
Btrieve API Guide

Zen v16

Activate Your Data™

Copyright © 2024 Actian Corporation. All Rights Reserved.

This Documentation is for the end user’s informational purposes only and may be subject to change or withdrawal by
Actian Corporation (“Actian”) at any time. This Documentation is the proprietary information of Actian and is
protected by the copyright laws of the United States and international treaties. The software is furnished under a
license agreement and may be used or copied only in accordance with the terms of that agreement. No part of this
Documentation may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, or for any purpose without the express written permission of Actian. To the extent
permitted by applicable law, ACTIAN PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY
OF ANY KIND, AND ACTIAN DISCLAIMS ALL WARRANTIES AND CONDITIONS, WHETHER EXPRESS
OR IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF
MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OR OF NON-INFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT WILL ACTIAN BE LIABLE TO THE END USER OR ANY THIRD
PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION,
GOODWILL, OR LOST DATA, EVEN IF ACTIAN IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The manufacturer of this Documentation is Actian Corporation.

For government users, the Documentation is delivered with “Restricted Rights” as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Actian, Actian DataCloud, Actian DataConnect, Actian X, Avalanche, Versant, PSQL, Actian Zen, Actian Director,
Actian Vector, DataFlow, Ingres, OpenROAD, and Vectorwise are trademarks or registered trademarks of Actian
Corporation and its subsidiaries. All other trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

iii

Contents

About This Document xiii

Who Should Read This Document . xiii

Introduction to Btrieve APIs 1

Btrieve API Functions . 1
BTRV . 2
BTRVID . 2
BTRCALL . 2
BTRCALLID . 3
BTRVEX . 3
BTRVEXID . 4
Obsolete Functions . 4

Btrieve API Function Parameters . 4
Operation Code. 5
Status Code. 5
Position Block . 6
Data Buffer . 7
Data Buffer Length. 7
Key Buffer . 8
Key Number . 9
Client ID . 9
Key Length . 10

Summary of Btrieve API Operations . 11
Session-Specific Operations. 11
File-Specific Operations. 11
File Access and Information. 12
Data Retrieval . 12
Data Manipulation . 15
Unsupported Operations. 15

Sequence of Events in Performing a Btrieve API Operation . 16

Btrieve API Operations 17

Abort Transaction (21) . 20
Parameters . 20
Prerequisites . 20
Procedure . 20

iv

Result. 20
Positioning. 20

Begin Transaction (19 or 1019). 21
Parameters . 21
Prerequisites . 21
Procedure. 21
Result. 22
Positioning. 22

Clear Owner (30). 23
Parameters . 23
Prerequisites . 23
Procedure. 23
Result. 23
Positioning. 24

Close (1) . 25
Parameters . 25
Prerequisites . 25
Procedure. 25
Result. 25
Positioning. 26

Continuous Operation (42) . 27
Parameters . 27
Procedure. 27
Details . 28
Result. 29
Positioning. 30

Create (14). 31
Parameters . 31
Prerequisites . 31
Procedure. 31
Details . 32
Result. 47
Positioning. 48

Create Index (31). 49
Parameters . 49
Prerequisites . 49
Procedure. 50
Details . 51
Result. 52
Positioning. 53

v

Delete (4) . 54
Parameters . 54
Prerequisites . 54
Procedure . 54
Details. 54
Result . 55
Positioning . 55

Drop Index (32) . 56
Parameters . 56
Prerequisites . 56
Procedure . 56
Details. 56
Result . 57
Positioning . 57

End Transaction (20) . 58
Parameters . 58
Prerequisites . 58
Procedure . 58
Result . 58
Positioning . 58

Find Percentage (45). 59
Parameters . 59
Prerequisites . 59
Procedure . 59
Details. 60
Result . 61
Positioning . 62

Get By Percentage (44) . 63
Parameters . 63
Prerequisites . 63
Procedure . 63
Details. 64
Result . 65
Positioning . 66

Get Direct/Chunk (23) . 67
Parameters . 67
Prerequisites . 67
Procedure . 67
Details. 68
Result . 73

vi

Positioning. 74
Get Direct/Record (23) . 75

Parameters . 75
Prerequisites . 75
Procedure. 75
Result. 76
Positioning. 77

Get Directory (18) . 78
Parameters . 78
Prerequisites . 78
Procedure. 78
Result. 78
Positioning. 78

Get Equal (5) . 79
Parameters . 79
Prerequisites . 79
Procedure. 79
Result. 80
Positioning. 80

Get First (12) . 81
Parameters . 81
Prerequisites . 81
Procedure. 81
Result. 82
Positioning. 82

Get Greater Than (8) . 83
Parameters . 83
Prerequisites . 83
Procedure. 83
Result. 84
Positioning. 84

Get Greater Than or Equal (9). 85
Parameters . 85
Prerequisites . 85
Procedure. 85
Result. 86
Positioning. 86

Get Key (+50) . 87
Parameters . 87
Prerequisites . 87

vii

Procedure . 87
Result . 88
Positioning . 88

Get Last (13). 89
Parameters . 89
Prerequisites . 89
Procedure . 89
Result . 90
Positioning . 90

Get Less Than (10) . 91
Parameters . 91
Prerequisites . 91
Procedure . 91
Result . 92
Positioning . 92

Get Less Than or Equal (11). 93
Parameters . 93
Prerequisites . 93
Procedure . 93
Result . 94
Positioning . 94

Get Next (6) . 95
Parameters . 95
Prerequisites . 95
Procedure . 95
Result . 96
Positioning . 96

Get Next Delete Extended (85) . 97
Parameters . 97
Prerequisites . 97
Procedure . 97
Details. 98
Result . 98
Positioning . 99

Get Next Extended (36) . 101
Parameters . 101
Prerequisites . 101
Procedure . 101
Details. 102
Result . 109

viii

Positioning. 111
Get Position (22) . 112

Parameters . 112
Prerequisites . 112
Procedure. 112
Result. 112
Positioning. 113

Get Previous (7) . 114
Parameters . 114
Prerequisites . 114
Procedure. 114
Result. 115
Positioning. 115

Get Previous Delete Extended (86) . 116
Parameters . 116
Prerequisites . 116
Procedure. 116
Details . 117
Result. 117
Positioning. 117

Get Previous Extended (37) . 119
Parameters . 119
Prerequisites . 119
Procedure. 119
Details . 120
Result. 120
Positioning. 120

Insert (2) . 121
Parameters . 121
Prerequisites . 121
Procedure. 121
Result. 122
Positioning. 122

Insert Extended (40) . 123
Parameters . 123
Prerequisites . 123
Procedure. 123
Details . 124
Result. 124
Positioning. 125

ix

Login/Logout (78) . 127
Parameters . 127
Prerequisites . 127
Login Procedure . 127
Logout Procedure . 127
Result . 128
Notes. 128
Positioning . 128

Open (0) . 129
Parameters . 129
Prerequisites . 129
Procedure . 129
Details. 130
Result . 132
Positioning . 133

Reset (28) . 134
Parameters . 134
Prerequisites . 134
Procedure . 134
Result . 134
Positioning . 135

Set Directory (17) . 136
Parameters . 136
Prerequisites . 136
Procedure . 136
Result . 136
Positioning . 136

Set Owner (29) . 137
Parameters . 137
Prerequisites . 137
Procedure . 137
Details. 138
Result . 138
Positioning . 139

Stat (15) . 140
Parameters . 140
Prerequisites . 140
Procedure . 140
Details. 140
Result . 141

x

Positioning. 142
Stat Extended (65). 143

Parameters . 143
Prerequisites . 143
Procedure. 143
Subfunction 1: Extended File Information . 144
Subfunction 2: System Data Information . 145
Subfunction 3: Duplicate Record Conflict Information . 146
Subfunction 4: File Information . 147
Subfunction 5: Gateway Information . 149
Subfunction 6: Lock Owner Identification . 150
Subfunction 7: Security Information. 153
Subfunction 8: Listing of Table or File Name Causing a Status Code 71. 156
Result. 157

Step First (33) . 158
Parameters . 158
Prerequisites . 158
Procedure. 158
Result. 158
Positioning. 159

Step Last (34) . 160
Parameters . 160
Prerequisites . 160
Procedure. 160
Result. 160
Positioning. 161

Step Next (24) . 162
Parameters . 162
Prerequisites . 162
Procedure. 162
Result. 162
Positioning. 163

Step Next Extended (38) . 164
Parameters . 164
Prerequisites . 164
Procedure. 164
Details . 165
Result. 165
Positioning. 166

Step Next Delete Extended (87) . 167

xi

Parameters . 167
Prerequisites . 167
Procedure . 167
Details. 168
Result . 168
Positioning . 169

Step Previous (35) . 170
Parameters . 170
Prerequisites . 170
Procedure . 170
Result . 171
Positioning . 171

Step Previous Delete Extended (88). 172
Parameters . 172
Prerequisites . 172
Procedure . 172
Details. 173
Result . 173
Positioning . 173

Step Previous Extended (39) . 174
Parameters . 174
Prerequisites . 174
Procedure . 174
Details. 175
Result . 175
Positioning . 175

Stop (25) . 176
Parameters . 176
Procedure . 176
Result . 176
Positioning . 176

Unlock (27). 177
Parameters . 177
Prerequisites . 177
Procedure . 177
Result . 178
Positioning . 178

Update (3). 179
Parameters . 179
Prerequisites . 179

xii

Procedure. 179
Result. 180
Positioning. 180

Update Chunk (53) . 181
Parameters . 181
Prerequisites . 181
Procedure. 181
Details . 182
Result. 187
Positioning. 188

Version (26) . 189
Parameters . 189
Prerequisites . 189
Procedure. 189
Result. 189
Positioning. 190

A. Quick Reference of Btrieve Operations 191

About This Document xiii

About This Document

This documentation is a guide to the Btrieve application programming interface (API).

Who Should Read This Document
This document is designed for any user who is familiar with Zen and wants to develop
applications that use the Btrieve API.

Actian Corporation would appreciate your comments and suggestions about this manual. As a
user of our documentation, you are in a unique position to provide ideas that can have a direct
impact on future releases of this and other manuals. If you have comments or suggestions for the
product documentation, post your request at the Community Forum on the Zen website.

Who Should Read This Document

xiv About This Document

Introduction to Btrieve APIs 1

Introduction to Btrieve APIs

The Zen MicroKernel Engine is designed for high-performance data handling and improved
programming productivity. The MicroKernel Engine operations allow your application to
retrieve, insert, update, or delete records either by key value, or by sequential or random access
methods.

The Btrieve API provides compatibility with the following programming languages and
development environments:

• Embarcadero C/C++

• Embarcadero Delphi

• GNU C/C++

• Micro Focus COBOL

• Microsoft Visual Basic

• Microsoft Visual C++

• Watcom C/C++

The following topics cover the API functionality:

• Btrieve API Functions

• Btrieve API Function Parameters

• Summary of Btrieve API Operations

• Sequence of Events in Performing a Btrieve API Operation

You can also go directly to a list of Btrieve API Operations or the Quick Reference of Btrieve
Operations.

