
Data Providers for
ADO.NET

Zen v16

Activate Your Data™

Copyright © 2024 Actian Corporation. All Rights Reserved.

This Documentation is for the end user’s informational purposes only and may be subject to change or withdrawal by
Actian Corporation (“Actian”) at any time. This Documentation is the proprietary information of Actian and is
protected by the copyright laws of the United States and international treaties. The software is furnished under a
license agreement and may be used or copied only in accordance with the terms of that agreement. No part of this
Documentation may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, or for any purpose without the express written permission of Actian. To the extent
permitted by applicable law, ACTIAN PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY
OF ANY KIND, AND ACTIAN DISCLAIMS ALL WARRANTIES AND CONDITIONS, WHETHER EXPRESS
OR IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF
MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OR OF NON-INFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT WILL ACTIAN BE LIABLE TO THE END USER OR ANY THIRD
PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION,
GOODWILL, OR LOST DATA, EVEN IF ACTIAN IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The manufacturer of this Documentation is Actian Corporation.

For government users, the Documentation is delivered with “Restricted Rights” as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Actian, Actian DataCloud, Actian DataConnect, Actian X, Avalanche, Versant, PSQL, Actian Zen, Actian Director,
Actian Vector, DataFlow, Ingres, OpenROAD, and Vectorwise are trademarks or registered trademarks of Actian
Corporation and its subsidiaries. All other trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

i

Contents

Welcome to Actian Zen ADO.NET Data Providers ix

What Are the Zen ADO.NET Data Providers?. ix
What’s New in This Release . ix
Using This Guide . x

Quick Start 1

ADO.NET Data Providers Installed with Zen . 2
Supported .NET Framework Versions . 2

Zen ADO.NET Data Providers Available with SDK Download . 4
Defining Basic Connection Strings . 5
Connecting to a Database . 6

Example: Using the Provider-Specific Objects . 6
Example: Using the Common Programming Model . 8
Example: Using the Zen Common Assembly . 8

Using the Zen ADO.NET Entity Framework Data Provider . 10

Using the Data Providers 11

About the Data Providers . 12
Using Connection Strings. 13

Guidelines. 13
Using the Zen Performance Tuning Wizard . 14

Stored Procedures. 15
Using IP Addresses . 16
Transaction Support . 17

Using Local Transactions . 17
Thread Support . 18
Unicode Support. 19
Isolation Levels . 20
SQL Escape Sequences . 21
Event Handling. 22
Error Handling . 23
Using .NET Objects . 24
Developing Applications for .NET. 25

Advanced Features 27

Using Connection Pooling . 28

ii

Creating a Connection Pool. 28
Adding Connections to a Pool. 29
Removing Connections from a Pool . 30
Handling Dead Connection in a Pool . 30
Tracking Connection Pool Performance . 31

Using Statement Caching . 32
Enabling Statement Caching . 32
Choosing a Statement Caching Strategy . 33

Using Connection Failover . 34
Using Client Load Balancing . 36
Using Connection Retry . 37
Configuring Connection Failover . 38
Setting Security . 40

Code Access Permissions . 40
Security Attributes. 40

Using Zen Bulk Load . 41
Use Scenarios for Zen Bulk Load . 41
Zen Common Assembly . 42
Bulk Load Data File . 43
Bulk Load Configuration File . 43
Determining the Bulk Load Protocol . 44
Character Set Conversions . 44
External Overflow File . 45
Bulk Copy Operations and Transactions. 45

Using Diagnostic Features . 47
Tracing Method Calls . 47
PerfMon Support . 48
Analyzing Performance with Connection Statistics . 49
Enabling and Retrieving Statistical Items . 50

The ADO.NET Data Providers 53

About Zen ADO.NET Data Providers. 54
Namespace . 54
Assembly Name . 54

Using Connection Strings with the Zen ADO.NET Data Provider. 55
Constructing a Connection String . 55

Performance Considerations . 56
Connection String Options that Affect Performance. 56
Properties that Affect Performance . 57

Data Types . 58

iii

Mapping Zen Data Types to .NET Framework Data Types . 58
Mapping Parameter Data Types . 60
Data Types Supported with Stream Objects . 63

Using Streams as Input to Long Data Parameters . 64
Parameter Markers . 65
Parameter Arrays . 66

Zen ADO.NET Core Data Providers 77

About Zen ADO.NET Core Data Providers . 78
Creating an Application in Visual Studio Using Zen ADO.Net Core DLL 79
Creating a UWP Application in Visual Studio Using Zen ADO.Net Core Data Provider . . . 81
ADO.NET Data Provider Features Missing in Zen ADO.NET Core Data Provider 84

Zen ADO.NET Entity Framework Data Providers 85

About Zen ADO.NET Entity Framework Data Providers . 87
Namespace . 87
Assembly Names . 87

Configuring Entity Framework 6.1 . 88
Configuration File Registration . 88
Code-Based Registration . 88

Using Connection Strings with the Zen ADO.NET Entity Framework Data Provider 90
Defining Connection String Values in Server Explorer . 90
Changes in Default Values for Connection String Options . 90

Code First and Model First Support . 90
Handling Long Identifier Names . 91

Using Code First Migrations with the ADO.NET Entity Framework 91
Using Enumerations with the ADO.NET Entity Framework . 93
Mapping Data Types and Functions . 94

Type Mapping for Database First . 94
Type Mapping for Model First . 96
Type Mapping for Code First . 97
Mapping EDM Canonical Functions to Zen Functions . 98

Extending Entity Framework Functionality . 103
Enhancing Entity Framework Performance . 104

Limiting the Size of XML Schema Files . 104
Using Stored Procedures with the ADO.NET Entity Framework . 105

Providing Functionality . 105
Using Overloaded Stored Procedures. 106

Using .NET Objects . 107
Creating a Model . 108

iv

Upgrading Entity Framework 5 Applications to Entity Framework 6.1 114
For More Information . 118

Zen ADO.NET Entity Framework Core Data Providers 119

About Zen ADO.NET Entity Framework Core Data Providers . 120
Namespace . 120
Assembly Names. 120

Configuring the Zen ADO.NET Entity Framework Core Data Provider 121
Using Connection Strings with the Zen ADO.NET Entity Framework Core Data Provider . . .

122
Changes in Default Values for Connection String Options. 122

Code First Support . 122
Handling Long Identifier Names. 122

Using Code First Migrations with the ADO.NET Entity Framework Core 123
Using Reverse Engineering (Scaffolding). 124
Type Mapping for Code First . 125

Mapping EDM Canonical Functions to Zen Functions . 127
Extending Entity Framework Functionality . 132
Using Stored Procedures with the ADO.NET Entity Framework Core 133
Upgrading an Application from Entity Framework 6.x to Entity Framework Core 134
Limitations . 135
For More Information . 136

Using Zen Data Providers in Visual Studio 137

Adding Connections . 138
Adding Connections in Server Explorer . 138
Adding Connections with the Data Source Configuration Wizard 148

Using the Zen Performance Tuning Wizard . 151
Using Provider-Specific Templates. 154

Creating a New Project . 154
Adding a Template to an Existing Project. 155

Using the Zen Visual Studio Wizards . 157
Creating Tables with the Add Table Wizard . 157
Creating Views with the Add View Wizard. 161

Adding Components from the Toolbox. 164
Data Provider Integration Scenario . 165

A. .NET Objects Supported 167

.NET Base Classes . 168

v

Data Provider-Specific Classes . 169
PsqlBulkCopy. 170
PsqlBulkCopyColumnMapping . 170
PsqlBulkCopyColumnMappingCollection. 170
PsqlCommand Object. 170
PsqlCommandBuilder Object . 174
PsqlConnection Object . 175
PsqlConnectionStringBuilder Object . 177
PsqlCredential Object . 188
PsqlDataAdapter Object . 190
PsqlDataReader Object. 190
PsqlError Object . 191
PsqlErrorCollection Object . 192
PsqlException Object . 192
PsqlFactory Object . 193
PsqlInfoMessageEventArgs Object . 193
PsqlParameter Object . 194
PsqlParameterCollection Object. 195
PsqlTrace Object. 196
PsqlTransaction Object. 197

Zen Common Assembly Classes . 198
CsvDataReader . 198
CsvDataWriter . 199
DbBulkCopy. 200
DbBulkCopyColumnMapping . 201
DbBulkCopyColumnMappingCollection. 201

B. Getting Schema Information 203

Columns Returned by the GetSchemaTable Method . 204
Retrieving Schema Metadata with the GetSchema Method. 207

MetaDataCollections Schema Collections . 207
DataSourceInformation Schema Collection . 208
DataTypes Collection . 209
ReservedWords Collection . 211
Restrictions Collection . 211

Additional Schema Collections . 213
Columns Schema Collection . 213
ForeignKeys Schema Collection . 215
Indexes Schema Collection . 217
PrimaryKeys Schema Collection . 218

vi

ProcedureParameters Schema Collection . 219
Procedures Schema Collection . 222
TablePrivileges Schema Collection. 223
Tables Schema Collection . 224
Views Schema Collection . 224

C. SQL Escape Sequences for .NET 227

Date, Time, and Timestamp Escape Sequences . 228
Scalar Functions . 229
Outer Join Escape Sequences . 230

D. Locking and Isolation Levels 231

Locking . 232
Isolation Levels . 233
Locking Modes and Levels . 235

E. Designing .NET Applications for Performance Optimization 237

Retrieving Data . 238
Retrieving Long Data . 238
Reducing the Size of Data Retrieved . 238
Using CommandBuilder Objects . 239
Choosing the Right Data Type . 239

Selecting .NET Objects and Methods . 240
Using Parameter Markers as Arguments to Stored Procedures. 240

 Designing .NET Applications. 241
Managing Connections . 241
Opening and Closing Connections . 241
Using Statement Caching . 242
Using Commands Multiple Times. 242
Using Native Managed Providers . 243

Updating Data . 244
Using the Disconnected DataSet . 244
Synchronizing Changes Back to the Data Source. 244

F. Using an .edmx File 245

Code Examples . 246

G. Bulk Load Configuration Files 251

Sample Bulk Data Configuration File . 252

vii

XML Schema Definition for a Bulk Data Configuration File . 253

H. IANA Code Page Mappings 255

viii

ix

Welcome to Actian Zen ADO.NET Data
Providers

This documentation covers the following Actian Zen data providers

• Zen ADO.NET data provider

• Zen ADO.NET Core data provider

• Zen ADO.NET Entity Framework data provider

• Zen ADO.NET Entity Framework Core data provider

What Are the Zen ADO.NET Data Providers?
Zen ADO.NET data providers are managed data providers, built with 100% managed code. The
data providers are native wire protocol providers, which means that the provider does not have to
call out to unmanaged code, code outside of the .NET Framework, in the form of a database client
unless your application enlists in Microsoft Distributed Transaction Coordinator (MS DTC)
coordinated transactions.

The Zen ADO.NET data providers enable you to connect to Zen database engines. They work
with both 32- and 64-bit .NET and are supported on all Zen supported Windows platforms.

See also ADO.NET Data Providers Installed with Zen and Zen ADO.NET Data Providers
Available with SDK Download.

What’s New in This Release
The Zen v16 release of the Zen ADO.NET data providers is new in the following ways:

• ADO.NET 4.4 is no longer supported. ADO.NET 4.6 support has been added.

• Enhancements

• The Zen data providers have been enhanced to send passwords more securely to the
server.

• The Zen data providers have been enhanced to support Zen v16.

• The Zen Core data providers and the Actian Zen Entity Framework Core data providers
have been enhanced to support .Net 8.0.

x

• The Zen Entity Framework Core data providers have been enhanced to support Entity
Framework Core 8.0.

• Changed Behavior

• The Zen data providers no longer support Visual Studio 2017.

• The Zen Entity Framework Core data providers no longer support .Net versions prior to
.Net 8.0.

• The Microsoft Enterprise Libraries have reached the end of their product life cycle and are
not receiving updates anymore. Therefore, the Zen data providers no longer support them.

Using This Guide
We assume you are familiar with your operating system and its commands, the definition of
directories, and accessing a database through an end-user application.

This guide covers the following information:

• Quick Start provides information about connecting to a database with your .NET data
provider.

• Using the Data Providers provides information about using .NET applications with the Zen
data provider and provides information about developing .NET applications in the .NET
environment.

• Advanced Features describes advanced features of the data providers, including connection
pooling, statement caching, configuring security, and using Zen Bulk Load.

• The ADO.NET Data Providers describes connection string options, data types, and other
information for the Zen Entity Framework data providers.

• Zen ADO.NET Core Data Providers describes how to create an application and a UWP
application in Visual Studio using Zen ADO.NET Core DLL.

• Zen ADO.NET Entity Framework Data Providers Zen ADO.NET Entity Framework Data
Providers describes features of the Zen ADO.NET Entity Framework data providers. It
explains how to create an Entity Data Model for the Zen ADO.NET Entity Framework data
providers.

• Zen ADO.NET Entity Framework Core Data Providers describes the Actian Zen ADO.NET
Entity Framework Core data providers and provides instructions on how to configure and use
them.

• Using Zen Data Providers in Visual Studio describes how to use the Zen data providers and
the Performance Wizard from within Visual Studio.

xi

• Using the Microsoft Enterprise Libraries describes how to configure the Data Access
Application Block and Logging Application Block, and use them in your application code.

• .NET Objects Supported provides the .NET public objects, properties, and methods supported
by the Zen data providers.

• Getting Schema Information describes the schema collections supported by the Zen data
providers.

• SQL Escape Sequences for .NET describes the scalar functions supported for the Zen data
providers. Your data store may not support all of these functions.

• Locking and Isolation Levels discusses locking and isolation levels and how their settings can
affect the data you retrieve.

• Designing .NET Applications for Performance Optimization provides recommendations for
improving the performance of your applications by optimizing its code.

• Using an .edmx File explains the necessary changes to an .edmx file in order to provide
Extended Entity Framework functionality to the EDM layer.

• Bulk Load Configuration Files provides samples of the files created during bulk load
operations.

• IANA Code Page Mappings maps the most widely used IBM code pages to IANA code page
names.

Note: This guide may refer you to online links for more information about specific topics.
Because it is the nature of web content to change frequently, we can guarantee only that the links
referenced here were correct at the time of publishing.

xii

1

Quick Start

The following basic information enables you to connect to a database using the Zen ADO.NET
data providers immediately after their installation:

• ADO.NET Data Providers Installed with Zen

• Zen ADO.NET Data Providers Available with SDK Download

• Defining Basic Connection Strings

• Connecting to a Database

• Using the Zen ADO.NET Entity Framework Data Provider

To take full advantage of Zen ADO.NET data provider features, we recommend that you also read
other Zen ADO.NET topics documented here.

2

ADO.NET Data Providers Installed with Zen
This section describes the .NET Framework versions supported by the Zen ADO.NET data
providers installed with Zen v16. For a description of Zen ADO.NET data providers for .NET
Core and Entity Framework Core provided by downloading the SDK, see Zen ADO.NET Data
Providers Available with SDK Download.

Zen v16 provides two versions of the ADO.NET data providers: 4.5 and 4.6. All versions are
installed by default with the database engine.

If you are using ADO.NET without customization, then code written for earlier versions of the
.NET Framework and of the Zen data provider is compatible with Zen data provider 4.5 and 4.6.

Supported .NET Framework Versions

Zen ADO.NET Data Provider 4.5 and 4.6 add support for the combinations with Microsoft .NET
Framework and Microsoft Entity Framework as shown in the following table. Each row of the
table represents the compatible combinations of the supported versions of these three products.

Zen Data
Provider
for

Version Namespace Assembly File Name
(Installed by Zen)

Microsoft .NET
Framework

Microsoft
Entity
Framework

ADO.NET 4.5 Pervasive.Data.
SqlClient

Pervasive.Data.SqlClient.dll 2.0, 3.0, 3.5, 3.5
SP1, 4.5, 4.5.1,
4.5.2, 4.6, 4.6.1,
4.6.2, 4.7, 4.7.1,
4.7.2, 4.8

—

ADO.NET 4.6 Pervasive.Data.
SqlClient

Pervasive.Data.SqlClient.dll 2.0, 3.0, 3.5, 3.5
SP1, 4.5, 4.5.1,
4.5.2, 4.6, 4.6.1,
4.6.2, 4.7, 4.7.1,
4.7.2, 4.8

—

ADO.NET
Entity
Framework

4.5 Pervasive.Data.
SqlClient.Entity

Pervasive.Data.SqlClient.
Entity.dll

4.5, 4.5.1, 4.5.2,
4.6, 4.6.1, 4.6.2,
4.7, 4.7.1, 4.7.2,
4.8

6.1, 6.1.1,
6.1.2

ADO.NET
Entity
Framework

4.6 Pervasive.Data.
SqlClient.Entity

Pervasive.Data.SqlClient.
Entity.dll

4.5, 4.5.1, 4.5.2,
4.6, 4.6.1, 4.6.2,
4.7, 4.7.1, 4.7.2,
4.8

6.1, 6.1.1,
6.1.2

3

Notes

To use Zen ADO.NET Entity Framework Provider 4.5 or 4.6, your applications must target .NET
Framework 4.5 or later.

All versions listed here apply to both 32- and 64-bit versions of .NET Framework.

Zen ADO.NET Entity Framework Provider 4.5 and 4.6 support Microsoft Entity Framework
6.1.x.

For more information on the Zen ADO.NET data providers, see the topic for each provider.

4

Zen ADO.NET Data Providers Available with SDK
Download
Beyond the ADO.NET data providers installed with Zen v16, additional providers are available to
support .NET Standard 2.0 compliant applications. These providers are listed in the following
table and made available as NuGet packages included in a downloadable SDK at the Actian
website. As with the versions of providers installed with Zen, the following table lists two
versions for compliant applications.

Note: The associated NuGet packages are available only in the downloadable SDK listed in the
table.

Zen ADO.NET Entity Framework Core data providers require the Zen ADO.NET Core data
provider of the same version to be added to the application project.

For more information on the Zen ADO.NET Core data providers, see the topic for each provider.

Zen Data
Provider
for

Version Namespace Assembly File
Name

.NET EF
Core

NuGet Package
(see note)

SDK Download

ADO.NET
Core

4.5 Pervasive.
Data.Sql
Client

Pervasive.Data.
SqlClientStd.dll

Core
2.1,
6.0,
7.0

— Pervasive.Data.SqlClient
Std.4.5.0.<build>.nupkg

Zen-SDK-
AdoNetDataProvider
4.5-NetStandard-
Windows-noarch-
<version>.zip

ADO.NET
Core

4.6 Pervasive.
Data.Sql
Client

Pervasive.Data.
SqlClientStd.dll

Core
2.1,
6.0,
7.0

— Pervasive.Data.SqlClient
Std.4.6.0.<build>.nupkg

Zen-SDK-
AdoNetDataProvider
4.6-NetStandard-
Windows-noarch-
<version>.zip

ADO.NET
Entity
Framework
Core

4.5 Actian.
Entity
Framework
Core.Zen

Actian.Entity
Framework
Core.Zen.dll

Core
2.1,
6.0

3.1,
6.0

Actian.EntityFramework
Core.Zen.4.5.0.<build>.
nupkg

Zen-SDK-
AdoNetDataProvider
4.5-NetStandard-
Windows-noarch-
<version>.zip

ADO.NET
Entity
Framework
Core

4.6 Actian.
Entity
Framework
Core.Zen

Actian.Entity
Framework
Core.Zen.dll

Core
2.1,
6.0

3.1,
6.0

Actian.EntityFramework
Core.Zen.4.6.0.<build>.
nupkg

Zen-SDK-
AdoNetDataProvider
4.6-NetStandard-
Windows-noarch-
<version>.zip

https://www.actian.com/data-management/psql-embedded-database
https://www.actian.com/data-management/psql-embedded-database

5

Defining Basic Connection Strings
The data provider uses a connection string to provide information needed to connect to a specific
database server. The connection information is defined by connection string options.

The Zen ADO.NET Entity Framework data provider can specify an existing connection in the
Entity Framework Wizard or can define a new connection. The Zen ADO.NET Entity Framework
uses information contained in connection strings to connect to the underlying Zen ADO.NET data
provider that supports the Entity Framework. The connection strings also contain information
about the required model and mapping files. The data provider uses the connection string when
accessing model and mapping metadata and connecting to the data source.

The connection string options have the form:

"option name=value"

Each connection string option value pair is separated by a semicolon. For example,

"Server DSN=DEMODATA;UID=test;PWD=test;Host=localhost"

See Connection String Properties for details about the supported connection string options.

Notes

• The spaces in the option names are optional.

• All connection string option names are case-insensitive. For example, User ID is the same as
user id. However, the values of some options, such as User ID and Password, might be case-
sensitive.

• If the connection string does not specify a port number, the data provider uses 1583, the
default port number.

Minimum Required Connection String Options

The following table gives the name and description for each option required for a minimum
connection to a Zen server.

Option Description

Server
DSN

Specifies the name of the data source on the server to which you want to connect, for
example, DEMODATA.

Host Specifies the name or the IP address of the Zen server to which you want to connect. For
example, you can specify a server name such as Accountingserver or an IP address such
as 199.226.22.34 (IPv4) or 1234:5678:0000:0000:0000:0000:9abc:def0 (IPv6).

The initial default value is localhost.

6

Connecting to a Database
Once your data provider is installed, you can connect from your application to your database with
a connection string. See Connection String Properties for a list of the connection string options.

Note: If your application uses the Zen ADO.NET Entity Framework, you can use the Entity Data
Model Wizard to create a new connection or use an existing connection. See Creating a Model for
more information.

Example: Using the Provider-Specific Objects

The following example uses the provider-specific objects to connect to a database using the Zen
ADO.NET data provider from an application developed in Visual Studio using C#.

1. In the Solution Explorer, right-click References and then select Add Reference.

2. In the Reference Manager wizard, click the Browse button and navigate to the folder that
contains the Zen data provider assembly.

7

3. Select Pervasive.Data.SqlClient.dll and click Add. The Browse tab of the Reference
Manager wizard lists the Zen data provider assembly in the Recent items.

4. Select it and click OK. The Solution Explorer now includes the Zen data provider.

5. Add the Zen data provider’s namespace to the beginning of your application, as shown in the
following C# code fragment:

// Access Zen
using System.Data;
using System.Data.Common;
using Pervasive.Data.SqlClient;

6. Add exception handling code and the connection information for your server:

PsqlConnection DBConn = new PsqlConnection("Server DSN=DEMODATA;Host=localhost");
try
{
 // Open the connection
 DBConn.Open();
 Console.WriteLine("Connection Successful!")

8

}
catch (PsqlException ex)
{
 // Connection failed
 writer.WriteLine(ex.Message);
}

7. Close the connection.

// Close the connection
DBConn.Close();

Example: Using the Common Programming Model

The following example illustrates connecting to a Zen database from an application developed in
Visual Studio using C# and the Common Programming Model.

1. Check the beginning of your application. Ensure that the ADO.NET namespaces are present.

// Access Zen using factory
using System.Data;
using System.Data.Common;

2. Add the connection information of your server and exception handling code and close the
connection.

DbProviderFactory
factory=DbProviderFactories("Pervasive.Data.SqlClient");
DbConnection Conn = factory.createConnection();
Conn.CommandText = "Server DSN=DEMODATA;Host=localhost;";
try
{
 Conn.Open();
 Console.WriteLine("Connection successful!");
}
catch (Exception ex)
{
 // Connection failed
 Console.WriteLine(ex.Message);
}
// Close the connection
Conn.Close();

Example: Using the Zen Common Assembly

You can optionally include the Zen Common Assembly if you want to use features such as Zen
Bulk Load in an application that conforms to the Common Programming Model. See Using Zen
Bulk Load for information about how to use Zen Bulk Load with your application.

The following example illustrates how to use the Zen Common Assembly in an application
developed in Visual Studio using C# and the Common Programming Model.

9

1. Check the beginning of your application. Ensure the .NET Framework and Zen data provider
namespaces are present.

// Access Zen using factory
using System.Data;
using System.Data.Common;
using Pervasive.Data.Common;

2. Add the connection information of your server and exception handling code and close the
connection.

// This code does a bulk copy operation from
// one database to another
DbProviderFactory Factory = DbProviderFactories.GetFactory("Pervasive.Data.SqlClient");
DbConnection sourceConnection = Factory.CreateConnection();
sourceConnection.ConnectionString = "Host=localhost;Server DSN=DEMODATA;";

sourceConnection.Open();

DbCommand command = sourceConnection.CreateCommand();
command.CommandText = "SELECT * FROM test";
DbDataReader reader = command.ExecuteReader();

DbConnection destinationConnection = Factory.CreateConnection();
destinationConnection.ConnectionString =
 "Host= ntsl2003b;Server DSN=DEMODATA";
destinationConnection.Open();

DbBulkCopy bulkCopy = new DbBulkCopy(destinationConnection);
 bulkCopy.DestinationTableName = "test";
 try
 {
 bulkCopy.WriteToServer(reader);
 }//end try
 catch (DbException ex)
 {
 Console.WriteLine(ex.Message);
 }//end catch
 finally
 {
 reader.Close();
 MessageBox.Show("done");
 }//end finally

10

Using the Zen ADO.NET Entity Framework Data
Provider
The Entity Data Model wizard asks questions that help you to define the components in your
Entity Data Model (EDM). The wizard then creates a model of your data in Visual Studio, and
automatically sets values for the components in the model. See Using an .edmx File for
information about using the wizard to create an EDM.

Alternatively, you can use other tools in Visual Studio to define values and connection strings
manually.

Provider is an attribute of the Schema element in the storage model file of an EDM. The storage
model file is written in the store schema definition language (SSDL).

The Entity Data Model wizard assigns the value when you select the Zen ADO.NET Entity
Framework data provider. If you choose to manually define an Entity Data Model, assign the
string Pervasive.Data.SqlClient to the Provider attribute of the Schema element, as shown in
the following example:

<Schema Namespace="AdventureWorksModel.Store" Alias="Self" Provider="Pervasive.Data.SqlClient"
ProviderManifestToken="Zen" xmlns:store="http://schemas.microsoft.com/ado/2007/12/edm/
EntityStoreSchemaGenerator" xmlns="http://schemas.microsoft.com/ado/2006/04/edm/ssdl">

11

Using the Data Providers

The Zen data providers provide data access to any .NET-enabled application or application server.
The data providers delivers high-performance point-to-point and n-tier access to industry-leading
data stores across the Internet and intranets. Because they are optimized for the .NET
environment, the data providers allow you to incorporate .NET technology and extend the
functionality and performance of your existing system.

See Advanced Features for information on advanced features such as connection pooling,
statement caching, configuring security, Zen Bulk Load, and diagnostic support.

See The ADO.NET Data Providers for information about using the Zen ADO.NET data providers
in the standard Zen ADO.NET environment.

See Zen ADO.NET Entity Framework Data Providers for information about using the data
providers with the Zen ADO.NET Entity Framework.

12

About the Data Providers
Zen data providers are built with 100% managed code, so they can run and connect to the
database entirely within the common language runtime (CLR).

Code that runs in the native operating system, such as client libraries and COM components, is
called unmanaged code. You can mix managed and unmanaged code within a single application.
However, unmanaged code reaches outside the CLR, which means that it effectively increases
complexity, reduces performance, and opens possible security risks.

For information on the .NET Framework and Entity Framework versions supported by the Zen
data providers, see Supported .NET Framework Versions.

13

Using Connection Strings
You can define the behavior of a connection using a connection string or the properties of the
PsqlConnection object.

However, values set in the connection string cannot be changed by the connection properties.

The basic format of a connection string includes a series of keyword/value pairs separated by
semicolons. The following example shows the keywords and values for a simple connection
string for the Zen data provider:

"Server DSN=SERVERDEMO;Host=localhost"

Guidelines

Use the following guidelines when specifying a connection string:

• The spaces in the connection string option names are required.

• All connection string option names are case-insensitive. For example, Password is the same as
password. However, the values of options such as User ID and Password may be case-
sensitive.

• To include values that contain a semicolon, single quote, or double quotes, enclose the value
in double quotes. If the value contains both a semicolon and double quotes, use single quotes
to enclose the value.

• You can also use single quotes when the value starts with a double quote. Conversely, double
quotes can be used if the value starts with a single quote. If the value contains both single
quotes and double quotes, the character used to enclose the value must be doubled every time
it occurs within the value.

• To include leading or trailing spaces in the string value, the value must be enclosed in either
single quotes or double quotes. Any leading or trailing spaces around integer, Boolean, or
enumerated values are ignored, even if enclosed in single or double quotes. However, spaces
within a string literal keyword or value are preserved. Single or double quotes can be used
within a connection string without using delimiters (for example, Data Source= my'Server or
Data Source= my"Server), unless it is the first or last character in the value.

• Special characters can be used in the value of the connection string option. To escape special
characters, surround the value in single or double quotes.

• The Equals character (=) can also be repeated within the connection string. For example:

Initialization String=update mytable set col1 == 'foo'"

14

• If the connection string contains invalid connection string options, the connection attempt
returns an error. For example, an error is returned if you specify a value for Load Balancing
when Alternate Servers has not been defined.

• If the connection string contains duplicated connection string options, the data provider uses
the connection string option that appears last in the connection string. For example,
Connection Timeout appears twice in the following connection string, with different values.
The data provider uses the second value and waits 35 seconds before terminating an attempted
connection:

"Server DSN=SERVERDEMO;Host=localhost;Connection Timeout=15;Min Pool Size=50;Connection
Timeout=35"

See Connection String Properties for a list of the supported connection string options.

Using the Zen Performance Tuning Wizard

You can use the Performance Wizard to select the optimal connection string options for both the
Zen ADO.NET data provider or the Zen ADO.NET Entity Framework data provider.

See Using the Zen Performance Tuning Wizard for more information.

15

Stored Procedures
To enable stored procedures in the application, do the following:

• Set the CommandText property in the PsqlCommand object to the stored procedure name.

MyCommand.CommandText = "GetEmpSalary";

• Set the CommandType property in the PsqlCommand object to StoredProcedure.

MyCommand.CommandType = CommandType.StoredProcedure;

• Specify parameter arguments, if needed. The application should add the parameters to the
parameter collection of the PsqlCommand object in the order of the arguments to the stored
procedure. The application does not need to specify the parameter markers in the
CommandText property of the PsqlCommand object.

To retrieve the return value from a stored procedure, the application should add an extra
parameter to the parameter collection for the PsqlCommand object. This parameter’s
ParameterDirection property should be set to ParameterDirection.ReturnValue. The return value
parameter can be anywhere in the parameter collection because it does not correspond to a
specific parameter marker in the Text property of the PsqlCommand object.

If the stored procedure does not produce a return value, parameters bound with the
ParameterDirection property as ReturnValue are ignored.

If the stored procedure returns a ReturnValue from the database and the application has not bound
a parameter for it, the data provider discards the value.

Note for Zen ADO.NET Entity Framework Users: The PsqlConnection object includes
properties and methods that provide enhanced statistics functionality. The methods and properties
are standard in the Zen ADO.NET data provider but are not available at the Zen ADO.NET Entity
Framework layer. Instead, the Zen ADO.NET Entity Framework data provider exposes the same
functionality through "pseudo" stored procedures. See Using Stored Procedures with the
ADO.NET Entity Framework for more information.

16

Using IP Addresses
The data providers support Internet Protocol (IP) addresses in IPv4 and IPv6 formats. If your
network supports named servers, the server name specified in the data source can resolve to an
IPv4 or an IPv6 address.

The EnableIPv6 connection string option, when set to True, allows a client with IPv6 protocol
installed to connect to the server using either an IPv4 address or an IPv6 address. For more
information about IPv6 formats, see IPv6 in Getting Started with Zen.

17

Transaction Support
Zen data providers use only 100% managed code to support the transactions, which are
implemented entirely within the .NET Framework.

Using Local Transactions

Local transactions use the internal transaction manager of the underlying database.

The application creates a PsqlTransaction object by calling BeginTransaction on the
PsqlConnection object. Subsequent operations, such as committing or aborting the transaction,
are performed on the PsqlTransaction object.

18

Thread Support
The PsqlConnection object is thread-safe. Multiple PsqlCommand objects, each accessed on a
separate thread, can simultaneously use a single connection.

Accessing other public and data provider-specific objects simultaneously on separate threads is
not thread-safe.

19

Unicode Support
The data provider supports Unicode as specified in the .NET Framework SDK. Effectively, this
means that the data provider uses Unicode UTF-16 encoding to represent characters.

The data provider converts UTF-16 characters to the format used by the database, and returns
.NET Framework strings to the application. For example, if a Zen database code page is in
extended ASCII format, the data provider uses extended ASCII to represent characters sent to the
database. The data provider then converts the extended ASCII characters returned before sending
them back to the application.

For more information about the .NET Framework implementation of Unicode and international
characters, refer to the Microsoft .NET Framework SDK documentation.

20

Isolation Levels
Zen supports the ReadCommitted and Serializable isolation levels. It supports record-level
locking. See Locking and Isolation Levels for details.

21

SQL Escape Sequences
See SQL Escape Sequences for .NET for information about the SQL escape sequences supported
by the Zen data provider.

22

Event Handling
The event handler receives an argument of type PsqlInfoMessageEventArgs, which contains data
relevant to an event. See PsqlInfoMessageEventArgs Object for more information.

This event is defined as:

public event PsqlInfoMessageEventHandler InfoMessage;

Clients that want to process warnings and informational messages sent by the database server
should create an PsqlInfoMessageEventHandler delegate to listen to this event.

You can use these events to capture failures that can occur when creating packages, stored
procedures, or stored functions, which all create commands. If Zen encounters errors when
compiling a command created by a package, stored procedure, or stored function, the object is
created, even though it is not valid. An event will be sent, indicating the failure.

The following code fragment defines a delegate that represents the method that handles the
InfoMessage event of a PsqlConnection object:

[Serializable]
public delegate void PsqlInfoMessageEventHandler(
 object sender
 PsqlInfoMessageEventArgs e
);

where sender is the object that generated the event and e is an PsqlInfoMessageEventArgs object
that describes the warning. For more information on Events and Delegates, refer to the .NET
Framework SDK documentation.

23

Error Handling
The PsqlError object collects information relevant to errors and warnings generated by the Zen
server. See PsqlError Object for more information.

The PsqlException object is created and thrown when the Zen server returns an error. Exceptions
generated by the data provider are returned as standard run time exceptions. See PsqlException
Object for more information.

24

Using .NET Objects
The data provider supports the .NET public objects, exposing them as sealed objects.

See .NET Objects Supported for more information.

25

Developing Applications for .NET
Developers of data consumer applications must be familiar with the Microsoft .NET specification
and object-oriented programming techniques.

Microsoft also provides extensive information about ADO.NET online, including the following
articles.

• Upgrading to Microsoft .NET: ADO.NET for the ADO Programmer

http://msdn2.microsoft.com/en-us/library/aa302323.aspx

• Using .NET Framework Data Providers to Access Data

• http://msdn2.microsoft.com/en-us/library/s7ee2dwt(vs.71).aspx

Generic Coding with the ADO.NET 2.0 Base Classes and Factories

• http://msdn2.microsoft.com/en-us/library/ms379620(VS.80).aspx

• Security Policy Best Practices

• http://msdn.microsoft.com/en-us/library/sa4se9bc(v=vs.100).aspx

Writing Serviced Components

http://msdn2.microsoft.com/en-us/library/3x7357ez(vs.71).aspx

• DataSets, DataTables, and DataViews

http://msdn.microsoft.com/en-us/library/ss7fbaez(vs.110).aspx

• Using XML in a DataSet

http://msdn.microsoft.com/en-us/library/84sxtbxh(v=vs.110).aspx

Note: The links listed here may be redirected to new online locations at microsoft.com.

http://msdn.microsoft.com/en-us/library/ss7fbaez(vs.110).aspx
http://msdn.microsoft.com/en-us/library/84sxtbxh(v=vs.110).aspx
http://msdn2.microsoft.com/en-us/library/aa302323.aspx
http://msdn2.microsoft.com/en-us/library/s7ee2dwt(vs.71).aspx
http://msdn2.microsoft.com/en-us/library/ms379620(VS.80).aspx
http://msdn.microsoft.com/en-us/library/sa4se9bc(v=vs.100).aspx
http://msdn2.microsoft.com/en-us/library/3x7357ez(vs.71).aspx

26

27

Advanced Features

The following topics describe advanced features of the data provider:

• Using Connection Pooling

• Using Statement Caching

• Using Connection Failover

• Using Client Load Balancing

• Using Connection Retry

• Setting Security

• Using Zen Bulk Load

• Using Diagnostic Features

28

Using Connection Pooling
Connection pooling allows you to reuse connections rather than creating a new one every time the
data provider needs to establish a connection to the underlying database. The data provider
automatically enables connection pooling for your .NET client application.

