag will have the partial flag

ignored.

Example

' Instantiate and open dictionary

Dim dictionary as new DtoDictionary

Dim result as DtoResult

result = dictionary.Open("d:\mydemodata")

' Get STUDENT table from MYDEMODATA database
Dim students_table as DtoTable
Set students_table = dictionary.Tables("STUDENT")

' Retrieve DEMODATA indexes collection

123

Dim students_idx as DtoIndexes

Set students_idx = students_table.Indexes
' Get first index and determine its name
Dim first_idx as DtoIndex

Set first_idx = students_idx(1)

Dim index_name as String

index_name = first_idx.Name

See Also

Dtolndexes Collection

DtoSegments Collection

DtoSegments Collection

A collection of DtoSegment objects representing the segments of an index.

Properties
Count Returns number of members in a collection.
Item Returns a specific member of a collection.
Methods
Add method

Remove method

Clear method

Remarks

Use the Count property to find the number of members in the collection.

Example

Open dictionary

Dim dictionary as new DtoDictionary

Dim result as DtoResult

result = dictionary.Open("d:\mydemodata")

' Get Students table

Dim students_table as DtoTable

Set students_table = dictionary.GetTable("Student")
' Obtain indexes collection from students table
Dim students_idx as DtoIndexes

Set students_idx = students_table.Indexes

' Delete all the indexes
Dim first_idx as DtoIndex
Set first_idx = students_idx(1)

' Get DtoSegments collection from first_idx
Dim my_segments as DtoSegments
Set my_segments as first_idx.Segments

125

See Also

DtoSegment Object
DtoTable Object

Methods Detail

Add method

Add an item to a collection.

Syntax

result = Collection.Add(Object)

Arguments
Collection DtoSegments collection to which to add object.
Object A new DtoSegment object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error
property of the DtoSession Object to obtain a description for the result.

Remarks

This method takes a parameter of type DtoSegment. Therefore, you are responsible for first
instantiating the object and setting its properties before adding it to the collection.

Note: You cannot use this method to add segments to preexisting Zen tables. This method does
not alter data or DDF files, and can only be used to add segments in memory before a table is
created. See the example for AddTable method as a reference.

Remove method

Removes an item from a collection.

Syntax

result = Collection.Remove(segment)

Arguments

Collection DtoSegments collection from which to remove object.

segment A variant containing either the index (starting with 1) or the name of the item you
wish to remove from the collection

Return Values

result DtoResult long value indicating the result of the method call. Use the Error
property of the DtoSession Object to obtain a description for the result.

Remarks

You can pass either the 1-based ordinal or the name of the segment.

Note: You cannot use this method to remove segments from preexisting Zen tables. This method
does not alter data or DDF files, and can only be used to remove segments in memory before a
table is created. See the example for AddTable method as a reference.

Clear method

Removes all items from a DtoSegments collection.

Syntax

result = Collection.Clear

Arguments

Collection DtoSegments collection obtained from a Dtolndex object

Return Values

result DtoResult long value indicating the result of the method call. Use the Error
property of the DtoSession Object to obtain a description for the result.

Remarks

This method removes all the segments from an index in memory.

Note: You cannot use this method to remove segments from preexisting Zen tables. This method
does not alter data or DDF files, and can only be used to remove segments in memory before a
table is created. See the example for AddTable method as a reference.

DtoSegment Object

This object represents a segment in an index.

Properties

ColumnName Gets or sets the column name associated with this segment.

Flags Gets or sets segment flags. An enumerated value. See Segment Flags for possible values.
Number Gets or sets the 0-based segment number.

Methods

None

Remarks

One or more of these comprise an index. Only 119 segments are allowed per index. Note that the

combined size of all the columns in segments of an index cannot be more then 255 bytes.