Btrieve API Functions
The Btrieve API is single-function in that most program actions are determined by an operation
code parameter rather than a function name. You should choose the API for your application
based on whether you are most interested in cross-platform portability of code or the best possible
performance on a particular platform.

Your Btrieve application should never perform any standard I/O against a data file. Your
application should perform all file I/O using a Btrieve API function.

Btrieve API Functions

2 Introduction to Btrieve APIs

The following table lists Btrieve API functions provided for use with the operation codes.

To find the language-specific syntax for calling Btrieve API functions, see Btrieve API
Programming in Zen Programmer’s Guide.

BTRV

BTRV allows an application to make calls to the MicroKernel Engine. All the language interface
modules provided with the Programming Interfaces installation option support the BTRV
function. In some cases, the BTRV function actually calls the BTRCALL function. However,
BTRV is the preferred function because of the platform independence it provides.

BTRVID

BTRVID allows an application to make a single MicroKernel Engine call that contains a clientID
parameter, which the application can control. An application can use BTRVID to assign itself
more than one client identity to the MicroKernel Engine and to execute operations for one client
without affecting the state of the other clients. For more information, see Client ID.

BTRCALL

For Windows and Linux, BTRCALL is equivalent to the BTRV function. You should use the
BTRV function instead of BTRCALL unless you cannot afford the slight performance decrease
that occurs with BTRV.

Function Operating
Systems

Description

BTRV
BTRVID

All Use for complete code portability between operating systems. For
most developers, this advantage offsets a very slight performance
decrease. Uses older data buffer layout.

BTRCALL
BTRCALLID

All Use when you want to specify the key length argument. Uses older
data buffer layout.

BTRVEX
BTRVEXID

All Use when you need longer data buffers, or when you want the new
data buffer layout. May be intermixed with BTRV type entry points
so long as you interpret the data buffers correctly.

Btrieve API Functions

Introduction to Btrieve APIs 3

BTRCALLID

Use the BTRCALLID function if you need client-level control and your application operates in
Windows, Linux, or Raspbian.

This function is similar to the BTRVID function, except that it does not call an intermediate
function.

Note: The legacy BTRCALLID32 function is aliased to the BTRCALLID function.

BTRVEX

The potentially large size of 13.0 and 16.0 format files and the use of larger data buffers requires
run-time values larger than what older Btrieve interfaces have provided. The newer entry points
BTRVEX and BTRVEXID meet these requirements. They are similar to BTRCALL and
BTRCALLID, except that some of the function arguments use wider types, and some of the data
buffers are laid out differently. The declarations are in btrvexid.h and the implementations are in
the same files as BTRCALL.

For a Btrieve operation that uses a BTRVEX entry point, some values passed in data buffers are
wider, such as 8-byte record addresses and record counts. Please note that the 8-byte behavior is
due to the BTRVEX entry points and does not depend on the format version of the file being
accessed. To use BTRVEX, the following operations require changed data buffer layouts:

• Create (14), Create Index (31)

• Stat (15)

• Get Position (22)

• Get Direct (23)

• Get Next Extended (36), Get Previous Extended (37)

• Step Next Extended (38), Step Previous Extended (39)

• Insert Extended (40)

• Find Percentage (45)

• Stat Extended (65) subfunctions 3 and 8

• Unlock (27)

The choice of entry point does not affect record data.

As noted above, the data buffer size argument for BTRVEX is a pointer to a 32-bit integer, where
BTRCALL uses a 16-bit integer. Thus, data buffers can be larger than 64 KB.

Btrieve API Function Parameters

4 Introduction to Btrieve APIs

If you are migrating to the new file format, keep in mind that the position block and client ID
values can be used with both BTRCALL and BTRVEX, so it is not necessary to convert all code
to BTRVEX at once.

The key number argument for BTRVEX is a 32-bit integer, where BTRCALL uses an 8-bit signed
integer. To make it easier to convert existing code to BTRVEX, the BTRVEX entry point remaps
key values 128 through 255 to –128 through –1. This accommodates constants that were specified
as unsigned bytes (e.g., 0xFE) instead of as signed bytes (e.g., –2).

BTRVEXID

Like BTRVID and BTRCALLID, BTRVEXID allows client ID control in addition to the benefits
of BTRVEX.

Obsolete Functions

The following historical functions are supported to maintain compatibility with applications
written for previous Btrieve API releases:

• BTRCALLBACK

• BTRVINIT

• BTRVSTOP

• RQSHELLINIT

• WBRQSHELLINIT

• WBTRVINIT

• WBTRVSTOP

• BRQSHELLINIT

While these functions are now obsolete, older applications that call these functions will still run
with 6.15 and later MicroKernel versions.

Btrieve API Function Parameters
Every function call must provide all parameters. This holds true even though the MicroKernel
Engine does not use every parameter on every operation and in some cases may ignore a
parameter value. In general, different parameters can be sent and returned for each operation. See
Btrieve API Operations for details of the parameters for each Btrieve API operation.

Btrieve API Function Parameters

Introduction to Btrieve APIs 5

Note: C developers: See the file btitypes.h for information about the platform-independent data
types and pointers used in the C language interface.

Btrieve API functions use the following parameters:

• Operation Code

• Status Code (BASIC and COBOL only)

• Position Block

• Data Buffer

• Data Buffer Length

• Key Buffer

• Key Number

• Client ID (BTRVID, BTRCALLID, and BTRVEXID functions only)

• Key Length (BTRCALL, BTRCALLID, BTRVEX, and BTRVEXID functions only)

Operation Code

The operation code parameter determines the action of the Btrieve API function. For example, the
operation may read, write, delete, or update one or more records. Your application must specify an
operation code in every Btrieve API call. The MicroKernel Engine never changes the code.
Operation codes are described under Btrieve API Operations.

Note: C developers: The data type of the variable you specify must be either BTI_WORD, an
unsigned short integer, or BTI_INT, a signed 32-bit integer used only with BTRVEX and
BTRVEXID. In both cases, the variable is passed by value.

Status Code

In BASIC and COBOL applications, the MicroKernel Engine returns status codes, which are
signed integers. In most programming environments, the status code is the return value of the
Btrieve API function call. However, some BASIC and COBOL language interfaces require a
Status Code parameter, which contains a coded value to indicate whether errors occurred during
the operation. After a Btrieve API call, the application must always check the value of the status
variable to determine success.

Zen components return status codes from calls to their APIs. When you write to these APIs, you
should provide handling for three conditions:

• API success

Btrieve API Function Parameters

6 Introduction to Btrieve APIs

• Anticipated API failure

• Unanticipated API failure

Here is a C code example that handles all three conditions:

status = BTRVID(B_VERSION, posBlock1, &versionBuffer, &dataLen, keyBuf1, keyNum, (BTI_BUFFER_PTR)
&clientID);
if (status == B_NO_ERROR)
{

/* continue normal operation */
status = BTRVID(...);

}
else if (status == B_RECORD_MANAGER_INACTIVE)
{

/* handle known error */
printf("Btrieve Get Version() returned B_RECORD_MANAGER_INACTIVE\n");

}
else
{

/* unanticipated error */
printf("Btrieve Get Version() returned %d\n", status);

} /* end if-else */

By following this method of status code handling, you can help ensure your application's future
stability.

Note: In the older BTRV functions, status codes are 2-byte integers, while the newer BTRVEX
and BTRVEXID return 4-byte integers.

Position Block

The position block parameter is the address of a 128-byte array that the MicroKernel Engine uses
to store file I/O structures and the positioning information associated with an Open (0) operation.
Each time your application opens a file, it must allocate a unique position block. The MicroKernel
Engine initializes the position block when your application performs the Open operation, then
references and updates it during file operations. Therefore, your application must specify the
same position block on all subsequent Btrieve API operations for the file.

Note: Do not write to the position block. Doing so could result in a lost position error, other
errors, or damage to the file.

When you open more than one file at a time, the MicroKernel Engine uses the position block to
determine which file a particular call is for. Similarly, when you open the same file more than
once, the engine uses a different position block for each Open operation. Likewise, the engine
uses a different position block for each separate client that opens the same file. Clients cannot
share position blocks.

Btrieve API Function Parameters

Introduction to Btrieve APIs 7

Note: The position block is not bound to an entry point. It is possible to open a data file using
BTRV, read data using BTRVEX, and close the file using BTRCALL.

Data Buffer

Your application transfers data to and from a file using the data buffer. The information passed to
or from the MicroKernel Engine in the data buffer depends on which Btrieve API operation is
being performed. Frequently, the data buffer contains one or more records that your application is
transferring to or from a file. However, depending on the Btrieve API operation, the data buffer
can contain other information, such as file or key specifications, MicroKernel Engine version
information, and so on.

Be sure to allocate a large enough data buffer to accommodate the longest record in your file. If
your data buffer length parameter specifies a value larger than the allocated size of your data
buffer, MicroKernel Engine modification operations may destroy data following the data buffer.

Note: The same operations use different layouts depending on the entry point. BTRV, BTRVID,
BTRCALL, and BTRCALLID use the legacy layout. BTRVEX and BTRVEXID use a newer,
slightly different layout. The different layouts do not affect user data records.

Data Buffer Length

For any operation that requires a data buffer, your application must pass a variable that indicates
the size (in bytes) of the data buffer, which should be large enough to contain data that the
operation returns.

Note: BASIC developers: Applications must pass the data buffer length parameter ByRef as a
Long integer.
C, COBOL, and Pascal developers: Applications must pass the data buffer length parameter as a
pointer to a 2-byte integer for older BTRV functions, while the newer BTRVEX and BTRVEXID
functions use a 4-byte integer.

When you are inserting records into or updating a file with variable-length records, the data buffer
length should equal the record length specified when you first created the file, plus the number of
characters included beyond the fixed-length portion. When you are retrieving variable-length
records, the data buffer length should be large enough to accommodate the longest record in the
file. If a record is longer than the maximum data buffer size, you must use a chunk operation to
operate on a portion of the record.

The MicroKernel Engine uses the data buffer length parameter to determine how much space is
available in the data buffer. If you pass a data buffer length that is longer than the data buffer you

Btrieve API Function Parameters

8 Introduction to Btrieve APIs

have allocated, you may cause the MicroKernel Engine to overwrite memory. The data buffer
length should always represent the size of the allocated data buffer.

Note: The data buffer length is 2 bytes for the older BTRV functions and 4 bytes for the newer
BTRVEX and BTRVEXID. For the older functions, the maximum data buffer size is 64 KB,
while for the two newer ones it is 252 KB.

Key Buffer

Your application must pass the key buffer parameter on every Btrieve API operation, even if that
operation does not use a key buffer. Depending on the operation, your application may set the data
in the key buffer, or the Btrieve API function may return it.

Note: BASIC developers: Your application must pass the key buffer as a string. If the key value is
an integer, your application should convert it to a string using the MKI$ statement before calling
the Btrieve API function. If a key consists of two or more segments, you must concatenate them
into a single string variable and pass the variable as the key buffer.