You can control connection pooling behavior by using connection string options. For example,
you can define the number of connection pools, the number of connections in a pool, and the
number of seconds before a connection is discarded.

Connection pooling in ADO.NET is not provided by the .NET Framework. It must be
implemented in the ADO.NET data provider itself.

Creating a Connection Pool

Each connection pool is associated with a specific connection string. By default, when the first
connection with a unique connection string connects to the database, the connection pool is
created. The pool is populated with connections up to the minimum pool size. Additional
connections can be added until the pool reaches the maximum pool size.

The pool remains active as long as any connections remain open, either in the pool or used by an
application with a reference to a Connection object that has an open connection.

If a new connection is opened and the connection string does not match an existing pool, a new
pool must be created. By using the same connection string, you can enhance the performance and
scalability of your application.

In the following C# code fragments, three new PsqlConnection objects are created, but only two
connection pools are required to manage them. Note that the first and second connection strings
differ only by the values assigned for User ID and Password, and by the value of the Min Pool
Size option.

DbProviderFactory Factory = DbProviderFactories.GetFactory("Pervasive.Data.SqlClient");
DbConnection conn1 = Factory.CreateConnection();
conn1.ConnectionString = "Server DSN=DEMODATA;User ID=test;
Password = test; Host = localhost;MinPoolSize=5 ";
conn1.Open();
// Pool A is created.
DbConnection conn2 = Factory.CreateConnection();
conn2.ConnectionString = "Server DSN=DEMODATA2;User ID=lucy;
Password = quake; Host = localhost;MinPoolSize=10 ";
conn2.Open();
// Pool B is created because the connection strings differ.
DbConnection conn3 = Factory.CreateConnection();
conn3.ConnectionString = "Server DSN=DEMODATA;User ID=test;
Password = test; Host = localhost;MinPoolSize=5 ";
conn3.Open();
// conn3 goes into Pool A with conn1.

29

Adding Connections to a Pool

A connection pool is created in the process of creating each unique connection string that an
application uses. When a pool is created, it is populated with enough connections to satisfy the
minimum pool size requirement, set by the Min Pool Size connection string option. If an
application is using more connections than Min Pool Size, the data provider allocates additional
connections to the pool up to the value of the Max Pool Size connection string option, which sets
the maximum number of connections in the pool.

When a Connection object is requested by the application calling the Connection.Open(…)
method, the connection is obtained from the pool, if a usable connection is available. A usable
connection is defined as a connection that is not currently in use by another valid Connection
object, has a matching distributed transaction context (if applicable), and has a valid link to the
server.

If the maximum pool size has been reached and no usable connection is available, the request is
queued in the data provider. The data provider waits for the value of the Connection Timeout
connection string option for a usable connection to return to the application. If this time period
expires and no connection has become available, then the data provider returns an error to the
application.

You can allow the data provider to create more connections than the specified maximum pool size
without affecting the number of connections pooled. This may be useful, for example, to handle
occasional spikes in connection requests. By setting the Max Pool Size Behavior connection
string option to SoftCap, the number of connections created can exceed the value set for Max Pool
Size, but the number of connections pooled does not. When the maximum connections for the
pool are in use, the data provider creates a new connection. If a connection is returned and the
pool contains idle connections, the pooling mechanism selects a connection to be discarded so
that the connection pool never exceeds the Max Pool Size. If Max Pool Size Behavior is set to
HardCap, the number of connections created does not exceed the value set for Max Pool Size.

Important: Closing the connection using the Close() or Dispose() method of the PsqlConnection
object adds or returns the connection to the pool. When the application uses the Close() method,
the connection string settings remain as they were before the Open() method was called. If you
use the Dispose method to close the connection, the connection string settings are cleared, and the
default settings are restored.

30

Removing Connections from a Pool

A connection is removed from a connection pool when it either exceeds its lifetime as determined
by the Load Balance Timeout connection string option, or when a new connection that has a
matching connection string is initiated by the application (PsqlConnection.Open() is called).

Before returning a connection from the connection pool to an application, the Pool Manager
checks to see if the connection has been closed at the server. If the connection is no longer valid,
the Pool Manager discards it, and returns another connection from the pool, if one is available and
valid.

You can control the order in which a connection is removed from the connection pool for reuse,
based on how frequently or how recently the connection has been used, with the Connection Pool
Behavior connection string option. For a balanced use of connections, use the
LeastFrequentlyUsed or LeastRecentlyUsed values. Alternatively, for applications that perform
better when they use the same connection every time, you can use the MostFrequentlyUsed or
MostRecentlyUsed values.

The ClearPool and ClearAllPools methods of the Connection object remove all connections from
connection pools. ClearPool clears the connection pool associated with a specific connection. In
contrast, ClearAllPools clears all of the connection pools used by the data provider. Connections
that are in use when the method is called are discarded when they are closed.

Note: By default, if discarding an invalid connection causes the number of connections to drop
below the number specified in the Min Pool Size attribute, a new connection will not be created
until an application needs one.

Handling Dead Connection in a Pool

What happens when an idle connection loses its physical connection to the database? For
example, suppose the database server is rebooted or the network experiences a temporary
interruption. An application that attempts to connect using an existing Connection object from a
pool could receive errors because the physical connection to the database has been lost.

The Control Center handles this situation transparently to the user. The application does not
receive any errors on the Connection.Open() attempt because the data provider simply returns a
connection from a connection pool. The first time the Connection object is used to execute a SQL
statement (for example, through the Execute method on the Command object), the data provider
detects that the physical connection to the server has been lost and attempts to reconnect to the
server before executing the SQL statement. If the data provider can reconnect to the server, the
result of the SQL execution is returned to the application; no errors are returned to the application.
The data provider uses the connection failover options, if enabled, when attempting this seamless

31

reconnection. See Using Connection Failover for information about configuring the data provider
to connect to a backup server when the primary server is not available.

Note: Because the data provider can attempt to reconnect to the database server when executing
SQL statements, connection errors can be returned to the application when a statement is
executed. If the data provider cannot reconnect to the server (for example, because the server is
still down), the execution method throws an error indicating that the reconnect attempt failed,
along with specifics about the reason the connection failed.

This technique for handling dead connections in connection pools allows for the maximum
performance out of the connection pooling mechanism. Some data providers periodically ping the
server with a dummy SQL statement while the connections sit idle. Other data providers ping the
server when the application requests the use of the connection from the connection pool. Both of
these approaches add round trips to the database server and ultimately slow down the application
during normal operation of the application is occurring.

Tracking Connection Pool Performance

The data providers install a set of PerfMon counters that let you tune and debug applications that
use the data provider. See PerfMon Support for information about using the PerfMon counters.

32

Using Statement Caching
A statement cache is a group of prepared statements or instances of Command objects that can be
reused by an application. Using statement caching can improve application performance because
the actions on the prepared statement are performed once even though the statement is reused
multiple times over an application’s lifetime. You can analyze the effectiveness of the statements
in the cache (see Analyzing Performance with Connection Statistics).

A statement cache is owned by a physical connection. After being executed, a prepared statement
is placed in the statement cache and remains there until the connection is closed.

Statement caching can be used across multiple data sources and can be used beneath abstraction
technologies.

Enabling Statement Caching

By default, statement caching is not enabled. To enable statement caching for existing
applications, set the Statement Cache Mode connection string option to Auto. In this case, all
statements are eligible to be placed in the statement cache.

You can also configure statement caching so that only statements that you explicitly mark to be
cached are placed in the statement cache. To do this, set the StatementCacheBehavior property of
the statement’s Command object to Cache and set the Statement Cache Mode connection string
option to ExplicitOnly.

The following table summarizes the statement caching settings and their effects.

Behavior StatementCacheBehavior Statement Cache
Mode

Explicitly add the statement to the statement
cache.

Cache ExplicitOnly (the
default)

Add the statement to the statement cache. If
necessary, the statement is removed to make
room for a statement marked Cache.

Implicit (the default) Auto

Specifically exclude the statement from the
statement cache.

DoNotCache Auto or ExplicitOnly

33

Choosing a Statement Caching Strategy

Statement caching provides performance gains for applications that reuse prepared statements
multiple times over the lifetime of an application. You set the size of the statement cache with the
Max Statement Cache Size connection string option. If space in the statement cache is limited, do
not cache prepared statements that are used only once.

Caching all of the prepared statements that an application uses might appear to offer the best
performance. However, this approach may come at a cost of database memory if you implement
statement caching with connection pooling. In this case, each pooled connection has its own
statement cache that may contain all of the prepared statements used by the application. All of
these pooled prepared statements are also maintained in the database’s memory.

34

Using Connection Failover
Connection failover allows an application to connect to an alternate, or backup, database server if
the primary database is unavailable, for example, because of a hardware failure or traffic
overload. Connection failover ensures that the data on which your critical .NET applications
depend is always available.

You can customize the data provider for connection failover by configuring a list of alternate
databases that are tried if the primary server is not accepting connections. Connection attempts
continue until a connection is successfully established or until all of the alternate databases have
been tried the specified number of times.

For example, the following figure shows an environment with multiple database servers.
Database Server A is designated as the primary database server, Database Server B is the first
alternate server, and Database Server C is the second alternate server.

First, the application attempts to connect to the primary database, Database Server A (1). If
connection failover is enabled and Database Server A fails to accept the connection, the
application attempts to connect to Database Server B (2). If that connection attempt also fails, the
application attempts to connect to Database Server C (3).

In this scenario, it is probable that at least one connection attempt would succeed, but if no
connection attempt succeeds, the data provider can retry the primary server and each alternate
database for a specified number of attempts. You can specify the number of attempts that are
made through the connection retry feature. You can also specify the number of seconds of delay, if
any, between attempts through the connection delay feature. For more information about
connection retry, see Using Connection Retry.

The data provider fails over to the next alternate server only if it cannot establish communication
with the current alternate server. If the data provider successfully establishes communication with
a database and the database rejects the connection request because, for example, the login
information is invalid, then the data provider generates an exception and does not try to connect to

35

the next database in the list. It is assumed that each alternate server is a mirror of the primary and
that all authentication parameters and other related information are the same.

Connection failover provides protection for new connections only and does not preserve states for
transactions or queries. For details on configuring connection failover for your data provider, see
Configuring Connection Failover.

36

Using Client Load Balancing
Client load balancing works with connection failover to distribute new connections in your
environment so that no one server is overwhelmed with connection requests. When both
connection failover and client load balancing are enabled, the order in which primary and
alternate databases are tried is random.

For example, suppose that client load balancing is enabled:

First, Database Server B is tried (1). Then, Database Server C may be tried (2), followed by a
connection attempt to Database Server A (3); subsequent connection attempts use this same
sequence. In contrast, if client load balancing was not enabled in this scenario, each database
would be tried in sequential order, primary server first, then alternate servers based on their entry
order in the alternate servers list.

For details on configuring client and load balancing for your data provider, see Configuring
Connection Failover.

37

Using Connection Retry
Connection retry defines the number of times that the data provider attempts to connect to the
primary, and, if configured, alternate database servers after the first unsuccessful connection
attempt. Connection retry can be an important strategy for system recovery. For example, suppose
you have a power failure scenario in which both the client and the server fail. When the power is
restored and all computers are restarted, the client may be ready to attempt a connection before
the server has completed its startup routines. If connection retry is enabled, the client application
can continue to retry the connection until a connection is successfully accepted by the server.

Connection retry can be used in environments that only have one server or can be used as a
complementary feature in connection failover scenarios with multiple servers.

Using connection string options, you can specify the number of times the data provider attempts
to connect and the time in seconds between connection attempts. For details on configuring
connection retry, see Configuring Connection Failover.

38

Configuring Connection Failover
Connection failover allows an application to connect to an alternate, or backup, database server if
the primary database server is unavailable, for example, because of a hardware failure or traffic
overload.

See Using Connection Failover for more information about connection failover.

To configure connection failover to another server, you must specify a list of alternate database
servers that are tried at connection time if the primary server is not accepting connections. To do
this, use the Alternate Servers connection string option. Connection attempts continue until a
connection is successfully established or until all the databases in the list have been tried once (the
default).

Optionally, you can specify the following additional connection failover features:

• The number of times the data provider attempts to connect to the primary and alternate servers
after the initial connection attempt. By default, the data provider does not retry. To set this
feature, use the Connection Retry Count connection string option.

• The wait interval, in seconds, used between attempts to connect to the primary and alternate
servers. The default interval is 3 seconds. To set this feature, use the Connection Retry Delay
connection option.

• Whether the data provider will use load balancing in its attempts to connect to primary and
alternate servers. If load balancing is enabled, the data provider uses a random pattern instead
of a sequential pattern in its attempts to connect. The default value is not to use load
balancing. To set this feature, use the Load Balancing connection string option.

You use a connection string to direct the data provider to use connection failover. See Using
Connection Strings.

The following C# code fragment includes a connection string that configures the data provider to
use connection failover in conjunction with all of its optional features – load balancing,
connection retry, and connection retry delay:

Conn = new PsqlConnection Conn = new PsqlConnection();
Conn = new PsqlConnection("Host=myServer;User ID=test;Password=secret;
Server DSN=SERVERDEMO;Alternate Servers="Host=AcctServer, Host=AcctServer2";
Connection Retry Count=4;Connection Retry Delay=5;Load Balancing=true;
Connection Timeout=60")

Specifically, this connection string configures the data provider to use two alternate servers as
connection failover servers, to attempt to connect four additional times if the initial attempt fails,
to wait five seconds between attempts, and to try the primary and alternate servers in a random

39

order. Each connection attempt lasts for 60 seconds, and uses the same random order that was
established on the first retry.

40

Setting Security
The data provider supports Encrypted Network Communications, also known as wire encryption,
on connections. By default, the data provider reflects the server setting. For more information, see
Using Connection Strings.

The level of encryption allowed by the data provider depends on the encryption module used.
With the default encryption module, the data provider supports 40-, 56-, and 128-bit encryption.

Data encryption may adversely affect performance because of the additional overhead, mainly
CPU usage, required to encrypt and decrypt data. For more information, see Performance
Considerations.

In addition to encryption, the Control Center implements security through the security
permissions defined by the .NET Framework.

Code Access Permissions

The data provider requires the FullTrust permission to be set in order to load and run. This
requirement is due to underlying classes in System.Data that demand FullTrust for inheritance.
All ADO.NET data providers require these classes to implement a DataAdapter.

Security Attributes

The data provider is marked with the AllowPartiallyTrustedCallers attribute.

41

Using Zen Bulk Load
Zen Bulk Load offers a one-stop approach for all of your bulk load needs, with a simple,
consistent way to do bulk load operations for Zen and for all of the DataDirect Connect products
that support this bulk load feature. This means that you can write your bulk load applications
using the standards-based API bulk interfaces, and then, just plug in the database data providers
or drivers to do the work for you.

Suppose you need to load data into Zen, Oracle, DB2, and Sybase. In the past, you probably had
to use a proprietary tool from each database vendor for bulk load operations, or write your own
tool. Now, because of the interoperability built into Zen Bulk Load, your task is much easier.
Another advantage is that Zen Bulk Load uses 100% managed code, and requires no underlying
utilities or libraries from other vendors.

Bulk load operations between dissimilar data stores are accomplished by persisting the results of
the query in a comma-separated value (CSV) format file, a bulk load data file. The file can be
used between the Control Center and any DataDirect Connect for Zen ADO.NET data providers
that support bulk load. In addition, the bulk load data file can be used with any DataDirect
Connect product driver or data provider that supports the Bulk load functionality. For example,
the CSV file generated by the Zen data provider can be used by a DataDirect Connect for ODBC
driver that supports bulk load.

Use Scenarios for Zen Bulk Load

You can use Zen Bulk Load with the Control Center in two ways:

• Upgrade to a new Zen version and bulk-copy data from the old Zen data source to the new
one, as shown in the following figure:

42

• Export data from a database and migrate the results to a Zen database. The following figure
shows an ODBC environment copying data to an Zen ADO.NET database server.

In this figure, the ODBC application includes code to export data to the CSV file, and the
ADO.NET application includes code to specify and open the CSV file. Because the Control
Center and the DataDirect ODBC drivers use a consistent format, interoperability is supported via
these standard interfaces.

Zen Common Assembly

The Zen Bulk Load implementation for ADO.NET uses the de facto standard defined by the
Microsoft SqlBulkCopy classes, and adds powerful built-in features to enhance interoperability as
well as the flexibility to make bulk operations more reliable.

The data provider includes provider-specific classes to support Zen Bulk Load. See Data
Provider-Specific Classes for more information. If you use the Common Programming Model,
you can use the classes in the Zen Common Assembly (see Zen Common Assembly Classes).

The Pervasive.Data.Common assembly includes classes that support Zen Bulk Load, such as the
CsvDataReader and CsvDataWriter classes that provide functionality between bulk data formats.

The Common assembly also extends support for bulk load classes that use the Common
Programming Model. This means that the SqlBulkCopy patterns can now be used in a new
DbBulkCopy hierarchy.

Future versions of the data provider will include other features that enhance the Common
Programming Model experience. See Zen Common Assembly Classes for more information on
the classes supported by the Pervasive.Data.Common assembly.

43

Bulk Load Data File

The results of queries between dissimilar data stores are persisted in a comma-separated value
(CSV) format file, a bulk load data file. The file name, which is defined by the BulkFile property,
is using for writing and reading the bulk data. If the file name does not contain an extension, the
".csv" extension is assumed.

Example

The Zen source table GBMAXTABLE contains four columns. The following C# code fragment
writes the GBMAXTABLE.csv and GBMAXTABLE.xml files that will be created by the
CsvDataWriter. Note that this example uses the DbDataReader class.

cmd.CommandText = "SELECT * FROM GBMAXTABLE ORDER BY INTEGERCOL";
DbDataReader reader = cmd.ExecuteReader();
CsvDataWriter csvWriter = new CsvDataWriter();
csvWriter.WriteToFile("\\NC1\net\Zen\GBMAXTABLE\GBMAXTABLE.csv", reader);

The bulk load data file GBMAXTABLE.csv contains the results of the query:

1,0x6263,"bc","bc"
2,0x636465,"cde","cde"
3,0x64656667,"defg","defg"
4,0x6566676869,"efghi","efghi"
5,0x666768696a6b,"fghijk","fghijk"
6,0x6768696a6b6c6d,"ghijklm","ghijklm"
7,0x68696a6b6c6d6e6f,"hijklmno","hijklmno"
8,0x696a6b6c6d6e6f7071,"ijklmnopq","ijklmnopq"
9,0x6a6b6c6d6e6f70717273,"jklmnopqrs","jklmnopqrs"
10,0x6b,"k","k"

The GBMAXTABLE.xml file, which is the bulk load configuration file that provides the format
of this bulk load data file, is described in the following section.

Bulk Load Configuration File

A bulk load configuration file is produced when the CsvDataWriter.WriteToFile method is called
(see CsvDataWriter for more information).

The bulk load configuration file defines the names and data types of the columns in the bulk load
data file. These names and data types are defined the same way as the table or result set from
which the data was exported.

If the bulk data file cannot be created or does not comply with the schema described in the XML
configuration file, an exception is thrown. See XML Schema Definition for a Bulk Data
Configuration File for more information about using an XML schema definition.

If a bulk load data file that does not have a configuration file is read, the following defaults are
assumed:

44

• All data is read in as character data. Each value between commas is read as character data.

• The default character set is the character set of the platform on which the Bulk Load CSV file
is being read. See Character Set Conversions for more information.

The bulk load configuration file describes the bulk data file and is supported by an underlying
XML schema.

Example

The format of the bulk load data file shown in the previous section is defined by the bulk load
configuration file, GBMAXTABLE.xml. The file describes the data type and other information
about each of the four columns in the table.

<?xml version="1.0" encoding="utf-8"?>
<table codepage="UTF-16LE" xsi:noNamespaceSchemaLocation="https://www.datadirect.com/ns/bulk/
BulkData.xsd" xmlns:xsi="http:s//www.w3.org/2001/XMLSchema-instance">
 <row>
 <column datatype="DECIMAL" precision="38" scale="0" nullable=
 "false">INTEGERCOL</column>
 <column datatype="VARBINARY" length="10" nullable=
 "true">VARBINCOL</column>
 <column datatype="VARCHAR" length="10" sourcecodepage="Windows-1252"
 externalfilecodepage="Windows-1252" nullable="true">VCHARCOL</column>
 <column datatype="VARCHAR" length="10" sourcecodepage="Windows-1252"
 externalfilecodepage="Windows-1252" nullable="true">UNIVCHARCOL</column>
 </row>
</table>

Determining the Bulk Load Protocol

Bulk operations can be performed using dedicated bulk protocol, that is, the data provider uses the
protocol of the underlying database. In some cases, the dedicated bulk protocol is not available,
for example, when the data to be loaded is in a data type not supported by the dedicated bulk
protocol. Then, the data provider automatically uses a non-bulk method such as array binding to
perform the bulk operation, maintaining optimal application uptime.

Character Set Conversions

At times, you might need to bulk load data between databases that use different character sets.

For the Control Center, the default source character data, that is, the output from the
CsvDataReader and the input to the CsvDataWriter, is in Unicode (UTF-16) format. The source
character data is always transliterated to the code page of the CSV file. If the threshold is
exceeded and data is written to the external overflow file, the source character data is
transliterated to the code page specified by the externalfilecodepage attribute defined in the bulk
configuration XML schema (see XML Schema Definition for a Bulk Data Configuration File). If

45

the configuration file does not define a value for externalfilecodepage, the CSV file code page is
used.

To avoid unnecessary transliteration, it's best for the CSV and external file character data to be
stored in Unicode (UTF-16). You might want your applications to store the data in another code
page in one of the following scenarios:

• The data will be written by ADO.NET and read by ODBC. In this case, the read (and
associated transliteration) is done by ODBC. If the character data is already in the correct code
page, no transliteration is necessary.

• Space is a consideration. Depending on the code page, the character data could be represented
more compactly. For example, ASCII data is a single byte per character, UTF-16 is 2 bytes per
character).

The configuration file may optionally define a second code page for each character column. When
character data exceeds the value defined by the CharacterThreshold property and is stored in a
separate file (see External Overflow File), the value defines the code page for that file.

If the value is omitted or if the code page defined by the source column is unknown, the code page
defined for the CSV file will be used.

External Overflow File

If the value of the BinaryThreshold or CharacterThreshold property of the CsvDataWriter object
is exceeded, separate files are generated to store the binary or character data. These overflow files
are located in the same directory as the bulk data file.

If the overflow file contains character data, the character set of the file is governed by the
character set specified in the CSV bulk configuration file.

The filename contains the CSV filename and a ".lob" extension (for example,
CSV_filename_nnnnnn.lob). These files exist in the same location as the CSV file. Increments
start at _000001.lob.

Bulk Copy Operations and Transactions

By default, bulk copy operations are performed as isolated operations and are not part of a
transaction. This means there is no opportunity for rolling the operation back if an error occurs.

Zen allows bulk copy operations to take place within an existing transaction. You can define the
bulk copy operation to be part of a transaction that occurs in multiple steps. Using this approach

46

enables you to perform more than one bulk copy operation within the same transaction, and
commit or roll back the entire transaction.

Refer to the Microsoft online help topic "Transaction and Bulk Copy Operations (ADO.NET)" for
information about rolling back all or part of the bulk copy operation when an error occurs.

47

Using Diagnostic Features
The .NET Framework provides a Trace class that can help end users identify the problem without
the program having to be recompiled.

The Control Center delivers additional diagnostic capability:

• Ability to trace method calls

• Performance Monitor hooks that let you monitor connection information for your application

Tracing Method Calls

Tracing capability can be enabled either through environment variables or the PsqlTrace class.
The data provider traces the input arguments to all of its public method calls, as well as the
outputs and returns from those methods (anything that a user could potentially call). Each call
contains trace entries for entering and exiting the method.

During debugging, sensitive data can be read, even if it is stored as a private or internal variable
and access is limited to the same assembly. To maintain security, trace logs show passwords as
five asterisks (*****).

Using Environment Variables

Using environment variables to enable tracing means that you do not have to modify your
application. If you change the value of an environment variable, you must restart the application
for the new value to take effect.

The following table describes the environment variables that enable and control tracing.

Environment Variable Description

PVSW_NET_Enable_Trace If set to 1 or higher, enables tracing. If set to 0 (the default), tracing is
disabled.

PVSW_NET_Recreate_Trace If set to 1, recreates the trace file each time the application restarts. If
set to 0 (the default), the trace file is appended.

PVSW_NET_Trace_File Specifies the path and name of the trace file.

48

Notes

• Setting PVSW_NET_Enable_Trace = 1 starts the tracing process. Therefore, you must define
the property values for the trace file before enabling the trace. Once the trace processing
starts, the values of the other environment variables cannot be changed.

• If tracing is enabled and no trace file is specified by either the connection string option or the
environment variable, the data provider saves the results to a file named
PVSW_NETTrace.txt.

Using Static Methods

Some users may find that using static methods on the data provider’s Trace class to be a more
convenient way to enable tracing. The following C# code fragment uses static methods on the
.NET Trace object to create a PsqlTrace class with a trace file named MyTrace.txt. The values set
override the values set in the environmental variables. All subsequent calls to the data provider
will be traced to MyTrace.txt.

PsqlTrace.TraceFile="C:\\MyTrace.txt";
PsqlTrace.RecreateTrace = 1;
PsqlTrace.EnableTrace = 1;

The trace output has the following format:

<Correlation#> <Timestamp> <CurrentThreadName>
 <Object Address> <ObjectName.MethodName> ENTER (or EXIT)
 Argument #1 : <Argument#1 Value>
 Argument #2 : <Argument#2 Value>
 ...
 RETURN: <Method ReturnValue> // This line only exists for EXIT

where:

Correlation# is a unique number that can be used to match up ENTER and EXIT entries for the
same method call in an application.

Value is the hash code of an object appropriate to the individual function calls.

During debugging, sensitive data can be read, even if it is stored as private or internal variable and
access is limited to the same assembly. To maintain security, trace logs show passwords as five
asterisks (*****).

PerfMon Support

The Performance Monitor (PerfMon) and VS Performance Monitor (VSPerfMon) utilities allow
you to record application parameters and review the results as a report or graph. You can also use
Performance Monitor to identify the number and frequency of CLR exceptions in your

49

applications. In addition, you can fine-tune network load by analyzing the number of connections
and connection pools being used.

The data provider installs a set of PerfMon counters that let you tune and debug applications that
use the data provider. The counters are located in the Performance Monitor under the category
name Zen ADO.NET data provider.

The following table describes the PerfMon counters that you can use to tune connections for your
application.

For information on using PerfMon and performance counters, refer to the Microsoft
documentation library.

Analyzing Performance with Connection Statistics

The .NET Framework 2.0 and higher supports run-time statistics, which are gathered on a per-
connection basis. The Control Center supports a wide variety of run-time statistical items. These
statistical items provide information that can help you to:

• Automate analysis of application performance

• Identify trends in application performance

• Detect connectivity incidents and send notifications

• Determine priorities for fixing data connectivity problems

Counter Description

Current # of Connection Pools Current number of pools associated with the process.

Current # of Pooled and Non-Pooled
Connections

Current number of pooled and non-pooled connections.

Current # of Pooled Connections Current number of connections in all pools associated with
the process.

Peak # of Pooled Connections The highest number of connections in all connection pools
since the process started.

Total # of Failed Commands The total number of command executions that have failed
for any reason since the process started.

Total # of Failed Connects The total number of attempts to open a connection that have
failed for any reason since the process started.

50

Measuring the statistics items affects performance slightly. For best results, consider enabling
statistics gathering only when you are analyzing network or performance behavior in your
application.

Statistics gathering can be enabled on any Connection object, for as long as it is useful. For
example, you can define your application to enable statistics before beginning a complex set of
transactions related to performing a business analysis, and disable statistics when the task is
complete. You can retrieve the length of time the data provider had to wait for the server and the
number of rows that were returned as soon as the task is complete, or wait until a later time.
Because the application disables statistics at the end of the task, the statistical items are measured
only during the period in which you are interested.

Functionally, the statistical items can be grouped into four categories:

• Network layer items retrieve values associated with network activities, such as the number of
bytes and packets that are sent and received and the length of time the data provider waited for
replies from the server.

• Aggregate items return a calculated value, such as the number of bytes sent or received per
round trip to the server.

• Row disposition statistical items provide information about the time and resources required to
dispose of rows not read by the application.

• Statement cache statistical items return values that describe the activity of statements in a
statement cache (see Using Statement Caching for more information on using the statement
cache).

Enabling and Retrieving Statistical Items

When you create a Connection object, you can enable statistics gathering using the
StatisticsEnabled property. The data provider begins the counts for the statistical items after you
open a connection, and continues until the ResetStatistics method is called. If the connection is
closed and reopened without calling ResetStatistics, the count on the statistical items continues
from the point when the connection was closed.

Calling the RetrieveStatistics method retrieves the count of one or more statistical items. The
values returned form a "snapshot in time" at the moment when the RetrieveStatistics method was
called.

You can define the scope for the statistics gathering and retrieval. In the following C# code
fragment, the statistical items measure only the Task A work; they are retrieved after processing
the Task B work:

51

connection.StatisticsEnabled = true;
 // do Task A work
connection.StatisticsEnabled = false;
 // do Task B work
IDictionary currentStatistics = connection.RetrieveStatistics();

To view all the statistical items, you can use code like the following C# code fragment:

foreach (DictionaryEntry entry in currentStatistics) {
 Console.WriteLine(entry.Key.ToString() + ": " + entry.Value.ToString());
}
Console.WriteLine();

To view only the SocketReads and SocketWrites statistical items, you can use code like the
following C# code fragment:

foreach (DictionaryEntry entry in currentStatistics) {
 Console.WriteLine("SocketReads = {0}",
 currentStatistics["SocketReads"]);
 Console.WriteLine("SocketWrites = {0}",
 currentStatistics["SocketWrites"]);
}
Console.WriteLine();

Note for Zen ADO.NET Entity Framework Users: The PsqlConnection methods and
properties for statistics are not available at the Zen ADO.NET Entity Framework layer. Instead,
the data provider exposes the same functionality through "pseudo" stored procedures. See Using
Stored Procedures with the ADO.NET Entity Framework for more information.

52

53

The ADO.NET Data Providers

The Zen ADO.NET data providers deliver data access to any .NET-enabled application or
application server. The Zen ADO.NET data providers enable point-to-point and n-tier access to
data stores across the Internet and intranets. Because they are optimized for the .NET
environment, the Zen ADO.NET data providers allow you to incorporate .NET technology and
extend the functionality and performance of your existing system.

The following topics describe features that pertain to the Zen ADO.NET data providers:

• About Zen ADO.NET Data Providers

• Using Connection Strings with the Zen ADO.NET Data Provider

• Performance Considerations

• Data Types

• Parameter Arrays

Note: See Zen ADO.NET Entity Framework Data Providers for information about using the data
provider with the Zen ADO.NET Entity Framework.

54

About Zen ADO.NET Data Providers
Zen ADO.NET data providers are built with 100% managed code, so they can run and connect to
the database entirely within the common language runtime (CLR).

Code that runs in the native operating system, such as client libraries and COM components, is
called unmanaged code. You can mix managed and unmanaged code within a single application.
However, unmanaged code reaches outside the CLR, which means that it effectively raises
complexity, reduces performance, and opens possible security risks.

For information on the .NET Framework and Entity Framework versions supported by the Zen
data providers, see Supported .NET Framework Versions.

Namespace

The namespace for the Zen ADO.NET data provider is Pervasive.Data.SqlClient. When
connecting to the Zen database, you use the PsqlConnection and PsqlCommand objects in the
Pervasive.Data.SqlClient namespace.

The following code fragment shows how to include a Zen ADO.NET data provider namespace in
your applications:

C#

// Access Zen
using System.Data;
using System.Data.Common;
using Pervasive.Data.SqlClient;

Visual Basic

' Access Zen
Imports System.Data
Imports System.Data.Common
Imports Pervasive.Data.SqlClient

Assembly Name

The strongly named assembly for the Zen ADO.NET data provider is placed in the Global
Assembly Cache (GAC) during installation. The assembly name is Pervasive.Data.SqlClient.dll.

The Pervasive.Data.Common assembly includes features such as support for bulk load.

55

Using Connection Strings with the Zen ADO.NET
Data Provider
You can define the behavior of a connection using a connection string or the properties of the
PsqlConnection object. However, values set in the connection string cannot be changed by the
connection properties.

The basic format of a connection string includes a series of keyword/value pairs separated by
semicolons. The following example shows the keywords and values for a simple connection
string for the data provider:

"Server DSN=SERVERDEMO;Host=localhost"

See Using Connection Strings for guidelines on specifying connection strings.

Constructing a Connection String

PsqlConnectionStringBuilder property names are the same as the connection string option names.
However, the connection string option name can consist of multiple words, with required spaces
between the words. For example, the Min Pool Size connection string option is equivalent to the
MinPoolSize property. Connection String Properties lists these properties, and describes each one.

The connection string options have the following form:

option name=value

Each connection string option value pair is separated by a semicolon. The following example
shows the keywords and values for a simple connection string for the Zen ADO.NET data
provider:

"Server DSN=SERVERDEMO;Host=localhost"

56

Performance Considerations
The performance of your application can be affected by the values you set for connection string
options and the properties of some data provider objects.

Connection String Options that Affect Performance

Encrypt: Data encryption may adversely affect performance because of the additional overhead,
mainly CPU usage, required to encrypt and decrypt data.

Max Statement Cache Size: Caching all of the prepared statements that an application uses
might appear to offer the best performance. However, this approach may come at a cost of
database server memory if you implement statement caching with connection pooling. In this
case, each pooled connection has its own statement cache, which may contain all of the prepared
statements used by the application. All of the cached prepared statements are also maintained in
database server memory.

Pooling: If you enable the data provider to use connection pooling, you can define additional
options that affect performance:

• Load Balance Timeout: You can define how long to keep connections in the pool. The pool
manager checks a connection's creation time when it is returned to the pool. The creation time
is compared to the current time, and if the timespan exceeds the value of the Load Balance
Timeout option, the connection is destroyed. The Min Pool Size option can cause some
connections to ignore this value.

• Connection Reset: Resetting a re-used connection to the initial configuration settings impacts
performance negatively because the connection must issue additional commands to the server.

• Max Pool Size: Setting the maximum number of connections that the pool can contain too
low might cause delays while waiting for a connection to become available. Setting the
number too high wastes resources.

• Min Pool Size: A connection pool is created when the first connection with a unique
connection string connects to the database. The pool is populated with connections up to the
minimum pool size, if one has been specified. The connection pool retains this number of
connections, even when some connections exceed their Load Balance Timeout value.

Schema Options: Returning some types of database metadata can affect performance. To
optimize application performance, the data provider prevents the return of performance-expensive
database metadata such as procedure definitions or view definitions. If your application needs this
database metadata, you can specifically request its return.