Example

Open dictionary

Dim dictionary as new DtoDictionary

Dim result as DtoResult

result = dictionary.Open("d:\mydemodata")

' Get Students table

Dim students_table as DtoTable

Set students_table = dictionary.GetTable("Student")
' Obtain indexes collection from students table
Dim students_idx as DtoIndexes

Set students_idx = students_table.Indexes

' Delete all the indexes
Dim first_idx as DtoIndex
Set first_idx = students_idx(1)

' Get DtoSegments collection from first_idx
Dim my_segments as DtoSegments
Set my_segments as first_idx.Segments

' Get first segment and query column name
Dim first_seg as DtoSegment

Set first_seg = my_segments(1)

Dim colname as String

colname = first_seg.ColumnName

129

See Also

DtoSegments Collection
DtoTable Object

Dtolndexes Collection

130

Distributed Tuning Objects
Enumerations

The following topic provides information about the enumerations used in the Distributed Tuning
Objects:

Enumerated Types in DTO

DTO supports the following enumerated types:

Enumerated Types in DTO

Btrieve Types
Column Flags

Index Flags

Segment Flags

Table Flags

DtoResult

Setting Rank

Setting Type

Client Site

Client Platform
Transaction State
Open Mode

DSN Open Mode
DSN Translate Option
Lock Type

Wait State

Database Code Page
Database Flags

SQL Connection Status

Service ID

Service Status

Btrieve Types
Enumeration Value

0 dtoTypeString
1 dtoTypelnteger
2 dtoTypeFloat
3 dtoTypeDate
4 dtoTypeTime
5 dtoTypeDecimal
6 dtoTypeMoney
7 dtoTypeLogical
8 dtoTypeNumeric
9 dtoTypeBfloat
10 dtoTypeLString
11 dtoTypeZString
12 dtoTypeNote
13 dtoTypeLvar
14 dtoTypeBinary
15 dtoTypeldentity
16 dtoTypeBit
17 dtoTypeNumericSTS
18 dtoTypeNumericSA
19 dtoTypeCurrency
20 dtoTypeTimestamp
21 dtoTypeBlob
22 dtoTypeGDecimal

Enumeration Value
25 dtoTypeW String
26 dtoTypeWZString
27 dtoTypeGUID
30 dtoTypeDateTime
Column Flags
Enumeration Value
0 dtoColumnDefault
1 dtoColumnCaseSensitive
4 dtoColumnNullable
256 dtoColumnBinary
2048 dtoTypeColumnNText
4096 dtoTypeColumnBinary
Index Flags
Enumeration Value
0 dtolndexDefault
1 dtoIndexDuplicatesAllowed
2 dtoIndexModifiable
64 dtoIndexDescending
512 dtoIndexPartial
Segment Flags
Enumeration Value
0 dtoSegmentAscending
64 dtoSegmentDescending

133

Table Flags

Enumeration Value
0 dtoTableLegacy
64 dtoTableTrueNullable
DtoResult
Enumeration Value
0 Dto_Success
1 Dto_errFailed
2 Dto_errMemoryAllocation
3 Dto_errDictionaryNotFound
4 Dto_errDictionaryAlreadyOpen
5 Dto_errDictionaryNotOpen
6 Dto_errInvalidDictionaryHandle
7 Dto_errTableNotFound
8 Dto_errInvalidTableName
9 Dto_errIlnvalidColumnName
10 Dto_errInvalidColumnDataType
11 Dto_errDuplicateColumnName
12 Dto_errInvalidDataSize
13 Dto_errInvalidColumnOrder
14 Dto_errInvalidindexName
15 Dto_errColumnNotFound
16 Dto_errTooManySegments
17 Dto_errStringTooShort
18 Dto_errDictionaryAlreadyExists
19 Dto_errDirectoryError