The MicroKernel Engine returns an error if the string variable passed as the key buffer is shorter
than the defined key length. If your first application call does not require initialization of the key
buffer, then assign the string variable the value SPACE$(x), where x represents the defined length
of the key. Until your application assigns a value in BASIC to the string variable, its length is 0.

C developers: Your application must pass the key buffer as the address of a variable containing
the key value. The file btitypes.h defines the key buffer as a VOID pointer (BTI_VOID_PTR).
Your application can then define the key buffer type as needed.

COBOL developers: Your application must pass the key buffer as a record variable. If the key
consists of two or more segments, list them in the correct order as individual fields under an 01
level record. Then you can pass the entire record as the key buffer.

Pascal developers: Your application must pass the key buffer as a variable containing a key value.
If a key consists of two or more segments, use a record structure to define the individual fields in
the key.

In most environments, the MicroKernel Engine cannot determine the key buffer length when an
application makes a Btrieve API call. You must ensure that the buffer is at least as long as the key
length you chose when you created the key. Otherwise, Btrieve operations may destroy data
stored in memory following the key buffer. It is best to have a 255-byte key buffer, because 255 is
the maximum key length, or 1024 if you are using a 16.0 format file.

Btrieve API Function Parameters

Introduction to Btrieve APIs 9

Key Number

The information passed in the key number parameter depends on which operation is being
performed. Most often, the key number contains a value that indicates which of up to 119 key
(access) paths to follow for a particular operation. In all functions, the key number has a value
range of 0 through 118.

The key number size varies:

• For BTRV and BTRVID, this parameter is a 2-byte integer.

• For BTRCALL, BTRCALLID, BTRCALL32, and BTRCALLID32, it is a 1-byte signed
character (BTI_CHAR).

• For BTRVEX and BTRVEXID, it is a 4-byte integer. As a convenience for code migrating to
BTRVEX, the key values 128–255 are mapped to key values –128 to –1. This simulates the
conversion of a large unsigned byte value (e.g., 0xFF) to the signed byte argument of
BTRCALL.

Btrieve API functions never alter the key number parameter.

Other information can be sent or returned in the key number parameter, such as a value indicating
the mode for opening the file.

Client ID

The Client ID parameter is used only in the BTRVID, BTRCALLID, and BTRVEXID functions.
The Client ID parameter is the address of a 16-byte structure that allows the MicroKernel Engine
to differentiate among the clients on a computer. Use the following structure for the Client ID.

Element Length
(bytes)

Description

Filler 12 Initialize to 0.

Service Agent
ID

2 Identifies each instance of your application to the MicroKernel
Engine. This is a 2-character ASCII value. The value of this
identifier must be greater than or equal to the ASCII value AA
(0x41 0x41). The MicroKernel Engine assumes special meaning for
the following values:

0x4140 (@A) Used internally.

0xFFFF Used internally.

0x4952 (RI) Used internally.

Btrieve API Function Parameters

10 Introduction to Btrieve APIs

Key Length

The Key Length parameter is used only for BTRCALL, BTRCALLID, BTRVEX, and
BTRVEXID.

The key length value is used as follows:

• For BTRCALL and BTRCALLID, pass the key length as an unsigned char of type
BTI_BYTE, with a value of the allocated length of your key buffer. The maximum length you
can specify is 255, the maximum length of any key in 13.0 format files and earlier.

• For BTRVEX and BTRVEXID, pass the key length as an unsigned char of type BTI_INT,
which can be useful for longer keys in 16.0 format files.

Consider the following when you access the key buffer:

• For all four functions, the bytes of the key buffer up to the specified key length must be
readable or writable, depending on the operation code.

• BTRV and BTRVID assume a key length of 255, so you should supply a key buffer at least
that large.

• For BTRCALL and BTRCALLID, Zen client components may attempt to determine the
actual key length and in some instances may read or write a smaller portion of the key buffer.

• BTRVEX and BTRVEXID take the specified key length at face value.

0x5244 (DR) Used internally.

0x4553 (SE)
0x4353 (SC)
0x4344 (DC)
0x4544 (DE)
0x5544 (DU)

Used to identify clients
originated by Scalable SQL.

0x5257 (WR) Used by Btrieve Requesters.

Client Identifier 2 Establishes a client identity within the current instance of your
application. The MicroKernel Engine uses this unique identifier for
concurrency and transaction-processing purposes.

Element Length
(bytes)

Description

Summary of Btrieve API Operations

Introduction to Btrieve APIs 11

Summary of Btrieve API Operations
The Btrieve API provides over 40 operations to call from your application program. This topic
summarize these operations. See Btrieve API Operations for complete descriptions. See Quick
Reference of Btrieve Operations for brief summaries ordered by operation code.

Session-Specific Operations

The following operations allow you to set or retrieve the current directory, shut down a
workstation MicroKernel Engine, retrieve the MicroKernel Engine version number, terminate a
client connection with the server MicroKernel Engine, and begin, end, or abort a transaction. In
applications that handle multiple clients, these operations are specific to the calling client.

File-Specific Operations

The following operations deal with a specific file, and therefore use the position block parameter
to identify the file on which to operate. The file-specific operations are of three types:

• File Access and Information

• Data Retrieval

• Data Manipulation

Operation Code Description

Stop 25 Terminates the workstation MicroKernel Engine (not available for
server-based MicroKernel Engine).

Version 26 Returns the version number of the MicroKernel Engine.

Reset 28 Releases all resources held by a client.

Set Directory 17 Sets the current directory to a specified path name.

Get Directory 18 Returns the current directory for a specified logical disk drive.

Begin Transaction 19
1019

Marks the beginning of a set of logically related operations. Operation
19 begins an exclusive transaction. Operation 1019 begins a
concurrent transaction.

End Transaction 20 Marks the end of a set of logically related operations.

Abort Transaction 21 Removes operations performed during an incomplete transaction.

Continuous
Operation

42 Allows you to perform system backups without closing active
MicroKernel Engine files.

Summary of Btrieve API Operations

12 Introduction to Btrieve APIs

File Access and Information

The following table lists access and information operations to create a file, open and close it,
retrieve its statistics, set and clear its owner name, start or stop its continuous operation mode,
unlock it, and create and drop its indexes.

Data Retrieval

The following table lists data retrieval operations to retrieve a single record or a set of records
given specified criteria. The Btrieve API supports data retrieval either by logical location in an
index path or by physical location. For more about accessing records, see Zen Programmer’s
Guide.

In addition, you can apply biases to the operation codes to control file and record locking in
multiclient situations. For more about supporting multiple clients, see Zen Programmer’s Guide.

Operation Code Description

Open 0 Makes a file available for access.

Close 1 Releases a file from availability.

Create 14 Creates a file with the specified characteristics.

Stat 15 Returns file and index characteristics, and number of records.

Continuous Operation 42 Allows you to perform system backups without closing active
MicroKernel Engine files.

Stat Extended 65 Returns file names and paths of components of an extended file and
reports whether a file is using a system-defined log key.

Set Owner 29 Assigns an owner name to a file.

Clear Owner 30 Removes an owner name from a file.

Unlock 27 Unlocks a record or records.

Create Index 31 Creates an index.

Drop Index 32 Removes an index.

Operation Code Description

Index-Based (Logical) Data Retrieval

Get Equal 5 Returns the first record in the specified index path whose key value matches
the specified key value.

Summary of Btrieve API Operations

Introduction to Btrieve APIs 13

Get Next 6 Returns the record following the current record in the index path.

Get Previous 7 Returns the record preceding the current record in the index path.

Get Greater
Than

8 Returns the first record in the specified index path whose key value is
greater than the specified key value.

Get Greater
Than or
Equal

9 Returns the first record in the specified index path whose key value is equal
to or greater than the specified key value.

Get Less
Than

10 Returns the first record in the specified index path whose key value is less
than the specified key value.

Get Less
Than or
Equal

11 Returns the first record in the specified index path whose key value is equal
to or less than the specified key value.

Get First 12 Returns the first record in the specified index path.

Get Last 13 Returns the last record in the specified index path.

Get Next
Extended

36 Returns one or more records that follow the current record in the index path.
Filtering conditions can be applied.

Get Previous
Extended

37 Returns one or more records that precede the current record in the index
path. Filtering conditions can be applied.

Get Key +50 Detects the presence of a key value in a file, without returning an actual
record.

Get By
Percentage

44 Returns the record located approximately at a position derived from the
specified percentage value.

Find
Percentage

45 Returns a percentage figure based on the position of the current record in the
file.

Non-Index-Based (Physical) Retrieval

Get Position 22 Returns the position of the current record.

Get Direct/
Chunk

23 Returns data from the specified portions (chunks) of a record at a specified
position.

Get Direct/
Record

23 Returns the record at a specified position.

Step Next 24 Returns the record from the physical location following the current record.

Step First 33 Returns the record in the first physical location in the file.

Operation Code Description

Summary of Btrieve API Operations

14 Introduction to Btrieve APIs

Step Last 34 Returns the record in the last physical location in the file.

Step
Previous

35 Returns the record in the physical location preceding the current record.

Step Next
Extended

38 Returns one or more successive records from the location physically
following the current record. Filtering conditions can be applied.

Step
Previous
Extended

39 Returns one or more preceding records from the location physically
preceding the current record. Filtering conditions can be applied.

Get By
Percentage

44 Returns the record located approximately at a position derived from the
specified percentage value.

Find
Percentage

45 Returns a percentage figure based on the position of the current record in the
file.

Concurrency Control Biases (Add to the Appropriate Operation Code)

Single-
record wait
read lock

+100 Locks only one record at a time. If the record is already locked, the client
retries the operation.

Single-
record
no-wait read
lock

+200 Locks only one record at a time. If the record is already locked, the
MicroKernel Engine returns an error status code.

Multiple-
record wait
read lock

+300 Locks several records concurrently in the same file. If the record is already
locked, the client retries the operation.

Multiple-
record
no-wait read
lock

+400 Locks several records concurrently in the same file. If the record is already
locked, the MicroKernel Engine returns an error status code.

No-wait
page write
lock

+500 In a concurrent transaction, tells the MicroKernel Engine not to wait if the
page to be changed has already been changed by another active concurrent
transaction. This bias can be combined with any of the record locking read
biases (+100, +200, +300, or +400).

Operation Code Description

Summary of Btrieve API Operations

Introduction to Btrieve APIs 15

Data Manipulation

The following table lists operations to insert, update, or delete data.

Unsupported Operations

When looking at MicroKernel Engine traces or SDK header files, you may see operations that are
not listed in the reference for Btrieve API operations. These are for the internal use of Zen and
you should not use them in your applications. The following operations are not supported.

Operation Code Description

Insert 2 Inserts a new record into a file.

Update 3 Updates the current record.

Delete 4 Removes the current record from the file.

Insert Extended 40 Inserts one or more records into a file.

Update Chunk 53 Updates specified portions (chunks) of the current
record. This operation can also append data to a record or
truncate a record.

Get Next Delete Extended 85 Removes records matching a filter condition, from the
logical next position to the end of the file.

Get Previous Delete Extended 86 Removes records matching a filter condition, from the
logical previous position to the beginning of the file.