57

To return more than one type of the omitted metadata, specify either a comma-separated list of the
names, or the sum of the hexadecimal values of the column collections that you want to return.
For example, to return procedure definitions and view definitions, specify one of the following:

• Schema Option=ShowProcedureDefinitions, ShowViewDefinitions

• Schema Options=0x60

Statement Cache Mode: In most cases, enabling statement caching results in improved
performance. To enable the caching of prepared statements (Command instances), set this option
to Auto. Use this setting if your application has marked prepared statements for implicit inclusion
in the statement cache, or has marked some statements for implicit inclusion and others for
explicit inclusion. If you want the statement cache to include only prepared statements that are
marked Cache, 1) set the StatementCacheBehavior property of the Command object to Cache and
2) set this option to ExplicitOnly.

Properties that Affect Performance

StatementCacheBehavior: If your application reuses prepared statements multiple times over an
application’s lifetime, you can influence performance by using a statement cache. This property
identifies how a prepared statement (a Command object instance) is handled during statement
caching.

When set to Cache, the prepared statement is included in the statement cache.

When set to Implicit and the Statement Cache Mode connection string option is set to Auto, the
prepared statement is included in the statement cache.

When set to DoNotCache, the prepared statement is excluded from the statement cache.

You can use connection statistics to determine the effect that caching specific statements has on
performance (see Analyzing Performance with Connection Statistics).

58

Data Types
The following topics cover the data types supported by the Zen ADO.NET Data Provider:

• Mapping Zen Data Types to .NET Framework Data Types maps Zen data types to .NET
Framework types.

• Mapping System.Data.DbTypes to PsqlDbTypes maps the data types that the data provider
uses if only the System.Data.DbType is specified.

• Mapping .NET Framework Types to PsqlDbType maps the data types that the data provider
uses to infer a data type if neither the provider-specific type nor the System.Data.DbType are
provided.

• Data Types Supported with Stream Objects maps the data types that the data provider uses
when streams are used as inputs to Long data parameters.

Mapping Zen Data Types to .NET Framework Data Types

The following table lists the data types supported by the Zen ADO.NET data providers and how
they are mapped to the .NET Framework types. You can use the table to infer the data types that
will be used when a DataSet is filled using a DataAdapter.

This table also identifies the proper accessors for the data when a DataReader object is used
directly.

• The Zen Data Type column refers to the native type name.

• The PsqlDbType column refers to the ADO.NET Data Provider's type enumeration.
Generally, there is a one to one mapping between the native type and the PsqlDbType. The
Zen NUMBER data type, which can be either a decimal or a double, is an exception to this
rule.

• The .NET Framework Type column refers to the base data types available in the Framework.

• The .NET Framework Typed Accessor column refers to the method that must be used to
access a column of this type when using a DataReader.

59

Mapping of Zen Data Types

Zen Data Type PsqlDbType .NET Framework
Type

.NET Framework Typed
Accessor

AUTOTIMESTAMP Timestamp DateTime GetDateTime()

BFLOAT4 BFloat4 Single GetSingle()

BFLOAT8 BFloat8 Double GetDouble()

BIGIDENTITY BigInt Int64 GetInt64()

BIGINT BigInt Int64 GetDecimal()

BINARY Binary Byte[] GetBytes()

BIT Bit Byte[] GetBytes()

CHAR Char String
Char[]

GetString()
GetChars()

CURRENCY Currency Decimal GetDecimal()

DATE Date DateTime GetDateTime()

DATETIME DateTime11 DateTime GetDateTime()

DECIMAL Decimal Decimal GetDecimal()

DOUBLE Double Double GetDouble()

FLOAT Float Double GetDouble()

IDENTITY Identity Int32 GetInt32()

INTEGER Integer Int32 GetInt32()

LONGVARBINARY LongVarBinary Byte[] GetBytes()

LONGVARCHAR LongVarChar Byte[] GetBytes()

MONEY Money Decimal GetDecimal()

NCHAR NChar String
Char[]

GetString()
GetChars()

NLONGVARCHAR NLongVarChar String
Char[]

GetString()
GetChars()

NUMERIC Decimal Decimal GetDecimal()

NUMERICSA DecimalSA Decimal GetDecimal()

60

Mapping Parameter Data Types

The type of the parameter is specific to each data provider. Zen ADO.NET data providers must
convert the parameter value to a native format before sending it to the server. The best way for an
application to describe a parameter is to use the data provider-specific type enumeration.

In generic programming circumstances, the data provider-specific type may not be available.
When no provider-specific DB type has been specified, the data type will be inferred from either
the System.Data.DbType or from the .NET Framework type of the parameter's value.

Zen ADO.NET data providers use the following order when inferring the data type of a
parameter:

NUMERICSTS DecimalSTS Decimal GetDecimal()

NVARCHAR NVarChar String
Char[]

GetString()
GetChars()

REAL Real Single GetSingle()

SMALLIDENTITY SmallIdentity Int16 GetInt16()

SMALLINT SmallInt Int16 GetInt16()

TIME Time Timespan2 GetValue()

TIMESTAMP,
TIMESTAMP2

Timestamp DateTime GetDateTime()

TINYINT TinyInt SByte GetByte()

UBIGINT UBigInt UInt64 GetUInt64()

UNIQUE_IDENTIFIER UniqueIdentifier1 String GetString()

UINTEGER UInteger UInt32 GetUInt32()

USMALLINT USmallInt UInt16 GetUInt16()

UTINYINT UTinyInt Byte GetByte()

VARCHAR VarChar String
Char[]

GetString()
GetChars()

1 Supported in Zen 9.5 and higher

2 Depends on the setting of the timetype connect option.

Zen Data Type PsqlDbType .NET Framework
Type

.NET Framework Typed
Accessor

61

• The data provider uses the provider-specific data type if it has been specified.

• The data provider infers the data type from the System.Data.DbType if it has been specified,
but the provider-specific data type has not been specified.

• The data provider infers the data type from the .NET Framework type if neither the provider-
specific data type nor the System.Data.DbType have been specified.

Mapping System.Data.DbTypes to PsqlDbTypes

The following table shows how the data provider infers its types if only the System.Data.DbType
is specified.

System.Data.DbType PsqlDbType

AnsiString VarChar

AnsiStringFixedLength Char

Binary Binary

Boolean Integer

Byte Integer

Currency Currency

Date Date

DateTime DateTime1

Decimal Decimal or Money

Double Double

Float Float

GUID UniqueIdentifier*

Int16 SmallInt

Int32 Integer

Int64 BigInt

Int64 BigIdentity

Sbyte Integer

Single BFloat4

String NVarChar

62

Mapping .NET Framework Types to PsqlDbType

The following table shows the mapping that the data provider uses to infer a data type if neither
the provider-specific data type nor the System.Data.DbType are provided.

StringFixedLength NChar

Time Time

Uint16 USmallInt

Uint32 UInteger

Uint64 UBigInt

VarNumeric Decimal

1 Supported in PSQL 9.5 and higher.

.NET Framework Type PsqlDbType

Boolean Integer

Byte Integer

Byte[] Binary

DateTime Timestamp

Decimal Decimal

Double Double

Int16 SmallInt

Int32 Integer

Int64 BigInt

Single BFloat4

String NVarChar

VarChar (if PvTranslate=Nothing)

Uint16 USmallInt

Uint32 UInteger

Uint64 UBigInt

System.Data.DbType PsqlDbType

63

Data Types Supported with Stream Objects

Zen ADO.NET data providers support the use of streams as inputs to long data parameters with
the data types listed in the following table.

See Using Streams as Input to Long Data Parameters for a discussion of using streams.

Provider Data Type Stream Type Supported

LONGVARBINARY Stream

LONGVARCHAR TextReader

64

Using Streams as Input to Long Data Parameters
Allowing the use of noncontiguous memory to represent a very large binary or text value, such as
a video clip or a large document, improves performance, functionality, and scalability.

Stream objects used to read binary data are derived from the System.IO.Stream object and use the
Framework data type of byte[]:

• System.IO.BufferedStream

• System.IO.FileStream

• System.IO.MemoryStream

• System.Net.Sockets.NetworkStream

• System.Security.Cryptography.CryptoStream

Stream objects used to read text data are derived from the System.IO.TextReader object and use
the Framework data type of string:

• System.IO.StreamReader

• System.IO.StringReader

To enable the use of streams, you set the Value property of the PsqlParameter object to a specific
instance of the stream (see PsqlParameter Object). When the command is executed, the data
provider reads from the stream to extract the value.

The examples shipped with the data provider include a code example on inserting data into
LONGVARCHAR and LONGVARBINARY columns using randomly generated data. The
example also shows how to use streaming objects as inputs to LONGVARCHAR and
LONGVARBINARY columns.

65

Parameter Markers
Parameter markers, including parameter markers for stored procedures, are specified in Zen
ADO.NET data providers by using the question mark "?" symbol in SQL statements.

UPDATE emp SET job = ?, sal = ? WHERE empno = ?

Because parameters are not named, the bindings must occur in the order of the parameters in the
statement. This means that the calls to the Add() method on the PsqlParameterCollection object
(adding the Parameter objects to the collection) must occur in the order of the "?"s in the
command text.

66

Parameter Arrays
Parameter array binding is typically used with INSERT statements to speed up the time needed to
fill a table. An application can specify rows of parameter values with a single execution of a
command. The values can then be sent to the database server in a single round trip (depending on
the native capabilities of the backend database).

Zen ADO.NET data providers support input parameter arrays for INSERT and UPDATE
statements.

77

Zen ADO.NET Core Data Providers

Zen ADO.NET Core data providers support data access to any .NET-enabled application or
application server. They deliver high-performance point-to-point and n-tier access to industry-
leading data stores across the Internet and intranets. Because they are optimized for the .NET
environment, Zen ADO.NET Core data providers allow you to incorporate .NET Core technology
and extend the functionality and performance of your existing system.

The following topics cover features of Zen ADO.NET Core data providers:

• About Zen ADO.NET Core Data Providers

• Creating an Application in Visual Studio Using Zen ADO.Net Core DLL

• Creating a UWP Application in Visual Studio Using Zen ADO.Net Core Data Provider

• ADO.NET Data Provider Features Missing in Zen ADO.NET Core Data Provider

Note: See Zen ADO.NET Entity Framework Core Data Providers for information about using the
data provider with the ADO.NET Entity Framework Core.

78

About Zen ADO.NET Core Data Providers
Zen ADO.NET Core data providers support the following:

• Both the ADO.NET 4.5 and 4.6 providers with Visual Studio 2022

• For the integration of the Zen data tools into Visual Studio, see the ADO.NET SDK readme.

• Visual Studio code

• .NET 6, 7, and 8

• UWP applications

79

Creating an Application in Visual Studio Using Zen
ADO.Net Core DLL
Before using these steps, first download the latest SDK .zip archive and extract the NuGet
package Pervasive.Data.SqlClientStd for your version as listed under Zen ADO.NET Data
Providers Available with SDK Download.

To create an application in Visual Studio using Zen ADO.Net Core DLL

1. In Visual Studio, on the File menu, point to New, and then click Project. The New Project
window appears.

2. In the left pane, in the Installed list, select the .Net Core template for Visual C#.

3. In the middle pane, select the required project type.

4. Enter the name and location for the project in the respective fields, then click OK.

5. Right-click the project, then click Properties.

6. In the Build pane, in the Platform target list select the required platform.

7. Add the downloaded NuGet package to the project.

80

To learn how to add the NuGet package locally, see
https://stackoverflow.com/questions/10240029/how-do-i-install-a-nuget-package-nupkg-file-
locally/38663739#38663739

81

Creating a UWP Application in Visual Studio Using
Zen ADO.Net Core Data Provider
Before using these steps, first download the latest SDK .zip archive and extract the NuGet
package Pervasive.Data.SqlClientStd for your version as listed under Zen ADO.NET Data
Providers Available with SDK Download.

Note: For a UWP application to use Zen ADO.Net Core DLL, the required Windows 10 operating
system version is 1709 (OS Build 16299) or later.

To create a UWP application in Visual Studio using Zen ADO.Net Core data provider

1. In Visual Studio, on the File menu, point to New, and then click Project. The New Project
window appears.

2. In the left pane, in the Installed list for Visual C#, select Windows Universal, then in the
middle pane, select Blank App (Universal Windows).

3. Enter the name and location for the project in the respective fields; then click OK.

4. In the Minimum Version list, select Windows 10 Fall Creators Update (10.0; Build 16299).

82

5. In the MainPage.xaml file, add a button, and then rename the button to Connect to Actian
Zen.

6. Double-click the button to open its implementation.

7. Add the following to the button implementation code:

8. Add the downloaded NuGet package to the project.

To learn how to add the NuGet package locally, see
https://stackoverflow.com/questions/10240029/how-do-i-install-a-nuget-package-nupkg-file-
locally/38663739#38663739

83

9. If the database is available in a remote machine, in the package.appxmanifest file on the
Capabilities tab, select the Private Networks (Client & Server) check box.

10. Build and run the application.

84

ADO.NET Data Provider Features Missing in Zen
ADO.NET Core Data Provider
The following ADO.NET data provider features are missing in Zen ADO.NET Core data
providers:

• Performance Counters: As performance counters are not supported by ADO.Net Core, they
also are not supported by Zen ADO.Net Core data providers.

• Encoding: As Zen ADO.Net data providers were created only for Windows-based
applications, they use Windows-1252 encoding (identified by code page 1252) as the default
encoding.

Since Zen ADO.Net Core data providers are a cross-platform, they use the default encoding of
the current operating system as its default encoding.

• CreatePermission in PervasiveFactory: As CreatePermission (PermissionState) method is
not supported by ADO.Net Core, it also is not supported by Zen ADO.Net Core data
providers.

• Fill Schema: Zen ADO.Net data providers use Encoding.BodyName for Char, VarChar, and
LongVarChar columns while pushing the data to the user. Since Encoding.BodyName is not
supported by ADO.Net Core, Zen ADO.Net Core data providers use Encoding.WebName.

85

Zen ADO.NET Entity Framework Data
Providers

Zen ADO.NET Entity Framework is an object-relational mapping (ORM) framework for the
.NET Framework. Developers can use it to create data access applications by programming
against a conceptual application model instead of directly against a relational storage schema.
This model allows developers to decrease the amount of code to be written and maintained in
data-centric applications.

Zen ADO.NET Entity Framework data providers (formerly Pervasive ADO.NET Entity
Framework data providers) can be used with applications that use the ADO.NET Entity
Framework.

Zen ADO.NET Entity Framework data providers are compatible with versions 6.1, 6.1.1, and
6.1.2 of the Microsoft ADO.NET Entity Framework. They support the following programming
features:

• Applications targeting the .NET Framework versions listed under Zen ADO.NET Data
Providers Available with SDK Download.

• Database First, Code First, and Model First workflows

• Enumerated type support in all workflows

• Code First migrations

• "Plain-old" CLR objects (POCO) entities

• DbContext class

• Multiple DBContext classes

• Code First mapping to Insert, Update, and Delete stored procedures

• Configurable migration history

• Connection resiliency

• Index Attribute for Code First Migrations

• Disable Transactions for Function Imports

• Enum.HasFlag Support

• Allow Migrations commands to use context from reference instead of project

• Interceptors in web/app.config and DatabaseLogger

86

• Support for identifiers starting with '_'

• Select concatenated string and numeric property

Zen ADO.NET Entity Framework data providers use ADO.NET data providers to communicate
with the ADO.NET database server. This means that the functionality defined by Zen ADO.NET
data providers applies to Zen ADO.NET Entity Framework data providers unless otherwise noted
here. Similarly, any performance configurations made to Zen ADO.NET data providers are
realized by Zen ADO.NET Entity Framework data providers.

87

About Zen ADO.NET Entity Framework Data
Providers
Zen ADO.NET Entity Framework data providers are built with 100% managed code, so they can
run and connect to the database entirely within the common language runtime (CLR).

Code that runs in the native operating system, such as client libraries and COM components, is
called unmanaged code. You can mix managed and unmanaged code within a single application.
However, unmanaged code reaches outside the CLR, which means that it effectively raises
complexity, reduces performance, and opens possible security risks.

Namespace

The namespace for the Zen ADO.NET Entity Framework data providers is
Pervasive.Data.SqlClient.Entity.

Note: The Pervasive.Data.SqlClient.Entity namespace is common to Microsoft ADO.NET Entity
Framework versions 5.0 (EF 5) and 6.1 (EF 6.1).

Assembly Names

Zen ADO.NET Entity Framework data providers use the assembly name
Pervasive.Data.SqlClient.Entity.dll.

To refer to EF 6.1, select:

%windir%\Microsoft.NET\assembly\GAC_MSIL\Pervasive.Data.SqlClient.Entity\v4.0_4.6.0.0__c84cd5c63851e072

88

Configuring Entity Framework 6.1
The Zen ADO.NET Entity Framework data provider supports the Microsoft ADO.NET Entity
Framework versions 5.0 (EF5) and 6.1 (EF 6.1).

To use EF 6.1, you must first register it using one of the following methods:

• Configuration File Registration

• Code-Based Registration

Note: To register EF 6.1 while testing your applications locally, you can perform a code-based
registration during development. However, when you deploy your project, you must perform a
configuration file registration.

Configuration File Registration

To configure EF 6.1 by updating the configuration file

1. Install the EntityFramework 6.1.2 NuGet package.

An app.config file is created.

2. Remove the defaultConnectionFactory registration section from the app.config file and
replace it with the following code:

<providers>
<provider invariantName="Pervasive.Data.SqlClient"
type="Pervasive.Data.SqlClient.Entity.PsqlProviderServices, Pervasive.Data.SqlClient.Entity,
Version=4.6.0.0, Culture=neutral, PublicKeyToken=c84cd5c63851e072" />
</providers>

The EF 6.1 provider registration is added to Entity Framework section of the app.config file.

Code-Based Registration

To configure EF 6.1 through a code-based registration

1. Add the following new DbConfiguration class to your test application:

public class MyConfiguration : DbConfiguration
{
public MyConfiguration()
{
SetProviderServices("PsqlProviderServices.ProviderInvariantName, new PsqlProviderServices());
}
}

89

2. Add the following annotation on top of the DBContext class:

[DbConfigurationType(typeof(MyConfiguration))]

90

Using Connection Strings with the Zen ADO.NET
Entity Framework Data Provider
The Zen ADO.NET Entity Framework uses information contained in connection strings to
connect to the underlying ADO.NET data provider that supports the Entity Framework. The
connection strings also contain information about the required model and mapping files.

The data provider uses the connection string when accessing a model and mapping metadata and
connecting to the data source.

You can specify an existing connection in the Entity Framework Wizard or can define a new
connection. Connection string options can be defined directly in a connection string, or set in the
Advanced Properties dialog box in Visual Studio (see Adding Connections in Server Explorer).

Defining Connection String Values in Server Explorer

See Adding Connections in Server Explorer for detailed information about using Visual Studio to
add and modify connections.

Changes in Default Values for Connection String Options

Most default values of the connection string options used by the ADO.NET Entity Framework
data provider are the same as those used by the Zen ADO.NET data provider. The following table
lists the connection string options that have a different default value when used with an
ADO.NET Entity Framework application.

Code First and Model First Support
Entity Framework 4.1 and later provide support for the Model First and Code First features.
Implementing support for these features requires changes to the data provider, such as the way
that long identifier names are handled. However, these changes do not require changes to your
application.

Connection String Option Default Value in ADO.NET Entity Framework Application

Parameter Mode Not supported.

Statement Cache Mode ExplicitOnly is the only supported value.

91

Code First and Model First implementations require type mapping changes. See Mapping Data
Types and Functions for more information.

Handling Long Identifier Names

Most Zen identifiers have a maximum length of 20 bytes. The identifier name can exceed this size
because the names of the objects to be created on the server are taken from the class and property
names. In addition, constraint names are often created by concatenating several object names. In
these cases, the chances of exceeding the maximum identifier length are even greater.

The data provider shortens identifiers to database-allowed maximum identifier length, replacing
the end of the identifier with an integer hash-code, for example, the string
ColumnMoreThanTwentyCharacters is shortened to ColumnMor_2873286151. If you access or view
the DB object using a DB tool, the names of the created tables may differ from what you might
expect based on the Plain Old CLR Object (POCO) class names and property names (Code First),
or the entity names and entity property names (Model First).

Note that when two identifiers that have the same leading characters are shortened, the difference
between the identifiers is less obvious to a visual inspection. For example, assume that a table has
two supporting sequences, ColumnMoreThanTwentyCharacters and
ColumnMoreThanTwenty1Characters. When these sequences are shortened, they are renamed
ColumnMor_2873286151 and ColumnMor_672399971.

Using Code First Migrations with the ADO.NET
Entity Framework
Entity Framework 4.3 and later support Code First Migrations, which enables you to update your
database schema to reflect POCO classes without having to drop and recreate them.

Migrations enable you to incrementally evolve your database schema as your model changes.
Each set of database changes is expressed in a code file, known as a migration. The migrations are
ordered, typically using a time stamp, and a table in the database keeps track of which migrations
are applied.

Code First Migrations implementation requires type mapping changes. See Mapping Data Types
and Functions for more information.

To implement Code First Migrations using Progress DataDirect Connect for Zen ADO.NET data
provider, you must perform the following additional settings:

1. Add references to the Pervasive.Data.SQLClient.Entity assembly in the project.

92

2. Inherit the Configuration Class changes and register the SQL Generator in the constructor of
the Configuration Class. Do the following:

• Inherit the Configuration Class from PervasiveDbMigrationsConfiguration <TContext>.
For example:

internal sealed class Configuration: PervasiveDbMigrationsConfiguration<%Context Name%>

• Register the Class Generator.

After you enable migrations using Package Manager Console, specify the Connection String
either in the app.config or configuration.cs file along with additional settings in the
configuration.cs file. However, if Connection String is specified in the app.config file, then ensure
that the Connection String and the context have the same name.

If the Connection String is specified in the app.config file, use the following syntax to register
SQL Generator in the app.config file according to the version of the provider you use:

<providers>
<provider invariantName="Pervasive.Data.SqlClient"
type="Pervasive.Data.SqlClient.Entity.PsqlProviderServices, Pervasive.Data.SqlClient.Entity,
Version=4.5.0.6, Culture=neutral, PublicKeyToken=c84cd5c63851e072" />

</providers>

To register SQL Generator in configuration.cs, use the following syntax:

SetSqlGenerator(PervasiveConnectionInfo.InvariantName, new PervasiveEntityMigrationSqlGenerator());

93

Using Enumerations with the ADO.NET Entity
Framework
The enum keyword is used to declare an enumeration, a distinct type consisting of a set of named
constants called the enumerator list. Every enumeration type has an underlying type. By default,
every underlying type of the enumeration element is mapped to type int32. By default, the first
enumerator has the value 0, and the value of each consecutive enumerator is incremented by 1.
For example, you would specify a days-of-the-week enum type as:

enum Days {MON, TUE, WED, THU, FRI, SAT, SUN};

In this enumeration, MON would be 0, TUE 1, WED 2, and so forth. Enumerators can have initializers
to override the default values. For example:

enum Days {MON=1, TUE, WED, THU, FRI, SAT, SUN};

In this enumeration, the sequence is forced to start at 1 instead of 0. The names of an enum type's
fields are in uppercase letters., by convention, bacause they are constants.

Microsoft ADO.NET Entity Framework 5.0 and later support Enumerations. To use the
enumeration feature, you must target .NET Framework 4.5 or later. Visual Studio 2019 targets
.NET Framework 4.7.2 by default. Enumerations are supported in all three workflows, namely,
Model First, Code First, and Database First.

In Entity Framework, an enumeration can have the following underlying types:

• Byte

• Int16

• Int32

• Int64

• SByte

By default, the enumeration is of type Int32. Another integral numeric type can be specified
using a colon.

enum Days : byte{MON=1, TUE, WED, THU, FRI, SAT, SUN};

The underlying type specifies how much storage is allocated for each enumerator. However, an
explicit cast is needed to convert from enum type to an integral type. Enum implementations also
support type mapping changes. See Mapping Data Types and Functions for more information.

As part of Entity Framework, Entity Developer fully supports enum types by providing a new
Enum node in its Model Explorer window. You can use the Enum property just like any other
scalar property, such as in LINQ queries and updates.

94

Mapping Data Types and Functions
Developers can use the ADO.NET Entity Framework to create data access applications by
programming against a conceptual application model instead of programming directly against a
relational storage schema.

Type Mapping for Database First

In a Database First model, the data provider uses a store-centric type mapping scheme, in which
the Zen (store) type influences the EDM type used when the model is generated.

Type Mapping for Database First

The following table shows Zen types are mapped to primitive types used in a Database First
model. Some Zen data types can map to several different EDM types; the default values are
shown in italics.

The columns are defined as follows:

• The Zen Type column refers to the native type name.

• The Store (SSDL) Type column refers to data types used by the store schema definition
language (SSDL) file. The storage metadata schema is a formal description of the database
that persists data for an application built on the EDM.

• The PrimitiveTypeKind column refers to the common data primitives used to specify the valid
content of properties of entities used in defining EDM applications.

Zen Type Store (SSDL) Type PrimitiveTypeKind

AUTOTIMESTAMP DateTime DateTime

BFLOAT4 BFloat4 Single

BFLOAT8 BFloat8 Double

BIGIDENTITY Bigint Int64

BIGINT Bigint Int64

BINARY binary Byte[]

BIT Bit Boolean

CHAR Char String

CURRENCY Currency Decimal

95

DATE Date DateTime

DATETIME DateTime DateTime

DECIMAL Decimal Decimal

DOUBLE Double Double

FLOAT Float Float

IDENTITY Identity Int32

INTEGER Integer Int32

LONGVARBINARY LongVarBinary Byte[]

LONGVARCHAR LongVarChar String

MONEY Money Decimal

NCHAR NChar String

NLONGVARCHAR NLongVarChar String

NUMERIC Decimal Decimal

NUMERICSA DecimalSA Decimal

NUMERICSTS DecimalSTS Decimal

NVARCHAR NVarChar String

REAL Real Single

ROWID Rowid Binary

SMALLIDENTITY SmallIdentity Int16

SMALLINT Smallint Int16

TIME Time Time

TIMESTAMP, TIMESTAMP2 DateTime DateTime

TINYINT TinyInt SByte

UBIGINT UBigInt UInt64

UNIQUE_IDENTIFIER Guid Guid

UINTEGER UInteger UInt32

USMALLINT USmallInt UInt16

Zen Type Store (SSDL) Type PrimitiveTypeKind

96

Type Mapping for Model First

The following table shows the model-centric type mapping where the EDM Simple Types
influence the Zen (store) type used to create the database. The columns are defined as follows:

• The PrimitiveTypeKind column refers to the common data primitives used to specify the valid
content of properties of entities used in defining EDM applications.

• Property Values Affecting Type Mapping identifies any property value that can affect type
mapping.

• The Store (SSDL) column refers to data types used by the store schema definition language
(SSDL) file. The storage metadata schema is a formal description of the database that persists
data for an application built on the EDM.

• The Zen Type column refers to the native type name.

UTINYINT UTinyInt Byte

VARCHAR Varchar String

PrimitiveTypeKind Property Values That Affect
Type Mapping

Store (SSDL) Type Zen Type

Binary Fixed Length: TRUE

Fixed Length: FALSE

Binary

LongVarBinary

Binary(n)

LongVarBinary

Boolean Boolean Bit

Byte Tinylint_as_byte TinyInt

DateTime DateTime DateTime

Decimal Decimal Decimal

Double Double Double

Guid Guid Guid

Single Float Float

SByte Smallint_as_Sbyte Smallint

Int16 SmallInt Smallint

Int32 Integer Integer

Int64 Bigint BigInt

Zen Type Store (SSDL) Type PrimitiveTypeKind

97

Type Mapping for Code First

The following table shows the model-centric type mapping, where the CLR type influences the
Zen (store) type used when the database is created. Some CLR types can map to several different
Zen types; the default values are shown in italics.

The columns are defined as follows:

• The CLR Type column refers to the common language runtime type name.

• The Zen Type column refers to the native type name.

String MaxLength= (1<=n<=8000)

Fixed Length=True

Unicode=False

Char Char(n)

MaxLength= (1<=n<=8000)

Fixed Length=False

Unicode=False

Varchar Varchar(n)

MaxLength= (>8000)

Fixed Length=False

Unicode=False

LongVarChar LongVarchar

MaxLength= (1<=n<=4000)

Fixed Length=True

Unicode=True

NChar NChar(n)

MaxLength= (1<=n<=4000)

Fixed Length=False

Unicode=True

NVarChar NVarChar(n)

MaxLength= (>4000)

Fixed Length=False

Unicode=True

NLongVarChar NLongVarChar

Time Time Time

DateTimeOffset DateTime DateTime

PrimitiveTypeKind Property Values That Affect
Type Mapping

Store (SSDL) Type Zen Type

98

Mapping EDM Canonical Functions to Zen Functions

The ADO.NET Entity Framework translates the Entity Data Model (EDM) canonical functions to
the corresponding data source functionality for the ADO.NET Entity Framework data provider
for Zen. The function invocations are expressed in a common form across data sources.

CLR Type Zen Data Type

Byte[] BINARY

Boolean BIT

Byte TINYINT

DateTime DATETIME

Decimal DECIMAL

Double DOUBLE

Guid UNIQUEIDENTIFIER

BINARY

Single FLOAT

Sbyte SMALLINT

Int16 SMALLINT

Int32 INTEGER

Int64 BIGINT

String1 NCHAR

NVARCHAR

NLONGVARCHAR

TimeSpan TIME

DateTimeOffset DateTime

1 In the Code First workflow, if the length of the string field in an entity is not specified, the data
provider sets the default length to 2048 and 4096 bytes for Unicode and non-Unicode types respectively.
However, if the length of the string field is set to a maximum allowed limit, that is 4000 bytes for
Unicode types and 8000 bytes for non-Unicode types, the data provider resets it to 2048 bytes and 4096
bytes, respectively. For all the other scenarios where the length of the string field is specified, the data
provider uses the specified length.

99

Because these canonical functions are independent of data sources, argument and return types of
canonical functions are defined in terms of types in the EDM. When an Entity SQL query uses
canonical functions, the appropriate function is called at the data source.

Both null-input behavior and error conditions are explicitly specified for all canonical functions.
However, the ADO.NET Entity Framework does not enforce this behavior. Further details are
available at: http://msdn.microsoft.com/en-us/library/bb738626.aspx

Aggregate Canonical Functions

The following table describes the mapping of EDM aggregate canonical functions to Zen
functions.

Math Canonical Functions

The following table describes the mapping of EDM math canonical functions to Zen functions
used to process columns that contain only decimal and integer values.

For more information, see Numeric Functions. Also, at docs.actian.com, see Developer
Reference > Data Access Methods > SQL Engine Reference > Syntax Reference.

Aggregate Canonical Function Zen functions

Avg(expression) avg(expression)

BigCount(expression) count(expression)

Count(expression) count(expression)

Max(expression) max(expression)

Min(expression) min(expression)

StDev(expression) stdev(expression)

StDevP(expression) stdevp(expression)

Sum(expression) sum(expression)

Var(expression) var(expression)

VarP(expression) varp(expression)

Math Canonical Function Zen Function

Abs(value) abs(value)

Ceiling(value) ceiling(value)

https://docs.actian.com
http://msdn.microsoft.com/en-us/library/bb738626.aspx

100

Date and Time Canonical Functions

The following table describes the mapping of EDM date and time canonical functions to Zen
functions that generate, process, and manipulate data that consists of data types such as DATE and
TIME.

Floor(value) floor(value)

Power(value, exponent) power(value, exponent)

Round(value) round(numeric_expression1, integer_expression2)

Round(value, digits) round(value, digits)

Truncate(value, digits) truncate(value, digits)

Date and Time Canonical Function Zen Functions

AddNanoseconds(expression,number) dateadd(millisecond,number/1000000)

AddMicroseconds(expression,number) dateadd(millisecond,number/1000)

AddMilliseconds(expression,number) dateadd(millisecond,number)

AddSeconds(expression,number) dateadd(second,number)

AddMinutes(expression,number) dateadd(minute,number)

AddHours(expression,number) dateadd(hour,number)

AddDays(expression,number) dateadd(day,number)

AddMonths(expression,number) dateadd(month,number)

AddYears(expression, number) dateadd(year,number)

CreateDateTime(year,month,day,hour,minute,second) datetimefromparts(year,month,day,hour,minute,second,0)

CreateDateTimeOffset(year,month,day,

hour,minute,second,tzoffset)1
datetimeoffsetfromparts(year,month,day,hour,
minute,second,tzoffset)

CreateTime(hour,minute,second)1 timefromparts(hour,minute,second,0,0)

CurrentDateTime() now()

CurrentDateTimeOffset() sysdatetimeoffset()

CurrentUtcDateTime() current_timestamp()

Day(expression) datepart(day,expression)

DayOfYear(startexpression,endexpression) dayofyear(expression)

Math Canonical Function Zen Function

101

Bitwise Canonical Functions

The following table describes the mapping of EDM bitwise canonical functions to Zen functions.

DiffNanoSeconds(startexpression,endexpression) datediff(millisecond,startexpression,endexpression)*1000000

DiffMilliSeconds(startexpression,endexpression) datediff(millisecond,startexpression,endexpression)

DiffMicroSeconds(startexpression,endexpression) datediff(millisecond,startexpression,endexpression)*1000

DiffSeconds(startexpression,endexpression) datediff(second,startexpression,endexpression)

DiffMinutes(startexpression,endexpression) datediff(minute,startexpression,endexpression)

DiffHours(startexpression,endexpression) datediff(hour, startexpression,endexpression)

DiffDays(startexpression,endexpression) datediff(day, startexpression, endexpression)

DiffMonths(startexpression,endexpression) datediff(month,startexpression,endexpression)

DiffYears(startexpression,endexpression) datediff(year,startexpression,endexpression)

GetTotalOffsetMinutes(DateTime Offset) datepart(tzoffset,expression)

Year(expression) datepart(year,expression)

Month(expression) datepart(month,expression)

Day(expression) datepart(day,expression)

Hour(expression) datepart(hour,expression)

Minute(expression) datepart(minute,expression)

Second(expression) datepart(second,expression)

Millisecond(expression) datepart(millisecond,expression)

TruncateTime(expression) convert(expression, SQL_DATE)

1 Requires Zen v11.30 Update 4 (May 2013)

Bitwise Canonical Function Zen Functions

BitWiseAnd (value1, value2) bit_and (value1, value2)

BitWiseNot (value) bit_compliment

BitWiseOr (value1, value2) bit_or

BitWiseXor (value1, value2) bit_xor

Date and Time Canonical Function Zen Functions

102

String Canonical Functions

The following table describes the mapping of EDM string canonical functions to Zen functions.

Other Canonical Functions

The following table describes the mapping of other canonical functions to Zen functions.

String Canonical Function Zen Function

Concat(string1, string2) concat(string1, string2)

Contains(string, target) contains(string, target)

EndsWith(string, target) endswith(string, target)

IndexOf(target, string2) instr(target, string2)

Left(string1, length) left(string1, length)

Length(string) length(string)

LTrim(string) ltrim(string)

Trim(string) trim (BOTH FROM string)

Replace(string1, string2, string3) replace(string1, string2, string3)

Reverse(string) reverse(string)

RTrim(string) rtrim(string)

StartsWith(string, target) startswith(string, target)

Substring(string, start, length) INCOMPLETE regexpr_substr(…)

ToLower(string) lower(string)

ToUpper(string) upper(string)

Other Canonical Function Zen Function

NewGuid() newid()

103

Extending Entity Framework Functionality
The ADO.NET Entity Framework offers powerful productivity gains by masking many
ADO.NET features, simplifying application development. The ADO.NET Data Provider includes
functionality designed to optimize performance.

104

Enhancing Entity Framework Performance
Although the Entity Framework offers powerful productivity gains, some developers believe that
the Entity Framework takes too much control of the features they need to optimize performance in
their applications.