Enumeration Value
20 Dto_errSessionSecurityError
21 Dto_errDuplicateTable
22 Dto_errDuplicateIndex
27 Dto_errIlnvalidNameLength
28 Dto_errInternalProtocolError
29 Dto_errInvalidAccountName
30 Dto_errUserAlreadyExists
31 Dto_errGroupNotEmpty
32 Dto_errGroupAlreadyExists
33 Dto_errUserAlreadyPartOfGroup
34 Dto_errUserNotPartOfGroup
35 Dto_errNotAllowedToDropAdministrator
36 Dto_errDatabaseHasNoSecurity
37 Dto_errInvalidPassword
38 Dto_SuccessWithInfo
87 Dto_errServicelnvalidParameter
123 Dto_errInvalidServiceName
161 Dto errMaxUserCountReached
423 Dto_errInvalidSession
424 Dto_errInvalidArgument
425 Dto_errNotConnected
426 Dto_errIlnvalidComputerName
427 Dto_errUnknownError
428 Dto_errTableCouldNotBeDeleted
429 Dto_errltemNotFound
430 Dto_errAPINotImplemented
431 Dto_errAccessDenied

135

Enumeration Value

1051 Dto_errServiceDependentServiceRunning
1052 Dto_errServicelnvalidServiceControl
1053 Dto_errServiceRequestTimeout
1055 Dto_errServiceDatabaseLocked
1056 Dto_errServiceAlreadyRunning

1057 Dto_errInvalidServiceAccount

1058 Dto_errServiceDisabled

1059 Dto_errServiceCircularDependency
1060 Dto_errServiceDoesNotExist

1062 Dto_errServiceNotActive

1065 Dto_errServiceDatabaseDoesNotExist
1068 Dto_errServiceDependencyFail
1069 Dto_errServiceLogonFailed

1072 Dto_errServiceMarkedForDelete
1075 Dto_errServiceDependencyDeleted
7001 Dto_errInvalidHandle

7002 Dto_errNullPointer

7003 Dto_errBufferTooSmall

7004 Dto_errDtiFailed

7005 Dto_errInvalidDataType

7006 Dto_errOutOfRange

7007 Dto_errInvalidSelection

7008 Dto_errInvalidSequence

7009 Dto_errDataUnavailable

7010 Dto_errInvalidClient

7011 Dto_errAccessRights

7012 Dto_errDuplicateName

Enumeration

Value

7013 Dto_errDatabaseDoesNotExist
7015 Dto_errFileNotOpen

7016 Dto_errDDFAlreadyExist
7017 Dto_errSharedDDFEXxist

7018 Dto_errlnvalidName

7019 Dto_errDSNAIlreadyExist
7020 Dto_errDSNDoesNotExist
7021 Dto_errIlnvalidOpenMode

The following enumerations are only present in DTO2

7063 See 161

7064 Dto_errNoLicenseObtained
7065 Dto_errNoProductObtained
7101 Dto_errInvalidLicKeyCharacter
7102 Dto_errlllegalLicType

7108 Dto_errLicKeyTooLong

7109 Dto_errLicNotFound

7110 Dto_errLicExpired

7111 Dto_errLiclsTemporary

7112 Dto_errLicAlreadylnstalled
7113 Dto_errLiclnvalid

7115 Dto_errInvalidProductld

7118 Dto_errServerNotRunning
7119 Dto_errLocalServerNotRunning
7120 Dto_errLicNotRemovable

7122 Dto_errNoActiveLicense

137

Setting Rank

Enumeration Value
0 dtoNormal
1 dtoAdvanced
Setting Type
Enumeration Value
0 dtoBooleanType
1 dtoLongType
2 dtoStringType
3 dtoSingleSel
4 dtoMultiSel
Client Site
Enumeration Value
0 dtoClientSiteLocal
1 dtoClientSiteRemote
Client Platform
Enumeration Value
0 dtoPlatformNotAvailable
1 dtoPlatformWin
2 dtoPlatformWin95
3 dtoPlatformWinWg
4 dtoPlatformNTW
5 dtoPlatformNTS
6 dtoPlatformNW