Step Next Delete Extended 87 Removes records matching a filter condition, from the
physical next position to the end of the file.

Step Previous Delete Extended 88 Removes records matching a filter condition, Removes
records matching a filter condition, from the physical
previous position to the beginning of the file.

Operation Code Description

B_MISC_DATA 41 Reserved for use by MicroKernel Engine

B_EXTEND 16 Reserved for use by SQL engine

Begin Transaction (nested) via
Btrieve

2019 Reserved for use by MicroKernel Engine

Sequence of Events in Performing a Btrieve API Operation

16 Introduction to Btrieve APIs

Sequence of Events in Performing a Btrieve API
Operation

To perform a Btrieve API operation, your application must complete the following tasks

1. Satisfy any prerequisites the operation requires. For example, before your application can
perform any file I/O operations, it must make the file available by performing an Open (0)
operation on that file.

2. Initialize the parameters that the Btrieve API operation requires. The parameters are program
variables or data structures that correspond in type and size to the particular values that the
MicroKernel Engine expects for an operation.

For future compatibility, initialize all parameters, whether or not they are used. For parameters
of type INTEGER, set the value to binary 0. For character arrays, pass a pointer to a buffer.
Initialize the first byte of the buffer to binary 0.

3. Call the appropriate Btrieve API function. (Refer to Btrieve API Functions.)

4. Evaluate the results of the function call. Every Btrieve API operation returns a status code.
Your application must check the status code and take the appropriate action. The operation
also returns data or other information to the individual parameters based on the purpose of the
operation.

Btrieve API Operations 17

Btrieve API Operations

The operations documented here are the ones your application can perform using the Btrieve API.
For each operation you will find the following information:

• Name, code, and description of the operation.

• Parameters – A table indicating which of the six parameter values the operation expects from
and returns to your application. A "sent" parameter is sent from the application to the
operation. A "returned" parameter is returned from the operation to the application when the
operation is complete.

• Prerequisites – The conditions your application must satisfy for the operation to be successful.

• Procedure – The steps for initializing the parameters that the operation requires.

• Details – Additional information about the operation.

• Result – The results of both a successful and an unsuccessful operation. Each operation
returns a status code, informing your application of the outcome of the operation. status code
0 indicates the operation was successful. A nonzero status code usually indicates a failure.
However, some nonzero status codes are informative and appear even when the associated
operation succeeds – for example, status code 60 means the specified reject count has been
reached.

• Positioning – The effect the operation has on the logical or physical currency of the records in
a file.

The Btrieve API operations are listed alphabetically.

• Abort Transaction (21)

• Begin Transaction (19 or 1019)

• Clear Owner (30)

• Close (1)

• Continuous Operation (42)

• Create (14)

• Create Index (31)

• Delete (4)

• Drop Index (32)

• End Transaction (20)

18 Btrieve API Operations

• Find Percentage (45)

• Get By Percentage (44)

• Get Direct/Chunk (23)

• Get Direct/Record (23)

• Get Directory (18)

• Get Equal (5)

• Get First (12)

• Get Greater Than (8)

• Get Greater Than or Equal (9)

• Get Key (+50)

• Get Last (13)

• Get Less Than (10)

• Get Less Than or Equal (11)

• Get Next (6)

• Get Next Delete Extended (85)

• Get Next Extended (36)

• Get Position (22)

• Get Previous (7)

• Get Previous Delete Extended (86)

• Get Previous Extended (37)

• Insert (2)

• Insert Extended (40)

• Login/Logout (78)

• Open (0)

• Reset (28)

• Set Directory (17)

• Set Owner (29)

• Stat (15)

• Stat Extended (65)

Btrieve API Operations 19

• Step First (33)

• Step Last (34)

• Step Next (24)

• Step Next Delete Extended (87)

• Step Next Extended (38)

• Step Previous (35)

• Step Previous Delete Extended (88)

• Step Previous Extended (39)

• Stop (25)

• Unlock (27)

• Update (3)

• Update Chunk (53)

• Version (26)

20 Btrieve API Operations

Abort Transaction (21)
The Abort Transaction operation (B_ABORT_TRAN) terminates the current transaction and
removes the results of all operations performed since the beginning of the transaction. It also
unlocks all files and records locked by the transaction.

Parameters

Prerequisites

You must issue a successful Begin Transaction (19 or 1019) before you issue an Abort
Transaction operation.

Procedure

Set the operation code to 21. The MicroKernel Engine ignores all other parameters on an Abort
Transaction call.

Result

If the Abort Transaction operation succeeds, the MicroKernel Engine returns status code 0. The
results of all Insert, Update, and Delete operations issued since the beginning of the transaction
are removed from the files.

If the Abort Transaction operation fails, the MicroKernel Engine returns one of the following
status codes:

Positioning

The Abort Transaction operation has no effect on any file currency information.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X

Returned

36 The application encountered a transaction error.

39 A Begin Transaction operation must precede an End/Abort Transaction operation.

Btrieve API Operations 21

Begin Transaction (19 or 1019)
The Begin Transaction operation (B_BEGIN_TRAN) defines the start of a transaction.
Transactions are useful when you need to perform multiple Btrieve API operations as a single
event. For example, use a transaction if your database would become logically inconsistent if
some operations were successful, but at least one operation failed to complete successfully.

By enclosing a set of operations between Begin and End Transaction operations, you can ensure
that the MicroKernel Engine does not permanently complete any operations in the set unless you
request the completion with an explicit End Transaction (20). Changes made within a transaction
are not visible to other users until the End Transaction operation succeedsly performed.

The MicroKernel Engine prohibits certain operations during transactions because they have too
great an effect on the file or on performance. These operations include Set Owner (29), Clear
Owner (30), Create Index (31), and Drop Index (32).

Parameters

Prerequisites

Your application must end or abort any previous transaction before issuing a Begin Transaction.

Procedure

Set the operation code to 19 to begin an exclusive transaction, or 1019 to begin a concurrent
transaction. The MicroKernel Engine ignores all parameters except the operation code on any
Begin Transaction call.

On any Begin Transaction operation, you can specify default lock biases:

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X

Returned

22 Btrieve API Operations

On a Begin Concurrent Transaction operation, you can add +500 to the operation code (1519),
which forces the MicroKernel Engine not to retry the Insert, Update, and Delete operations within
a transaction.

In addition, you can combine the +500 bias with a default lock bias. For example, using 1019 +
500 + 200 (1719) begins a concurrent transaction, suppresses retries for Insert, Update, and Delete
operations, and specifies single no-wait read locks at the same time.

Note: For details about record locking and data integrity, see Zen Programmer’s Guide, as well
as the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

Result

If the Begin Transaction operation succeeds, the MicroKernel Engine returns status code 0.

If the Begin Transaction operation fails, the MicroKernel Engine returns one of the following
status codes:

Positioning

The Begin Transaction operation has no effect on any file currency information.

36 The application encountered a transaction error.

37 Another transaction is active.

Btrieve API Operations 23

Clear Owner (30)
The Clear Owner operation (B_CLEAR_OWNER) removes an owner name that you have
previously assigned to a file with the Set Owner operation. If the file was previously encrypted,
the MicroKernel Engine decrypts the file during a Clear Owner operation. For more information,
see Owner Names in Advanced Operations Guide.

Parameters

Prerequisites
• The file must be open, and an owner name must have been specified.

• No transactions can be active.

Procedure

1. Set the operation code to 30.

2. Pass the position block that identifies the file to clear.

Result

After a Clear Owner operation, the MicroKernel Engine no longer requires the owner name to
open or modify a file. If you encrypted the data in the file when you assigned the owner, the
MicroKernel Engine decrypts the data during a Clear Owner operation. The more data that was
encrypted, the longer the Clear Owner operation takes.

If the Clear Owner operation fails, the MicroKernel Engine returns one of the following status
codes:

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X

Returned X

3 The file is not open.

41 The MicroKernel Engine does not allow the attempted operation.

24 Btrieve API Operations

Positioning

The Clear Owner operation has no effect on any file currency information.

Btrieve API Operations 25

Close (1)
The Close operation (B_CLOSE) closes the file associated with a specified position block and
releases any locks your application has executed for the file. Your application should always
perform a Close operation when it has finished accessing a file. After a Close operation, your
application cannot access the file again until it issues another Open (0) for that file.

You can close a file even while inside a transaction. However, the Close operation does not end
the transaction. You must explicitly end or abort the transaction. If you abort the transaction,
changes made inside the transaction are aborted. If you end the transaction, changes are
committed.

Note: When you close a file inside a transaction, the MicroKernel Engine continues to keep an
open handle on the file until the transaction is either aborted or ended so that updates to that file
can be handled properly. The position block for the file is no longer available to your application,
however.

Parameters

Prerequisites

The file must be open.

Procedure

1. Set the operation code to 1.

2. Pass a valid position block for the file to close.

Result

If the Close operation succeeds, the position block for the closed file is no longer valid.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X

Returned

26 Btrieve API Operations

If the Close operation fails, the file remains open and the MicroKernel Engine returns the
following status code:

Positioning

The Close operation destroys both the physical and the logical currency information of the file.

3 The file is not open.

Btrieve API Operations 27

Continuous Operation (42)
The Continuous Operation operation (B_CONTINUOUS) allows you to perform system backups
without closing active MicroKernel Engine files. Any changes you make while a file is being
backed up are stored in a temporary file called a delta file. Except for changes written to the delta
file, the system backup includes the contents of all files placed in continuous operation mode. The
MicroKernel Engine automatically rolls the delta file changes into the backed up files when those
files are taken out of continuous operation mode.

Note: This operation is available only to applications running on a local engine. A client
application cannot use this operation for files that are located on a remote machine.

This operation also allows you to safely copy a file while that file is still active. In a client/server
set up, the client that begins Continuous Operation on a file must be the client that stops
Continuous Operation on that file.

Parameters

Note: Values for the data buffer parameter and the data buffer length parameter are required only
if the value of the key number parameter is 0 (which starts continuous operation mode) or 2
(which ends continuous operation mode). The following sections discuss these key number
values. A data buffer length of 0 is required for a key number parameter of 1.

Procedure

To start continuous operation mode, perform the following steps

1. Define a file or a set of files for backup, or add a file to the set of files currently defined for
backup.

a. Set the operation code to 42.

b. Place the names of the files you want to place in continuous operation mode into the data
buffer parameter. Include the full path name, excluding only the server name. Separate the
names with commas and terminate the list with a binary 0.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X

Returned X X

28 Btrieve API Operations

The following example is for Windows servers:

f:\acct\march.mkd,f:\acct\april.mkd

c. Place the length of the name (or names) in the data buffer length parameter. This value
must be equal to or greater than the actual length of the names (including binary zeros) in
the data buffer itself. For example, the preceding names require a data buffer length of 40
or greater.

d. Set the key number parameter to 0.

2. Perform the backup.

3. End continuous operation mode.

a. Set the operation code to 42.

b. Set the key number parameter to 1.

To end continuous operation on one or more specific files, set the key number parameter
to 2, and then place the file names in the data buffer parameter as described in step 1b.
Also, place the length of the name (or names) in the data buffer length parameter as
described in step 1c.