Limiting the Size of XML Schema Files

Building large models with the Entity Data Model (EDM) can be very inefficient. For optimal
results, consider breaking up a model when it has reached 50 to 100 entities.

The size of the XML schema files is to some extent proportional to the number of tables, views, or
stored procedures in the database from which you generated the model. As the size of the schema
files increase, additional time is needed to parse and create an in-memory model for the metadata.
This is a one-time performance cost that is incurred for each ObjectContext instance.

This metadata is cached per application domain, based on the EntityConnection String. This
means that if you use the same EntityConnection string in multiple ObjectContext instances in a
single application domain, the application incurs the cost of loading metadata only once.
However, the performance cost could still be significant if the size of the model becomes large
and the application is not a long-running one.

105

Using Stored Procedures with the ADO.NET
Entity Framework
Using stored procedures with the ADO.NET Entity Framework requires mapping functions.
Calling these stored procedures is complex and requires some coding.

Providing Functionality

The Connection object includes properties and methods that provide enhanced statistics
functionality that are standard in the ADO.NET data provider, but are not available at the
ADO.NET Entity Framework layer. Instead, you expose the same functionality through "pseudo"
stored procedures.

This approach uses the Entity Data Model (EDM) to achieve results that correspond to the
ADO.NET results. This in effect provides entities and functions backed by pseudo stored
procedures.

Mapping to Pseudo Stored Procedure

The following table lists the mapping of the data provider’s Connection properties to the
corresponding pseudo stored procedure.

Applications must use the ObjectContext to create a stored procedure command as shown in the
following C# code fragment:
using (MyContext context = new MyContext())
{
 EntityConnection entityConnection = (EntityConnection)context.Connection;

 // The EntityConnection exposes the underlying store connection
 DbConnection storeConnection = entityConnection.StoreConnection;
 DbCommand command = storeConnection.CreateCommand();
 command.CommandText = "Psql_Connection_EnableStatistics";
 command.CommandType = CommandType.StoredProcedure;
 command.Parameters.Add(new PsqlParameter("cid", 1));
}

Connection Property Pseudo Stored Procedure

StatisticsEnabled Psql_Connection_EnableStatistics

Psql_Connection_DisableStatistics

Connection Method Pseudo Stored Procedure

ResetStatistics Psql_Connection_ResetStatistics

RetrieveStatistics Psql_Connection_RetrieveStatistics

106

//

bool openingConnection = command.Connection.State == ConnectionState.Closed;
if (openingConnection) { command.Connection.Open(); }
int result;
try
{
 result = command.ExecuteNonQuery();
}
finally
{
 if (openingConnection && command.Connection.State == ConnectionState.Open) {
command.Connection.Close(); }
}

Using Overloaded Stored Procedures

If you have multiple overloaded stored procedures, the Zen Entity Framework data provider
appends an identifier to each stored procedure name so you can distinguish between them in the
SSDL. The data provider removes the appended identifier before calling the stored procedure for
your application.

107

Using .NET Objects
The ADO.NET Entity Framework data provider supports the .NET public objects, exposing them
as sealed objects.

For more information, see .NET Objects Supported.

The ADO.NET Entity Framework programming contexts inherently eliminate the need to use
some ADO.NET methods and properties. These properties and methods remain useful for
standard ADO.NET applications. The online help, which is integrated into Visual Studio,
describes the public methods and properties of each class.

Properties and Methods Differences with the ADO.NET Entity
Data Provider

The following table lists the properties and methods that are not required or are implemented
differently when using the data provider with an ADO.NET Entity application.

Property or
Method

Behavior

PsqlCommand

AddRowID Not supported. The ADO.NET Entity Framework does not process the
additional data that is returned.

ArrayBindCount Not supported. The application cannot influence this bind count on top of the
ADO.NET Entity Framework.

ArrayBindStatus Not supported. The application cannot influence this bind count on top of the
ADO.NET Entity Framework.

BindByName Not supported. Instead, the data provider uses the ADO.NET Entity Framework
programming contexts.

CommandTImeout Not supported. Instead, the data provider uses the ADO.NET Entity Framework
programming contexts.

UpdatedRowSource Not supported. Instead, the data provider uses the ADO.NET Entity Framework
programming contexts.

PsqlCommandBuilder

DeriveParameters Not supported. Instead, the data provider uses the ADO.NET Entity Framework
programming contexts.

108

Creating a Model

The Entity Framework creates a model of your data in Visual Studio.

Note: Developing with the ADO.NET Entity Framework requires that you use Microsoft .NET
Framework version 4.5.x, 4.6.x, 4.7.x, or 4.8 and Visual Studio 2019 or later with the 4.6 version
of the Actian Zen ADO.NET Entity Framework data provider.

To create a model of your data in Visual Studio using the Entity Framework, you must first ensure
that you already have the database schema available.

To use the Entity Framework for creating a model of your data in Visual Studio

1. Create a new .NET application, such as Windows Console, Windows Forms, in Visual Studio.

2. In the Solution Explorer, right-click the project and select Add > New Item.

PsqlConnection

ConnectionTimeout Supported only in a connection string.

StatisticsEnabled Use the StatisticsEnabled or StatisticsDisabled stored procedure. See Using
Stored Procedures with the ADO.NET Entity Framework for information on
using this functionality in an ADO.NET Entity Framework application.

DataAdapter

UpdateBatchSize Not supported. Instead, the data provider uses the ADO.NET Entity Framework
programming contexts.

Error

ErrorPosition Not supported. Instead, the data provider uses the ADO.NET Entity Framework
programming contexts.

SQLState Not supported. Instead, the data provider uses the ADO.NET Entity Framework
programming contexts.

Property or
Method

Behavior

109

3. Select ADO.NET Entity Data Model, then click Add.

4. The Entity Data Model Wizard appears. Based on whether you have configured Microsoft
ADO.NET Entity Framework 6.1 (EF 6.1), do one of the following:

• If you have not configured EF 6.1, select Generate from database and click Next.

110

• If you have configured EF 6.1, select EF Designer from database and click Next.

5. On the Choose your Data Connection page, click New Connection to create a new
connection. If you have an established connection, you can select it from the drop-down list.

111

6. The Connection Properties window appears. Provide the necessary connection information
and click OK.

7. The Wizard creates an Entity connection string.

a. If the radio buttons are selectable, select Yes, include the sensitive data in the
connection string to include the sensitive data in the connection string.

b. In the Save entity connection settings field, enter a name for the name of the main data
access class or accept the default.

c. Click Next.

8. Based on the configured Entity Framework version, do one of the following:

112

• If you have configured EF5 for the current project, on the Choose Your Version page,
proceed with the default Entity Framework 5.0 by clicking Next.

Note: To use the EF 6.1 with your current project, exit the wizard, configure EF 6.1, and
then rebuild the project. When you rebuild the project after configuring EF 6.1, the wizard
does not display the Choose Your Version page and you can directly proceed to the next
step.

• If you have configured EF 6.1 for the current project, proceed to the next step.

9. Select the database objects that will be used in the model.

113

10. Click Finish. The model is generated and opened in the Model Browser.

114

Upgrading Entity Framework 5 Applications to
Entity Framework 6.1
The steps given here upgrade an EF 5 application created using Zen ADO.NET Entity Framework
provider to an EF 6.1 application.

Note: If the target database already contains objects created by the Entity Framework 5 code first
application, then you need to drop these objects before running the migrated Entity Framework
6.1 application. Entity Framework 5.0 generates the foreign key constraint name differently from
Entity Framework 6.1, which causes the application to fail with error "Table or view already
exists."

IMPORTANT! Follow the steps presented here in the order given.

To update the machine.config files

Why is this step required?

You can use Entity Framework Power Tools to regenerate Mapping Views with EF 6.1. For Entity
Framework Power Tools to work with Zen ADO.NET Entity Framework Provider, you must add
a Provider registration entry in the .NET Framework 4.0 machine.config file.

Note: This step is required for upgrading EF 5 application to EF 6.1 application only. After
upgrading, we recommend you undo machine.config file edits to restore their previous content.

1. Close all Visual Studio windows before continuing with these steps.

2. Open the machine.config file for .Net Framework 4 in the following location, and also in the
second one if you are using a 64-bit system:

• %windir%\Microsoft.NET\Framework\v4.0.30319\Config\machine.config

• %windir%\Microsoft.NET\Framework64\v4.0.30319\Config\machine.config

3. Under the <configSections></configSections> node, add the following entry:

<section name="entityFramework"
type="System.Data.Entity.Internal.ConfigFile.EntityFrameworkSection, EntityFramework,
Version=6.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" requirePermission="false" />

4. Under the <configuration> </configuration> node after the </configSections> closure tag, add
the following entry:

<entityFramework>
<providers>
<provider invariantName="Pervasive.Data.SqlClient"
type="Pervasive.Data.SqlClient.Entity.PsqlProviderServices, Pervasive.Data.SqlClient.Entity,

115

Version=4.6.0.0, Culture=neutral, PublicKeyToken=c84cd5c63851e072" />
</providers>
</entityFramework>

5. Save and close the files you changed.

6. You must install EF version 6.1.2 to the corresponding project. To do so, you need to upgrade
your project to the new EF 6.1.x runtime. You can do this by one of two methods:

Method 1

a. Right-click your project and select Manage NuGet Packages.

b. In the Online tab, select EntityFramework and click Install.

Any previous version of the EntityFramework NuGet package is upgraded to EF 6.1.x.

Method 2

Run the following command from Package Manager Console for the corresponding project to
install EF 6.1.2 for that project:

Install-Package EntityFramework -Version 6.1.2

7. Confirm removal of assembly references to System.Data.Entity.dll.

Installing the EF6 NuGet package should automatically remove any references to
System.Data.Entity from your project.

8. Change any Enterprise Framework Designer (EDMX) models to use EF 6.x code generation.
If you have any models created with the EF Designer, you will need to update the code
generation templates to generate EF6-compatible code.

Note: For Visual Studio 2012 and later, only EF 6.x DbContext Generator templates are
available.

a. Delete existing code-generation templates:
These files are typically named <edmx_file_name>.tt and <edmx_file_name>.Context.tt
and are nested under your .edmx file in Solution Explorer. You can select the templates in
Solution Explorer and use the delete key to remove them.

Note: In website projects, the templates are not nested under your .edmx file, but alongside it in
Solution Explorer. In VB.NET projects you need to enable Show All Files to see the nested
template files.

b. Add the appropriate EF 6.x code generation template:
Open your model in the EF Designer, right-click the design surface, and select Add Code
Generation Item.

116

• If you are using the DbContext API (recommended), then EF 6.x DbContext
Generator is available under the Data tab.
Note that if you are using Visual Studio 2012, you need to install the EF 6 Tools to
have this template. For details, see Get Entity Framework at Microsoft, https://
msdn.microsoft.com/en-us/library/ee712906(v=vs.113).aspx.

• If you are using the ObjectContext API, then you need to select the Online tab and
search for EF 6.x EntityObject Generator.

c. If you applied any customizations to the code generation templates, you will need to
reapply them to the updated templates.

9. Update name spaces for any core EF types you are using.

The name spaces for DbContext and Code First types have not changed. This means that for
many applications that use EF 4.1 or later you will not need to change anything.

Types such as ObjectContext that were previously in System.Data.Entity.dll have been moved
to new name spaces. This means you may need to update your using or import directives to
build against EF6.

The general rule for namespace changes is that any type in System.Data.* is moved to
System.Data.Entity.Core.*. In other words, just insert Entity.Core. after System.Data. For
example:

• System.Data.EntityException => System.Data.Entity.Core.EntityException

• System.Data.Objects.ObjectContext => System.Data.Entity.Core.Objects.ObjectContext

• System.Data.Objects.DataClasses.RelationshipManager =>
System.Data.Entity.Core.Objects.DataClasses.RelationshipManager

These types are in the Core name spaces because they are not used directly for most
DbContext-based applications. Some types that were part of System.Data.Entity.dll are still
used commonly and directly for DbContext-based applications and so have not been moved
into the Core name spaces. These are:

• System.Data.EntityState => System.Data.Entity.EntityState

• System.Data.Objects.DataClasses.EdmFunctionAttribute =>
System.Data.Entity.DbFunctionAttribute
Note: This class has been renamed. A class with the old name still exists and works but is
now marked as obsolete.

• System.Data.Objects.EntityFunctions => System.Data.Entity.DbFunctions
Note: This class has been renamed. A class with the old name still exists and works but is
now marked as obsolete.

117

10. Regenerate Mapping Views

If you have generated Mapping Views previously, delete the files and regenerate the Mapping
View. For more information about Mapping Views, see https://msdn.microsoft.com/en-us/
data/dn469601.

The EF 5 application built with the Zen ADO.NET data provider is now upgraded to EF 6.1.2.

Note: Once all of your EF 5 applications are upgraded to EF 6.1.2, we recommend that you undo
the changes to Machine.config file and restore your earlier Machine.config file.

Entity Framework Power Tools provides an easier way to migrate EF 5.0 applications which use
model Views to EF 6.1 applications. During our testing we found the Entity Framework Power
Tools working fine with Zen Entity Framework Provider.

Note: Entity Framework Power Tools is not a certified or supported tool with Zen ADO.NET
Entity Framework data providers.

118

For More Information
See the following sources for additional information about ADO.NET and the Entity Framework:

• Programming Entity Framework by Julie Lerman provides a comprehensive discussion of
using the ADO.NET Entity Framework.

• ADO.NET Entity Framework introduces the Entity Framework and provides links to
numerous detailed articles.

• Connection Strings (Entity Framework) describes how connection strings are used by the
Entity Framework. The connection strings contain information used to connect to the
underlying ADO.NET data provider as well as information about the required Entity Data
Model mapping and metadata.

• Entity Data Model Tools describes the tools that help you to build applications graphically
with the EDM: the Entity Data Model Wizard, the ADO.NET Entity Data Model Designer
(Entity Designer), and the Update Model Wizard. These tools work together to help you
generate, edit, and update an Entity Data Model.

• LINQ to Entities enables developers to write queries against the database from the same
language used to build the business logic.

http://msdn.microsoft.com/en-us/library/bb399572.aspx
http://msdn.microsoft.com/en-us/library/cc716756.aspx
http://msdn.microsoft.com/en-us/library/bb399249.aspx
http://msdn.microsoft.com/en-us/library/bb386964.aspx

119

Zen ADO.NET Entity Framework Core
Data Providers

Zen ADO.NET Entity Framework (EF) Core is a lightweight and extensible object-relational
mapper (O/RM) for .NET that supports cross-platform development. It allows developers to work
with the database using .NET objects and helps them decrease the amount of code that needs to be
written and maintained in data-centric applications.

Zen ADO.NET Entity Framework Core data providers can be used with applications that use the
ADO.NET Entity Framework Core. They support the following:

• Microsoft ADO.NET Entity Framework Core 8.0

• All the platforms supported by .Net Standard 8.0. For details, see https://docs.microsoft.com/
en-us/dotnet/standard/net-standard.

• All the features supported by both Microsoft Entity Framework Core and Actian Zen
database. For details, see https://docs.microsoft.com/en-in/ef/core/what-is-new/.

Zen ADO.NET Entity Framework Core data providers use ADO.NET data providers to
communicate with ADO.NET database servers. This means that the functionality defined by Zen
ADO.NET data providers applies to Zen ADO.NET Entity Framework Core data providers unless
otherwise noted here. Similarly, any performance configurations made to Zen ADO.NET data
providers are realized by the Zen ADO.NET Entity Framework Core data providers.

Note: Visual Studio 2022 or later is required when developing applications for the Zen ADO.NET
Entity Framework Core.

https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-in/ef/core/what-is-new/

120

About Zen ADO.NET Entity Framework Core Data
Providers
Zen ADO.NET Entity Framework Core data providers are built with 100% managed code, so
they can run and connect to the database entirely within the common language runtime (CLR).

Code that runs in the native operating system, such as client libraries and COM components, is
called unmanaged code. You can mix managed and unmanaged code within a single application.
However, unmanaged code reaches outside the CLR, which means that it effectively raises
complexity, reduces performance, and opens possible security risks.

Namespace

The namespace for the Zen ADO.NET Entity Framework Core data provider is
Actian.EntityFrameworkCore.Zen.

Assembly Names

The Zen ADO.NET Entity Framework Core data provider uses the assembly name
Actian.EntityFrameworkCore.Zen.dll.

To use it, download the latest SDK .zip archive and extract the NuGet package
Actian.EntityFrameworkCore.Zen for your version as listed under Zen ADO.NET Data Providers
Available with SDK Download. Then add the package to your project.

121

Configuring the Zen ADO.NET Entity Framework
Core Data Provider

To configure Zen ADO.NET Entity Framework Core Data Provider

1. Create an application that targets .Net Standard 8.0. For details, see https://
learn.microsoft.com/en-us/dotnet/core/tutorials/with-visual-studio?pivots=dotnet-8-0

2. Install the following NuGet package: Actian.EntityFrameworkCore.Zen.

3. Add a new context class to your application and override the OnConfiguring method using the
following code:

public class MyContext : DbContext
 {
protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
=> optionsBuilder.UseZen(connection string);
 }

https://learn.microsoft.com/en-us/dotnet/core/tutorials/with-visual-studio?pivots=dotnet-8-0
https://learn.microsoft.com/en-us/dotnet/core/tutorials/with-visual-studio?pivots=dotnet-8-0

122

Using Connection Strings with the Zen ADO.NET
Entity Framework Core Data Provider
The Zen ADO.NET Entity Framework Core data provider uses information contained in
connection strings to connect to the underlying Zen ADO.NET data provider that supports the
Entity Framework Core.

Changes in Default Values for Connection String Options

Most default values of the connection string options used by the Zen ADO.NET Entity
Framework Core data provider are the same as those used by the Zen ADO.NET data provider.
See Connection String Properties for more information and a list of connection string options that
have a different default value when used with an ADO.NET Entity Framework Core application.

Code First Support
Entity Framework Core supports Code First features. Implementing support for these features
requires changes to the data provider, including those required to handle long identifier names.
However, it does not need any changes to your application.

Code First implementations require type mapping changes. See Type Mapping for Code First for
more information.

Handling Long Identifier Names

Most Zen identifiers have a maximum length of 20 bytes. The identifier name can exceed this size
because the names of the objects to be created on the server are taken from the class and property
names. In addition, constraint names are often created by concatenating several object names. In
these cases, the chances of exceeding the maximum identifier length are even greater.

Connection String
Option

Default Value in ADO.NET Entity Framework Core Application

Parameter Mode Not supported.

Statement Cache Mode ExplicitOnly is the only supported value.

DB File Directory Path Environment.SpecialFolder.CommonApplicationData. To know more about
the Environment.SpecialFolder enum and the supported fields, see https://
docs.microsoft.com/en-us/dotnet/api/
system.environment.specialfolder?view=net-8.0

https://docs.microsoft.com/en-us/dotnet/api/system.environment.specialfolder?view=net-8.0
https://docs.microsoft.com/en-us/dotnet/api/system.environment.specialfolder?view=net-8.0
https://docs.microsoft.com/en-us/dotnet/api/system.environment.specialfolder?view=net-8.0

123

For columns, the data provider shortens identifiers to the maximum identifier length allowed by
the database, replacing the end of the identifier with a tilde character ~. For example, the string
ColumnMoreThanTwentyCharacters is shortened to ColumnMoreThanTwent~.

For tables, the data provider shortens identifiers to the maximum identifier length allowed by the
database, replacing the end of the identifier with an integer hash-code. For example, the string
ATableWithAVeryLongTableName is shortened to ATableWit_1738385675.

If you access or view the DB object using a DB tool, the names of the created tables may differ
from what you might expect based on model class names and property names.

Using Code First Migrations with the ADO.NET
Entity Framework Core
Entity Framework Core supports the Code First Migrations feature, which enables you to update
your database schema to reflect model classes without having to drop and recreate them.

Migrations enable you to incrementally evolve your database schema as your model changes.
Each set of changes to the database is expressed in a code file, known as a migration. The
migrations are ordered, typically using a time stamp, and a table in the database keeps track of
which migrations are applied to the database.

Code First Migrations requires type mapping changes. See Type Mapping for Code First for more
information.

To implement Code First Migrations, once you have configured the Zen ADO.NET Entity
Framework Core data provider, install the following NuGet package:
Microsoft.EntityFrameworkCore.Tools (version 3.1)

124

Using Reverse Engineering (Scaffolding)
The process of scaffolding entity type classes and a DbContext class based on a database schema
is called reverse engineering. You can perform it using either the Scaffold-DbContext command
of the EF Core Package Manager Console (PMC) tools or the dotnet ef dbcontext scaffold
command of the .NET command-line interface (CLI) tools.

To use reverse engineering with the ADO.NET Actian Zen Entity Framework Core data provider,
perform the following steps after you have configured the data provider:

1. Install the following NuGet package: Microsoft.EntityFrameworkCore.Tools (version
8.0.0).

2. Run the following Scaffold-DbContext PowerShell command:

Scaffold-DbContext 'connection string' Actian.EntityFrameworkCore.Zen

You can add more parameters to the Scaffold-DbContext PowerShell command, if required. To
know more about it, see https://docs.microsoft.com/en-in/ef/core/managing-schemas/
scaffolding?tabs=vs.

To use reverse engineering in .Net Core CLI environment, see https://docs.microsoft.com/en-in/
ef/core/managing-schemas/scaffolding?tabs=dotnet-core-cli.

https://docs.microsoft.com/en-in/ef/core/managing-schemas/scaffolding?tabs=vs
https://docs.microsoft.com/en-in/ef/core/managing-schemas/scaffolding?tabs=vs
https://docs.microsoft.com/en-in/ef/core/managing-schemas/scaffolding?tabs=dotnet-core-cli
https://docs.microsoft.com/en-in/ef/core/managing-schemas/scaffolding?tabs=dotnet-core-cli

125

Type Mapping for Code First
The following table shows the model-centric type mapping, where the CLR type influences the
Zen (store) type used when the database is created. Some CLR types can map to several different
Zen types.

The columns are defined as follows:

• The CLR Type column refers to the common language runtime type name.

• Property Values Affecting Type Mapping identifies any property value that can affect type
mapping.

• The Zen Type column refers to the native type name.

CLR Type Property Values That Affect

Type Mapping

Actian Zen Data Type

Bool BIT

Byte UTINYINT

Byte[] BINARY

LONGVARBINARY1

DateTime AUTOTIMESTAMP

DATE

TIMESTAMP

TIMESTAMP22

DateTimeOffset DATETIME

Decimal CURRENCY

DECIMAL2

NUMERIC

NUMERICSA

NUMERICSTS

UBIGINT

Double BFLOAT8

DOUBLE2

Float FLOAT2

REAL

BFLOAT4

126

Guid UNIQUEIDENTIFIER

Int INTEGER2

IDENTITY

USMALLINT

Long BIGINT2

BIGIDENTITY

UINTEGER

SByte TINYINT

Short SMALLINT2

SMALLIDENTITY

String NLONGVARCHAR2

Unicode=False LONGVARCHAR

MaxLength= (1<=n<=8000)

Fixed Length=False

Unicode=True

NVARCHAR

MaxLength= (1<=n<=8000)

Fixed Length=False

Unicode=False

VARCHAR

MaxLength= (1<=n<=8000)

Fixed Length=True

Unicode=True

NCHAR

MaxLength= (1<=n<=8000)

Fixed Length=True

Unicode=False

CHAR

TimeSpan TIME

1. Maps to this type if no value is specified for MaxLength.

2. By default, maps to this type.

CLR Type Property Values That Affect

Type Mapping

Actian Zen Data Type

127

Mapping EDM Canonical Functions to Zen Functions

The ADO.NET Entity Framework Core translates the Entity Data Model (EDM) canonical
functions to the corresponding data source functionality for the Zen ADO.NET Entity Framework
Core data provider. The function invocations are expressed in a common form across data
sources.

Because these canonical functions are independent of data sources, argument and return types of
canonical functions are defined in terms of types in the EDM. When an Entity SQL query uses
canonical functions, the appropriate function is called at the data source.

Both null-input behavior and error conditions are explicitly specified for all canonical functions.
However, the ADO.NET Entity Framework Core does not enforce this behavior.

Aggregate Canonical Functions

The following table describes the mapping of EDM aggregate canonical functions to Zen
functions, and also the CLR types to which these functions apply.

Math Canonical Functions

The following table describes the mapping of EDM math canonical functions to Zen functions,
and also the CLR types to which these functions apply.

Aggregate Canonical Function Actian Zen functions CLR Type

BigCount(expression) COUNT_BIG(expression) Long

Count(expression) COUNT(expression) Int

Math Canonical
Function

Actian Zen Function CLR Type

Abs(expression) ABS(expression) Decimal, Double, Float, Int,
Long, SByte, Short

Ceiling(expression) CEILING(expression) Decimal, Double

Floor(expression) FLOOR(expression) Decimal, Double

Pow(base, power) POWER(base, power) Double

Exp(expression) EXP(expression) Double

Log10(expression) LOG10(expression) Double

128

Date and Time Canonical Functions

The following table describes the mapping of EDM date and time canonical functions to Zen
functions that generate, process, and manipulate types that work with data time data, and also the
CLR types to which these functions apply.

Log(expression) LOG(expression) Double

Sqrt(expression) SQRT(expression) Double

Acos(expression) ACOS(expression) Double

Asin(expression) ASIN(expression) Double

Atan(expression) ATAN(expression) Double

Atan2(expression1,
expression2)

ATAN2(expression1, expression2) Double

Cos(expression) COS(expression) Double

Sin(expression) SIN(expression) Double

Tan(expression) TAN(expression) Double

Sign(expression) SIGN(expression) Decimal, Double, Float, Int,
Long, SByte, Short

Date and Time Canonical Function Actian Zen Functions CLR Type

DateTime.Now SYSDATETIME() DateTime

DateTime.Now SYSDATETIMEOFFSET () DateTimeOffset

DateTime.UtcNow SYSUTCDATETIME() DateTime

DateTimeOffset

DateTime.Today CURDATE() DateTime

DateTimeOffset

AddYears(expression) DATEADD(year,
expression, column)

DateTime

DateTimeOffset

AddMonths(expression) DATEADD(month,
expression, column)

DateTime

DateTimeOffset

Math Canonical
Function

Actian Zen Function CLR Type

129

AddDays(expression) DATEADD(day, expression,
column)

DateTime

DateTimeOffset

AddHours(expression) DATEADD(hour, expression,
column)

DateTime

DateTimeOffset

AddMinutes(expression) DATEADD(minute,
expression, column)

DateTime

DateTimeOffset

AddSeconds(expression) DATEADD(second,
expression, column)

DateTime

DateTimeOffset

AddMilliSeconds(expression) DATEADD(millisecond,
expression, column)

DateTime

DateTimeOffset

EF.Functions.DateDiffYear(column,
expression)

DATEDIFF(year, column,
expression)

DateTime

DateTimeOffset

EF.Functions.DateDiffMonth(column,
expression)

DATEDIFF(month, column,
expression)

DateTime

DateTimeOffset

EF.Functions.DateDiffDay(column,
expression)

DATEDIFF(day, column,
expression)

DateTime

DateTimeOffset

EF.Functions.DateDiffHour(column,
expression)

DATEDIFF(hour, column,
expression)

DateTime

DateTimeOffset

TimeSpan

EF.Functions.DateDiffMinute(column,
expression)

DATEDIFF(minute, column,
expression)

DateTime

DateTimeOffset

TimeSpan

EF.Functions.DateDiffSecond(column,
expression)

DATEDIFF(second, column,
expression)

DateTime

DateTimeOffset

TimeSpan

EF.Functions.DateDiffMilliSecond(column,
expression)

DATEDIFF(millisecond,
column, expression)

DateTime

DateTimeOffset

TimeSpan

Date and Time Canonical Function Actian Zen Functions CLR Type

130

String Canonical Functions

The following table describes the mapping of EDM string canonical functions to Zen functions,
and also the CLR types to which these functions apply.

Other Canonical Functions

The following table describes the mapping of other canonical functions to Zen functions, and also
the CLR types to which these functions apply.

String Canonical Function Actian Zen Functions CLR
Type

IndexOf(expression) POSITION(expression, column) String

Replace(toReplace, replaceWith) REPLACE(toReplace, column, replaceWith) String

ToLower() LOWER(column) String

ToUpper() UPPER(column) String

SubString(start, length) SUBSTRING(column, start, length) String

IsNullOrWhiteSpace() A combination of LTRIM and RTRIM with a
null check on the column

String

TrimStart() LTRIM(column) String

TrimEnd() RTRIM(column) String

TRIM() A combination of LTRIM and RTRIM on the
column

String

Contains(expression) POSITION(expression, column) String

StartsWith(expression) A combination of LEFT and LENGTH on the
column

String

EndsWith(expression) A combination of RIGHT and LENGTH on
the column

String

Length() LENGTH(column) String

EF.Functions.Position(column, expression) POSITION(expression, column) String

Canonical Function Actian Zen Function CLR Type

ToString() CONVERT(column, SQL_CHAR) All types

NewGuid() NEWID() Guid

131

Note: Column is the property to which the function is applied.

132

Extending Entity Framework Functionality
The ADO.NET Entity Framework Core and Actian Zen Entity Framework Core data provider are
designed to be extended easily. The following examples demonstrate how to extend Entity
Framework Core:

• https://docs.microsoft.com/en-in/ef/core/managing-schemas/migrations/history-table

• https://docs.microsoft.com/en-in/ef/core/modeling/dynamic-model

https://docs.microsoft.com/en-in/ef/core/managing-schemas/migrations/history-table
https://docs.microsoft.com/en-in/ef/core/modeling/dynamic-model

133

Using Stored Procedures with the ADO.NET
Entity Framework Core
In Entity Framework Core, stored procedures can be executed using raw SQL queries. For more
information, see https://docs.microsoft.com/en-in/ef/core/querying/raw-sql.

https://docs.microsoft.com/en-in/ef/core/querying/raw-sql

134

Upgrading an Application from Entity Framework
6.x to Entity Framework Core
To upgrade your application from Entity Framework 6.x to Entity Framework Core, see https://
docs.microsoft.com/en-us/ef/efcore-and-ef6/porting/.

https://docs.microsoft.com/en-us/ef/efcore-and-ef6/porting/
https://docs.microsoft.com/en-us/ef/efcore-and-ef6/porting/

135

Limitations
The Actian Zen ADO.NET Entity Framework Core data provider has the following limitations:

• The Entity Framework Core has some limitations related to the reverse engineering
(scaffolding) feature. They all apply to the Actian Zen Entity Framework Core data provider
as well. For more information on these limitations, see https://docs.microsoft.com/en-in/ef/
core/managing-schemas/scaffolding?tabs=dotnet-core-cli.

• The Actian Zen Entity Framework Core data provider does not support the concurrency
feature of reverse engineering (scaffolding).

https://docs.microsoft.com/en-in/ef/core/managing-schemas/scaffolding?tabs=dotnet-core-cli
https://docs.microsoft.com/en-in/ef/core/managing-schemas/scaffolding?tabs=dotnet-core-cli

136

For More Information
Refer to the following sources for additional information about ADO.NET and the Entity
Framework Core.

• ADO.NET Entity Framework Core introduces the Entity Framework Core and provides links
to numerous detailed articles.

• Feature Comparison compares the features available in Entity Framework Core and Entity
Framework 6.X.

• ASP.NET Core shows how to use Entity Framework Core in an ASP.NET Core Razor Pages
app.

https://docs.microsoft.com/en-in/ef/core/get-started/?tabs=visual-studio
https://docs.microsoft.com/en-us/ef/efcore-and-ef6/
https://docs.microsoft.com/en-in/aspnet/core/data/ef-rp/intro?view=aspnetcore-3.1&tabs=visual-studio

137

Using Zen Data Providers in Visual Studio

Zen data providers support integration into Visual Studio. This means that developers can use the
graphical user interface of Microsoft Visual Studio to perform a variety of tasks.

The following topics describe how the features of the Zen data providers are integrated into
Visual Studio:

• Adding Connections

• Using the Zen Performance Tuning Wizard

• Using Provider-Specific Templates

• Using the Zen Visual Studio Wizards

• Adding Components from the Toolbox

• Data Provider Integration Scenario

138

Adding Connections
You can add connections in several ways in Visual Studio:

• Adding Connections in Server Explorer

• Adding Connections with the Data Source Configuration Wizard

Adding Connections in Server Explorer

To add a connection

1. Right-click the Data Connections node in the Server Explorer and select Add Connection.

139

The Add Connection window appears.

2. If the Zen data provider is displayed in the Data source field, skip to Step 4. Otherwise, click
Change.

3. The Change Data Source window appears.

a. In the Data source list box, select Actian Zen Database.

b. In the Data provider list, select Actian Zen ADO.NET Data Provider.

c. If you want to use these selections for other connections, select the Always use this
selection check box.

140

d. Click OK to return to the Add Connection window.

4. In the Add Connection window, do the following steps:

a. Enter the Host name.

b. Enter the User ID and password. These values are required for authentication.

c. (Optional) If you want to save the password for the lifetime of connection instance defined
in Server Explorer, select the Save my password check box.

d. (Optional) In the Database entry field, enter the name of the database to which you want to
connect.

5. Click the Advanced button to specify additional provider-specific property values.

To change a value in the Advanced Properties dialog box, select or type the new value into the
field and press ENTER. The value is added to the connection string that appears in the field
below the description of the property. If you accept the default values, the connection string
field remains unchanged. When you have made the necessary changes, click OK to return to
the Add Connection window.

Advanced

EnableIPv6: Provides backward compatibility for connecting to a Zen server using an IPv4
address.

141

If set to True, a client with IPv6 protocol installed can connect to the server using either an IPv4
address or an IPv6 address.

If set to False, the clients run in the backward compatibility mode. The client always connects to
the server using an IPv4 address.

The default value for 4.0 is set to True.

For more information about IPv6 formats, see IPv6 in Getting Started with Zen.

Encoding: Type the ANSI name or Windows code page to be used for translating string data
stored in the database. By default, the Windows code page is used.

Initial Command Timeout: Specifies the default wait time (timeout in seconds) before the data
provider terminates the attempt to execute the command and generates an error. This option
provides the same functionality as the PsqlCommand object’s CommandTimeout property
without the need to make changes to the application code. Subsequently, an application can use
the CommandTimeout property to override the Initial Command Timeout connection string
option.

The initial default value is 30 seconds.

Note: Set the Initial Command Timeout option to a value that is greater than the largest default
deadlock detection and timeout value on the server. This ensures that the application receives a
more meaningful reply in case of a timeout.

Initialization String: Type one statement that will be issued immediately after connecting to the
database to manage session settings.

Example: To handle CHAR columns that are padded with NULLs, set the value to:

Initialization String=SET ANSI_PADDING ON

Note: If the statement fails to execute for any reason, the connection to the server fails. The data
provider throws an exception that contains the errors returned from the server.

Parameter Mode: Select the behavior of native parameter markers and binding. This allows
applications to reuse provider-specific SQL code and simplifies migration to Zen data providers.
Note that this option does not apply to Zen ADO.NET Entity Framework data providers.

If set to ANSI (the default), the ? character is processed as a parameter marker and bound as
ordinal.

If set to BindByOrdinal, native parameter markers are used and are bound as ordinal.

If set to BindByName, native parameter markers are used and are bound by name.

142

PVTranslate: Select whether the client should negotiate a compatible encoding with the server.

If set to Auto, then the data provider will set the Encoding connection property to the database
code page. In addition, SQL query text will be sent to the engine using UTF-8 encoding instead of
the data encoding. This preserves NCHAR string literals in the query text.

If set to Nothing (the default), the setting for the Encoding connection property is used.

Timestamp: Select whether Zen time stamps are stored and retrieved as strings.