Enumeration Value
7 dtoPlatformOS2W
8 dtoPlatformOS2S
9 dtoPlatformDOS

Transaction State

Enumeration Value
0 dtoNone
19 dtoExclusive
1019 dtoConcurrent
Open Mode
Enumeration Value
0 dtoNormalOpenMode
255 dtoAcceleratedOpenMode
254 dtoReadOnlyOpenMode
253 dtoVerifyOpenMode
252 dtoExclusiveOpenMode
248 dtoNormalNonTransOpenMode
247 dtoAcceleratedNonTransOpenMode
246 dtoReadOnlyNonTransOpenMode
245 dtoVerifyNonTransOpenMode
244 dtoExclusiveNonTransOpenMode
240 dtoNormalSharedLockingOpenMode
239 dtoAcceleratedSharedLockingOpenMode
238 dtoReadOnlySharedLockingOpenMode
237 dtoVerifySharedLockingOpenMode

139

Enumeration Value

236 dtoExclusiveSharedLockingOpenMode
DSN Open Mode
Enumeration Value
0 dtoNormalDSNOpenMode
1 dtoAcceleratedDSNOpenMode
2 dtoReadOnlyDSNOpenMode
3 dtoExclusiveDSNOpenMode
DSN Translate Option
Enumeration Value
0 dtoDSNFlagDefault
1 dtoDSNFlagEomAnsi
2 dtoDSNFlagAuto
Lock Type
Enumeration Value
0 dtoNotLocked
1 dtoSingleLock
2 dtoMultipleLock
Wait State
Enumeration Value
0 dtoNotWaiting
1 dtoWaitingForRecordLock
2 dtoWaitingForFileLock

Database Code Page

Enumeration Value
0 dtoDbZeroCodePage
65001 dtoDBCodePageUTF8
Database Flags
Enumeration Value
0 dtoDbFlagNotApplicable
1 dtoDbFlagBound
2 dtoDbFlagRI
4 dtoDbFlagCreateDDF
32 dtoDbFlagLONGMETADATA
SQL Connection Status
Enumeration Value
0 dtoSQLConnectionldle
1 dtoSQLConnectionActive
2 dtoSQLConnectionDying
Service ID
Enumeration Value
0 dtoServiceTransactional
1 dtoServiceRelational
2 dtoServicelDS

Service Status

Enumeration Value
0 dtoServiceStopped
1 dtoServiceStartPending
2 dtoServiceStopPending
3 dtoServiceRunning
4 dtoServiceContinuePending
5 dtoServicePausePending
6 dtoServicePaused
7 dtoServiceNotFound

	Contents
	About This Document
	Who Should Read This Manual

	Distributed Tuning Objects Introduction
	What is DTO?
	DTO Objects Model and Objects Relationship
	Connection
	Monitoring and Diagnostic
	Configuration
	Catalog and Dictionary
	DTO Object Tree
	DTO Versions
	DTO2
	W64DTO2
	Understanding How Applications and DLLs Interact
	32-bit Machine Process
	64-bit Machine Process

	Getting Started with DTO
	Visual Basic
	Adding a Reference to DTO to a Project
	Using the CreateObject Function

	Active Server Pages
	Delphi
	Importing the DTO Type Library into a Delphi project
	Example of Using Pascal Declarations
	Example of Using Direct COM Calls

	DTO Object Summary
	Connection Object
	DtoSession

	Configuration Objects
	DtoCategory
	DtoSetting
	DtoSelectionItem
	DtoServices
	DtoLicenseMgr

	Monitoring Objects
	DtoMonitor
	DtoOpenFile
	DtoFileHandle
	DtoMkdeClient
	DtoMkdeClientHandle
	DtoMkdeVersion
	DtoEngineInformation
	DtoSqlClient
	DtoCommStat
	DtoProtocolStat

	Database and Dictionary Objects
	DtoDatabase
	DtoDSN
	DtoDictionary (deprecated)
	DtoTable
	DtoColumn
	DtoIndex
	DtoSegment