Details

When defining the set of files to be backed up, keep in mind the following information:

• The MicroKernel Engine does not consider the absence of file names in the data buffer to be
an error. If it finds no file names, the MicroKernel Engine takes no action on the Continuous
Operation operation.

• The presence of duplicate file names in the data buffer does not affect how the Continuous
Operation operation works. The MicroKernel Engine places the specified file in continuous
operation mode only once.

• In the same directory, no two files should share the same file name and differ only in their file
name extension. For example, a data file named Invoice.btr and another one named
Invoice.mkd must not exist in the same directory. This restriction applies because the database
engine uses the file name for various areas of functionality while ignoring the file name
extension. With continuous operations, the name of the delta file uses the name of the
corresponding with ".^^^" for the file name extension. The MicroKernel Engine would
attempt to write to the same delta file for both files, possibly causing data corruption or status
85. Also, no files are placed into continuous operations when this condition occurs, even if the
files are part of a larger list to be placed into continuous operations.

Btrieve API Operations 29

• An application can iteratively call the Continuous Operation operation to add more names to
the list of files to be placed in continuous operation mode. However, this action can corrupt a
backup when referential integrity (RI) constraints are placed on any of the files by the
Relational Engine. Files related by referential integrity constraints should be passed in on a
single continuous operations call.

The MicroKernel Engine returns status code 88 if a file is specified that is already in
continuous operation mode.

When writing a server-based application that calls the Continuous Operation operation, make sure
you call btrvID, and use a valid client ID so you can begin and end continuous operation under the
same client.

The Btrieve API allows you to define multiple backup sets by specifying a different client ID for
each backup set through the btrvID function. However, two sets cannot contain the same files.

While the MicroKernel Engine rolls changes from the delta file into the data file, users can
continue to update, insert, and read the MicroKernel Engine file just as they normally would. The
MicroKernel Engine appends new pages to the delta file while rolling in changes, if an insert
requires such an action. No changes are lost.

Note: Never delete a delta file manually.

If your application uses the btrv function, do not unload the application while any file is in
continuous operation mode. If you do, you may be unable to remove the affected files from
continuous operation mode. This is because the default client ID that the MicroKernel Engine
originally assigned as the owner of the affected files may have been reassigned to another
application. Because the MicroKernel Engine no longer knows the proper owner of the affected
files, it is unable to remove those files from continuous operation mode.

If the system crashes while in continuous operation mode or while the MicroKernel Engine is
rolling the changes from a delta file into the file, then the MicroKernel Engine rolls all changes
into the file when it is first opened after the system is rebooted.

Result

If the Continuous Operation operation succeeds, the MicroKernel Engine returns status code 0,
but it returns no values either in the data buffer or in the data buffer length parameter.

If the operation fails, the MicroKernel Engine returns one of the following status codes:

11 The specified file name is invalid.

12 The MicroKernel Engine cannot find the specified file.

30 Btrieve API Operations

In addition to the preceding codes, your application can return standard I/O error codes such as
status code 18.

If the MicroKernel Engine returns a nonzero status code, the Continuous Operation operation
returns in the data buffer the portion of the input string that generated the error. If no input string
was used, the data buffer contains the file names that caused the error. The data buffer length
reflects the length of the output string in the data buffer. At this point, the data buffer length
contains the length of that file name.

Positioning

The Continuous Operation operation does not establish any currency on the file.

41 The MicroKernel Engine does not allow the attempted operation.

51 The owner name is invalid.

88 The application encountered an incompatible mode error.

91 The application encountered a server error.

Btrieve API Operations 31

Create (14)
The Create operation (B_CREATE) generates a new data file from within your application. The
Create operation also has subfunctions that allow you to delete or rename a file (see Delete and
Rename Subfunctions for the Create Operation).

Note: In the same directory, no two files should share the same file name and differ only in their
file name extension. For example, do not name a data file Invoice.btr and another one
Invoice.mkd in the same directory. This restriction applies because in some cases the database
engine uses only the file name while ignoring the file name extension. In these instances, files that
differ only in their file name extension appear identical to the database engine.

Parameters

Prerequisites

If you are creating an empty file over an existing file, the existing file must be closed before
executing the Create operation.

Procedure

1. Set the operation code to 14.

2. Set the file and key specifications and any alternate collating sequences in the data buffer as
described in Details. All file and key specification values must be in binary format.

3. Set the data buffer length. This is the length of the buffer that contains the Create
specifications, not the length of the records in the file.

4. Set the path name for the file in the key buffer. Terminate the path name with a blank or binary
zero. Path names can be up to 255 characters long, including volume name and terminator.

For more information, see Network Path Formats Supported by Zen Requesters in Getting
Started with Zen. See also Database URIs in Zen Programmer’s Guide.

5. Set a value for the key number parameter, using one of the choices under Key Number.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X

Returned

32 Btrieve API Operations

Details

The data buffer contains specifications for the file and keys to be created. Both Create (14) and
Stat (15) use the same data buffer structure, so they are documented together here with slight
differences noted. The following tables show the structure of the information for the BTRV and
BTRVEX type entry points, both of which are described under Btrieve API Functions.

Note that the order of elements in the specification differs between the two types of entry points.
For details, see File Specification Block and Key Specification Block. As shown in the following
tables, the data buffer contains a file specification, followed by zero or more key specification
blocks, followed by zero or more ACS blocks.

File Specification for BTRV Type Entry Points Used by Create and Stat

File Specification for BTRV Type Entry Points Used by Create and Stat Data Type1 Byte #

Logical fixed record length, combined size of all record fields3 Short Int3 0–1

Page size. See Page Size. Short Int3 2–3

Number of keys (indexes) Byte 4

File version.4 See File Version. Byte 5

Record count. For Create (14) operations, initialize to 0 to maintain
backward compatibility.

Int3 6–9

File flags. Set file attributes. See File Flags. Short Int3 10–11

Number of extra pointers. For Create (14), the number of duplicate pointers
to reserve for future keys. For Stat (15), the number of remaining pointers.
Used with Reserve Duplicate Pointers flag.

Byte 12

Physical page size. Used when compression flag is set. Value is the number
of 512-byte blocks.

Byte 13

Preallocated pages. Number of pages to preallocate. Used with page
preallocation. For Stat (15), returns number of unused empty pages.

Short Int3 14–15

1Unless specified otherwise, all data types are unsigned.
2For files with variable-length records, the logical record length refers only to the fixed-length portion
of the record.
3Integers must be stored in little-endian byte order, from low to high.
4Returned as 0 from Stat(15) when key number is 0.

Btrieve API Operations 33

File Specification for BTRVEX Type Entry Points Used by Create and
Stat

File Specification Block

Store the file specification in the first 16 or 32 bytes of the data buffer, numbered beginning with
0. Store information for record length, page size, and number of indexes as integers.

File Specification for BTRVEX Type Entry Points Used by Create and
Stat

Data Type1 Byte #

Logical fixed record length, combined size of all record fields. Short Int3 0–1

Page size. See Page Size. Short Int3 2–3

File flags. Set file attributes. See File Flags. Short Int3 4–5

Reserved. Initialize to 0 to maintain backward compatibility. Short Int3 6–7

Record count. For Create (14) operations, initialize to 0 to maintain
backward compatibility.

Long Long

Int3
8–15

Number of keys (indexes) Short Int3 16–17

File version.4 See File Version. Short Int3 18–19

Number of extra pointers. For Create (14), the number of duplicate pointers
to reserve for future keys. For Stat (15), the number of remaining pointers.
Used with Reserve Duplicate Pointers flag.

Byte 20

Physical page size. Used when compression flag is set. Value is the number
of 512-byte blocks.

Byte 21

Preallocated pages. Number of pages to preallocate. Used with page
preallocation. For Stat(15), returns number of unused empty pages.

Short Int3 22–23

Reserved. Initialize to 0 to maintain backward compatibility. Long Long

Int3
24–31

1Unless specified otherwise, all data types are unsigned.
2For files with variable-length records, the logical record length refers only to the fixed-length portion of
the record.
3Integers must be stored in little-endian byte order, from low to high.
4Returned as 0 from Stat(15) when key number is 0.

34 Btrieve API Operations

Logical Fixed Record Length

The logical record length is the number of bytes of fixed-length data in the file. Do not include
variable-length data in the logical record length.

Page Size

Page size is determined by your file format version. See Choosing a Page Size in Zen
Programmer’s Guide. The following table gives page size examples for different file format
versions.

Record Count

The number of records in the file. This value is returned by Stat (15). For Create (14), set this field
to 0.

Description File Format Versions Data Type1 Byte # Example Value2

Page Size 6.x through 9.0 Short Int3 2–3 512

6.x through 9.5 Short Int3 2–3 1024

6.x through 9.0 Short Int3 2–3 1536

6.x through 9.5 Short Int3 2–3 2048

6.x through 9.0 Short Int3 2–3 3072

6.x through 9.0 Short Int3 2–3 3584

6.x and later Short Int3 2–3 4096

9.0 and later Short Int3 2–3 8192

9.5 and later Short Int3 2–3 16384

A minimum size of 4096 bytes works best for most files. If you want to fine-tune this,
see Creating a File with Page Level Compression in Zen Programmer’s Guide.

When you create a file in 9.5 format or later, if the logical page size specified is not
valid for the file format, the MicroKernel rounds the specified value to the next higher
valid value if one exists. For all other values and file formats, the operation fails with
status code 24. No rounding is done for older file formats.

1Unless specified otherwise, all data types are unsigned.
2For simplification, the nonnumeric example values are for C applications.
3Integers must be stored in little-endian byte order, from low to high.

Btrieve API Operations 35

Number of Keys

The number of indexes is the number of keys (not key segments) you are defining for the file. To
create a data-only file, set the number of indexes to 0.

File Version

The MicroKernel Engine file version to be created. In earlier releases, the MicroKernel Engine
used a two-byte integer to receive the number of indexes on a create operation. The high-order
byte of this integer was always 0 because the maximum number of indexes is 119. This high-order
byte has historically been used in the Stat (15) operation to return the file version, but it can now
be used to specify the Create file version without causing errors in previous applications. The
supported file versions for Create are 6.0, 7.0, 8.0, 9.0, 9.5, 13.0, and 16.0, which are represented
in the specified byte with hex values 0x50, 0x60, 0x70, 0x80, 0x90, 0x95, 0xD0, and 0xD3,
respectively. The following table lists file version flag values for different file format versions.

Number of Extra Pointers

For Create (14), the number of duplicate pointers to reserve for future keys. For Stat (15), the
number of remaining pointers. Used with Reserve Duplicate Pointers flag. When this flag is not
used, set this field to 0.

Description Data Type1 Byte # Example Value2

File Version BTRV type: Byte
BTRVEX type: Short Int

5
18–19

Version 6.0 0x60

Version 7.0 0x70

Version 8.0 0x80

Version 9.0 0x90

Version 9.5 0x95

Version 13 0xD0

Version 16 0xD3

Use database
engine default

0x00

1Unless specified otherwise, all data types are unsigned.
2For simplification, the nonnumeric example values are for C applications.