If set to DateTime (the initial default), the data provider maps time stamps to DateTime. This
setting may be appropriate when native precision is required, for example, when using the
CommandBuilder with a time stamp.

If set to String, the data provider maps Zen time stamps as strings.

TimeType: Select whether Zen times are retrieved as Timespan or DateTime in Zen ADO.NET
data providers.

If set to As DateTime, the data provider maps the SQL type TIME to the .NET type
System.DateTime.

If set to As TimeSpan, the data provider maps the SQL type TIME to the .NET type
System.DateTimespan.

Connection Pooling

Connection Reset: Select whether a connection that is removed from the connection pool for
reuse by an application will have its state reset to the initial configuration settings of the
connection.

If set to False (the initial default), the data provider does not reset the state of the connection.

Connection Pool Behavior: Select the order in which a connection is removed from the
connection pool for reuse, based on how frequently or how recently the connection has been used.

If set to MostRecentlyUsed, the data provider uses a Last In First Out (LIFO) approach to return
the connection that was returned to the pool most recently.

If set to LeastRecentlyUsed, the data provider uses a First In First Out (FIFO) approach to return
the connection with the lowest use count. This value ensures a balanced use of connections in the
pool.

If set to MostFrequentlyUsed, the data provider returns the connection with the highest use count.
This value enables applications to give preference to the most seasoned connection.

143

If set to LeastFrequentlyUsed, the data provider returns the connection with the lowest use count.
This value ensures a balanced use of connections in the pool.

Connection Timeout: Type the number of seconds after which the attempted connection to the
server will fail if not yet connected. If connection failover is enabled, this option applies to each
connection attempt.

If set to 0, the data provider never times out on a connection attempt.

The initial default is 15 seconds.

Load Balance Timeout: Type the number of seconds to keep connections in a connection pool.
The pool manager periodically checks all pools, and closes and removes any connection that
exceeds this value. The Min Pool Size option can cause some connections to ignore the value
specified for the Load Balance Timeout option.

The value can be any integer from 0 to 65535.

If set to 0 (the initial default), the connections have the maximum timeout.

See Removing Connections from a Pool for a discussion of connection lifetimes.

Max Pool Size: Type the maximum number of connections within a single pool. When the
maximum number is reached, no additional connections can be added to the connection pool.

The value can be any integer from 1 to 65535.

The initial default is 100.

Max Pool Size Behavior: Select whether the data provider can exceed the number of connections
specified by the Max Pool Size option when all connections in the connection pool are in use.

If set to SoftCap, when all connections are in use and another connection is requested, a new
connection is created, even when the connection pool exceeds the number set by the MaxPoolSize
option. If a connection is returned and the pool is full of idle connections, the pooling mechanism
selects a connection to be discarded so the connection pool never exceeds the Max Pool Size.

If set to HardCap, when the maximum number of connections allowed in the pool are in use, any
new connection requests wait for an available connection until the Connection Timeout is
reached.

Min Pool Size: Type the minimum number of connections that are opened and placed in a
connection pool when it is created. The connection pool retains this number of connections, even
when some connections exceed their Load Balance Timeout value.

The value can be any integer from 0 to 65535.

144

If set to 0 (the initial default), no additional connections are placed in the connection pool when it
is created.

Pooling: Select True (the initial default) to enable connection pooling.

Failover

Alternate Servers: Type a list of alternate database servers to which the data provider will try to
connect if the primary database server is unavailable. Specifying a value for this property enables
connection failover for the data provider.

For example, the following Alternate Servers value defines two alternate servers for connection
failover:

Alternate Servers="Host=AcctServer;Port=1584,
Host=123.456.78.90;Port=1584"

Connection Retry Count: Type the number of times the data provider tries to connect to the
primary server, and, if specified, the alternate servers after the initial unsuccessful attempt.

The value can be any integer from 0 to 65535.

If set to 0 (the initial default), there is no limit to the number of attempts to reconnect.

Connection Retry Delay: Type the number of seconds the data provider waits after the initial
unsuccessful connection attempt before retrying a connection to the primary server, and, if
specified, the alternate servers.

The initial default is 3.

This property has no effect unless the Connection Retry Count property is set to an integer value
greater than 0.

Load Balancing: Select True or False to determine whether the data provider uses client load
balancing in its attempts to connect to primary and alternate database servers.

If set to False (the initial default), the data provider does not use client load balancing.

Performance

Enlist: Select True or False to determine whether the data provider automatically attempts to
enlist the connection in creating the thread’s current transaction context.

Note: Because Zen does not support distributed transactions, any attempt to enlist the connection
in the thread’s current transaction context will fail.

145

If set to False (the initial default), the data provider does not automatically attempt to enlist the
connection.

If set to True, the data provider returns an error on the connection if a current transaction context
exists. If a current transaction context does not exist, the data provider raises a warning.

Max Statement Cache Size: Type the maximum number of statements generated by the
application that can be held in the statement cache for this connection.

The value can be 0, or any integer greater than 1.

If set to 0, statement caching is disabled.

If set to an integer greater than 1, the value determines the number of statements that can be held
in the statement cache.

The initial default is 10.

Statement Cache Mode: Select the statement caching mode for the lifetime of the connection.
See Using Statement Caching for more information.

If set to Auto, statement caching is enabled. Statements marked as Implicit by the Command
property StatementCacheBehavior are cached. These commands have a lower priority than that of
explicitly marked commands, that is, if the statement pool reaches its maximum number of
statements, the statements marked implicit are removed from the statement pool first to make
room for statements marked Cache.

If set to ExplicitOnly (the initial default), only commands that are marked Cache by the
StatementCacheBehavior property are cached. Note that this is the only valid value for Zen
ADO.NET Entity Framework data providers.

Schema Information

Schema Collection Timeout: Type the number of seconds after which an attempted schema
collection operation fails if it is not yet completed.

The initial default is 120.

Schema Options: Specifies additional database metadata that can be returned. By default, the
data provider prevents the return of some performance-expensive database metadata to optimize
performance. If your application needs this database metadata, specify the name or hexadecimal
value of the metadata.

This option can affect performance.

146

If set to ShowColumnDefaults or 0x04, column defaults are returned.

If set to ShowParameterDefaults or 0x08, column defaults are returned.

If set to FixProcedureParamDirection or 0x10, procedure definitions are returned.

If set to ShowProcedureDefinitions or 0x20, procedure definitions are returned.

If set to ShowViewDefinitions or 0x40, view definitions are returned.

If set to ShowAll or 0xFFFFFFFF, all database metadata is returned.

For example, to return descriptions of procedure definitions, specify Schema
Options=ShowProcedureDefinitions or Schema Options=0x20.

To show more than one piece of the omitted database metadata, specify either a comma-separated
list of the names, or the sum of the hexadecimal values of the column collections that you want to
restrict.

See Date and Time Canonical Functions for the name and hexadecimal value of the database
metadata that the data provider can add.

Use Current Schema: This connection string option is not supported. Setting it will cause the
data provider to throw an exception.

Security

Encrypt: Select whether the data provider uses Encrypted Network Communications, also known
as wire encryption.

If set to IfNeeded (the initial default), the data provider reflects the server's setting.

If set to Always, the data provider uses encryption, or, if the server does not allow wire
encryption, returns an error.

If set to Never, the data provider does not use encryption and returns an error if wire encryption is
required by the server.

Encryption: Select the minimum level of encryption allowed by the data provider. The meaning
of these values depends on the encryption module used. With the default encryption module, the
values Low, Medium, and High correspond to 40-, 56-, and 128-bit encryption, respectively.

The initial default is Medium.

147

Password: Type a case-insensitive password used to connect to your Zen database. A password is
required only if security is enabled on your database. If so, contact your system administrator to
get your password.

Persist Security Info: Select whether to display secure information in clear text in the
ConnectionString property.

If set to True, the value of the password connection string option is displayed in clear text.

If set to False (the initial default), the data provider does not display secure information in clear
text.

User ID: Type the default Zen user name used to connect to your Zen database.

Standard Connection

Database Name: Type a string that identifies the internal name of the database to which you want
to connect.

If you enter a value for this field, the Server DSN field is not available.

Host: Type the name or the IP address of the Zen server to which you want to connect. For
example, you can specify a server name such as accountingserver. Or, you can specify an IPv4
address such as 199.262.22.34 or an IPv6 address such as
2001:DB8:0000:0000:8:800:200C:417A.

Port: Type the TCP port number of the listener running on the Zen database.

The default port number is 1583.

Server DSN: The name of the data source on the server, such as DEMODATA.

If you enter a value for this field, the Database Name field is not available.

Tracing

Enable Trace: Type a value of 1 or higher to enable tracing. If set to 0 (the default), tracing is not
enabled.

Trace File: Type the path and name of the trace file. If the specified trace file does not exist, the
data provider creates it. The default is an empty string.

1. Click Test Connection. At any point during the configuration process, you can click Test
Connection to attempt to connect to the data source using the connection properties specified
in the Add Connection window.

148

• If the data provider can connect, it releases the connection and displays a Connection
Established message. Click OK.

• If the data provider cannot connect because of an incorrect environment or incorrect
connection value, it displays an appropriate error message.

2. Click OK.

Note: If you are configuring alternate servers for use with the connection failover feature, be
aware that the Test Connection button tests only the primary server, not the alternate servers.

3. Click OK or Cancel. If you click OK, the values you have specified become the defaults
when you connect to the data source. You can change these defaults by using this procedure to
reconfigure your data source. You can override these defaults by connecting to the data source
using a connection string with alternate values.

Adding Connections with the Data Source Configuration Wizard

You can add a new connection to your application using the Data Configuration Wizard.

To add a connection

1. In the Data Sources window in Visual Studio, select Add New Data Source. To open the Data
Sources window, select View from the main menu and then select Other Windows > Data
Sources.

149

The Data Source Configuration Wizard appears.

2. Select Database and then click Next. The Choose Your Data Connection window appears.

150

3. Click New Connection The Add Connection window is displayed. Continue from Step in
Adding Connections in Server Explorer.

151

Using the Zen Performance Tuning Wizard
The Zen Performance Tuning Wizard leads you step-by-step through a series of questions about
your application. Based on your answers, the wizard provides the optimal settings for
performance-related connection string options for your Zen data provider.

When you launch the Zen Performance Tuning Wizard from Visual Studio, you can:

• Generate the values for connection string options that are related to performance. These
values can be copied into a connection string.

• Modify an existing connection.

• Generate a new application preconfigured with a connection string optimized for your
environment. The Performance Tuning Wizard provides options to select the type of
application and the version of ADO.NET code that you want to use.

To use the Zen Performance Tuning Wizard in Visual Studio

1. Do one of the following steps to start the Performance Tuning Wizard:

• To create a new connection, select Tools > Actian Zen > Run Zen Performance Tuning
Wizard. When the Performance Tuning Wizard Welcome dialog appears, click Next.
Continue at Step 2.

• To modify an existing connection, in Server Explorer, right-click a data connection, and
then select Run Zen Performance Tuning Wizard. When the Performance Tuning
Wizard Welcome dialog appears, click Next. Continue at Step 2.

2. The wizard presents a series of questions about your environment. Accept the default or
change the answers as required and then, click Next to proceed, until you reach the Result
page.

152

The following screen shot shows an example of one of the questions you may be asked.

3. When you have answered all questions for a data provider, the Result dialog appears, and a
connection string is displayed.

The following screen shot shows the connection string options related to performance that the
Zen Performance Tuning Wizard generated.

4. Select one of the following:

• To make the connection string available to other applications (the initial default), select
Copy the connection string to clipboard. You can use the connection string in other
applications.

• Based on whether you have used a new connection or an existing connection to launch the
wizard, select one of the following options:

153

• Create a new connection with the Performance Tuning Wizard connection string
options

When you select this option and click Finish, the Modify Connection dialog box appears,
where you must specify the connection information, such as a host, password, user ID, and
other information.

• Reconfigure the connection with the additional Performance Tuning Wizard
connection string options.

• To create a new application, select Generate a new application preconfigured with
these connection settings.

When you select this option and click Finish, a Zen application is generated using the Zen
Project template. See Creating a New Project for more information about the provider-
specific templates.

5. Define additional information for the new application:

• Select Using data provider-specific interfaces to create an application compatible with
the ADO.NET 2.0 specification.

• Select Using common programming interfaces to create an application that uses the
ADO.NET common programming model.

• Type the location for the project, or click Browse to select the location.

• Select the project type. By default, the Wizard creates a C# application.

6. Click Finish to exit the Zen Performance Tuning Wizard.

154

Using Provider-Specific Templates
Visual Studio offers a set of templates to help you build applications that automatically include
features such as SQL leveling.

Creating a New Project

When you create a new project in Visual Studio, you can use a template specific to the Zen data
provider, or a template that creates an application with generic code.

In the following example, we create a new project in Visual Studio using the template for the Zen
data provider.

1. Select File > New > Project The New Project dialog appears.

2. In the Installed List, select Visual C# > Actian Zen.

3. Select Zen Project in the middle pane.

4. Make changes to the other fields if required, and click OK.

155

5. The new project appears in the Solution Explorer. The namespace for the Zen ADO.NET data
provider is automatically added to the project.

Note: If you are using the ADO.NET 2.0 common programming model, select the Zen Generic
Provider Project template. In this case, the project does not require a specific reference to an
assembly.

Adding a Template to an Existing Project

To add a Zen template to an existing project

1. In Solution Explorer, right-click the project and select Add > New Item.

2. In the Add New Item dialog, select the Zen class.

156

3. Click Add. The class for the Zen data provider is added to the project.

157

Using the Zen Visual Studio Wizards
Wizards simplify typical tasks that you perform when you create an application:

• Creating Tables with the Add Table Wizard

• Creating Views with the Add View Wizard

Before beginning this procedure, create a project using a Zen template, as described in Creating a
New Project, and add a data connection.

Creating Tables with the Add Table Wizard

You can quickly and easily define new tables in Visual Studio using the Zen ADO.NET Add
Table Wizard.

1. Select View > Server Explorer.

2. Double-click a data source connection to expose the nodes below it.

3. Right-click the Tables node, and select Add New Table. The Zen ADO.NET Add Table
Wizard appears.

4. Click Next. The Specify Table Name dialog appears.

5. In the Table Name field, type a name for the table.

158

6. Click Next. The Specify Column(s) dialog appears.

7. Define the columns for the new table. Your choices may cause additional fields to appear in
the Data Type Options pane.

• Click Add to add a column to the table. The Column Name and Data Type fields become
editable.

• Type a name in the Column Name field.

• Select the data type for the column, and, if required, supply any additional information:

• If you select a character data type, the Length field appears in the Data Type Options
pane. Type the maximum size of the column (in bytes).

• If you select Number, the Precision and Scale fields appear in the Data Type Options
pane.

• If the column can have a Null value, select the Allow Null check box.

• To remove a column from the table, select the column name and then click Remove.

159

8. Click Next. The Specify Primary Key dialog appears.

9. Do one of the following:

• If you do not want to specify a primary key for the table, select No Primary Key, and then
click Next. The Specify Unique Key(s) dialog appears. Continue at Step 12.

• If you want to specify a primary key for the table, select Create Primary Key, and then
continue at Step 10.

10. Complete the fields on the Specify Primary Key dialog:

• In the Primary Key Name field, type the name for the primary key, or accept the default
name.

• Select a column from the Available Columns field and move it to the Selected Columns
field.

11. Click Next. The Specify Unique Key(s) dialog appears.

12. Do one of the following:

160

• If you do not want to specify unique keys for the table, click Next. The Specify Foreign
Key(s) dialog appears. Continue at Step 15.

• If you want to specify one or more unique keys for the table, continue at Step 13.

13. Click Add. The fields on the dialog become selectable:

• In the Unique Keys drop-down list, select a unique key.

• In the Unique Key Name field, edit the name or accept the default name.

• In the Available Columns list box, select one or more columns to be used to specify
the unique key, and move them to the Selected Columns list box.

14. Click Next. The Specify Foreign Key(s) dialog appears.

15. Do one of the following:

• If you do not want to specify foreign keys for the table, click Next. The Review SQL
dialog appears. Continue at Step 18.

• If you want to specify one or more foreign keys for the table, continue at Step 16.

16. Click Add. The fields on the dialog become selectable:

• In the Foreign Keys drop-down list, select a foreign key.

• In the Foreign Key Name field, edit the name or accept the default name.

• In the Table Schema list, select a table schema.

• In the Table Name list, select a table schema.

• In the Foreign Key Column list, select one or more columns to be used to specify the
foreign key.

• In the Parent Table Column list, select the corresponding column from the parent table.

161

17. Click Next. The Review SQL dialog appears.

18. Review the SQL statement that has been generated by your choices.

• If you are satisfied with the SQL statement, click Finish. The table that you created
appears in Server Explorer under the Tables node for the connection.

• If you want to supplement the SQL statement, for example, add a view or specific
keywords, continue at Step 19.

19. Select the Edit SQL check box. The text in the Generated SQL field becomes editable.

Note: When you select the Edit SQL check box, the Back button is disabled.

20. When you are satisfied with your changes to the SQL statement, click Finish. The table that
you created appears in Server Explorer under the Tables node for the connection.

Creating Views with the Add View Wizard

You can quickly and easily define new views in Visual Studio using the Zen Add View Wizard.

1. Select View > Server Explorer if it is not already open.

2. Double-click a data source connection to expose the nodes under it.

3. Right-click the Views node, and select Add New View. The Zen Add View Wizard welcome
dialog appears.

4. Click Next. The Specify View Name dialog appears.

162

5. Type a name for the view in the View Name field.

6. Click Next. The Select Table(s) and/or Column(s) dialog appears.

7. In the List of Tables and columns list box, select the tables or columns that will make up the
view, and move them to the Selected Columns column.

8. Click Next. The Review SQL dialog appears.

9. Review the SQL statement that has been generated by your choices.

163

• If you are satisfied with the SQL statement, click Finish. The view that you created
appears in Server Explorer under the Views node for the connection.

• If you want to supplement the SQL statement, for example, add a view or specific
keywords, continue at Step 11.

10. Select the Edit SQL check box. The text in the Generated SQL field becomes editable.

Note: When you select the Edit SQL check box, the Back button is disabled.

11. When you are satisfied with your changes to the SQL statement, click Finish. The view that
you created appears in Server Explorer under the Views node for the connection.

164

Adding Components from the Toolbox
You can add components from the Visual Studio Toolbox to a Windows Forms application. For
information about creating Windows Forms applications, refer to the Visual Studio online Help.

Before beginning this procedure, create a Windows Forms application and add a data connection.

To add Zen data provider components to a Windows Forms application

1. Select View > Toolbox. Scroll down the Toolbox until the Zen ADO.NET Provider section
appears.

2. Select the PsqlCommand widget and drag it onto the Windows Forms application.

3. Continue adding widgets to the application as needed.

165

Data Provider Integration Scenario
Because the Zen data provider is integrated into Visual Studio, many typical data access tasks can
be simplified. For example, after making the connection to the database, you can create queries
using Query Builder.

The Query Builder can help you graphically design database queries.

To create a simple query

1. Establish a data source connection (see Using the Zen Visual Studio Wizards).

2. Select the data source in Server Explorer.

3. Right-click Tables and select New Query.

4. The Add Table window appears. Select the table that contains the data that you want to use;
then, click Add.

5. Click Close to close the Add Table window.

166

6. Select the columns that you want returned. In this example, we select the id, name, and salary
columns of the employee table.

7. Click the Execute SQL button on the toolbar.

8. Examine the results displayed.

167

A. .NET Objects Supported

ADO.NET 2.0 introduced a new set of classes that provided an additional, more generic interface
between applications and data sources.

Predecessors of ADO.NET 2.0 opted for a tighter factoring of data providers into each specific
instance of the data provider used by an application. In contrast, ADO.NET 2.0 and higher deliver
a set of base classes that permit applications to handle a heterogeneous set of data sources with a
single API, much like is done with ODBC and JDBC today. This means that in ADO.NET 2.0 and
higher, all data classes derive from base classes, and exist in a specific dedicated namespace,
System.Data.Common.

The data provider supports:

• .NET Base Classes

• Data Provider-Specific Classes

• Zen Common Assembly Classes

168

.NET Base Classes
The interfaces on which ADO.NET 1.0 and ADO.NET 1.1 data providers were built were
retained for application compatibility. The base classes of ADO.NET 2.0 and higher provide
additional functionality:

• DbCommand

• DbCommandBuilder

• DbConnection

• DbDataAdaptor

• DbDataReader

• DBDataPermission

• DbParameter

• DbParameterCollection

• DbConnectionStringBuilder

• DbTransaction

From a day-to-day programming perspective, these classes are provided as abstract
implementation. This means they cannot be instantiated directly, but must be used with Provider
factories. Each data provider must supply a Factory class, such as PsqlFactory, that derives from
the DbFactory class, which contains a set of static methods. Each of these static methods is a
factory method for producing an instance of the base classes.

When a data provider is installed, it is registered with the .NET Framework. This allows the
common .NET Framework DbFactory to locate any registered data provider that an application
requires and provide a common mechanism to establish a connection to a data source. Ultimately,
the .NET Framework provides a fully fledged common programming API for ADO.NET data
sources.

169

Data Provider-Specific Classes
The ADO.NET Data Provider supports all of the .NET public objects. The ADO.NET Data
Provider attaches the provider-specific prefix Psql to the public .NET objects, for example,
PsqlCommand.

The following objects are described:

• PsqlBulkCopy

• PsqlBulkCopyColumnMapping

• PsqlBulkCopyColumnMappingCollection

• PsqlCommand Object

• PsqlCommandBuilder Object

• PsqlConnection Object

• PsqlConnectionStringBuilder Object

• PsqlCredential Object

• PsqlDataAdapter Object

• PsqlDataReader Object

• PsqlError Object

• PsqlErrorCollection Object

• PsqlException Object

• PsqlFactory Object

• PsqlInfoMessageEventArgs Object

• PsqlParameter Object

• PsqlParameterCollection Object

• PsqlTrace Object

• PsqlTransaction Object

For more information on public objects, refer to the Microsoft .NET Framework Version 2.0 SDK
documentation.

170

PsqlBulkCopy

The PsqlBulkCopy object uses an API pattern similar to the ADO.NET Bulk API patterns, and
has no provider-specific properties or methods. For information about the properties and methods
supported, see the data provider online help and the Microsoft .NET Framework SDK
documentation.

PsqlBulkCopyColumnMapping

The PsqlBulkCopyColumnMapping object uses an API pattern similar to the ADO.NET Bulk
API patterns, and has no provider-specific properties or methods. For information about the
properties and methods supported, refer to the data provider’s online help and the Microsoft .NET
Framework SDK documentation.

PsqlBulkCopyColumnMappingCollection

The PsqlBulkCopyColumnMappingCollection object follows an API pattern similar to the
Microsoft SqlBulkCopyColumnMappingCollection class, and has no provider-specific properties
or methods. For information about the properties and methods supported, refer to the data
provider’s online help and the Microsoft .NET Framework SDK documentation.

PsqlCommand Object

The following table describes the public properties of the PsqlCommand object.

Property Description

AddRowID Adds the ROWID as part of the Select list of a SQL statement.

If set to true, the values returned in the ROWID column are used to
generate more efficient Insert, Delete, and Update commands when using
the PsqlCommandBuilder.

If set to false (the initial default), the data provider does not add the
ROWID column to the Select list.

ArrayBindCount Specifies the number of rows of parameters that will be used. The
application must set this property before executing a command that uses
parameter array binding. The count must equal the length of each of the
arrays that is set for each parameter value.

The initial default value is 0. The application does not use parameter array
binding.

171

ArrayBindStatus Returns an array of row status values. This property enables the
application to inspect the per row status after executing a command that
uses parameter array binding. The property's type is an array of
PsqlRowStatus.

Parameter array binding is performed as a single atomic operation. This
means that if the operation succeeds, every entry will be set to OK; if the
operation fails, none of the entries will be set to OK.

The PsqlRowStatus enumeration has the following possible values:

• OK. The operation succeeded. All entries are marked as OK.

• Failed. The operation failed. The data provider assigns this value to all
status entries except for the row that caused the failure.

• SchemaViolation. When an operation fails, the data provider assigns
this value to the row that caused the failure.

BindByName Specifies how the data provider processes named parameters when
executing a stored procedure. The application can use named parameters
or use default values for parameters to the stored procedure.

If set to true, the data provider uses the names of parameters supplied in
the PsqlParameter objects for the parameter bindings to the Zen server.
See example for CommandText.

Alternatively, the user can specify a default value for a named parameter
using either of the following methods:

• The application binds the parameters using named parameters, but does
not add a PsqlParameter object to the PsqlParameterCollection for the
parameters for which the application wants to use the default value.

• The application sets the Value property of the PsqlParameter object to
null. The data provider does not send this parameter to the server and
uses the parameter’s default value when executing the stored
procedure.

When BindByName is set to true and the Parameter Mode connection
string option is defined as BindByName or BindByOrdinal, those values
defined in the connection string are overridden for the lifetime of the
Command object.

If set to false (the initial default), the data provider ignores the names for
the parameters supplied in the PsqlParameter objects, and assumes that the
parameters are in the same order as they were specified in the Create
Procedure statement.

Property Description

172

CommandText Gets or sets the text command to run against the data source.

When using stored procedures, set CommandText to the name of the
stored procedure, for example:

cmd.CommandType = System.Data.CommandType.StoredProcedure;

cmd.CommandText = "call EnrollStudent(!!Stud_id!!,!!Class_Id!!,
!!GPA!!)";

cmd.BindByName = true;

PsqlParameter Class_Id = new PsqlParameter();

Class_Id.Value = 999;

Class_Id.ParameterName = "!!Class_Id!!";

PsqlParameter Stud_id = new PsqlParameter();

Stud_id.Value = 1234567890;

Stud_id.ParameterName = "!!Stud_id!!";

PsqlParameter GPA = new PsqlParameter();

GPA.Value = 3.2;

GPA.ParameterName = "!!GPA!!";

cmd.Parameters.Add(Class_Id);

cmd.Parameters.Add(Stud_id);

cmd.Parameters.Add(GPA);

CommandTimeout Gets or sets the wait time before terminating the attempt to execute a
command and generating an error.

The initial default is 30 seconds.

We recommend that the application sets the CommandTimeout property to
a value that is greater than the largest default timeout value on the server.
This ensures that the application gets a more meaningful reply in case of a
timeout.

CommandType Indicates or specifies how the CommandText property is interpreted.

To use stored procedures, set CommandType to StoredProcedure.

Connection Gets or sets the IDbConnection used by this instance of the IDbCommand.

Parameters Gets the PsqlParameterCollection.

RowSetSize Limits the number of rows returned by any query executed on this
Command object to the value specified at execute time. The data type for
the Read-Write property is signed integer.

Valid values are 0 to 2147483647.

If set to 0 (the initial default), the data provider does not limit the number
of rows returned.

Property Description

173

The following table describes the public methods supported by the PsqlCommand object.

StatementCacheBehavior Retrieves the statement cache behavior or sets the statement cache
behavior to one of the values in the PsqlStatementCacheBehavior
enumeration. See Enabling Statement Caching for more information.

If set to Implicit (the default) and the Statement Cache Mode connection
string option is set to Auto, statement caching occurs implicitly.

If set to Cache and the Statement Cache Mode connection string option is
set to ExplicitOnly, statements identified as Cache are cached.

If set to DoNotCache, statement caching does not occur.

Transaction Gets or sets the transaction in which the PsqlCommand object executes.

UpdatedRowSource Gets or sets how command results are applied to the DataRow, when used
by the Update method of a DataAdapter.

When the UpdateBatchSize property is set to a value other than 1, the
UpdatedRowSource property for UpdateCommand, DeleteCommand, and
InsertCommand must be set to None or OutputParameters.

If set to None, any returned parameters or rows are ignored.

If set to OutputParameters, output parameters are mapped to the changed
row in the DataSet.

Method Description

Cancel Attempts to cancel the execution of an IDbCommand.

CreateParameter Creates a new instance of an IDbDataParameter object.

Dispose Releases the resources used by the component. Overloaded.

ExecuteNonQuery Executes a SQL statement against the PsqlConnection object, and returns
the number of rows affected. This method is intended for commands that
do not return results.

ExecuteReader Executes the CommandText against the connection and builds an
IDataReader.

ExecuteScalar Executes the query, and returns the first row of the resultset that the query
returns. Any additional rows or columns are ignored.

Prepare Creates a prepared version of the command on an instance of Zen.

Note: The Prepare method has no effect in this release of the data provider.

Property Description

174

PsqlCommandBuilder Object

Using a PsqlCommandBuilder object can have a negative effect on performance. Because of
concurrency restrictions, the PsqlCommandBuilder can generate highly inefficient SQL
statements. The end user can often write more efficient update and delete statements than those
that the PsqlCommandBuilder generates.

The following table describes the public properties supported by the PsqlCommandBuilder
object.

The following table describes the public methods supported by the PsqlCommandBuilder object.

Property Description

DataAdapter Gets or sets the PsqlDataAdapter object associated with this
PsqlCommandBuilder.

Method Description

DeriveParameters Populates the specified PsqlCommand object's Parameters collection with
parameter information for a stored procedure specified in the PsqlCommand.

GetDeleteCommand Gets the automatically generated PsqlCommand object required to perform
deletions on the database when an application calls Delete on the
PsqlDataAdapter.

GetInsertCommand Gets the automatically generated PsqlCommand object required to perform
inserts on the database when an application calls Insert on the
PsqlDataAdapter.

GetUpdateCommand Gets the automatically generated PsqlCommand object required to perform
updates on the database when an application calls Update on the
PsqlDataAdapter.

QuoteIdentifier Given an unquoted identifier in the correct catalog case, returns the correct
quoted form of that identifier, including properly escaping any embedded
quotes in the identifier.

UnquoteIdentifier Given a quoted identifier, returns the correct unquoted form of that identifier,
including properly un-escaping any embedded quotes in the identifier.

175

PsqlConnection Object

The PsqlConnection object supports the public constructors described in the following table.

The PsqlConnection object supports the public properties described in the following table. Some
properties return the values specified for the corresponding connection string option. Unlike the
connection string options, the PsqlConnection property names do not include a space.

Property Description

PsqlConnection() Initializes a new instance of the PsqlConnection class.

PsqlConnection(string
connectionString)

Initializes a new instance of the PsqlConnection class when given a string
that contains the connection string.

PsqlConnection(string
connectionString,
PsqlCredential
credential)

Initializes a new instance of the PsqlConnection class given a connection
string and a PsqlCredential object that contains the user ID and password.

Property Description

ConnectionString Gets or sets the string used to open a database. See Connection String Properties
for a description of the values you can set.

ConnectionTimeout Gets the time to wait while trying to establish a connection before the data
provider terminates the attempt and generates an error.

You can set the amount of time a connection waits to time out by using the
ConnectTimeout property or the Connection Timeout connection string option.

If connection failover is enabled (the AlternateServers property defines one or
more alternate database servers), this property applies to each attempt to
connect to an alternate server. If connection retry is also enabled (the
Connection Retry Count connection string option is set to an integer greater
than 0), the ConnectionTimeout property applies to each retry attempt.

Credential Provides a more secure way to specify the password for connecting to a Zen
server. PsqlCredential is comprised of a user ID and a password that will be
used for connecting to a Zen server. The SecureString object which holds the
password should be marked read-only.

Database Gets the name of the current database or the database to be used when a
connection is open.

Host Returns the value specified for the Host connection string option. Read-only.

Port Returns the value specified for the Port connection string option. Read-only.

176

The following table describes the public methods of PsqlConnection.

ServerDSN Returns the value specified for the Server DSN connection string option. Read-
only.

ServerName Returns the value specified for the Server Name connection string option. Read-
only.

ServerVersion Returns a string containing the version of the Zen server to which this object is
currently connected.

If the PsqlConnection object is not currently connected, the data provider
generates an InvalidOperation exception.

State Gets the current state of the connection.

StatisticsEnabled Enables statistics gathering.

If set to True, enables statistics gathering for the current connection.

Method Description

BeginTransaction Begins a database transaction.

When using the overloaded BeginTransaction(IsolationLevel) method, the data
provider supports isolation levels ReadCommitted and Serializable. See Isolation
Levels for more information.

ChangeDatabase Changes the current database for an open Connection object.

ClearAllPools Empties the connection pools for the data provider.

ClearPool Clears the connection pool that is associated with connection.

If additional connections associated with the connection pool are in use at the
time of the call, they are marked appropriately and are discarded when Close is
called on them.

Close Closes the connection to the database.

CreateCommand Creates and returns a PsqlCommand object associated with the PsqlConnection.

Dispose Releases the resources used by the PsqlConnection object.

Open Opens a database connection with the settings specified by the ConnectionString
property of the PsqlConnection object.

ResetStatistics Resets all values to zero in the current statistics gathering session on the
connection.

When the connection is closed and returned to the connection pool, statistics
gathering is switched off and the counts are reset.

Property Description

177

You can use the InfoMessage event of the PsqlConnection object to retrieve warnings and
informational messages from the database. If the database returns an error, an exception is thrown.
Clients that want to process warnings and informational messages sent by the database server
should create a PsqlInfoMessageEventHandler delegate to register for this event.

The InfoMessage event receives an argument of type PsqlInfoMessageEventArgs containing data
relevant to this event.

PsqlConnectionStringBuilder Object

PsqlConnectionStringBuilder property names are the same as the connection string option names
of the PsqlConnection.ConnectionString property. However, the connection string option name
can have spaces between the words. For example, the connection string option name Min Pool
Size is equivalent to the property name MinPoolSize.

The basic format of a connection string includes a series of keyword/value pairs separated by
semicolons. The following example shows the keywords and values for a simple connection
string for the ADO.NET Data Provider:

"Server DSN=SERVERDEMO;Host=localhost"

RetrieveStatistics Retrieves a set of statistics for a connection that is enabled for statistics gathering
(see the StatisticsEnabled property). The set of name=value pairs returned forms
a "snapshot in time" of the state of the connection when the method is called.

Method Description

178

Connection String Properties

The following table lists the properties that correspond to the connection string options supported
by the Zen data providers, and describes each property.

Property Description

AlternateServers Specifies a list of alternate database servers to which the data provider
will try to connect if the primary database server is unavailable.
Specifying a value for this connection string option enables connection
failover for the data provider.

The value you specify must be in the form of a string that defines
connection information for each alternate server. You must specify the
name or the IP address of each alternate server and the port number, if
you are not using the default port value of 1583. The string has the
format:

"Host=hostvalue;Port=portvalue[, ...]"

For example, the following Alternate Servers value defines two alternate
servers for connection failover:

Alternate Servers="Host=AcctServer;Port=1584,
Host=123.456.78.90;Port=1584"

See Using Connection Failover for a discussion of connection failover
and information about other connection string options that you can set
for this feature.

ConnectionPoolBehavior {LeastRecentlyUsed | MostRecentlyUsed | LeastFrequentlyUsed |
MostFrequentlyUsed}. Specifies the order in which a connection is
removed from the connection pool for reuse, based on how frequently or
how recently the connection has been used.

If set to MostRecentlyUsed, the data provider uses a Last In First Out
(LIFO) approach to return the connection that was returned to the pool
most recently.

If set to LeastRecentlyUsed (the initial default), the data provider uses a
First In First Out (FIFO) approach to return the connection that has been
in the pool for the longest time. This value ensures a balanced use of
connections in the pool.

If set to MostFrequentlyUsed, the data provider returns the connection
with the highest use count. This value enables applications to give
preference to the most seasoned connection.

If set to LeastFrequentlyUsed, the data provider returns the connection
with the lowest use count. This value ensures a balanced use of
connections in the pool.

179

ConnectionReset {True | False}. Specifies whether a connection that is removed from the
connection pool for reuse by an application will have its state reset to the
initial configuration settings of the connection. Resetting the state
impacts performance because the new connection must issue additional
commands to the server, for example, resetting the current database to
the value specified at connect time.