	Working with DTO Collections
	Instantiating a Collection
	Visual Basic
	ASP

	Looping through a Collection
	Visual Basic
	ASP

	Obtaining Number of Members
	Visual Basic
	ASP

	Obtaining a Specific Member
	Visual Basic and ASP

	Where to Find DTO Samples

	Establishing a DTO Session
	DtoSession Object
	Properties
	Collections
	Objects
	Methods
	Remarks
	Example
	See Also
	Methods Detail
	Connect method
	Syntax
	Arguments
	Return Values
	Remarks
	Examples
	Disconnect method
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	GetSetting method
	Syntax
	Arguments
	Return Values
	Remarks
	Example

	Configuring Zen Servers with DTO
	DtoCategories Collection
	Properties
	Methods
	Remarks
	Example
	See Also

	DtoCategory Object
	Properties
	Collections
	Methods
	Remarks
	Example
	See Also

	DtoLicenseMgr Object
	Properties
	Collections
	Methods
	Remarks
	Example
	See Also
	Methods Detail
	AddLicense
	Syntax
	Arguments
	Return Values
	Example
	DeleteLicense
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	GetProductInfo
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	ValidateLicenses
	Syntax
	Arguments
	Return Values
	Remarks
	Example

	DtoSettings Collection
	Properties
	Methods
	Remarks
	Example
	See Also

	DtoSetting Object
	Properties
	Collections
	Methods
	Remarks
	Example
	See Also

	DtoSelectionItems Collection
	Properties
	Methods
	Remarks
	Example
	See Also
	Methods Detail
	Add method
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	GetById method
	Syntax
	Arguments
	Return Values
	Example
	Remove method
	Syntax
	Arguments
	Return Values
	Remarks
	Example

	DtoSelectionItem Object
	Properties
	Methods
	Remarks
	Example
	See Also

	DtoServices Object
	Properties
	Methods
	Remarks
	Security Information Regarding DtoServices Object

	Examples
	See Also
	Methods Detail
	RestartAllServices method
	Syntax
	Arguments
	Return Values
	StartRelational method
	Syntax
	Arguments
	Return Values
	StartTransactional method
	Syntax
	Arguments
	Return Values
	StopRelational method
	Syntax
	Arguments
	Return Values
	StopTransactional method
	Syntax
	Arguments
	Return Values
	StartDXAgent
	Syntax
	Arguments
	Return Values
	StartDXReplication
	Syntax
	Arguments
	Return Values
	StopDXAgent
	Syntax
	Arguments
	Return Values
	StopDXReplication
	Syntax
	Arguments
	Return Values

	Monitoring Zen Servers with DTO
	DtoMonitor Object
	Properties
	Collections
	Objects
	Methods
	Example
	See Also

	DtoOpenFiles Collection
	Properties
	Methods
	Remarks
	Example
	See Also

	DtoOpenFile Object
	Properties
	Methods
	Collections
	Remarks
	Example
	See Also

	DtoFileHandles Collection
	Properties
	Methods
	Remarks
	Example
	See Also

	DtoFileHandle Object
	Properties
	Methods
	Remarks
	Example
	See Also

	DtoMkdeClients Collection
	Properties
	Methods
	Remarks
	Example
	See Also

	DtoMkdeClient Object
	Properties
	Collections
	Methods
	Remarks
	Example
	See Also
	Methods Detail
	Disconnect method
	Syntax
	Arguments
	Return Values
	Remarks
	Example

	DtoMkdeClientHandles Collection
	Properties
	Methods
	Remarks
	Example
	See Also

	DtoMkdeClientHandle Object
	Properties
	Methods
	Remarks
	Example
	See Also

	DtoCommStat Object
	Properties
	Collections
	Objects
	Methods
	Remarks
	Example
	See Also