36 Btrieve API Operations

Physical Page Size

Used when the Page Compression file flag is set. If the Page Compression flag is not specified, set
this field to 0. This field was previously marked as unused.

In data files version 6.x and later, logical pages map to physical pages, stored in a Page Allocation
Table (PAT). A physical page is exactly the same size as a logical page. Page compression can be
used with file format 9.5 and later. Database pages are compressed at the page level. Each logical
page is compressed into one or more physical page units. These individual physical pages are
smaller in size than a logical page.

The physical page size field can be used to specify the physical page size to be used for the file.
The value specified in this field is multiplied by 512 to determine the actual physical page size
used. If 0 is specified, the engine uses a default value of 512 bytes for the physical page size.

The value specified for the physical page size cannot be larger than the value specified for the
logical page size. If it is then the engine will round down the value specified for the physical page
size so that it is the same as the logical page size. The logical page size needs to be an exact
multiple of the physical page size. If it is not then the logical page size is rounded down so that it
becomes an exact multiple of the physical page size. If, as a result of these manipulations, the
logical and physical values end up to be the same, then page level compression will not turned on
for this file. See also Creating a File with Page Level Compression in Zen Programmer’s Guide

File Flags

The bit settings in the File Flags word specify file attributes. The following table shows the
binary, hexadecimal, and decimal representations of file flag values.

Attribute Constant Binary Hex Decimal

Variable Length Records VAR_RECS 0000 0000
0000 0001

1 1

Blank Truncation BLANK_TRUNC 0000 0000
0000 0010

2 2

Page Preallocation PRE_ALLOC 0000 0000
0000 0100

04 4

Data Compression DATA_COMP 0000 0000
0000 1000

08 8

Key-Only File KEY_ONLY 0000 0000
0001 0000

10 16

Btrieve API Operations 37

Avoid using incompatible flags. Flags are incompatible if they use the same bit positions. Unused
bits are reserved for future use. Set them to 0.

To combine file attributes, add their respective file flag values. For example, to specify a file that
allows variable-length records and uses blank truncation, initialize the file flags word to 3 (2 + 1).
The MicroKernel Engine ignores the blank truncation and free space bits if the variable length
records bit is set to 0.

Balanced Index BALANCED_KEYS 0000 0000
0010 0000

20 32

10% Free Space FREE_10 0000 0000
0100 0000

40 64

20% Free Space FREE_20 0000 0000
1000 0000

80 128

30% Free Space FREE_30 0000 0000
1100 0000

C0 192

Reserve Duplicate Pointers DUP_PTRS 0000 0001
0000 0000

100 256

Include System Data1 INCLUDE_SYSTEM_DATA 0000 0010
0000 0000

200 512

Do Not Include System
Data

NO_INCLUDE_SYSTEM_DATA 0001 0010
0000 0000

1200 4608

Key Number SPECIFY_KEY_NUMS 0000 0100
0000 0000

400 1024

Use VATs VATS_SUPPORT 0000 1000
0000 0000

800 2048

Use Page Compression2 PAGE_COMPRESSED 0010 0000
0000 0000

2000 8192

Include System Data v23 INCLUDE_SYSTEM_DATA2 0100 0000
0000 0000

4000 16384

1If you do not specify whether to include system data in the file, the Btrieve API uses the current System
Data setting in the server compatibility properties.
2Used only with page-level compression. Used in conjunction with the Physical Page Size key
specification. See Creating a File with Page Level Compression in Zen Programmer’s Guide.
3With this flag value, also specify NO_INCLUDE_SYSTEM_DATA for key-only files.

Attribute Constant Binary Hex Decimal

38 Btrieve API Operations

If you set the page preallocation bit, use the last 2 bytes in the file specification block (allocation)
to store an integer value that specifies the number of pages to preallocate to the file. If you set the
Data Compression bit, the MicroKernel Engine ignores the variable length records bit.

The database engine automatically uses data compression on files that use system data and have a
record length greater than the maximum length allowed. See Record Length in Zen Programmer’s
Guide.

Set the duplicate pointers bit if you anticipate adding an index sometime after creating a file, and
if that index has duplicate values and will not be marked as repeating-duplicatable. Setting this bit
causes the MicroKernel Engine to reserve space in each record of the file for pointers that link the
duplicate values. By reserving this space, you can possibly lower retrieval time and save disk
space, especially if the keys are long and you anticipate that many records will have duplicate key
values.

Note: You can reserve duplicate pointer space only for indexes that are added after file creation.
Therefore, when reserving space for pointers to duplicate values, do not include space for the
indexes created during this Create operation. Also, the MicroKernel Engine does not reserve
duplicate pointer space for any key you specify as a repeating-duplicatable key.

Set the key number bit if you need to assign a specific number to a key, and place the desired key
number in the Manually Assigned key number element (offset 0x0E) of the key specification
block. The MicroKernel Engine does not require consecutive key numbers, and files can have
gaps between key numbers. When a key is created, by default the MicroKernel Engine assigns the
lowest available key number to that index (beginning with 0). However, some applications may
require a key number different from the default assignment.

Set the Use VATs bit if the file uses variable-tail allocation tables. To use VATs, a file must use
variable-length records.

Preallocated Pages

You can specify the number of pages to preallocate. Use this element only if you specified the
page preallocation file flag. For more information, see Page Preallocation in Zen Programmer’s
Guide.

Key Specification Block

Place zero or more key specification blocks immediately after the file specification. Allocate a 16-
or 24-byte key specification block for each key segment in the file. Store the information for the
key position and the key length as integers.

Btrieve API Operations 39

As shown in the following table, the maximum number of key segments allowed depends on the
file page size and file format.

See also the status codes 26: The number of keys specified is invalid and 29: The key length is
invalid, both in Status Codes and Messages.

The following table specifies the data buffer structure of key segment for a Create (14) or Stat
(15) operation. Each key specification block is 16 bytes for BTRV type entry points or 24 bytes
for BTRVEX types. Where two data types are given, but first is used with BTRV and the second
with BTRVEX. The offsets repeat for each key block.

Page Size (bytes)

Maximum Key Segments by File Version

8.x and earlier 9.0 9.5 13.0, 16.0

512 8 8 Rounded up2 Rounded up2

1024 23 23 97 Rounded up2

1536 24 24 Rounded up2 Rounded up2

2048 54 54 97 Rounded up2

2560 54 54 Rounded up2 Rounded up2

3072 54 54 Rounded up2 Rounded up2

3584 54 54 Rounded up2 Rounded up2

4096 119 119 2043 1833

8192 n/a1 119 4203 3783

16384 n/a1 n/a1 4203 3783

1"n/a" means "not applicable"
2"Rounded up" means that the page size is rounded up to the next size supported by the file version. For
example, 512 is rounded up to 1024, 2560 is rounded up to 4096, and so forth.
3A 9.5 format or later file can have more than 119 segments, but the number of indexes is limited to 119.

Description Data Type1 Offset for
BTRV

Offset for
BTRVEX

Key Position. Position of the first byte of the key
within the record. The first byte in the record is 1.

Short Int2 0–1 0–1

40 Btrieve API Operations

Key Position

The key position is the byte offset at which the key or key segment begins. Positions are relative
to 1. A key at the beginning of the record starts at position 1. There is no position 0.

Key Length

The length of the key or key segment. Maximum key length, including all segments, is 255 bytes
in 13.0 format files and earlier, or1024 bytes in 16.0 format files.

Key Length. Length of the key in bytes. Short Int2 2–3 2–3

Key Flags. Key attributes. Short Int2 4–5 4–5

Reserved. Not used for Create (14). Initialize to 0
to maintain backward compatibility.

Short Int2 — 6–7

Unique keys. Not used for Create (14). Initialize to
0 to maintain backward compatibility.

Int or

Long Long Int2
6–9 8–15

Extended Data Type. Used if the key flags specify
use of extended data types.

Byte or

Short Int2
10 16–17

Null Value (legacy nulls only). Used if the key
flags specify Null Key (All Segments) or Null Key
(Any Segment). An exclusion value for the key.
See Null Value for more conceptual information
on legacy nulls and true nulls.

Byte 11 18

Reserved. Not used for Create (14). Initialize to 0
to maintain backward compatibility.

Short Int2 or
Byte

12–13 19

Manually Assigned Key Number. Key number
used if the file attributes specify one.

Byte or

Short Int2
14 20–21

ACS Number. ACS number. Used if the key flags
specify Use Default ACS, Use Numbered ACS in
File, or Use Named ACS.

Byte 15 22

Reserved. Not used for Create (14). Initialize to 0
to maintain backward compatibility.

Byte — 23

1Unless specified otherwise, all data types are unsigned.
2Integers must be stored in little-endian byte order, from low to high.

Description Data Type1 Offset for
BTRV

Offset for
BTRVEX

Btrieve API Operations 41

Key Flags

The bit settings in the key flag word specify key attributes. The following table shows the binary,
hexadecimal, and decimal representations of key flag values.

Avoid using incompatible flags. Flags are incompatible if they use the same bit positions. Unused
bits are reserved for future use. Set them to 0.

To combine key attributes, sum their values. For example, if the key is an extended type, part of a
segmented key, and collated in descending order, then initialize the key flag word to 336 (256 +
16 + 64).

Attribute Constant Binary Hex Decimal

Duplicates allowed (linked
duplicates is default, or
combine with
REPEAT_DUPS_KEY for
repeating duplicates)

DUP 0000 0000 0000 0001 0x1 1

Modifiable Key MOD 0000 0000 0000 0010 0x2 2

Use Old Style BINARY Data
Type

BIN 0000 0000 0000 0100 0x4 4

Use Old Style STRING Data
Type (bits 2 and 8 must be 0)

0000 0000 0000 0000 0x0 0

Null Key (All Segments) NUL 0000 0000 0000 1000 0x8 8

Segmented Key SEG 0000 0000 0001 0000 0x10 16

Use Default ACS ALT 0000 0000 0010 0000 0x20 32

Use Numbered ACS in File NUMBERED_ACS 0000 0100 0010 0000 0x420 1056

Use Named ACS NAMED_ACS 0000 1100 0010 0000 0xC20 3104

Descending Sort Order DESC_KEY 0000 0000 0100 0000 0x40 64

Repeating Duplicates, used
with DUP

REPEAT_DUPS_KEY 0000 0000 1000 0000 0x80 128

Use Extended Data Type EXTTYPE_KEY 0000 0001 0000 0000 0x100 256

Null Key (Any Segment) MANUAL_KEY 0000 0010 0000 0000 0x200 512

Case Insensitive Key NOCASE_KEY 0000 0100 0000 0000 0x400 1024

42 Btrieve API Operations

The Segmented Key attribute indicates that the next key specification block in the data buffer
refers to the next segment of the same key. Follow these rules for segmented keys:

• All segments of the same key must have the same Duplicate Key, Repeating Duplicates,
Modifiable Key, and Null Key values. If you specify the legacy Null Key attribute, either All
Segments or Any Segment, then you can assign different null values for individual segments.