If set to False (the initial default), the data provider does not reset the
state of the connection.

ConnectionRetryCount Specifies the number of times the data provider tries to connect to the
primary server, and, if specified, the alternate servers after the initial
unsuccessful attempt.

The value can be any integer from 0 to 65535.

If set to 0 (the initial default), the data provider does not try to reconnect
after the initial unsuccessful attempt.

If a connection is not established during the retry attempts, the data
provider returns an error that is generated by the last server to which it
attempted to connect.

This option and Connection Retry Delay, which specifies the wait
interval between attempts, can be used in conjunction with connection
failover. See Using Connection Failover for a discussion of connection
failover and for information about other connection string options that
you can set for this feature.

ConnectionRetryDelay Specifies the number of seconds the data provider waits after the initial
unsuccessful connection attempt before retrying a connection to the
primary server, and, if specified, the alternate servers.

The value can be any integer from 0 to 65535.

The initial default is 3 (seconds). If set to 0, there is no delay between
retrying the connection.

Note: This option has no effect unless the Connection Retry Count
connection string option is set to an integer value greater than 0.

This option and the Connection Retry Count connection string option,
which specifies the number of times the data provider attempts to
connect after the initial attempt, can be used in conjunction with
connection failover. See Using Connection Failover for a discussion of
connection failover and for information about other connection string
options that you can set for this feature.

Property Description

180

ConnectionTimeout Specifies the number of seconds after which the attempted connection to
the server will fail if not yet connected. If connection failover is enabled,
this option applies to each connection attempt.

If set to 0, the data provider never times out on a connection attempt.

The initial default is 15 seconds.

DatabaseName Specifies the internal name of the database to which you want to
connect. Use this option when you need to connect to a Zen data source
for which a ServerDSN has not been defined.

The default value is an empty string.

Note: Do not combine the Database Name and Server DSN connection
string options in a connection string.

Alias: DBQ

DbFileDirectoryPath Note: This option is supported only for Zen ADO.NET Entity
Framework Core data providers.

It determines in which directory on the database server the database files
are created.

The default value is an empty string.

EnableIPV6 Provides backward compatibility for connecting to a Zen server using an
IPv4 address.

If set to True, a client with IPv6 protocol installed can identify itself to
the server using either an IPv4 address or an IPv6 address.

If set to False, the clients runs in the backward compatibility mode. The
client always identifies itself to the server using an IPv4 address.

The default value for 4.0 is set to True.

For more information about IPv6 formats, see IPv6 in Getting Started
with Zen.

EnableTrace {0 | 1}. Specifies whether tracing is enabled.

If set to 0 (the initial default), tracing is not enabled.

Encoding Specifies an IANA name or Windows code page number to be used for
translating the string data stored in the database.

The default value is an empty string; the current Windows Active Code
Page (ACP) is used.

Property Description

181

Encrypt {If Needed | Always | Never}. Determines whether the data provider
uses Encrypted Network Communications, also known as wire
encryption.

If set to Always, the data provider uses encryption, or, if the server does
not allow wire encryption, returns an error.

If set to Never, the data provider does not use encryption and returns an
error if wire encryption is required by the server.

If set to IfNeeded (the default), the data provider uses the default setting
on the server.

Note: This option may adversely affect performance because of the
additional overhead, mainly CPU usage, required to encrypt and decrypt
data.

Encryption {Low | Medium | High}. Determines the minimum level of encryption
allowed by the data provider.

The initial default is Medium.

The meaning of these values depends on the encryption module used.
With the default encryption module, these values correspond to 40-, 56-,
and 128-bit encryption, respectively.

Enlist {True | False}. Specifies whether the data provider automatically
attempts to enlist the connection in creating the thread’s current
transaction context.

Note: Because Zen does not support distributed transactions, any
attempt to enlist the connection in the thread’s current transaction
context will fail.

If set to False, the data provider does not automatically attempt to enlist
the connection.

If set to True (the initial default), the data provider returns an error on the
connection if a current transaction context exists. If a current transaction
context does not exist, the data provider raises a warning.

Host Specifies the name or the IP address of the Zen database server to which
you want to connect. For example, you can specify a server name such
as Accountingserver. Or, you can specify an IP address such as
199.226.22.34 (IPv4) or
1234:5678:0000:0000:0000:0000:9abc:def0 (IPv6).

The initial default value is an empty string.

Alias: Server, Server Name

Property Description

182

InitialCommandTimeout Specifies the default wait time (timeout in seconds) before the data
provider terminates the attempt to execute the command and generates
an error. This option provides the same functionality as the
PsqlCommand object’s CommandTimeout property without the need to
make changes to the application code. Subsequently, an application can
use the CommandTimeout property to override the Initial Command
Timeout connection string option.

The initial default value is 30. If set to 0, the query never times out.

For example, in the following C# code fragment, the connection string
instructs the application to wait 60 seconds before terminating the
attempt to execute the command. The application then specifies a
CommandTimeout of 45 seconds, which overrides the value set in the
connection string:
PsqlCommand command = new PsqlCommand();

PsqlConnection conn = new PsqlConnection("…; Initial Command Timeout=60;
…");

conn .Open();

command.Connection = connection;

// command.CommandTimeout returns 60;

command.CommandTimeout = 45;

// command.CommandTimeout returns 45

command = new PsqlCommand();

command.CommandTimeout = 45;

command.Connection = conn;

// command.CommandTimeout still returns 45

Note: Set the Initial Command Timeout option to a value that is greater
than the largest default deadlock detection and timeout value on the
server. This ensures that the application receives a more meaningful
reply in case of a timeout.

InitializationString Specifies one statement that will be issued immediately after connecting
to the database to manage session settings.

The initial default is an empty string.

Example: To handle CHAR columns that are padded with NULLs, set
the value to:
Initialization String=SET ANSI_PADDING ON

Note: If the statement fails to execute for any reason, the connection to
the Zen server fails. The data provider throws an exception that contains
the errors returned from the server.

Property Description

183

LoadBalanceTimeout Specifies the number of seconds to keep connections in a connection
pool. The pool manager periodically checks all pools, and closes and
removes any connection that exceeds its lifetime. The MinPoolSize
option can cause some connections to ignore this value. See Removing
Connections from a Pool for a discussion of connection lifetimes.

The value can be any integer from 0 to 65335.

If set to 0, (the initial default), the connections have the maximum
timeout.

Alias: Connection Lifetime

LoadBalancing {True | False}. Determines whether the data provider uses client load
balancing in its attempts to connect to primary and alternate database
servers. The list of alternate servers is specified by the Alternate Servers
connection option.

If set to True, the data provider attempts to connect to the database
servers in random order. See Using Client Load Balancing for more
information about load balancing.

If set to False (the initial default), client load balancing is not used and
the data provider connects to each server based on its sequential order
(primary server first, then, alternate servers in the order they are
specified).

Note: This option has no effect unless alternate servers are defined for
the Alternate Servers connection string option.

The Load Balancing connection string option is an optional setting that
you can use in conjunction with connection failover. See Using
Connection Failover for more information for a discussion of connection
failover and for information about other connection options that you can
set for this feature.

MaxPoolSize Specifies the maximum number of connections within a single pool.
When the maximum number is reached, no additional connections can
be added to the connection pool. The Max Pool Size Behavior
connection string option can cause some connections to ignore this value
temporarily.

The value can be any integer from 1 to 65335.

The initial default is 100.

Property Description

184

MaxPoolSizeBehavior {SoftCap | HardCap}. Specifies whether the data provider can exceed
the number of connections specified by the Max Pool Size option when
all connections in the connection pool are in use.

If set to SoftCap, the number of connections created can exceed the
value set for Max Pool Size, but the number of connections pooled does
not. When the maximum connections for the pool are in use and a a
connection request is received, the data provider creates a new
connection. If a connection is returned to a pool that is full and contains
idle connections, the pooling mechanism selects a connection to be
discarded so the connection pool never exceeds the Max Pool Size.

If set to HardCap (the initial default), when the maximum number of
connections allowed in the pool are in use, any new connection requests
wait for an available connection until the Connection Timeout is
reached.

MaxStatementCacheSize Specifies the maximum number of statements that can be held in the
statement cache. The value can be 0, or any integer greater than 1.

Setting the cache size to 0 disables statement caching.

The initial default is 10.

In most cases, using statement caching results in improved performance.
See the "Performance Considerations" topic for your data provider for
information on how this option can affect performance.

MinPoolSize Specifies the number of connections created when a connection pool is
initialized and the minimum number of connections that will be kept in
the pool. The connection pool retains this number of connections even
when some connections have exceeded their LoadBalanceTimeout
value.

The value can be any integer from 0 to 65335.

If set to 0 (the initial default), when the connection is closed and sent to
the connection pool, the pool retains only the original connection used to
create the pool.

If set to an integer from 1 to 65535, the specified number of duplicates of
the connection are placed in the pool.

See the "Performance Considerations" topic for your data provider for
information on how pooling can affect performance.

Property Description

185

ParameterMode Specifies the behavior of native parameter markers and binding. This
allows applications to reuse provider-specific SQL code and simplifies
migration to Zen ADO.NET data providers.

If set to ANSI (the initial default), the ? character is processed as a
parameter marker and bound as ordinal. Applications can toggle the
behavior of the BindByName property on a per-command basis.

If set to BindByOrdinal, native parameter markers are used and are
bound as ordinal for stored procedures and standard commands.

If set to BindByName, native parameter markers are used and are bound
by name for stored procedures and standard commands.

Note: This option is not supported for Zen ADO.NET Entity
Framework data providers.

Password Specifies a case-insensitive password used to connect to your Zen
database. A password is required only if security is enabled on your
database. If so, contact your system administrator to get your password.

Alias: PWD

PersistSecurityInfo {True | False}. Specifies whether to display security information in clear
text in the ConnectionString property.

If set to True, the value of the Password connection string option is
displayed in clear text.

If set to False (the initial default), the data provider does not display the
password in the connection string.

Pooling {True | False}. Specifies whether connections are pooled. See Using
Connection Pooling for more information about connection pooling.

If set to True (the initial default), connection pooling is enabled.

See the "Performance Considerations" topic for your data provider for
information on how pooling can affect performance.

Port Specifies the TCP port of the listener running on the Zen database.

The default port number is 1583.

PVTranslate {Auto | Nothing}. Specifies whether the client should negotiate a
compatible encoding with the server.

If set to Auto, the data provider will set the Encoding connection
property to the database code page. In addition, SQL query text will be
sent to the engine using UTF-8 encoding instead of the data encoding.
This preserves NCHAR string literals in the query text.

If set to Nothing (the default), the setting for the Encoding connection
property is used.

Property Description

186

SchemaCollectionTimeout Specifies the number of seconds after which an attempted schema
collection operation fails if it is not yet completed.

If set to 0, the data provider never times out on a schema collection
operation attempt.

The initial default is 120.

SchemaOptions Specifies additional database metadata that can be returned. By default,
the data provider prevents the return of some available performance-
expensive database metadata to optimize performance. If your
application needs this database metadata, specify the name or
hexadecimal value of the metadata.

This option can affect performance.

See Connection String Properties for the name and hexadecimal value of
the database metadata that the data provider can add.

If set to ShowColumnDefaults or 0x04, column defaults are returned.

If set to ShowParameterDefaults or 0x08, column defaults are returned.

If set to FixParameterDirections or 0x10, procedure definitions are
returned.

If set to ShowProcedureDefinitions or 0x20, procedure definitions are
returned.

If set to ShowViewDefinitions or 0x40, view definitions are returned.

If set to ShowAll or 0xFFFFFFFF (the initial default), all database
metadata is returned.

For example, to return descriptions of procedure definitions, specify
Schema Options=ShowProcedureDefinitions or Schema Options=0x20.

To show more than one piece of the omitted database metadata, specify
either a comma-separated list of the names, or the sum of the
hexadecimal values of the column collections that you want to restrict.
For example, to return descriptions of procedure definitions and view
definitions (hexadecimal values 0x20 and 0x40, respectively), specify
Schema Options=ShowProcedureDefinitions,

ShowViewDefinitions or Schema Options=0x60.

Note: This connection string option may adversely affect performance.
See documentation on performance considerations for your data
provider for more information.

ServerDSN Specifies the name of the data source on the server, such as Server
DSN=SERVERDEMO.

The default value is DEMODATA.

Note: Do not combine the Database Name and Server DSN connection
string options in a connection string.

Property Description

187

StatementCacheMode Specifies the statement cache mode. The statement cache mode controls
the behavior of the statement cache. Statements can be cached
automatically or only cached when a command is explicitly marked.

If set to Auto, statement caching is enabled for statements marked as
Implicit by the PsqlCommand property StatementCacheBehavior. These
commands have a lower priority than that of explicitly marked
commands, that is, if the statement pool reaches its maximum number of
statements, the statements marked Implicit are removed from the
statement pool first to make room for statements marked Cache.

If set to ExplicitOnly (the initial default), only statements that are
marked Cache by the StatementCacheBehavior property are cached.

In most cases, enabling statement caching results in improved
performance. See Performance Considerations for information on how
this option can affect performance of the ADO.NET data provider.

Note: This option is not supported for Zen ADO.NET Entity Framework
data providers.

Timestamp {DateTime | String}. Specifies whether Zen time stamps are stored and
retrieved as strings in the data provider.

If set to DateTime or not defined (the default), the data provider maps
time stamps to the .NET DateTime type. This setting may be appropriate
when native precision is required, for example, when using the
PsqlCommandBuilder with a time stamp.

If set to String, the time stamps are returned as strings. The data provider
maps Zen time stamps to the .NET String type.

TimeType {DateTime | TimeSpan}. Specifies whether Zen Times are retrieved as
Timespan or DataTime in the ADO.NET data provider.

If set to As DateTime, the data provider maps the SQL type TIME to the
.NET type System.DateTime.

If set to As TimeSpan, the data provider maps the SQL type TIME to the
.NET type System.DateTimespan.

TraceFile Specifies the path and file name of the trace file.

The initial default is an empty string. If the specified file does not exist,
the data provider creates it.

UseCurrentSchema This connection string option is not supported. Setting it will cause the
data provider to throw an exception.

UserID Specifies the default Zen user name used to connect to your Zen
database.

Alias: UID

Property Description

188

The following table lists the name and the hexadecimal value of the column collection that the
data provider will omit from the returned data. To specify multiple values, specify a comma-
separated list of the names, or the sum of the hexadecimal values of the column collections that
you want to return.

The PsqlConnectionStringBuilder object has no provider-specific methods. For information about
the methods supported, refer to the data provider’s online help and the Microsoft .NET
Framework SDK documentation.

PsqlCredential Object

The PsqlCredential object provides a secure way to log in using Zen server authentication.
PsqlCredential is comprised of a user ID and a password recognized by the Zen server.

The password in a PsqlCredential object is of type SecureString, unlike Connection String where
the password is unsecure until the provider reads it and converts it to SecureString. The password
is handled in a secure way without writing it to memory. The string that stores the password is
cleaned after use.

Note: Use PsqlCredential only when the authentication method requires the user ID and
password. Also, if you are using Kerberos or Client, you should not use PsqlCredential. Finally,
the Connection String should not include the user ID and password when the Credential object is
being used.

The following code snippet shows how the PsqlCredential class can be used. The method used to
convert a string into a SecureString in this example is one of many possible methods.

PsqlConnection con = null;
PsqlCredential lobjCredential = null;

Name Hex
Value

Collection/Column

ShowColumnDefaults1 0x04 Columns/COLUMN_DEFAULT

ShowParameterDefaults 0x08 ProcedureColumns//PARAMETER_DEFAULT

FixParameterDirections 0x10 ProcedureColumns/PARAMETER_TYPE

ShowProcedureDefinitions 0x20 Procedures/PROCEDURE_DEFINITION

ShowViewDefinitions 0x40 Views/VIEW_DEFINITION

ShowAll 0x7F All

1. COLUMN_HAS_DEFAULT is always reported with a value of null.

189

string userId = "ABCD";
SecureString password = ConvertToSecureString("XYXYX");
private static SecureString ConvertToSecureString(string value)
{
 var securePassword = new SecureString();
 foreach (char c in value.ToCharArray())
 securePassword.AppendChar(c);
 securePassword.MakeReadOnly();
 return securePassword;
}
try
{
 lobjCredential = new PsqlCredential(userId, password);
 con = new PsqlConnection("Host=nc-xxx;Port=xxxx;Database Name=xxxx"",
 lobjCredential);
 con.Open();
 Console.WriteLine("Connection Successfully Opened...");
 con.Close();
}
catch (Exception e)
{
 Console.Write(e.Message)
}
finally
{
 if (null != con)
 {
 con.Close();
 con = null;
 }
 if (null != lobjCredential)
 {
 lobjCredential = null;
 }
}

The following table lists the provider-specific implementation of the public properties of the
PsqlCredential object.

If you use the PsqlCredential object while opening the connection and want to use the same
pooled connection, you need to reference the same PsqlCredential object so that the same
connection is fetched from the available connection pool.

If you create a new credential object for each connection, the driver treats them separately and
puts them into different connection pools, even if the same user ID and password are used.

Property Description

User ID Returns the user ID component of the PsqlCredential object.

Uses String data type. NULL and empty are invalid values.

Password Returns the password component of the PsqlCredential object.

Uses SecureString data type. NULL is an invalid value.

190

PsqlDataAdapter Object

The PsqlDataAdapter object uses PsqlCommand objects to execute SQL commands on the Zen
database, to load the DataSet with data, and to reconcile the changed data in the DataSet to the
database.

The following table describes the public properties of PsqlDataAdapter.

PsqlDataReader Object

The PsqlDataReader object is a forward-only cursor that retrieves read-only records from a
database. Performance is better than using PsqlDataAdapter, but the result set cannot be modified.

Property Description

UpdateBatchSize Gets or sets a value that specifies the number of commands that can be
executed in a batch.

If your application uses disconnected DataSets and updates those DataSets,
you can positively influence performance by setting this property to a value
greater than 1. By default, the data provider attempts to use the largest batch
size possible. However, this may not equate to optimal performance for your
application. Set the value based on the number of rows you typically update in
the DataSet. For example, if you are updating less than 50 rows, a suggested
setting for this property is 25.

If set to 0, the PsqlDataAdapter uses the largest batch size the data source can
support. The UpdatedRowSource property for the InsertCommand,
UpdateCommand, and DeleteCommand must be set to None or
OutputParameters.

If set to 1, batch updating is disabled.

If set to a value greater than 1, the specified number of commands are
executed in a batch. The UpdatedRowSource property for the
InsertCommand, UpdateCommand, and DeleteCommand must be set to None
or OutputParameters.

DeleteCommand Gets or sets a SQL statement for deleting records from the Zen data source.

InsertCommand Gets or sets a SQL statement used to insert new records into the Zen database.

SelectCommand Gets or sets a SQL statement used to select records in the Zen database.

UpdateCommand Gets or sets a SQL statement used to update records in the data source.

191

The following table describes the public properties of PsqlDataReader.

The following table describes some of the public methods of the PsqlDataReader.

PsqlError Object

The PsqlError object collects information relevant to errors and warnings generated by the Zen
server.

The following table describes the public properties supported by PsqlError.

Property Description

Depth Gets a value indicating the depth of nesting for the current row.

HasRows Gets a value indicating whether the PsqlDataReader contains one or more rows.

IsClosed Gets a value indicating whether the data reader is closed.

RecordsAffected Gets the number of rows that were changed, inserted, or deleted by execution of
the SQL statement.

Method Description

Close Closes the DataReader. Always call the Close method when you finish using the
DataReader object.

GetSchemaTable Returns a DataTable that describes the column metadata of the PsqlDataReader.
See PsqlCredential Object for more information.

NextResult Advances the data reader to the next result when reading the results of batch SQL
statements.

Read Advances the IDataReader to the next result.

Property Description

Message Gets the error message text returned from the Zen server.

Number Gets the error number returned from the Zen server.

SQLState Gets the string representation of the SQLState when an exception is thrown by the
Zen data provider, or 0 if the exception is not applicable to the error. This property
is read-only.
Note: For all of the ADO.NET client error messages which do not have any
SQLstate information, S1000 is used as the default SQLState.

192

PsqlErrorCollection Object

The PsqlErrorCollection object is created by a PsqlException to contain all the errors generated
by the Zen server.

The following table provides the public provider-specific properties supported for the
PsqlErrorCollection object. For information about other properties and methods supported, refer
to the data provider's online help and the Microsoft .NET Framework SDK documentation.

The PsqlErrorCollection object supports the public methods described in the following table.

PsqlException Object

Provider-specific exceptions are derived directly from the System.Data interface. Only the public
properties and methods, for example, the Message property, are directly available on the
System.Exception object in a generic sense. The SQLState and Number properties are only
accessible through provider-specific code or by using reflection.

ADO.NET 2.0 introduced a new property on the DbException class, Data. This property returns a
collection of key-value pair tuples that provide additional user-defined information about an
exception. The ADO.NET Data Provider gets a collection of key/value pairs such as SQLState,
Number, and ErrorPosition.

The Psql.Data.SqlClient prefix is applied to each key, for example:

Psql.Data.SqlClient.Data["SQLState"] = 28000;

The properties described in the following table apply to the last error generated, if multiple errors
exist. The application should check the Count property of the PsqlErrorCollection returned in the

Property Description

Count Gets the number of PsqlError objects generated by the Zen server.

Method Description

CopyTo Copies the PsqlError objects from the ErrorCollection to the specified array.

GetEnumerator Returns the IEnumerator interface for a given array.

193

Errors property of this object to determine whether multiple errors occurred. See
PsqlErrorCollection Object for more information.

PsqlFactory Object

Provider Factory classes allow users to program to generic objects. Once instantiated from
DbProviderFactory, the factory generates the proper type of concrete class.

The following table lists the static methods used to accommodate choosing the ADO.NET Data
Provider and instantiating its DbProviderFactory.

PsqlInfoMessageEventArgs Object

The PsqlInfoMessageEventArgs object is passed as an input to the PsqlInfoMessageEventHandler
and contains information relevant to a warning generated by the Zen server.

Property Description

Errors Gets or sets a PsqlErrorCollection of one of more PsqlError objects.

Message Specifies the error message text that is returned from the Zen server.

Number Gets or sets the number returned from the Zen server.

SQLState Returns the string representation of the SQLState when an exception is thrown by
the Zen data provider, or 0 if the exception is not applicable to the error. This
property is read-only.

Method Description

CreateCommand Returns a strongly typed DbCommand instance.

CreateCommandBuilder Returns a strongly typed DbCommandBuilder instance.

CreateConnection Returns a strongly typed DbConnection instance.

CreateConnectionStringBuilder Returns a strongly typed DbConnectionString instance.

CreateDataAdapter Returns a strongly typed DbDataAdapter instance.

CreateDataSourceEnumerator Returns a strongly typed PsqlDataSourceEnumerator instance.

CreateParameter Returns a strongly typed DbParameter instance.

194

The following table describes the public properties for PsqlInfoMessageEventArgs.

PsqlParameter Object

The PsqlParameter object represents a parameter to a PsqlCommand object.

The following table describes the public properties for PsqlParameter.

Property Description

Errors Specifies a PsqlErrorCollection that contains a collection of warnings sent from
the Zen server. See PsqlErrorCollection Object for more information.

Message Returns the text of the last message returned from the Zen server. The application
should check the Count property of the PsqlErrorCollection returned in the Errors
property of this object to determine whether multiple warnings occurred.

Property Description

ArrayBindStatus Determines whether any values in the array of PsqlParameterStatus
entries should be bound as null. The PsqlParameterStatus enumeration
contains the entry NullValue.

When this property is not set, then no values are null. The length of the
array should match the amount specified by the PsqlCommand object's
ArrayBindCount property (see PsqlCommand Object).

The initial default is null.

DbType Gets or sets the DbType of the parameter.

Direction Gets or sets a value that indicates whether the parameter is input-only,
output-only, bidirectional, or the return value parameter of a stored
procedure.

IsNullable Gets or sets a value that indicates whether the parameter accepts null
values.

ParameterName Gets or sets the name of the PsqlParameter object.

Precision Gets or sets the maximum number of digits used to represent the Value
property.

Scale Gets or sets the number of decimal places to which the Value property is
resolved.

Size Gets or sets the maximum size, in bytes, of the data within the column.

SourceColumn Gets or sets the name of the source column that is mapped to the
DataSet and used for loading or returning the Value property.

195

PsqlParameterCollection Object

The PsqlParameterCollection object represents a collection of parameters relevant to a
PsqlCommand, and includes their mappings to columns in a DataSet.

The following table describes the public properties for PsqlParameterCollection.

SourceColumnNullMapping Sets or gets a value that indicates whether the source column is
nullable.

SourceVersion Gets or sets the DataRowVersion to use when loading the Value
property.

Value Gets or sets the value of the parameter.

The initial default value is null.

Note: When array binding is enabled (see the ArrayBindCount property
of the PsqlCommand Object), this property is specified as an array of
values. Each array's length must match the value of the
ArrayBindCount property. When specifying the array's values for
binary type columns, the data will actually be specified as byte[]. This
is an array of arrays of bytes. The data provider anticipates a "jagged"
array as such when using parameter array binding with parameters.

If set to null for a stored procedure parameter, the data provider does
not send the parameter to the server. Instead, the default value for the
parameter is used when executing the stored procedure.

Property Description

Count Gets the number of PsqlParameter objects in the collection.

IsFixedSize Gets a value that indicates whether the PsqlParameterCollection has a fixed size.

IsReadOnly Gets a value that indicates whether the PsqlParameterCollection is read-only.

IsSynchronized Gets a value that indicates whether the PsqlParameterCollection is thread-safe.

Item Gets the parameter at the specified index. In C#, this property is the indexer for the
IDataParameterCollection class.

SynchRoot Gets the object used to synchronize access to the PsqlParameterCollection.

Property Description

196

The following table provides the public methods for PsqlParameterCollection.

PsqlTrace Object

The PsqlTrace object is created by the application to debug problems during development. Setting
the properties in the PsqlTrace object overrides the settings of the environment variables. For your
final application, be sure to remove references to the PsqlTrace object.

The following code fragment creates a Trace object named MyTrace.txt. All subsequent calls to
the data provider will be traced to that file.

PsqlTrace MyTraceObject = new PsqlTrace();
 MyTraceObject.TraceFile="C:\\MyTrace.txt";
 MyTraceObject.RecreateTrace = 1;
 MyTraceObject.EnableTrace = 1;

The following table describes the public properties for the PsqlTrace object.

Method Description

Contains Gets a value that indicates whether a parameter in the collection has the specified
source table name.

IndexOf Gets the location of the IDataParameter within the collection.

RemoveAt Removes the IDataParameter from the collection.

Property Description

EnableTrace If set to 1 or higher, enables tracing.

The initial default value is 0. Tracing is disabled.

RecreateTrace If set to 1, recreates the trace file each time the application restarts.

If set to 0 (the initial default), the trace file is appended

TraceFile Specifies the path and name of the trace file.

The initial default is an empty string. If the specified file does not exist, the data
provider creates it.

Note: Setting EnableTrace starts the tracing process. Therefore, you must define the property values for
the trace file before setting EnableTrace. Once the trace processing starts, the values of TraceFile and
RecreateTrace cannot be changed.

197

The following table describes the public methods for PsqlTrace.

PsqlTransaction Object

The following table describes the public properties of the PsqlTransaction object.

The following table describes the public methods of the PsqlTransaction object.

Method Description

DumpFootprints Displays the footprint of all source files in a data provider.

Property Description

Connection Specifies the PsqlConnection object associated with the transaction. See
PsqlConnection Object for more information.

IsolationLevel Defines the isolation level for the entire transaction. If the value is changed, the
new value is used at execution time.

Method Description

Commit When overridden in a derived class, returns the Exception that is the root cause of
one or more subsequent exceptions.

Rollback Cancels modifications made in a transaction before the transaction is committed.

198

Zen Common Assembly Classes
Zen ADO.NET data providers support additional classes that provide enhanced functionality,
such as bulk load. All classes are created with 100% managed code. The following classes are
provided in the Pervasive.Data.Common.dll assembly:

• CsvDataReader

• CsvDataWriter

• DbBulkCopy

• DbBulkCopyColumnMapping

• DbBulkCopyColumnMapping

The classes used for bulk loading implement the generic programming model. They can be used
with any DataDirect Technologies ADO.NET data provider or ODBC driver that supports Zen
Bulk Load and any supported database.

CsvDataReader

The CsvDataReader class provides the DataReader semantics for the CSV file format defined by
Zen Bulk Load.

The following table lists the public properties for the CsvDataReader object.

Property Description

BulkConfigFile Specifies the CSV bulk configuration file that is produced when the WriteToFile
method is called. A bulk load configuration file defines the names and data types
of the columns in the bulk load data file in the same way as the table or result set
from which the data was exported. A bulk load configuration file is supported by
an underlying XML schema.

The path may be fully qualified. Otherwise, the file is considered to exist in the
current working directory.

Note: This property can only be set prior to the Open() call and after the Close()
call; otherwise, an InvalidOperationException is thrown.

199

The following table lists the public methods for the CsvDataReader object.

CsvDataWriter

The CsvDataWriter class provides the DataWriter semantics of the CSV file format that is written
by Zen Bulk Load.

For more information, refer to the data provider’s online help.

BulkFile Specifies the bulk load data file that contains the CSV-formatted bulk data. The
file name is used for writing (exporting) and reading (importing) the bulk data. If
the file name provided does not contain an extension, the ".csv" extension is
assumed.

The path may be fully qualified. Otherwise, the file is considered by default to
exist in the current working directory. An InvalidOperationException is thrown if
this value is not set.

Note: This property can only be set prior to the Open() call and after the Close()
call; otherwise, an InvalidOperationException is thrown.

ReadBufferSize Specifies the size of the read buffer when using bulk load to import data from a
data source.

The initial default is 2048 KB.

Values equal to or less than zero cause a System.ArgumentOutOfRangeException
to be thrown.

RowOffset Specifies the row from which to start the bulk load read. The RowOffset is
relative to the first (1) row.

The initial default is 1.

Values equal to or less than zero cause a System.ArgumentOutOfRangeException
to be thrown.

Note: This property can only be set prior to the Open() call and after the Close()
call; otherwise, an InvalidOperationException is thrown.

SequentialAccess Determines whether columns are accessed in order for improved performance.

The initial default is False.

Note: This property can only be set prior to the Open() call and after the Close()
call; otherwise, an InvalidOperationException is thrown.

Method Description

Open Opens the bulk file instance and associated metadatafile for processing.

Property Description

200

The following table lists the public properties for the CsvDataWriter object.

The following table lists the public methods for the CsvDataWriter object.

DbBulkCopy

The DbBulkCopy class facilitates copying rows from one data source to another.

The DbBulkCopy object follows the de facto standard defined by the Microsoft SqlBulkCopy
class, and has no provider-specific properties or methods. For information about the properties
and methods supported, refer to the data provider’s online help and the Microsoft .NET
Framework SDK documentation.

Property Description

BinaryThreshold Specifies the threshold (in KB) at which separate files are generated to
store binary data during a bulk unload.

The Initial default is 32.

Values less than zero cause a System.ArgumentOutOfRangeException to
be thrown.

CharacterThreshold Specifies the threshold (in KB) at which separate files are generated to
store character data during a bulk unload.

The initial default is 64.

Values less than zero cause a System.ArgumentOutOfRangeException to
be thrown.

CsvCharacterSetName Specifies any of the supported IANA code page names that may be used as
values. See IANA Code Page Mappings for the supported values.

Applications can obtain the database character that was set using the
PsqlConnection.DatabaseCharacterSetName property.

If an unrecognized CharacterSetName is used, an exception is thrown,
declaring that invalid character set has been used.

The initial default value is UTF-16.

Note this property enforces the character set used in the CSV data file and
overflow files added.

Method Description

Open Opens the bulk file instance and associated metadatafile for processing.

WriteToFile Writes the contents of the IDataReader to the bulk data file.

201

DbBulkCopyColumnMapping

The DbBulkCopyColumnMapping class represents a column mapping from the data sources table
to a destination table.

The DbBulkCopyColumnMapping object follows the de facto standard defined by the Microsoft
SqlBulkCopyColumnMapping class, and has no provider-specific properties or methods. For
information about the properties and methods supported, refer to the data provider’s online help
and the Microsoft .NET Framework SDK documentation.

DbBulkCopyColumnMappingCollection

The DbBulkCopyColumnMappingCollection class is a collection of
DbBulkCopyColumnMapping objects.

The DbBulkCopyColumnMappingCollection object follows the de facto standard defined by the
Microsoft SqlBulkCopyColumnMappingCollection class, and has no provider-specific properties
or methods. For information about the properties and methods supported, refer to the data
provider’s online help and the Microsoft .NET Framework SDK documentation.

202

203

B. Getting Schema Information

Applications can request that data providers find and return metadata for a database. Schema
collections specific to each data provider expose database schema elements such as tables and
columns. The data provider uses the GetSchema method of the Connection class. You can also
retrieve schema information from a result set, as described in Columns Returned by the
GetSchemaTable Method.

The data provider also includes provider-specific schema collections. Using the schema collection
name MetaDataCollections, you can return a list of the supported schema collections, and the
number of restrictions that they support.

204

Columns Returned by the GetSchemaTable
Method
While a PsqlDataReader is open, you can retrieve schema information from the result set. The
result set produced for PsqlDataReader.GetSchemaTable() returns the columns described in the
following table, in the order shown.

Column Description

ColumnName Specifies the name of the column, which might not be unique. If the name cannot
be determined, a null value is returned. This name reflects the most recent
renaming of the column in the current view or command text.

ColumnOrdinal Specifies the ordinal of the column, which cannot be null. The bookmark column
of the row, if any, is 0. Other columns are numbered starting with 1.

ColumnSize Specifies the maximum possible length of a value in the column. For columns that
use a fixed-length data type, this is the size of the data type.

NumericPrecision Specifies the precision of the column, which depends on how the column is
defined in ProviderType.

If ProviderType is a numeric data type, this is the maximum precision of the
column.

If ProviderType is not a numeric data type, the value is null.

NumericScale Specifies the number of digits to the right of the decimal point if ProviderType is
DBTYPE_DECIMAL or DBTYPE_NUMERIC. Otherwise, this is a null value.

The value depends on how the column is defined in ProviderType.

DataType Maps to the .NET Framework type of the column.

ProviderType Specifies the indicator of the column data type. This column cannot contain a null
value.

If the data type of the column varies from row to row, this must be Object.

IsLong Set if the column contains a BLOB that contains very long data. The setting of
this flag corresponds to the value of the IS_LONG column in the
PROVIDER_TYPES rowset for the data type.

The definition of very long data is provider-specific.

AllowDBnull Set if the consumer can set the column to a null value, or if the data provider
cannot determine whether the consumer can set the column to a null value.
Otherwise, no value is set.

A column can contain null values, even if it cannot be set to a null value.

205

IsReadOnly Determines whether a column can be changed.

The value is true if the column can be modified; otherwise, the value is false.

IsRowVersion Is set if the column contains a persistent row identifier that cannot be written to,
and has no meaningful value except to identify the row.

IsUnique Specifies whether the column constitutes a key by itself or if there is a constraint
of type UNIQUE that applies only to this column.

If set to true, no two rows in the base table (the table returned in BaseTableName)
can have the same value in this column.

If set to false (the initial default), the column can contain duplicate values in the
base table.

IsKey Specifies whether a set of columns uniquely identifies a row in the rowset. This
set of columns may be generated from a base table primary key, a unique
constraint, or a unique index.

The value is true if the column is one of a set of columns in the rowset that, taken
together, uniquely identify the row. The value is false if the column is not required
to uniquely identify the row.

IsAutoIncrement Specifies whether the column assigns values to new rows in fixed increments.

If set to VARIANT_TRUE, the column assigns values to new rows in fixed
increments.