	DtoProtocolStats Collection
	Properties
	Methods
	Remarks
	Example
	See Also

	DtoProtocolStat Object
	Properties
	Methods
	Remarks
	Examples
	See Also

	DtoSqlClients Collection
	Properties
	Methods
	Remarks
	Example
	See Also

	DtoSqlClient Object
	Properties
	Methods
	Remarks
	Example
	See Also
	Methods Detail
	Disconnect method
	Syntax
	Arguments
	Return Values
	Remarks
	Example

	DtoMkdeVersion Object
	Properties
	Methods
	Remarks
	Example
	See Also

	DtoEngineInformation Object
	Properties
	Methods
	Remarks
	Example
	See Also

	Creating and Maintaining Catalogs and Dictionaries with DTO
	DtoDatabases Collection
	Properties
	Methods
	Remarks
	Example
	See Also
	Methods Detail
	Add method
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	Remove method
	Syntax
	Arguments
	Return Values
	Remarks
	Example

	DtoDatabase Object
	Properties
	Collections
	Methods
	Remarks
	Examples
	See Also
	Methods Detail
	AddUserToGroup
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	AlterUserName
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	AlterUserPassword
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	Close
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	Copy
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	CreateGroup
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	CreateUser
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	DropGroup
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	DropUser
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	Open
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	RemoveUserFromGroup
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	Secure
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	UnSecure
	Syntax
	Arguments
	Return Values
	Remarks
	Example

	DtoDSNs Collection
	Properties
	Methods
	Remarks
	Example
	See Also
	Methods Detail
	Add method
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	Remove method
	Syntax
	Arguments
	Return Values
	Remarks
	Example

	DtoDSN Object
	Properties
	Methods
	Remarks
	Examples
	To Query the DbName Associated with a DSN
	To Add a New DSN
	To Get or Set the Encoding Translation

	See Also

	DtoDictionary Object
	Properties
	Collections
	Methods
	Remarks
	Example
	See Also
	Methods Detail
	Open method
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	Create method
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	Close method
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	AddTable method
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	DropTable method
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	Reload method
	Syntax
	Arguments
	Return Values
	Delete method
	Syntax
	Arguments
	Return Values

	DtoTables Collection
	Properties
	Methods
	Remarks
	Example
	Using DtoDatabase
	Using DtoDictionary

	See Also

	DtoTable Object
	Properties
	Collections
	Methods
	Remarks
	Example
	See Also

	DtoColumns Collection
	Properties
	Methods
	Remarks
	Example
	See Also
	Methods Detail
	Add method
	Syntax
	Arguments
	Return Values
	Remarks
	Remove method
	Syntax
	Arguments
	Return Values
	Remarks
	Clear method
	Syntax
	Arguments
	Return Values
	Remarks

	DtoColumn Object
	Properties
	Methods
	Remarks
	Example
	See Also

	DtoIndexes Collection
	Properties
	Methods
	Remarks
	Example
	See Also
	Methods Detail
	Add method
	Syntax
	Arguments
	Return Values
	Remarks
	Remove method
	Syntax
	Arguments
	Return Values
	Remarks
	Clear method
	Syntax
	Arguments
	Return Values
	Remarks

	DtoIndex Object
	Properties
	Collections
	Methods
	Remarks
	Example
	See Also

	DtoSegments Collection
	Properties
	Methods
	Remarks
	Example
	See Also
	Methods Detail
	Add method
	Syntax
	Arguments
	Return Values
	Remarks
	Remove method
	Syntax
	Arguments
	Return Values
	Remarks
	Clear method
	Syntax
	Arguments
	Return Values
	Remarks

	DtoSegment Object
	Properties
	Methods
	Remarks
	Example
	See Also

	Distributed Tuning Objects Enumerations
	Enumerated Types in DTO
	Btrieve Types
	Column Flags
	Index Flags
	Segment Flags
	Table Flags
	DtoResult
	Setting Rank
	Setting Type
	Client Site
	Client Platform
	Transaction State
	Open Mode
	DSN Open Mode
	DSN Translate Option
	Lock Type
	Wait State
	Database Code Page
	Database Flags
	SQL Connection Status
	Service ID
	Service Status