• All segments of the same key must use the same alternate collating sequence (ACS).

• Individual segments of the same key can have different Descending Sort Order and Extended
Data Type values.

The ACS applies only to keys of type STRING, LSTRING, ZSTRING, WSTRING, and
WZSTRING. You cannot define a key that is both case-insensitive and uses an ACS. In a file in
which a key has an ACS designated for some segments but not for others, segments that designate
an ACS sort by that ACS, while those with no ACS sort according to their respective types.

Extended Data Type

You specify the Extended Data Type byte of the key specification block as a binary value. The
following table shows the codes for the extended data types.

Extended data type codes 12, 13, 16, and 22–24 are reserved for future use. Note that the CLOB
type is included for Get Extended operations but cannot be used to create an index.

Type Code Type Code Type Code

STRING 0 BFLOAT 9 CLOB 21

INTEGER 1 LSTRING 10 WSTRING 25

FLOAT 2 ZSTRING 11 WZSTRING 26

DATE 3 UNSIGNED BINARY 14 GUID 27

TIME 4 AUTOINCREMENT 15 AUTOTIMESTAMP 32

DECIMAL 5 NUMERICSTS 17 TIMESTAMP2 34

MONEY 6 NUMERICSA 18 NULL INDICATOR
SEGMENT

255

LOGICAL 7 CURRENCY 19

NUMERIC 8 TIMESTAMP 20

Btrieve API Operations 43

You can define the STRING and UNSIGNED BINARY data types as either standard or extended
types. This maintains compatibility with applications that were developed with earlier versions of
Btrieve API, while allowing newer applications to use extended data types exclusively.

Regarding the data type you assign to a key, the MicroKernel Engine does not ensure that the
records entered follow the data types defined for the keys. For example, you could define a
TIMESTAMP key in a file, but store a character string there. Your Btrieve API application would
succeed, but an ODBC application that tries to access the same data using the ODBC
TIMESTAMP format might fail, since the byte format could be different and the algorithms used
to generate the time stamp value could be different. For complete descriptions of the data types,
see Btrieve Key Data Types in SQL Engine Reference.

Null Value

Represents an exclusion value for the key. If you have defined a key as a null key, you must
supply a value for the MicroKernel Engine to recognize as the null value for each key segment.
This is in reference to the legacy null and does not reflect true nulls. For a discussion of null
support, see Null Value in Zen Programmer’s Guide.

Manually Assigned Key Number

The MicroKernel Engine allows an application to assign specific key numbers when creating a
file with indexes. To manually assign key numbers to each index for a file, specify each the
number of each key as a binary value in the key specification block, and set the key number bit
(0x400) in the File Flags word.

Key numbers must be unique to the file and must be specified in ascending order, beginning with
key 0. They must also be valid (less than the maximum number of keys for the page size of the
file).

The ability to manually assign key numbers complements to the ability to delete a key and not
have the MicroKernel Engine renumber all keys that have a key number greater than the deleted
key. For example, if an application drops an index and instructs the MicroKernel Engine not to
renumber higher-numbered keys, and if a user then clones the affected file without assigning
specific key numbers, the cloned file has different key numbers than the original.

ACS Number

For keys that use a specific ACS, the key specification block provides the ACS number by which
to collate the key. The ACS number is based on its position in the data buffer. The first ACS
following the last key specification block is ACS number 0. Following ACS 0 is ACS 1, which is
followed by ACS 2, and so on.

44 Btrieve API Operations

Alternate Collating Sequence

In the data buffer for a Create operation, collating sequences appear one after another
immediately following the last key specification block. The 265 bytes used to specify an ACS,
ISR, or ICU collation are described in the following tables.

User-Defined ACS Files

To create an ACS that sorts string values differently from the ASCII standard, your application
must place 265 bytes directly into the following data buffer.

For examples of user-defined ACS files, see Alternate Collating Sequences in Zen Programmer’s
Guide.

International Sort Rules (ISRs)

To specify an ISR table name, your application must place 265 bytes directly into the following
data buffer.

Offset Length
(Bytes)

Description

0 1 Signature byte. Specify 0xAC.

1 8 A unique 8-byte name that identifies the ACS to the MicroKernel Engine.

9 256 A 256-byte map. Each 1-byte position in the map corresponds to the code point
having the same value as the position's offset in the map. The value of the byte at
that position is the collating weight assigned to the code point. For example, to force
code point 0x61 ('a') to sort with the same weight as code point 0x41 ('A'), place the
same values at offsets 0x61 and 0x41.

Offset Length
(Bytes)

Description

0 1 Signature byte. Specify 0xAE.

1 16 A unique 16-byte name that identifies the ISR table to the MicroKernel Engine. See
Zen Programmer’s Guide for a list of ISR table names.

17 248 Filler.

Btrieve API Operations 45

Unicode Collations

To specify a Unicode collation according to the International Components for Unicode (ICU)
standard, your application must place 265 bytes directly into the following data buffer.

Data Buffer Length

The data buffer must be long enough to include the file specifications, the key specifications, and
any ACS files that have been defined. Do not specify the file record length in this parameter.

For example, to create a file using the BTRV entry point that has two keys of one segment each
and an ACS, the data buffer for the Create operation should be at least 313 bytes long, as follows:

Key Number

The key number for the Create operation determines whether the MicroKernel Engine warns you
when a file of the same name already exists, and also whether the MicroKernel Engine should use
a local or remote engine when creating the file.

Use the following table to choose the value for the key number parameter.

Delete and Rename Subfunctions for the Create Operation

The Create operation has two additional subfunctions that you can use to delete or rename files.

Offset Length
(Bytes)

Description

0 1 Signature byte. Specify 0xAE.

1 16 Name of the supported ICU collation, either u54-msft_enus_0 or root. You must fill
with spaces to 16 bytes.

17 248 Filler.

File Spec + Key Spec + Key2 Spec + ACS

16 + 16 + 16+ + 265 = 313

CREATE Operation No preference Force local
engine to
create file

Force remote
engine to create

file

Normal create (overwrite if file already exists) 0 6 99

Return Status 59 if file already exists –1 7 100

46 Btrieve API Operations

Before Pervasive.SQL v8.5, it was possible to manipulate MicroKernel Engine files through the
operating system because the engine depended on the rights and privileges given to the Zen user
by the operating system.

After the introduction of Zen database security in v8.5, these operating system access rights might
be removed when a database is secured against unauthorized access. The options for
programmatically deleting or moving a file may change because operating system rights are not
always available.

The rename and delete subfunctions are implemented as Create operations with alternate key
numbers. You do not need to provide a file specification as you do when creating a new data file.
The following table shows how to set up the Create operation to use the rename or delete
subfunctions.

These subfunctions have been modified to work with the security model in that they will accept a
URI in place of a file name in the key buffer and data buffer, if needed, to indicate a MicroKernel
Engine file to delete or rename. This allows you to provide security information with the
operation. For details about URI connection strings, see Database URIs in Zen Programmer’s
Guide.

The security information is processed like a normal Create or Open operation. The user must be
authenticated and have DB_RIGHT_CREATE, DB_RIGHT_ALTER and DB_RIGHT_OPEN
privileges for the existing files and for the directory where the new file will be located if
applicable.

For the following Create subfunctions, an X indicates valid URI parameters in key buffers.

Function Key Number
to Use

Description Place in Data
Buffer

Place in Key
Buffer

Rename File –127 Rename an existing file in the
data buffer to the name in the
key buffer

Existing File
Name

New File
Name

Delete File –128 Delete a file N/A Existing File
Name

Function URI parameter file= URI parameter
dbfile=

URI parameter table=

Rename X X

Delete X X

Btrieve API Operations 47

For the following Create subfunctions, an X indicates valid URI parameters in data buffers.

Notes on Rename and Delete Subfunctions

• The RenameFile and DeleteFile subfunctions cannot be used on files that are bound to
specific databases because they do not affect the contents of the miscellaneous page.

• If a file contains an owner name, the owner name check is not performed by the new
subfunctions. The owner name is still needed to view the contents of the files.

Result

If the Create operation succeeds, the MicroKernel Engine either warns you of the existence of a
file with the same name or creates the new file according to your specifications. The new file does
not contain any records. The Create operation does not open the file. Your application must
perform an Open operation before it can access the file.

If the Create operation fails, the MicroKernel Engine returns one of the following status codes:

Function URI parameter file= URI parameter
dbfile=

URI parameter table=

Rename X X

Delete Not applicable Not applicable Not applicable

2 The application encountered an I/O error.

11 The specified file name is invalid.

18 The disk is full.

22 The data buffer length is too short.

24 The page size or data buffer size is invalid.

25 The application cannot create the specified file.

26 The number of keys specified is invalid.

27 The key position is invalid.

28 The record length is invalid.

29 The key length is invalid.

41 The MicroKernel does not allow the attempted operation. (File format is lower than version
13.00.)

48 The alternate collating sequence definition is invalid.

49 The extended data type is invalid.

59 The specified file already exists.

48 Btrieve API Operations

Positioning

The Create operation establishes no currency on the file.

104 The MicroKernel Engine does not recognize the locale.

105 The file cannot be created with Variable-tail Allocation Tables (VATs).

134 The MicroKernel Engine cannot read the International Sorting Rule.

135 The specified International Sort Rule table is corrupt or otherwise invalid.

Btrieve API Operations 49

Create Index (31)
The Create Index operation (B_BUILD_INDEX) adds a key to an existing file.

Parameters

Prerequisites
• The file must be open.

• The number of existing key segments in the file must be less than or equal to maximum
number of key segments allowed minus the number of key segments to be added.

• The maximum number of key segments allowed depends on the page size of the file. The
following table lists these values.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X

Returned

Page Size (bytes)

Maximum Key Segments by File Version

8.x and earlier 9.0 9.5 13.0, 16.0

512 8 8 Rounded up2 Rounded up2

1024 23 23 97 Rounded up2

1536 24 24 Rounded up2 Rounded up2

2048 54 54 97 Rounded up2

2560 54 54 Rounded up2 Rounded up2

3072 54 54 Rounded up2 Rounded up2

3584 54 54 Rounded up2 Rounded up2

4096 119 119 2043 1833

8192 n/a1 119 4203 3783

16384 n/a1 n/a1 4203 3783

50 Btrieve API Operations

See also the status codes 26: The number of keys specified is invalid and 29: The key length is
invalid, both in Status Codes and Messages.

• Ensure that the key flags, position, and length of the new key are appropriate for the file to
which you are adding the key.

• No transactions can be active.

Procedure

1. Set the operation code to 31.

2. Pass the position block for the file to which to add the key.

3. For each segment in the key, store a key specification block in the data buffer. Use the same
structure documented under Create (14). Store the information for the key position and the
key length as integers. If you are rebuilding the system-defined log key (also called system
data), the data buffer must be at least the size of one key specification block and initialized to
zeros.

4. To define an ACS for the new key, perform one of the following steps:

• To use the default ACS, which is the first ACS already defined in the file, specify the Use
Default ACS attribute in the Key Flags word.