If set to VARIANT_FALSE (the initial default), the column does not assign
values to new rows in fixed increments.

BaseSchemaName Specifies the name of the schema in the database that contains the column. The
value is null if the base schema name cannot be determined.

The initial default is null.

BaseCatalogName Specifies the name of the catalog in the data store that contains the column. A null
value is used if the base catalog name cannot be determined.

The initial default is null.

BaseTableName Specifies the name of the table or view in the data store that contains the column.
A null value is used if the base table name cannot be determined.

The initial default is null.

BaseColumnName Specifies the name of the column in the data store. This might be different than
the column name returned in the ColumnName column if an alias was used. A
null value is used if the base column name cannot be determined or if the rowset
column is derived from, but is not identical to, a column in the database.

The initial default is null.

Column Description

206

IsAliased Specifies whether the name of the column is an alias. The value true is returned if
the column name is an alias; otherwise, false is returned.

IsExpression Specifies whether the name of the column is an expression. The value true is
returned if the column is an expression; otherwise, false is returned.

IsIdentity Specifies whether the name of the column is an identity column. The value true is
returned if the column is an identity column; otherwise, false is returned.

IsHidden Specifies whether the name of the column is hidden. The value true is returned if
the column is hidden; otherwise, false is returned.

Column Description

207

Retrieving Schema Metadata with the GetSchema
Method
Applications use the GetSchema method of the Connection object to retrieve Schema Metadata
about a data provider and/or data source. Each provider implements a number of Schema
collections, including the five standard metadata collections.

• MetaDataCollections Schema Collections

• DataSourceInformation Schema Collection

• DataTypes Collection

• ReservedWords Collection

• Restrictions Collection

Additional collections are specified and must be supported to return Schema information from the
data provider.

See Additional Schema Collections for details about the other collections supported by the data
providers.

Note: Refer to the .NET Framework documentation for additional background functional
requirements, including the required data type for each ColumnName.

MetaDataCollections Schema Collections

The MetaDataCollections schema collection is a list of the schema collections available to the
logged in user. The MetaDataCollection can return the supported columns described in the
following table, in any order.

ColumnName Description

CollectionName The name of the collection to pass to the GetSchema method to return the
collection.

NumberOfRestrictions The number of restrictions that may be specified for the collection.

NumberOfIdentifierParts The number of parts in the composite identifier/data base object name.

208

DataSourceInformation Schema Collection

The DataSourceInformation schema collection can return the supported columns, described in the
following table, in any order. Note that only one row is returned.

ColumnName Description

CompositeIdentifierSeparatorPattern The regular expression to match the composite separators in
a composite identifier.

DataSourceProductName The name of the product accessed by the data provider.

DataSourceProductVersion Indicates the version of the product accessed by the data
provider, in the data source’s native format.

DataSourceProductVersionNormalized A normalized version for the data source. This allows the
version to be compared with String.Compare().

GroupByBehavior Specifies the relationship between the columns in a GROUP
BY clause and the non-aggregated columns in the select list.

Host The host to which the data provider is connected.

IdentifierCase Indicates whether non-quoted identifiers are treated as case
sensitive.

IdentifierPattern A regular expression that matches an identifier and has a
match value of the identifier.

OrderByColumnsInSelect Specifies whether columns in an ORDER BY clause must
be in the select list. A value of true indicates that they are
required to be in the Select list, a value of false indicates that
they are not required to be in the Select list.

ParameterMarkerFormat A format string that represents how to format a parameter.

ParameterMarkerPattern A regular expression that matches a parameter marker. It
will have a match value of the parameter name, if any.

ParameterNameMaxLength The maximum length of a parameter name in characters.

ParameterNamePattern A regular expression that matches the valid parameter
names.

QuotedIdentifierCase Indicates whether quoted identifiers are treated as case
sensitive.

QuotedIdentifierPattern A regular expression that matches a quoted identifier and
has a match value of the identifier itself without the
quotation marks.

209

DataTypes Collection

The following table describes the supported columns of the DataTypes schema collection. The
columns can be returned in any order.

StatementSeparatorPattern A regular expression that matches the statement separator.

StringLiteralPattern A regular expression that matches a string literal and has a
match value of the literal itself.

SupportedJoinOperators Specifies the types of SQL join statements that are
supported by the data source.

ColumnName Description

ColumnSize The length of a non-numeric column or parameter refers to either the
maximum or the length defined for this type by the data provider.

CreateFormat Format string that represents how to add this column to a data definition
statement, such as CREATE TABLE.

CreateParameters The creation parameters that must be specified when creating a column of this
data type. Each creation parameter is listed in the string, separated by a
comma in the order they are to be supplied.

For example, the SQL data type DECIMAL needs a precision and a scale. In
this case, the creation parameters should contain the string "precision,
scale".

In a text command to create a DECIMAL column with a precision of 10 and a
scale of 2, the value of the CreateFormat column might be
DECIMAL({0},{1})" and the complete type specification would be
DECIMAL(10,2).

DataType The name of the .NET Framework type of the data type.

IsAutoIncrementable Specifies whether values of a data type are auto-incremented.

true: Values of this data type may be auto-incremented.

false: Values of this data type may not be auto-incremented.

IsBestMatch Specifies whether the data type is the best match between all data types in the
data store and the .NET Framework data type indicated by the value in the
DataType column.

true: The data type is the best match.

false: The data type is not the best match.

ColumnName Description

210

IsCaseSensitive Specifies whether the data type is both a character type and case-sensitive.

true: The data type is a character type and is case-sensitive.

false: The data type is not a character type or is not case-sensitive.

IsConcurrencyType true: The data type is updated by the database every time the row is changed
and the value of the column is different from all previous values.

false: The data type is not updated by the database every time the row is
changed.

IsFixedLength true: Columns of this data type created by the data definition language (DDL)
will be of fixed length.

false: Columns of this data type created by the DDL will be of variable
length.

IsFixedPrecisionScale true: The data type has a fixed precision and scale.

false: The data type does not have a fixed precision and scale.

IsLiteralsSupported true: The data type can be expressed as a literal.

false: The data type cannot be expressed as a literal.

IsLong true: The data type contains very long data. The definition of very long data is
provider-specific.

false: The data type does not contain very long data.

IsNullable true: The data type is nullable.

false: The data type is not nullable.

IsSearchable true: The data type contains very long data. The definition of very long data is
provider-specific.

false: The data type does not contain very long data.

IsSearchableWithLike true: The data type can be used with the LIKE predicate.

false: The data type cannot be used with the LIKE predicate.

IsUnisgned true: The data type is unsigned.

false: The data type is signed.

LiteralPrefix The prefix applied to a given literal.

LiteralSuffix The suffix applied to a given literal.

MaximumScale If the type indicator is a numeric type, this is the maximum number of digits
allowed to the right of the decimal point.

Otherwise, this is DBNull.Value.

ColumnName Description

211

ReservedWords Collection

This schema collection exposes information about the words that are reserved by the database to
which the data provider is connected. The following table describes the columns that the data
provider supports.

Restrictions Collection

The Restrictions schema collection exposes information about the restrictions supported by the
data provider that is currently connected to the database. The following table describes the
columns returned by the data providers. The columns can be returned in any order.

The ADO.NET Data Provider uses standardized names for restrictions. If the data provider
supports a restriction for a Schema method, it always uses the same name for the restriction.

The case sensitivity of any restriction value is determined by the underlying database, and can be
determined by the IdentifierCase and QuotedIdentifierCase values in the DataSourceInformation
collection (see DataSourceInformation Schema Collection).

MinimumScale If the type indicator is a numeric type, this is the minimum number of digits
allowed to the right of the decimal point.

Otherwise, this is DBNull.Value.

ProviderDbType The provider-specific type value that should be used when specifying a
parameter's type.

TypeName The provider-specific data type name.

ColumnName Description

Reserved Word Provider-specific reserved words.

ColumnName Description

CollectionName The name of the collection to which the specified restrictions apply.

RestrictionName The name of the restriction in the collection.

RestrictionDefault Ignored.

RestrictionNumber The actual location in the collection restrictions for this restriction.

IsRequired Specifies whether the restriction is required.

ColumnName Description

212

See Additional Schema Collections for the restrictions that apply to the each of the additional
supported schema collections.

213

Additional Schema Collections
The Zen ADO.NET Data Provider supports the following additional schema collections:

• Columns Schema Collection

• ForeignKeys Schema Collection

• Indexes Schema Collection

• PrimaryKeys Schema Collection

• ProcedureParameters Schema Collection

• Procedures Schema Collection

• TablePrivileges Schema Collection

• Tables Schema Collection

• Views Schema Collection

Columns Schema Collection

Description: The Columns schema collection identifies the columns of tables (including views)
defined in the catalog that are accessible to a given user. The following table identifies the
columns of tables defined in the catalog that are accessible to a given user.

Number of restrictions: 3

Restrictions available: TABLE_CATALOG, TABLE_NAME, COLUMN_NAME

Sort order: TABLE_CATALOG, TABLE_NAME, ORDINAL_POSITION

214

Column Name .NET
Framework

DataType1

Description

CHARACTER_MAXIMUM_
LENGTH

Int32 The maximum possible length of a value in
the column. For character, binary, or bit
columns, this is one of the following:

• The maximum length of the column in
characters, bytes, or bits, respectively, if
one is defined.

• The maximum length of the data type in
characters, bytes, or bits, respectively, if
the column does not have a defined
length.

• Zero (0) if neither the column or the data
type has a defined maximum length, or if
the column is not a character, binary, or
bit column.

CHARACTER_OCTET_LENGTH Int32 The maximum length in octets (bytes) of the
column, if the type of the column is
character or binary.

A value of zero (0) means the column has
no maximum length or that the column is
not a character or binary column.

COLUMN_DEFAULT String The default value of the column.

COLUMN_HASDEFAULT Boolean TRUE: The column has a default value.

FALSE: The column does not have a default
value, or it is unknown whether the column
has a default value.

COLUMN_NAME String The name of the column; this might not be
unique.

DATA_TYPE Object The indicator of the column data type.

This value cannot be null.

IS_NULLABLE Boolean TRUE: The column might be nullable.

FALSE: The column is known not to be
nullable.

NATIVE_DATA_TYPE String The data source description of the type.

This value cannot be null.

215

ForeignKeys Schema Collection

Description: The ForeignKeys schema collection identifies the foreign key columns defined in
the catalog by a given user.

Number of restrictions: 2

Restrictions available: FK_TABLE_CATALOG, PK_TABLE_NAME

NUMERIC_PRECISION Int32 If the column data type is of numeric data,
this is the maximum precision of the
column.

NUMERIC_PRECISION_RADIX Int32 The radix indicates in which base the values
in NUMERIC_PRECISION and
NUMERIC_SCALE are expressed. It is
only useful to return either 2 or 10.

NUMERIC_SCALE Int16 If the column type is a numeric type that has
a scale, this is the number of digits to the
right of the decimal point.

ORDINAL_POSITION Int32 The ordinal of the column. Columns are
numbered starting from one.

PROVIDER_DEFINED_TYPE Int32 The data source defined type of the column
is mapped to the type enumeration of the
data provider, for example, the PsqlDbType
enumeration.

This value cannot be null.

PROVIDER_GENERIC_TYPE Int32 The provider-defined type of the column is
mapped to the System.Data.DbType
enumeration.

This value cannot be null.

TABLE_CATALOG String The database name.

TABLE_NAME String The table name.

TABLE_OWNER String The table owner.

1. All classes are System.XXX. For example, System.String.

Column Name .NET
Framework

DataType1

Description

216

Sort order: FK_TABLE_CATALOG, FK_TABLE_NAME

Column Name .NET
Framework

Datatype1

Description

DEFERRABILITY String The deferrability of the foreign key. The value is one
of the following:

• INITIALLY DEFERRED

• INITIALLY IMMEDIATE

• NOT DEFERRABLE

DELETE_RULE String If a delete rule was specified, the value is one of the
following:

CASCADE: A referential action of CASCADE was
specified.

SET NULL: A referential action of SET NULL was
specified.

SET DEFAULT: A referential action of SET
DEFAULT was specified.

NO ACTION: A referential action of NO ACTION
was specified.

FK_COLUMN_NAME String The foreign key column name.

FK_NAME String The foreign key name. This is a required restriction.

FK_TABLE_CATALOG String The catalog name in which the foreign key table is
defined.

FK_TABLE_NAME String The foreign key table name. This is a required
restriction.

FK_TABLE_OWNER String The foreign key table owner. This is a required
restriction.

ORDINAL Int32 The order of the column names in the key. For
example, a table might contain several foreign key
references to another table. The ordinal starts over for
each reference; for example, two references to a three-
column key would return 1, 2, 3, 1, 2, 3.

PK_COLUMN_NAME String The primary key column name.

PK_NAME String The primary key name.

217

Indexes Schema Collection

Description: The Indexes schema collection identifies the indexes defined in the catalog that are
owned by a given user.

Number of restrictions: 2

Restrictions available: TABLE_CATALOG, TABLE_NAME

Sort order: UNIQUE, TYPE, INDEX_CATALOG, INDEX_NAME, ORDINAL_POSITION

PK_TABLE_CATALOG String The catalog name in which the primary key table is
defined.

PK_TABLE_NAME String The primary key table name.

PK_TABLE_OWNER String The primary key table owner. This is a required
restriction.

UPDATE_RULE String If an update rule was specified, one of the following:

CASCADE: A referential action of CASCADE was
specified.

SET NULL: A referential action of SET NULL was
specified.

SET DEFAULT: A referential action of SET
DEFAULT was specified.

NO ACTION: A referential action of NO ACTION
was specified.

1. All classes are System.XXX. For example, System.String

Column Name .NET
Framework

DataType1

Description

CARDINALITY Int32 The number of unique values in the index.

COLLATION String This is one of the following:

ASC: The sort sequence for the column is ascending.

DESC: The sort sequence for the column is descending.

Column Name .NET
Framework

Datatype1

Description

218

PrimaryKeys Schema Collection

Description: The PrimaryKeys schema collection identifies the primary key columns defined in
the catalog by a given user.

Number of restrictions: 2

Restrictions available: TABLE_CATALOG, TABLE_NAME

Sort order: TABLE_CATALOG, TABLE_NAME

COLUMN_NAME String The column name.

FILTER_CONDITION String The WHERE clause that identifies the filtering
restriction.

INDEX_CATALOG String The catalog name.

INDEX_NAME String The index name.

ORDINAL_POSITION Int32 The ordinal position of the column in the index, starting
with 1.

PAGES Int32 The number of pages used to store the index.

TABLE_CATALOG String The catalog name.

TABLE_NAME String The table name.

TABLE_OWNER String The table owner.

TABLE_QUALIFIER String The table qualifier.

TYPE String The type of the index. One of the following values:

• BTREE: The index is a B+-tree.

• HASH: The index is a hash file using, for example,
linear or extensible hashing.

• CONTENT: The index is a content index.

• OTHER: The index is some other type of index.

UNIQUE Boolean

1. All classes are System.XXX. For example, System.String.

Column Name .NET
Framework

DataType1

Description

219

ProcedureParameters Schema Collection

Description: The ProcedureParameters schema collection returns information about the
parameters and return codes of procedures that are part of the Procedures collection.

Number of restrictions: 3

Restrictions available: PROCEDURE_CATALOG, PROCEDURE_NAME,
PARAMETER_NAME

Sort order: PROCEDURE_CATALOG, PROCEDURE_NAME, ORDINAL_POSITION

Column Name .NET Framework

DataType1

1. All classes are System.XXX. For example, System.String.

Description

COLUMN_NAME String The primary key column name.

ORDINAL Int32 The order of the column names in the key.

PK_NAME String The primary key name.

TABLE_CATALOG String The database name in which the table is defined.

TABLE_NAME String The table name.

TABLE_OWNER String The table owner.

Column Name .NET
Framework

DataType1

Description

CHARACTER_MAXIMUM_LENGTH Int32 The maximum length of the parameter.

CHARACTER_OCTET_LENGTH Int32 The maximum length in octets (bytes) of
the parameter, if the type of the parameter
is character or binary.

If the parameter has no maximum length,
the value is zero (0).

For all other types of parameters, the
value is -1.

220

DATA_TYPE Object The indicator of the column data type.

This value cannot be null.

DESCRIPTION String The description of the parameter. For
example, the description of the Name
parameter in a procedure that adds a new
employee might be Employee name.

IS_NULLABLE Boolean TRUE: The parameter might be nullable.

FALSE: The parameter is not nullable.

NATIVE_DATA_TYPE String The data source description of the type.

This value cannot be null.

NULLABLE String Denotes whether null value can be
specified for the parameter. YES and NO
are the two possible values.

NUMERIC_PRECISION Int32 If the column data type is numeric, this is
the maximum precision of the column.

If the column data type is not numeric,
this is DbNull.

NUMERIC_PRECISION_RADIX Int32 Applicable when the column data type is
numeric.

The radix indicates in which base the
values in NUMERIC_PRECISION and
NUMERIC_SCALE are expressed. It is
only useful to return either 2 or 10.

NUMERIC_SCALE Int16 If the column data type is a numeric type
that has a scale, this is the number of
digits to the right of the decimal point.

Otherwise, this is DbNull.

ORDINAL_POSITION Int32 If the parameter is an input, input/output,
or output parameter, this is the one-based
ordinal position of the parameter in the
procedure call.

If the parameter is the return value, this is
DbNull.

Column Name .NET
Framework

DataType1

Description

221

PARAMETER_DEFAULT String The default value of parameter.

If the default value is a NULL, then the
PARAMETER_HASDEFAULT column
returns TRUE and the
PARAMETER_DEFAULT column will
not exist.

If PARAMETER_HASDEFAULT is set
to FALSE, then the
PARAMETER_DEFAULT column will
not exist.

PARAMETER_HASDEFAULT Boolean TRUE: The parameter has a default
value.

FALSE: The parameter does not have a
default value, or it is unknown whether
the parameter has a default value.

PARAMETER_NAME String The parameter name. If the parameter is
not named, this is DbNull.

PARAMETER_TYPE String This is one of the following:

INPUT: The parameter is an input
parameter.

INPUTOUTPUT: The parameter is an
input/output parameter.

OUTPUT: The parameter is an output
parameter.

RETURNVALUE: The parameter is a
procedure return value.

UNKNOWN: The parameter type is
unknown to the data provider.

PROCEDURE_CATALOG String The catalog name.

PROCEDURE_NAME String The procedure name.

PROCEDURE_COLUMN_NAME String The procedure column name.

Column Name .NET
Framework

DataType1

Description

222

Procedures Schema Collection

Description: The Procedures schema collection identifies the procedures defined in the catalog.
When possible, only procedures for which the connected user has execute permission should be
returned.

Number of restrictions: 2

Restrictions available: PROCEDURE_CATALOG, PROCEDURE_NAME,
PROCEDURE_TYPE

Sort order: PROCEDURE_CATALOG, PROCEDURE_NAME

PROVIDER_DEFINED_TYPE Int32 The data source defined type of the
column as mapped to the type
enumeration of the data provider, for
example, the PSQLDbType enumeration.

This value cannot be null.

PROVIDER_GENERIC_TYPE Int32 The data source defined type of the
column as mapped to the
System.Data.DbType enumeration.

This value cannot be null.

SQL_DATETIME_SUB Object Applicable when the column data type is
DateTime.

1. All classes are System.XXX. For example, System.String.

Column Name .NET Framework

DataType1
Description

PROCEDURE_CATALOG String The database name.

PROCEDURE_NAME String The procedure name.

PROCEDURE_OWNER String The procedure owner.

Column Name .NET
Framework

DataType1

Description

223

TablePrivileges Schema Collection

Description: The TablePrivileges schema collection identifies the privileges on tables defined in
the catalog that are available to or granted by a given user.

Number of restrictions: 3

Restrictions available: TABLE_CATALOG, TABLE_NAME, GRANTEE

Sort order: TABLE_CATALOG, TABLE_NAME, PRIVILEGE_TYPE

PROCEDURE_TYPE String This is one of the following:

UNKNOWN: It is not known whether a value is
returned.

PROCEDURE: Procedure; no value is returned.

FUNCTION: Function; a value is returned.

1. All classes are System.XXX. For example, System.String.

Column Name Type Indicator1

1. All classes are System.XXX. For example, System.String.

Description

GRANTEE String The user name (or PUBLIC) to whom the
privilege has been granted.

PRIVILEGE_TYPE String The privilege type. This is one of the
following types:

• DELETE

• INSERT

• REFERENCES

• SELECT

• UPDATE

TABLE_CATALOG String The name of the database in which the table is
defined.

TABLE_NAME String The table name.

TABLE_OWNER String The table owner.

Column Name .NET Framework

DataType1
Description

224

Tables Schema Collection

Description: The Tables schema collection identifies the tables (including views) defined in the
catalog that are accessible to a given user.

Number of Restrictions: 3

Restrictions Available: TABLE_CATALOG, TABLE_NAME, TABLE_TYPE

Sort order: TABLE_TYPE, TABLE_CATALOG, TABLE_NAME

Views Schema Collection

Description: The Views schema collection identifies the views defined in the catalog that are
accessible to a given user.

Column Name .NET
Framework

DataType1

1. All classes are System.XXX. For example, System.String.

Description

DESCRIPTION String A description of the table.

If no description is associated with the column, the data
provider returns DbNull.

TABLE_CATALOG String The name of the database in which the table is defined.

TABLE_NAME String The table name.

TABLE_OWNER String The table owner.

TABLE_TYPE String The table type. One of the following:

• ALIAS

• GLOBAL TEMPORARY

• LOCAL TEMPORARY

• SYNONYM

• SYSTEM TABLE

• SYSTEM VIEW

• TABLE

• VIEW

This column cannot contain an empty string.

225

Number of restrictions: 2

Restrictions available: TABLE_CATALOG, TABLE_NAME

Sort order: TABLE_CATALOG, TABLE_NAME

Column Name Type Indicator1

1. All classes are System.XXX. For example, System.String.

Description

TABLE_CATALOG String The name of the database in which the table is defined.

TABLE_NAME String The table name.

TABLE_OWNER String The table owner.

TABLE_QUALIFIER String The table qualifier.

VIEW _DEFINITION String The view definition. This is a query expression.

226

227

C. SQL Escape Sequences for .NET

A number of language features, such as outer joins and scalar function calls, are commonly
implemented by database management systems. The syntax for these features is often DBMS-
specific, even when a standard syntax has been defined. The .NET support for escape sequences
contain standard syntaxes for the following language features:

• Date, time, and timestamp literals

• Scalar functions such as numeric, string, and data type conversion functions

• Outer joins

The escape sequence used by .NET is:

{extension}

The escape sequence is recognized and parsed by the ADO.NET Data Provider, which replaces
the escape sequences with data store-specific grammar.

228

Date, Time, and Timestamp Escape Sequences
The escape sequence for date, time, and timestamp literals is:

{literal-type 'value'}

where literal-type is one of the following:

Note: If you receive an error while running a query in Visual Studio to insert data into the Date
field of a table, ensure that your system's Date format is set to yyyy-mm-dd. If not, change it to
yyyy-mm-dd.

Example

UPDATE Orders SET OpenDate={d '1997-01-29'}
WHERE OrderID=1023

literal-type Description Value Format

d Date yyyy-mm-dd

t Time hh:mm:ss [1]

ts Timestamp yyyy-mm-dd hh:mm:ss[.f...]

229

Scalar Functions
You can use scalar functions in SQL statements with the following syntax:

{fn scalar-function}

where scalar-function is a scalar function supported by the ADO.NET Data Provider.

Example

SELECT {fn UCASE(NAME)} FROM EMP

The following table lists the scalar functions supported.

String
Functions

Numeric Functions Timedate
Functions

System
Functions

ASCII
BIT_LENGTH
CHAR
CHAR_LENGTH
CHARACTER_LENGTH
CONCAT
LCASE or LOWER
LEFT
LENGTH
LOCATE
LTRIM
OCTET_LENGTH
POSITION
REPLACE
REPLICATE
RIGHT
RTRIM
SPACE
STUFF
SUBSTRING
UCASE or UPPER

ABS
ACOS
ASIN
ATAN
ATAN2
CEILING
COS
COT
DEGREES
EXP
FLOOR
LOG
LOG10
MOD
PI
POWER
RADIANS
RAND
ROUND
SIGN
SIN
SQRT
TAN
TRUNCATE

CURDATE
CURRENT_DATE
CURTIME
CURRENT_TIME
CURRENT_TIMESTAMP
DAYNAME
DAYOFMONTH
DAYOFYEAR
EXTRACT
HOUR
MINUTE
MONTH
MONTHNAME
NOW
QUARTER
SECOND
TIMESTAMPADD
TIMESTAMPDIFF
WEEK
YEAR

DATABASE
USER

230

Outer Join Escape Sequences
.NET supports the SQL92 left, right, and full outer join syntax. The escape sequence for outer
joins is:

{oj outer-join}

where outer-join is:

table-reference {LEFT | RIGHT | FULL} OUTER JOIN

{table-reference | outer-join} ON search-condition

where:

table-reference is a table name and search-condition is the join condition you want to use for the
tables.

Example

SELECT Customers.CustID, Customers.Name, Orders.OrderID, Orders.Status

 FROM {oj Customers LEFT OUTER JOIN

 Orders ON Customers.CustID=Orders.CustID}

 WHERE Orders.Status='OPEN'

The ADO.NET Data Provider supports the following outer join escape sequences as supported by
Zen 9.x and higher:

• Left outer joins

• Right outer joins

• Full outer joins

231

D. Locking and Isolation Levels

Different database systems support various locking and isolation levels. The following topics
cover locking and isolation levels and how their settings affect the data you retrieve:

• Locking

• Isolation Levels

• Locking Modes and Levels

232

Locking
Locking is a database operation that restricts a user from accessing a table or record. Locking is
used in situations where more than one user might try to use the same table or record at the same
time. By locking the table or record, the system ensures that only one user at a time can affect the
data.

Locking is critical in multiuser databases, where different users can try to access or modify the
same records concurrently. Although such concurrent database activity is desirable, it can create
problems. Without locking, for example, if two users try to modify the same record at the same
time, they might encounter problems ranging from retrieving bad data to deleting data that the
other user needs. If, however, the first user to access a record can lock that record to temporarily
prevent other users from modifying it, such problems can be avoided. Locking provides a way to
manage concurrent database access while minimizing the various problems it can cause.

233

Isolation Levels
An isolation level represents a particular locking strategy employed in the database system to
improve data consistency. The higher the isolation level, the more complex the locking strategy
behind it. The isolation level provided by the database determines whether a transaction will
encounter the following behaviors in data consistency:

Isolation levels represent the database system’s ability to prevent these behaviors. The American
National Standards Institute (ANSI) defines four isolation levels:

• Read uncommitted (0)

• Read committed (1)

• Repeatable read (2)

• Serializable (3)

In ascending order (0–3), these isolation levels provide an increasing amount of data consistency
to the transaction. At the lowest level, all three behaviors can occur. At the highest level, none can
occur. The success of each level in preventing these behaviors is due to the locking strategies that
they employ, which are as follows:

Dirty reads User 1 modifies a row. User 2 reads the same row before User 1 commits. User
1 performs a rollback. User 2 has read a row that has never really existed in the
database. User 2 may base decisions on false data.

Non-repeatable
reads

User 1 reads a row but does not commit. User 2 modifies or deletes the same
row and then commits. User 1 rereads the row and finds it has changed (or has
been deleted).

Phantom reads User 1 uses a search condition to read a set of rows but does not commit. User 2
inserts one or more rows that satisfy this search condition, then commits. User
1 rereads the rows using the search condition and discovers rows that were not
present before.

Read uncommitted (0) Locks are obtained on modifications to the database and held until end of
transaction (EOT). Reading from the database does not involve any locking.

Read committed (1) Locks are acquired for reading and modifying the database. Locks are
released after reading, but locks on modified objects are held until EOT.

Repeatable read (2) Locks are obtained for reading and modifying the database. Locks on all
modified objects are held until EOT. Locks obtained for reading data are held
until EOT. Locks on non-modified access structures (such as indexes and
hashing structures) are released after reading.

234

The following table shows what data consistency behaviors can occur at each isolation level.

Although higher isolation levels provide better data consistency, this consistency can be costly in
terms of the concurrency provided to individual users. Concurrency is the ability of multiple users
to access and modify data simultaneously. As isolation levels increase, so does the chance that the
locking strategy used will create problems in concurrency.

Put another way: The higher the isolation level, the more locking involved, and the more time
users may spend waiting for data to be freed by another user. Because of this inverse relationship
between isolation levels and concurrency, you must consider how people use the database before
choosing an isolation level. You must weigh the trade-offs between data consistency and
concurrency, and decide which is more important.

Serializable (3) A lock is placed on the affected rows of the DataSet until EOT. All access
structures that are modified, and those used by the query, are locked until
EOT.

Level Dirty Read Nonrepeatable Read Phantom Read

0, Read uncommitted Yes Yes Yes

1, Read committed No Yes Yes

2, Repeatable read No No Yes

3, Serializable No No No

235

Locking Modes and Levels
Different database systems employ various locking modes, but they have two basic modes in
common: shared and exclusive. Shared locks can be held on a single object by multiple users. If
one user has a shared lock on a record, then a second user can also get a shared lock on that same
record; however, the second user cannot get an exclusive lock on that record. Exclusive locks are
exclusive to the user that obtains them. If one user has an exclusive lock on a record, then a
second user cannot get either type of lock on the same record.

Performance and concurrency can also be affected by the locking level used in the database
system. The locking level determines the size of an object that is locked in a database. For
example, many database systems let you lock an entire table, as well as individual records. An
intermediate level of locking, page-level locking, is also common. A page contains one or more
records and is typically the amount of data read from the disk in a single disk access. The major
disadvantage of page-level locking is that if one user locks a record, a second user may not be able
to lock other records because they are stored on the same page as the locked record.

236

237

E. Designing .NET Applications for
Performance Optimization

Developing performance-oriented .NET applications is not easy. Zen ADO.NET data providers
do not throw exceptions to say that your code is running too slowly.

238

Retrieving Data
To retrieve data efficiently, return only the data that you need, and choose the most efficient
method of doing so. The guidelines in this section will help you to optimize system performance
when retrieving data with .NET applications.

Retrieving Long Data

Unless it is necessary, applications should not request long data because retrieving long data
across a network is slow and resource-intensive.

Most users don't want to see long data. If the user wants to see these result items, then the
application can query the database again, specifying only the long columns in the select list. This
method allows the average user to retrieve the result set without having to pay a high performance
penalty for network traffic.

Although the best method is to exclude long data from the select list, some applications do not
formulate the select list before sending the query to the Zen ADO.NET data provider (that is,
some applications use syntax such as select * from <table name> ...). If the select list contains
long data, then some data providers must retrieve that data at fetch time even if the application
does not bind the long data in the result set. When possible, try to implement a method that does
not retrieve all columns of the table.

Sometimes long data must be retrieved. When this is the case, remember that most users do not
want to see 100 KB, or more, of text on the screen.

Reducing the Size of Data Retrieved

To reduce network traffic and improve performance, you can reduce the size of any data being
retrieved to some manageable limit by calling set max rows or set max field size, or some other
database-specific command to limit row size or field size. Another method of reducing the size of
the data being retrieved is to decrease the column size. If the data provider allows you to define
the packet size, use the smallest packet size that will meet your needs.

In addition, be careful to return only the rows you need. If you return five columns when you only
need two columns, performance is decreased, especially if the unnecessary rows include long
data.

239

Using CommandBuilder Objects

It is tempting to use CommandBuilder objects because they generate SQL statements. However,
this shortcut can have a negative effect on performance. Because of concurrency restrictions, the
Command Builder does not generate efficient SQL statements. For example, the following SQL
statement was created by the Command Builder:

CommandText: UPDATE TEST01.EMP SET EMPNO = ?, ENAME = ?, JOB = ?, MGR = ?, HIREDATE = ?, SAL = ?, COMM
= ?, DEPT = ?

WHERE
 ((EMPNO = ?) AND ((ENAME IS NULL AND ? IS NULL)
 OR (ENAME = ?)) AND ((JOB IS NULL AND ? IS NULL)
 OR (JOB = ?)) AND ((MGR IS NULL AND ? IS NULL)
 OR (MGR = ?)) AND ((HIREDATE IS NULL AND ? IS NULL)
 OR (HIREDATE = ?)) AND ((SAL IS NULL AND ? IS NULL)
 OR (SAL = ?)) AND ((COMM IS NULL AND ? IS NULL)
 OR (COMM = ?)) AND ((DEPT IS NULL AND ? IS NULL)
 OR (DEPT = ?)))

The end user can often write more efficient update and delete statements than those that the
CommandBuilder generates.

Another drawback is also implicit in the design of the CommandBuilder object. The
CommandBuilder object is always associated with a DataAdapter object and registers itself as a
listener for RowUpdating and RowUpdated events that the DataAdapter object generates. This
means that two events must be processed for every row that is updated.

Choosing the Right Data Type

Retrieving and sending certain data types can be expensive. When you design a schema, select the
data type that can be processed most efficiently. For example, integer data is processed faster than
floating-point data. Floating-point data is defined according to internal database-specific formats,
usually in a compressed format. The data must be decompressed and converted into a different
format so that it can be processed by the wire protocol.

Processing time is shortest for character strings, followed by integers, which usually require some
conversion or byte ordering. Processing floating-point data and timestamps is at least twice as
slow as integers.

240

Selecting .NET Objects and Methods
The guidelines in this section will help you to optimize system performance when selecting and
using .NET objects and methods.

Using Parameter Markers as Arguments to Stored Procedures

When calling stored procedures, always use parameter markers for the argument markers instead
of using literal arguments.

When you set the CommandText property in the Command object to the stored procedure name,
do not physically code the literal arguments into the CommandText. For example, do not use
literal arguments such as:

{call expense (3567, 'John', 987.32)}

Zen ADO.NET data providers can call stored procedures on the database server by executing the
procedure as any other SQL query. Executing the stored procedure as a SQL query results in the
database server parsing the statement, validating the argument types, and converting the
arguments into the correct data types.

In the following example, the application programmer might assume that the only argument to
getCustName is the integer 12345:

{call getCustName (12345)}

However, SQL is always sent to the database server as a character string. When the database
server parses the SQL query and isolates the argument value, the result is still a string. The
database server must then convert the string ’12345’ into the integer 12345. Using a parameter
marker eliminates the need to convert the string and reduces the amount of processing by the
server:

{call getCustName (?)}

241

 Designing .NET Applications
The guidelines in this section will help you to optimize system performance when designing .NET
applications.

Managing Connections

Connection management is important to application performance. Optimize your application by
connecting once and using multiple statement objects, instead of performing multiple
connections. Avoid connecting to a data source after establishing an initial connection.

You can improve performance significantly with connection pooling, especially for applications
that connect over a network or through the World Wide Web. Connection pooling lets you reuse
connections. Closing connections does not close the physical connection to the database. When an
application requests a connection, an active connection is reused, thus avoiding the network I/O
needed to create a new connection.

Pre-allocate connections. Decide what connection strings you will need to meet your needs.
Remember that each unique connection string creates a new connection pool.

Once created, connection pools are not destroyed until the active process ends or the connection
lifetime is exceeded. Maintenance of inactive or empty pools involves minimal system overhead.

Connection and statement handling should be addressed before implementation. Spending time
and thoughtfully handling connection management improves application performance and
maintainability.

Opening and Closing Connections

Open connections just before they are needed. Opening them earlier than necessary decreases the
number of connections available to other users and can increase the demand for resources.

To keep resources available, explicitly Close the connection as soon as it is no longer needed. If
you wait for the garbage collector to implicitly clean up connections that go out of scope, the
connections will not be returned to the connection pool immediately, tieing up resources that are
not actually being used.

Close connections inside a finally block. Code in the finally block always runs, even if an
exception occurs. This guarantees explicit closing of connections. For example:

try
{

DBConn.Open();
… // Do some other interesting work

242

}
catch (Exception ex)
{

// Handle exceptions
}
finally
{

// Close the connection
if (DBConn != null)

DBConn.Close();
}

If you are using connection pooling, opening and closing connections is not an expensive
operation. Using the Close() method of the data provider's Connection object adds or returns the
connection to the connection pool. Remember, however, that closing a connection automatically
closes all DataReader objects that are associated with the connection.

Using Statement Caching

A statement cache is a group of prepared statements or instances of Command objects that can be
reused by an application. Using statement caching can improve application performance because
the actions on the prepared statement are performed once even though the statement is reused
multiple times over an application’s lifetime.

A statement cache is owned by a physical connection. After being executed, a prepared statement
is placed in the statement cache and remains there until the connection is closed.

Caching all of the prepared statements that an application uses might appear to offer increased
performance. However, this approach may come at a cost of database memory if you implement
statement caching with connection pooling. In this case, each pooled connection has its own
statement cache that may contain all of the prepared statements that are used by the application.
All of these pooled prepared statements are also maintained in the database’s memory.

Using Commands Multiple Times

Choosing whether to use the Command.Prepare method can have a significant positive (or
negative) effect on query execution performance. The Command.Prepare method tells the
underlying data provider to optimize for multiple executions of statements that use parameter
markers. Note that it is possible to Prepare any command regardless of which execution method is
used (ExecuteReader, ExecuteNonQuery, or ExecuteScalar).

Consider the case where a Zen ADO.NET data provider implements Command.Prepare by
creating a stored procedure on the server that contains the prepared statement. Creating stored
procedures involves substantial overhead, but the statement can be executed multiple times.
Although creating stored procedures is performance-expensive, execution of that statement is

243

minimized because the query is parsed and optimization paths are stored at create procedure time.
Applications that execute the same statement multiples times can benefit greatly from calling
Command.Prepare and then executing that command multiple times.

However, using Command.Prepare for a statement that is executed only once results in
unnecessary overhead. Furthermore, applications that use Command.Prepare for large single
execution query batches exhibit poor performance. Similarly, applications that either always use
Command.Prepare or never use Command.Prepare do not perform as well as those that use a
logical combination of prepared and unprepared statements.

Using Native Managed Providers

Bridges into unmanaged code, that is, code outside the .NET environment, adversely affect
performance. Calling unmanaged code from managed code causes the data provider to be
significantly slower than data providers that are completely managed code. Why take that kind of
performance hit?

If you use a bridge, your code will be written for this bridge. Later, when a database-specific Zen
ADO.NET data provider becomes available, the code must be rewritten; you will have to rewrite
object names, schema information, error handling, and parameters. You'll save valuable time and
resources by coding to managed data providers instead of coding to the bridges.

244

Updating Data
This section provides general guidelines to help you to optimize system performance when
updating data in databases.

Using the Disconnected DataSet

Keep result sets small. The full result set must be retrieved from the server before the DataSet is
populated. The full result set is stored in memory on the client.

Synchronizing Changes Back to the Data Source

You must build the logic into the PsqlDataAdapter for synchronizing the changes back to the data
source using the primary key, as shown in the following example:

string updateSQL As String = "UPDATE emp SET sal = ?, job = ?" +
 " = WHERE empno = ?";

245

F. Using an .edmx File

An .edmx file is an XML file that defines an Entity Data Model (EDM), describes the target
database schema, and defines the mapping between the EDM and the database. An .edmx file also
contains information that is used by the ADO.NET Entity Data Model Designer (Entity Designer)
to render a model graphically.

The following code examples illustrate the necessary changes to the .edmx file in order to provide
Extended Entity Framework functionality to the EDM layer.

The Entity Framework includes a set of methods similar to those of ADO.NET. These methods
have been tailored to be useful for the new Entity Framework consumers – LINQ, EntitySQL, and
ObjectServices.

The ADO.NET Entity Framework data provider models this functionality in the EDM by
surfacing the PsqlStatus and PsqlConnectionStatistics entities, allowing you to model this
functionality using standard tools in Visual Studio.

246

Code Examples
The following code fragment is an example of the SSDL model.

<!--
SSDL content
-->
<edmx:StorageModels>
 <Schema Namespace="DDTek.Store" Alias="Self" Provider="DDTek.Oracle" ProviderManifestToken="11g"
 xmlns:store="https://schemas.microsoft.com/ado/2007/12/edm/ EntityStoreSchemaGenerator"
 xmlns= "https://schemas.microsoft.com/ado/2006/04/edm/ssdl">
 <EntityContainer Name="DDTek_Connection">
 <EntitySet Name="Connection_Statistics" EntityType="DDTek.Store.Connection_Statistics" />
 <EntitySet Name="Status" EntityType="DDTek.Store.Status" />
 </EntityContainer>
 <Function Name="RetrieveStatistics" Aggregate="false" BuiltIn="false" NiladicFunction="false"
IsComposable="false" ParameterTypeSemantics="AllowImplicitConversion"
StoreFunctionName=""DDTek_Connection_RetrieveStatistics"" />
 <Function Name="EnableStatistics" Aggregate="false" BuiltIn="false" NiladicFunction="false"
IsComposable="false" ParameterTypeSemantics="AllowImplicitConversion"
StoreFunctionName=""DDTek_Connection_EnableStatistics"" />
 <Function Name="DisableStatistics" Aggregate="false" BuiltIn="false" NiladicFunction="false"
IsComposable="false" ParameterTypeSemantics="AllowImplicitConversion"
StoreFunctionName=""DDTek_Connection_DisableStatistics"" />
 <Function Name="ResetStatistics" Aggregate="false" BuiltIn="false" NiladicFunction="false"
IsComposable="false" ParameterTypeSemantics="AllowImplicitConversion"
StoreFunctionName=""DDTek_Connection_ResetStatistics"" />
 <!--
 <Function Name="Reauthenticate" Aggregate="false" BuiltIn="false" NiladicFunction="false"
IsComposable="false" ParameterTypeSemantics="AllowImplicitConversion"
StoreFunctionName=""DDTek_Connection_Reauthenticate""> -->
 <!-- <Parameter Name="CurrentUser" Type="varchar2" Mode="In" /> -->
 <!-- <Parameter Name="CurrentPassword" Type="varchar2" Mode="In" /> -->
 <!-- <Parameter Name="CurrentUserAffinityTimeout" Type="number" Precision="10" Mode="In" /> --></
Function>
 -->
 <EntityType Name="Connection_Statistics">
 <Key>
 <PropertyRef Name="Id" />
 </Key>
 <Property Name="SocketReadTime" Type="binary_double" Nullable="false" />
 <Property Name="MaxSocketReadTime" Type="binary_double" Nullable="false" />
 <Property Name="SocketReads" Type="number" Precision="20" Nullable="false" />
 <Property Name="BytesReceived" Type="number" Precision="20" Nullable="false" />
 <Property Name="MaxBytesPerSocketRead" Type="number" Precision="20" Nullable="false" />
 <Property Name="SocketWriteTime" Type="binary_double" Nullable="false" />
 <Property Name="MaxSocketWriteTime" Type="binary_double" Nullable="false" />
 <Property Name="SocketWrites" Type="number" Precision="20" Nullable="false" />
 <Property Name="BytesSent" Type="number" Precision="20" Nullable="false" />
 <Property Name="MaxBytesPerSocketWrite" Type="number" Precision="20" Nullable="false" />
 <Property Name="TimeToDisposeOfUnreadRows" Type="binary_double" Nullable="false" />
 <Property Name="SocketReadsToDisposeUnreadRows" Type="number" Precision="20" Nullable="false" /
>
 <Property Name="BytesRecvToDisposeUnreadRows" Type="number" Precision="20" Nullable="false" />
 <Property Name="IDUCount" Type="number" Precision="20" Nullable="false" />
 <Property Name="SelectCount" Type="number" Precision="20" Nullable="false" />
 <Property Name="StoredProcedureCount" Type="number" Precision="20" Nullable="false" />
 <Property Name="DDLCount" Type="number" Precision="20" Nullable="false" />
 <Property Name="PacketsReceived" Type="number" Precision="20" Nullable="false" />
 <Property Name="PacketsSent" Type="number" Precision="20" Nullable="false" />
 <Property Name="ServerRoundTrips" Type="number" Precision="20" Nullable="false" />
 <Property Name="SelectRowsRead" Type="number" Precision="20" Nullable="false" />
 <Property Name="StatementCacheHits" Type="number" Precision="20" Nullable="false" />

247

 <Property Name="StatementCacheMisses" Type="number" Precision="20" Nullable="false" />
 <Property Name="StatementCacheReplaces" Type="number" Precision="20" Nullable="false" />
 <Property Name="StatementCacheTopHit1" Type="number" Precision="20" Nullable="false" />
 <Property Name="StatementCacheTopHit2" Type="number" Precision="20" Nullable="false" />
 <Property Name="StatementCacheTopHit3" Type="number" Precision="20" Nullable="false" />
 <Property Name="PacketsReceivedPerSocketRead" Type="binary_double" Nullable="false" />
 <Property Name="BytesReceivedPerSocketRead" Type="binary_double" Nullable="false" />
 <Property Name="PacketsSentPerSocketWrite" Type="binary_double" Nullable="false" />
 <Property Name="BytesSentPerSocketWrite" Type="binary_double" Nullable="false" />
 <Property Name="PacketsSentPerRoundTrip" Type="binary_double" Nullable="false" />
 <Property Name="PacketsReceivedPerRoundTrip" Type="binary_double" Nullable="false" />
 <Property Name="BytesSentPerRoundTrip" Type="binary_double" Nullable="false" />
 <Property Name="BytesReceivedPerRoundTrip" Type="binary_double" Nullable="false" />
<!--
Oracle specific
-->
 <Property Name="PartialPacketShifts" Type="number" Precision="20" Nullable="false" />
 <Property Name="PartialPacketShiftBytes" Type="number" Precision="20" Nullable="false" />
 <Property Name="MaxReplyBytes" Type="number" Precision="20" Nullable="false" />
 <Property Name="MaxReplyPacketChainCount" Type="number" Precision="20" Nullable="false" />
 <Property Name="Id" Type="number" Precision="10" Nullable="false" />
 </EntityType>
 <EntityType Name="Status">
 <Key>
 <PropertyRef Name="Id" />
 </Key>
 <Property Name="ServerVersion" Type="varchar2" Nullable="false" />
 <Property Name="Host" Type="varchar2" Nullable="false" />
 <Property Name="Port" Type="number" Precision="10" Nullable="false" />
 <Property Name="SID" Type="varchar2" Nullable="false" />
 <!-- <Property Name="CurrentUser" Type="varchar2" Nullable="false" /> -->
 <!-- <Property Name="CurrentUserAffinityTimeout" Type="number" Precision="10" Nullable="false"
/> -->
 <!-- <Property Name="SessionId" Type="number" Precision="10" Nullable="false" /> -->
 <Property Name="StatisticsEnabled" Type="number" Precision="1" Nullable="false" />
 <Property Name="Id" Type="number" Precision="10" Nullable="false" />
 </EntityType>
 </Schema>
</edmx:StorageModels>

Breaking the model down further, we establish a CSDL model at the conceptual layer. This layer
is what is exposed to the EDM.

<edmx:ConceptualModels>
 <Schema Namespace="DDTek" Alias="Self"
 xmlns="https://schemas.microsoft.com/ado/ 2006/04/edm">
 <EntityContainer Name="DDTekConnectionContext">
 <EntitySet Name="DDTekConnectionStatistics" EntityType="DDTek.DDTekConnectionStatistics" />
 <EntitySet Name="DDTekStatus" EntityType="DDTek.DDTekStatus" />
 <FunctionImport Name="RetrieveStatistics" EntitySet="DDTekConnectionStatistics" ReturnType=
"Collection(DDTek.DDTekConnectionStatistics)" />
 <FunctionImport Name="EnableStatistics" EntitySet="DDTekStatus"
ReturnType="Collection(DDTek.DDTekStatus)" />
 <FunctionImport Name="DisableStatistics" EntitySet="DDTekStatus" ReturnType=
"Collection(DDTek.DDTekStatus)" />
 <FunctionImport Name="ResetStatistics" EntitySet="DDTekStatus"
ReturnType="Collection(DDTek.DDTekStatus)" />
 <FunctionImport Name="Reauthenticate" EntitySet="DDTekStatus" ReturnType=
"Collection(DDTek.DDTekStatus)">
 <Parameter Name="CurrentUser" Type="String" />
 <Parameter Name="CurrentPassword" Type="String" />
 <Parameter Name="CurrentUserAffinityTimeout" Type="Int32" />
 </FunctionImport>
 </EntityContainer>

248

 <EntityType Name="DDTekConnectionStatistics">
 <Key>
 <PropertyRef Name="Id" />
 </Key>
 <Property Name="SocketReadTime" Type="Double" Nullable="false" />
 <Property Name="MaxSocketReadTime" Type="Double" Nullable="false" />
 <Property Name="SocketReads" Type="Int64" Nullable="false" />
 <Property Name="BytesReceived" Type="Int64" Nullable="false" />
 <Property Name="MaxBytesPerSocketRead" Type="Int64" Nullable="false" />
 <Property Name="SocketWriteTime" Type="Double" Nullable="false" />
 <Property Name="MaxSocketWriteTime" Type="Double" Nullable="false" />
 <Property Name="SocketWrites" Type="Int64" Nullable="false" />
 <Property Name="BytesSent" Type="Int64" Nullable="false" />
 <Property Name="MaxBytesPerSocketWrite" Type="Int64" Nullable="false" />
 <Property Name="TimeToDisposeOfUnreadRows" Type="Double" Nullable="false" />
 <Property Name="SocketReadsToDisposeUnreadRows" Type="Int64" Nullable="false" />
 <Property Name="BytesRecvToDisposeUnreadRows" Type="Int64" Nullable="false" />
 <Property Name="IDUCount" Type="Int64" Nullable="false" />
 <Property Name="SelectCount" Type="Int64" Nullable="false" />
 <Property Name="StoredProcedureCount" Type="Int64" Nullable="false" />
 <Property Name="DDLCount" Type="Int64" Nullable="false" />
 <Property Name="PacketsReceived" Type="Int64" Nullable="false" />
 <Property Name="PacketsSent" Type="Int64" Nullable="false" />
 <Property Name="ServerRoundTrips" Type="Int64" Nullable="false" />
 <Property Name="SelectRowsRead" Type="Int64" Nullable="false" />
 <Property Name="StatementCacheHits" Type="Int64" Nullable="false" />
 <Property Name="StatementCacheMisses" Type="Int64" Nullable="false" />
 <Property Name="StatementCacheReplaces" Type="Int64" Nullable="false" />
 <Property Name="StatementCacheTopHit1" Type="Int64" Nullable="false" />
 <Property Name="StatementCacheTopHit2" Type="Int64" Nullable="false" />
 <Property Name="StatementCacheTopHit3" Type="Int64" Nullable="false" />
 <Property Name="PacketsReceivedPerSocketRead" Type="Double" Nullable="false" />
 <Property Name="BytesReceivedPerSocketRead" Type="Double" Nullable="false" />
 <Property Name="PacketsSentPerSocketWrite" Type="Double" Nullable="false" />
 <Property Name="BytesSentPerSocketWrite" Type="Double" Nullable="false" />
 <Property Name="PacketsSentPerRoundTrip" Type="Double" Nullable="false" />
 <Property Name="PacketsReceivedPerRoundTrip" Type="Double" Nullable="false" />
 <Property Name="BytesSentPerRoundTrip" Type="Double" Nullable="false" />
 <Property Name="BytesReceivedPerRoundTrip" Type="Double" Nullable="false" />
 <Property Name="PartialPacketShifts" Type="Int64" Nullable="false" />
 <Property Name="PartialPacketShiftBytes" Type="Int64" Nullable="false" />
 <Property Name="MaxReplyBytes" Type="Int64" Nullable="false" />
 <Property Name="MaxReplyPacketChainCount" Type="Int64" Nullable="false" />
 <Property Name="Id" Type="Int32" Nullable="false" />
 </EntityType>
 <EntityType Name="DDTekStatus">
 <Key>
 <PropertyRef Name="Id" />
 </Key>
 <Property Name="ServerVersion" Type="String" Nullable="false" />
 <Property Name="Host" Type="String" Nullable="false" />
 <Property Name="Port" Type="Int32" Nullable="false" />
 <Property Name="SID" Type="String" Nullable="false" />
 <Property Name="CurrentUser" Type="String" Nullable="false" />
 <Property Name="CurrentUserAffinityTimeout" Type="Int32" Nullable="false" />
 <Property Name="SessionId" Type="Int32" Nullable="false" />
 <Property Name="StatisticsEnabled" Type="Boolean" Nullable="false" />
 <Property Name="Id" Type="Int32" Nullable="false" />
 </EntityType>
 </Schema>
</edmx:ConceptualModels>

The following simple mapping binds the pieces together.

249

<!--
C-S mapping content
-->
<edmx:Mappings>
 <Mapping Space="C-S"
 xmlns="urn:schemas-microsoft- com:windows:storage:mapping:CS">
 <EntityContainerMapping StorageEntityContainer="DDTek_Connection"
CdmEntityContainer="DDTekConnectionContext">
 <EntitySetMapping Name="DDTekConnectionStatistics">
 <EntityTypeMapping TypeName="DDTek.DDTekConnectionStatistics">
 <MappingFragment StoreEntitySet="Connection_Statistics">
<!--
StoreEntitySet="Connection_Statistics" TypeName="DDTek.DDTekConnectionStatistics">
-->
 <ScalarProperty Name="SocketReadTime" ColumnName="SocketReadTime" />
 <ScalarProperty Name="MaxSocketReadTime" ColumnName="MaxSocketReadTime" />
 <ScalarProperty Name="SocketReads" ColumnName="SocketReads" />
 <ScalarProperty Name="BytesReceived" ColumnName="BytesReceived" />
 <ScalarProperty Name="MaxBytesPerSocketRead" ColumnName="MaxBytesPerSocketRead" />
 <ScalarProperty Name="SocketWriteTime" ColumnName="SocketWriteTime" />
 <ScalarProperty Name="MaxSocketWriteTime" ColumnName="MaxSocketWriteTime" />
 <ScalarProperty Name="SocketWrites" ColumnName="SocketWrites" />
 <ScalarProperty Name="BytesSent" ColumnName="BytesSent" />
 <ScalarProperty Name="MaxBytesPerSocketWrite" ColumnName="MaxBytesPerSocketWrite" />
 <ScalarProperty Name="TimeToDisposeOfUnreadRows" ColumnName="TimeToDisposeOfUnreadRows" /
>
 <ScalarProperty Name="SocketReadsToDisposeUnreadRows" ColumnName=
"SocketReadsToDisposeUnreadRows" />
 <ScalarProperty Name="BytesRecvToDisposeUnreadRows"
ColumnName="BytesRecvToDisposeUnreadRows" />
 <ScalarProperty Name="IDUCount" ColumnName="IDUCount" />
 <ScalarProperty Name="SelectCount" ColumnName="SelectCount" />
 <ScalarProperty Name="StoredProcedureCount" ColumnName="StoredProcedureCount" />
 <ScalarProperty Name="DDLCount" ColumnName="DDLCount" />
 <ScalarProperty Name="PacketsReceived" ColumnName="PacketsReceived" />
 <ScalarProperty Name="PacketsSent" ColumnName="PacketsSent" />
 <ScalarProperty Name="ServerRoundTrips" ColumnName="ServerRoundTrips" />
 <ScalarProperty Name="SelectRowsRead" ColumnName="SelectRowsRead" />
 <ScalarProperty Name="StatementCacheHits" ColumnName="StatementCacheHits" />
 <ScalarProperty Name="StatementCacheMisses" ColumnName="StatementCacheMisses" />
 <ScalarProperty Name="StatementCacheReplaces" ColumnName="StatementCacheReplaces" />
 <ScalarProperty Name="StatementCacheTopHit1" ColumnName="StatementCacheTopHit1" />
 <ScalarProperty Name="StatementCacheTopHit2" ColumnName="StatementCacheTopHit2" />
 <ScalarProperty Name="StatementCacheTopHit3" ColumnName="StatementCacheTopHit3" />
 <ScalarProperty Name="PacketsReceivedPerSocketRead"
ColumnName="PacketsReceivedPerSocketRead" />
 <ScalarProperty Name="BytesReceivedPerSocketRead" ColumnName="BytesReceivedPerSocketRead"
/>
 <ScalarProperty Name="PacketsSentPerSocketWrite" ColumnName="PacketsSentPerSocketWrite" /
>
 <ScalarProperty Name="BytesSentPerSocketWrite" ColumnName="BytesSentPerSocketWrite" />
 <ScalarProperty Name="PacketsSentPerRoundTrip" ColumnName="PacketsSentPerRoundTrip" />
 <ScalarProperty Name="PacketsReceivedPerRoundTrip"
ColumnName="PacketsReceivedPerRoundTrip" />
 <ScalarProperty Name="BytesSentPerRoundTrip" ColumnName="BytesSentPerRoundTrip" />
 <ScalarProperty Name="BytesReceivedPerRoundTrip" ColumnName="BytesReceivedPerRoundTrip" /
>
 <ScalarProperty Name="PartialPacketShifts" ColumnName="PartialPacketShifts" />
 <ScalarProperty Name="PartialPacketShiftBytes" ColumnName="PartialPacketShiftBytes" />
 <ScalarProperty Name="MaxReplyBytes" ColumnName="MaxReplyBytes" />
 <ScalarProperty Name="MaxReplyPacketChainCount" ColumnName="MaxReplyPacketChainCount" />
 <ScalarProperty Name="Id" ColumnName="Id" />
 </MappingFragment>
 </EntityTypeMapping>
 </EntitySetMapping>

250

 <EntitySetMapping Name="DDTekStatus">
 <EntityTypeMapping TypeName="DDTek.DDTekStatus">
 <MappingFragment StoreEntitySet="Status">
 <ScalarProperty Name="ServerVersion" ColumnName="ServerVersion" />
 <ScalarProperty Name="Host" ColumnName="Host" />
 <ScalarProperty Name="Port" ColumnName="Port" />
 <ScalarProperty Name="SID" ColumnName="SID" />
 <!-- <ScalarProperty Name="CurrentUser" ColumnName="CurrentUser" /> -->
 <!-- <ScalarProperty Name="CurrentUserAffinityTimeout"
ColumnName="CurrentUserAffinityTimeout" /> -->
 <!-- <ScalarProperty Name="SessionId" ColumnName="SessionId" /> -->
 <ScalarProperty Name="StatisticsEnabled" ColumnName="StatisticsEnabled" />
 <ScalarProperty Name="Id" ColumnName="Id" />
 </MappingFragment>
 </EntityTypeMapping>
 </EntitySetMapping>
 <FunctionImportMapping FunctionImportName="RetrieveStatistics" FunctionName=
"DDTek.Store.RetrieveStatistics" />
 <FunctionImportMapping FunctionImportName="EnableStatistics"
FunctionName="DDTek.Store.EnableStatistics" />
 <FunctionImportMapping FunctionImportName="DisableStatistics" FunctionName=
"DDTek.Store.DisableStatistics" />
 <FunctionImportMapping FunctionImportName="ResetStatistics"
FunctionName="DDTek.Store.ResetStatistics" />
 <FunctionImportMapping FunctionImportName="Reauthenticate" FunctionName=
"DDTek.Store.Reauthenticate" />
 </EntityContainerMapping>
 </Mapping>
</edmx:Mappings>

251

G. Bulk Load Configuration Files

The following topics describe the configuration files used by Zen Bulk Load.

• Sample Bulk Data Configuration File

• XML Schema Definition for a Bulk Data Configuration File

See Using Zen Bulk Load for more information about this feature.

252

Sample Bulk Data Configuration File
The bulk format configuration file is produced when either a table or a DataReader is exported
(unloaded) using the BulkCopy and BulkLoad operation.

<?xml version="1.0"?>
<!--
Sample DDL

CREATE_STMT = CREATE TABLE GTABLE (CHARCOL char(10),VCHARCOL varchar2(10), \

DECIMALCOL number(15,5), NUMERICCOL decimal(15,5), SMALLCOL number(38), \

INTEGERCOL integer, REALCOL number, \

FLOATCOL float, DOUBLECOL number, LVCOL clob, \

BITCOL number(1),TINYINTCOL number(19), BIGINTCOL number(38), BINCOL raw(10), \

VARBINCOL raw(10), LVARBINCOL blob, DATECOL date, \

TIMECOL date, TSCOL date) -->

<table codepage="UTF-16" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="file:///c:/Documents and Settings/jbruce/My Documents/Current Specs/
BulkData.xsd">
 <row>
 <column codepage="UTF-16" datatype="CHAR" length="10" nullable="true">CHARCOL</column>
 <column codepage="UTF-16" datatype="LONGVARCHAR" length="10">VCHARCOL</column>
 <column codepage="UTF-16" datatype="DECIMAL" precision="15" scale="5">DECIMALCOL</column>
 <column codepage="UTF-16" datatype="DECIMAL" precision="15" scale="5">NUMERICOL</column>
 <column codepage="UTF-16" datatype="DECIMAL" precision="38">SMALLCOL</column>
 <column codepage="UTF-16" datatype="INTEGER">INTEGERCOL</column>
 <column codepage="UTF-16" datatype="SINGLEPRECISION"">REALCOL</column>

 <!-More definitions can follow here -->
 </row>
</table>

253

XML Schema Definition for a Bulk Data
Configuration File
The bulk configuration XML schema governs bulk configuration files. The bulk configuration
files in turn govern bulk load data files that are processed by Zen Bulk Load.

This schema, which is published at https://media.datadirect.com/download/docs/ns/bulk/
BulkData.xsd, provides a foundation for any third-party functionality to be built using this
standard. Custom applications or tools that manage large amounts of data can employ this schema
as a loosely coupled Zen Bulk Load across ODBC, JDBC, and ADO.NET APIs and across
multiple platforms.

If you want to generate CSV data that can be consumed by Zen Bulk Load, you must supply an
XML Schema for your XML configuration file.

Each bulk operation generates an XML configuration file in UTF-8 format that describes the bulk
data file produced. If the bulk data file cannot be created or does not comply with the schema
described in the XML configuration file, an exception is returned.

https://media.datadirect.com/download/docs/ns/bulk/BulkData.xsd
https://media.datadirect.com/download/docs/ns/bulk/BulkData.xsd

254

255

H. IANA Code Page Mappings

This following table maps the most widely used IBM code pages to IANA code page names.

IBM Number IANA Code Page Name

37 IBM037

38 IBM038

290 IBM290

300 IBM300

301 IBM301

500 IBM500

813 ISO_8859-7:1987

819 ISO_8859-1:1987

857 IBM857

860 IBM860

861 IBM861

897 IBM897

932 IBM-942_P120-2000

939 IBM-939

943 Windows-932-2000 (for Windows clients)

943 IBM-943_P14A-2000 (for UNIX clients)

950 Big5

1200 UTF-16

1208 UTF-8

1251 Windows-1251

1252 Windows-1252

4396 IBM-930

5025 IBM5025

5035 IBM5035

256

5297 UTF-16

5304 UTF-8

13488 UTF-16BE

IBM Number IANA Code Page Name

	Contents
	Welcome to Actian Zen ADO.NET Data Providers
	What Are the Zen ADO.NET Data Providers?
	What’s New in This Release
	Using This Guide

	Quick Start
	ADO.NET Data Providers Installed with Zen
	Supported .NET Framework Versions
	Notes

	Zen ADO.NET Data Providers Available with SDK Download
	Defining Basic Connection Strings
	Notes
	Minimum Required Connection String Options

	Connecting to a Database
	Example: Using the Provider-Specific Objects
	Example: Using the Common Programming Model
	Example: Using the Zen Common Assembly

	Using the Zen ADO.NET Entity Framework Data Provider

	Using the Data Providers
	About the Data Providers
	Using Connection Strings
	Guidelines
	Using the Zen Performance Tuning Wizard

	Stored Procedures
	Using IP Addresses
	Transaction Support
	Using Local Transactions

	Thread Support
	Unicode Support
	Isolation Levels
	SQL Escape Sequences
	Event Handling
	Error Handling
	Using .NET Objects
	Developing Applications for .NET

	Advanced Features
	Using Connection Pooling
	Creating a Connection Pool
	Adding Connections to a Pool
	Removing Connections from a Pool
	Handling Dead Connection in a Pool
	Tracking Connection Pool Performance

	Using Statement Caching
	Enabling Statement Caching
	Choosing a Statement Caching Strategy

	Using Connection Failover
	Using Client Load Balancing
	Using Connection Retry
	Configuring Connection Failover
	Setting Security
	Code Access Permissions
	Security Attributes

	Using Zen Bulk Load
	Use Scenarios for Zen Bulk Load
	Zen Common Assembly
	Bulk Load Data File
	Example

	Bulk Load Configuration File
	Example

	Determining the Bulk Load Protocol
	Character Set Conversions
	External Overflow File
	Bulk Copy Operations and Transactions

	Using Diagnostic Features
	Tracing Method Calls
	Using Environment Variables
	Notes
	Using Static Methods

	PerfMon Support
	Analyzing Performance with Connection Statistics
	Enabling and Retrieving Statistical Items

	The ADO.NET Data Providers
	About Zen ADO.NET Data Providers
	Namespace
	C#
	Visual Basic

	Assembly Name

	Using Connection Strings with the Zen ADO.NET Data Provider
	Constructing a Connection String

	Performance Considerations
	Connection String Options that Affect Performance
	Properties that Affect Performance

	Data Types
	Mapping Zen Data Types to .NET Framework Data Types
	Mapping of Zen Data Types

	Mapping Parameter Data Types
	Mapping System.Data.DbTypes to PsqlDbTypes
	Mapping .NET Framework Types to PsqlDbType

	Data Types Supported with Stream Objects

	Using Streams as Input to Long Data Parameters
	Parameter Markers
	Parameter Arrays

	Zen ADO.NET Core Data Providers
	About Zen ADO.NET Core Data Providers
	Creating an Application in Visual Studio Using Zen ADO.Net Core DLL
	Creating a UWP Application in Visual Studio Using Zen ADO.Net Core Data Provider
	ADO.NET Data Provider Features Missing in Zen ADO.NET Core Data Provider

	Zen ADO.NET Entity Framework Data Providers
	About Zen ADO.NET Entity Framework Data Providers
	Namespace
	Assembly Names

	Configuring Entity Framework 6.1
	Configuration File Registration
	Code-Based Registration

	Using Connection Strings with the Zen ADO.NET Entity Framework Data Provider
	Defining Connection String Values in Server Explorer
	Changes in Default Values for Connection String Options

	Code First and Model First Support
	Handling Long Identifier Names

	Using Code First Migrations with the ADO.NET Entity Framework
	Using Enumerations with the ADO.NET Entity Framework
	Mapping Data Types and Functions
	Type Mapping for Database First
	Type Mapping for Database First

	Type Mapping for Model First
	Type Mapping for Code First
	Mapping EDM Canonical Functions to Zen Functions
	Aggregate Canonical Functions
	Math Canonical Functions
	Date and Time Canonical Functions
	Bitwise Canonical Functions
	String Canonical Functions
	Other Canonical Functions

	Extending Entity Framework Functionality
	Enhancing Entity Framework Performance
	Limiting the Size of XML Schema Files

	Using Stored Procedures with the ADO.NET Entity Framework
	Providing Functionality
	Mapping to Pseudo Stored Procedure

	Using Overloaded Stored Procedures

	Using .NET Objects
	Properties and Methods Differences with the ADO.NET Entity Data Provider
	Creating a Model

	Upgrading Entity Framework 5 Applications to Entity Framework 6.1
	For More Information

	Zen ADO.NET Entity Framework Core Data Providers
	About Zen ADO.NET Entity Framework Core Data Providers
	Namespace
	Assembly Names

	Configuring the Zen ADO.NET Entity Framework Core Data Provider
	Using Connection Strings with the Zen ADO.NET Entity Framework Core Data Provider
	Changes in Default Values for Connection String Options

	Code First Support
	Handling Long Identifier Names

	Using Code First Migrations with the ADO.NET Entity Framework Core
	Using Reverse Engineering (Scaffolding)
	Type Mapping for Code First
	Mapping EDM Canonical Functions to Zen Functions
	Aggregate Canonical Functions
	Math Canonical Functions
	Date and Time Canonical Functions
	String Canonical Functions
	Other Canonical Functions

	Extending Entity Framework Functionality
	Using Stored Procedures with the ADO.NET Entity Framework Core
	Upgrading an Application from Entity Framework 6.x to Entity Framework Core
	Limitations
	For More Information

	Using Zen Data Providers in Visual Studio
	Adding Connections
	Adding Connections in Server Explorer
	Advanced
	Connection Pooling
	Failover
	Performance
	Schema Information
	Security
	Standard Connection
	Tracing

	Adding Connections with the Data Source Configuration Wizard

	Using the Zen Performance Tuning Wizard
	Using Provider-Specific Templates
	Creating a New Project
	Adding a Template to an Existing Project

	Using the Zen Visual Studio Wizards
	Creating Tables with the Add Table Wizard
	Creating Views with the Add View Wizard

	Adding Components from the Toolbox
	Data Provider Integration Scenario

	A. .NET Objects Supported
	.NET Base Classes
	Data Provider-Specific Classes
	PsqlBulkCopy
	PsqlBulkCopyColumnMapping
	PsqlBulkCopyColumnMappingCollection
	PsqlCommand Object
	PsqlCommandBuilder Object
	PsqlConnection Object
	PsqlConnectionStringBuilder Object
	Connection String Properties
	PsqlCredential Object
	PsqlDataAdapter Object
	PsqlDataReader Object
	PsqlError Object
	PsqlErrorCollection Object
	PsqlException Object
	PsqlFactory Object
	PsqlInfoMessageEventArgs Object
	PsqlParameter Object
	PsqlParameterCollection Object
	PsqlTrace Object
	PsqlTransaction Object

	Zen Common Assembly Classes
	CsvDataReader
	CsvDataWriter
	DbBulkCopy
	DbBulkCopyColumnMapping
	DbBulkCopyColumnMappingCollection

	B. Getting Schema Information
	Columns Returned by the GetSchemaTable Method
	Retrieving Schema Metadata with the GetSchema Method
	MetaDataCollections Schema Collections
	DataSourceInformation Schema Collection
	DataTypes Collection
	ReservedWords Collection
	Restrictions Collection

	Additional Schema Collections
	Columns Schema Collection
	ForeignKeys Schema Collection
	Indexes Schema Collection
	PrimaryKeys Schema Collection
	ProcedureParameters Schema Collection
	Procedures Schema Collection
	TablePrivileges Schema Collection
	Tables Schema Collection
	Views Schema Collection

	C. SQL Escape Sequences for .NET
	Date, Time, and Timestamp Escape Sequences
	Example

	Scalar Functions
	Example

	Outer Join Escape Sequences
	Example

	D. Locking and Isolation Levels
	Locking
	Isolation Levels
	Locking Modes and Levels

	E. Designing .NET Applications for Performance Optimization
	Retrieving Data
	Retrieving Long Data
	Reducing the Size of Data Retrieved
	Using CommandBuilder Objects
	Choosing the Right Data Type

	Selecting .NET Objects and Methods
	Using Parameter Markers as Arguments to Stored Procedures

	Designing .NET Applications
	Managing Connections
	Opening and Closing Connections
	Using Statement Caching
	Using Commands Multiple Times
	Using Native Managed Providers

	Updating Data
	Using the Disconnected DataSet
	Synchronizing Changes Back to the Data Source

	F. Using an .edmx File
	Code Examples

	G. Bulk Load Configuration Files
	Sample Bulk Data Configuration File
	XML Schema Definition for a Bulk Data Configuration File

	H. IANA Code Page Mappings