• To define a new ACS, specify the Use Numbered ACS attribute in the Key Flags word and
set the ACS Number field to zero. In addition, store the 265-byte ACS after the last key
specification block in the data buffer.

• To specify an existing ACS by name, specify the Use Named ACS attribute in the Key
Flags word and set the ACS Number field to zero. In addition, store the name of the ACS
at the beginning of the 265-byte block after the last key specification block in the data

1"n/a" means "not applicable"
2"Rounded up" means that the page size is rounded up to the next size supported by the file version. For
example, 512 is rounded up to 1024, 2560 is rounded up to 4096, and so forth.
3A 9.5 format or later file can have more than 119 segments, but the number of indexes is limited to 119.

Page Size (bytes)

Maximum Key Segments by File Version

8.x and earlier 9.0 9.5 13.0, 16.0

Btrieve API Operations 51

buffer. (The remainder of the ACS block after the name is ignored.) The name must be in
one of the following formats:

5. Set the data buffer length parameter to the number of bytes in the data buffer. For a new key
with no ACS (or one that uses the default ACS), use the following formula to determine the
correct data buffer length:

(16 or 24) * (# of segments)

If the new key specifies an ACS other than the default, use the following formula to determine
the correct data buffer length:

(16 or 24) * (# of segments) + 265

6. To assign a specific key number to the key being created, add the desired key number to 0x80,
and place the sum in the key number parameter. If you are rebuilding a system key (also called
system data or system data v2), specify 0xFD (that is, key number 125 + 128) or 0XFC (key
number 124 + 128). Note that for BTRVEX this bias results in a small positive value and
should not be sign-extended.

Note: Key numbers must be unique to the file. They must also be valid. The value of each
key number must be less than the maximum number of key segments allowed for the specified
page size.

Details

The MicroKernel Engine allows you to assign specific key numbers when creating a key. This
capability complements the ability to delete a key and not have the MicroKernel Engine renumber
all keys that have a key number greater than that of the deleted key. If an application drops an
index and instructs the MicroKernel Engine not to renumber higher-numbered keys, and a user
then clones the affected file without assigning specific key numbers, the cloned file has different
key numbers than the original.

If you define an ACS in the data buffer, the MicroKernel Engine first checks for an existing ACS
(using the name you specified) before adding it to the file. If the MicroKernel Engine finds an

ACS Type Length (Bytes) Description

User-defined ACS 1 Signature 0xAC

" 8 ACS table name

ISR 1 Signature 0xAE

" 16 ISR table name

52 Btrieve API Operations

existing ACS with the name you specified, the MicroKernel Engine does not duplicate the ACS
definition in the file, but does associate the ACS with the new key.

If you specify the Use Named ACS attribute in the Key Flags word, the MicroKernel Engine uses
the ACS name supplied in the data buffer to locate an ACS of the same name within the file, then
assigns that ACS to the new key.

If a file is opened by more than one MicroKernel Engine client and one of the clients starts a
Create Index process, remote clients can perform Get and Step operations on the open file while
the MicroKernel Engine client creates the key.

If the key being created is not an autoincrement key, the Get and Step operations of remote clients
can have lock biases, and when the Create Index process is completed, you can update and delete
the locked records without issuing additional read operations. This is possible because the
MicroKernel Engine does not have to change the images of the records in order to create the key.

However, if the key being created is an autoincrement key, then the MicroKernel Engine has to
both build the index and change every record with a zero value in the appropriate field. Remote
clients that perform Get or Step operations without a lock bias before or during the key creation
can receive status code 80 when they execute an update or delete operation after the successful
completion of the key creation.

Also, the MicroKernel Engine returns status code 84 if a client tries to create an autoincrement
key while another client has locked a record. Similarly, the MicroKernel Engine returns status
code 85 if a client attempts to execute a Get or Step operation with a lock bias during index
creation for an autoincrement key by another client.

Result

The MicroKernel Engine immediately adds the new key to the file. The time required for this
operation depends on the total number of records to be indexed, the size of the file, and the length
of the new index.

If the Create Index operation succeeds, the number of the new key is either the number you
specified or one of the following:

• For files that have no gaps between key numbers, the key number is one higher than the
previous highest key number.

• For files that have gaps between key numbers, the key number is the lowest missing key
number.

You can use the new key to access your data as soon as the operation completes.

Btrieve API Operations 53

If the Create Index operation fails, the MicroKernel Engine drops whatever portion of the new
index it has already built. The file pages allocated to the new index prior to the error are placed on
a list of free space for the file and reused when you insert records or create another key.

If the operation fails during the creation of an autoincrement key, any values that have already
been altered remain altered. The MicroKernel Engine can return the following status codes:

If processing is interrupted during the creation of a key, you can access the data in the file through
other keys in the file. However, the MicroKernel Engine returns a nonzero status code if you try to
access data by the incomplete index. To correct this problem, drop the incomplete index with a
Drop Index (32) and reissue Create Index.

Positioning

The Create Index operation has no effect on any file currency information.

22 The data buffer length is too short.

27 The key position is invalid.

41 The MicroKernel Engine does not allow the attempted operation.

45 The specified key flags are invalid.

49 The extended data type is invalid.

56 An index is incomplete.

84 The record or page is locked.

85 The file is locked.

104 The MicroKernel Engine does not recognize the locale.

134 The MicroKernel Engine cannot read the International Sorting Rule.

135 The specified International Sort Rule table is corrupt or otherwise invalid.

136 The MicroKernel Engine cannot find the specified alternate collating
sequence in the file.

54 Btrieve API Operations

Delete (4)
The Delete operation (B_DELETE) removes an existing record from a file. The space that the
deleted record occupied is then available for inserting new records.

Parameters

Prerequisites
• The file must be open.

• You have established physical or logical currency in the file. Operations that satisfy this
requirement are Get (except extended Gets or Get Key), Step (except extended Steps), Insert,
and Update.

Procedure

1. Set the operation code to 4.

2. Pass the position block of the file that contains the record to be deleted.

Details

The Delete operation may not be a valid operation if performed immediately after an extended
Get or extended Step operation because the current record is unpredictable.

After you perform a Delete operation, a later Get Next or Get Previous operation must use the
same key number and key buffer as the last operation that established logical position. If you use
another value, the MicroKernel Engine returns status code 7.

The MicroKernel Engine does not allow Delete operations after a Get Key (+50). Before the
MicroKernel Engine performs a Delete operation, it compares the current usage count of the data
page it intends to modify with the usage count of the data page when the record was read. To
obtain the usage count, the MicroKernel Engine must read the data page.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X

Returned X

Btrieve API Operations 55

Because the Get Key operation does not read the data page, no usage count is available for
comparison on the Delete. The Delete fails because the MicroKernel Engine cannot perform its
passive concurrency conflict checking without the compare. When the Delete fails, the
MicroKernel Engine returns status code 8.

Result

If the Delete operation succeeds, the MicroKernel Engine removes the record from the file,
releases the record lock (if one existed for the deleted record), and adjusts all key indexes to
reflect the deletion.

If the Delete operation fails, the MicroKernel Engine returns one of the following status codes:

Delete operations never reduce file size. Empty Space created by deletion of records is reused
when records are added in the future. Disk space can be recovered only by recreating the file and
inserting all of the records into it. The Rebuild and Defragmenter utilities can help accomplish
this recovery.

Positioning

The Delete operation destroys the complete physical location information and the logical current
record position but does not change the physical and logical positions of either the next record or
the previous record.

8 The current positioning is invalid.

80 The MicroKernel Engine encountered a record-level
conflict.

84 The record or page is locked.

85 The file is locked.

56 Btrieve API Operations

Drop Index (32)
The Drop Index operation (B_DROP_INDEX) deletes a key from an existing file.

Parameters

Prerequisites
• The file must be open.

• The key must exist in the file.

• No transactions can be active.

Procedure

1. Set the operation code to 32.

2. Pass the position block of the file that contains the key to drop.

3. Store the number of the key to drop in the key number parameter. To drop the system-defined
log key (also called system data), specify 125. To drop the second system key for system data
v2, specify 124.

Details

If you drop a system key, you can rebuild it using Create Index (31).

When you delete a key, the MicroKernel Engine automatically renumbers all higher-numbered
keys, unless you specify otherwise. The MicroKernel Engine renumbers by decrementing the
higher-numbered keys by 1. For example, suppose you have a file with key numbers 1, 4, and 7. If
you drop key 4, the MicroKernel Engine renumbers the keys as 1 and 6.

If you do not want the MicroKernel Engine to automatically renumber keys, add a bias of 128 to
the value you supply for the key number parameter. This bias allows you to leave gaps in the key
numbering, and consequently you can drop a damaged index and then rebuild it without affecting

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X

Returned

Btrieve API Operations 57

the numbering of other keys in the file. You rebuild the index using Create Index (31), which
allows you to specify a key number.

However, if you delete a key without renumbering higher-numbered keys and then a user clones
the affected file without assigning specific key numbers, the cloned file has different key numbers
from the original.

Note: Users can clone files using the Btrieve Maintenance tool or butil, its command line
version. Cloning creates a new, empty file with the same statistics as an existing file.

Result

If the Drop Index operation succeeds, the MicroKernel Engine places the pages that were
allocated to that index on a list of free space for later use. Unless you specify otherwise, the
MicroKernel Engine renumbers the higher-numbered keys.

If the Drop Index operation fails, the MicroKernel Engine returns one of the following status
codes:

If processing is interrupted while the MicroKernel Engine is dropping an index, you can access
the data in the file by the file's other keys. The MicroKernel Engine returns status code 56 if you
try to access the file by an incomplete index. If processing is interrupted, reissue the Drop Index
operation.

Positioning

The Drop Index operation has no effect on physical file currency information. However, dropping
the key used to establish the last logical currency destroys the logical currency.

6 The key number parameter is invalid.

41 The MicroKernel Engine does not allow the attempted operation.

58 Btrieve API Operations

End Transaction (20)
The End Transaction operation (B_END_TRAN) completes a transaction and makes the
appropriate changes to the data files. It also unlocks all files and records locked by the transaction.

Parameters

Prerequisites

Before issuing an End Transaction operation, your application must issue a successful Begin
Transaction (19 or 1019).

Procedure

Set the operation code to 20. While the MicroKernel Engine ignores all other parameters on an
End Transaction call, you should initialize them to 0 to ensure compatibility with future releases.

Result

If the End Transaction operation succeeds, all the operations within the transaction are recorded in
your file. Your application cannot abort a transaction after an End Transaction operation.

If the End Transaction operation fails, the MicroKernel Engine returns the following status code:

Positioning

The End Transaction operation has no effect on any file currency information.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X

Returned

38 The MicroKernel Engine encountered a transaction control file I/O error.

Btrieve API Operations 59

Find Percentage (45)
The Find Percentage operation (B_GET_PERCENT) is one of two Btrieve API operations that
window-oriented applications can use to implement scroll bars. The other is Get By Percentage
(44). Find Percentage returns the approximate position of a record either relative to a key path or
as the physical location of the record within the file. The position is expressed as a percentage
value. See Result for a definition of the range of percentage values.

Parameters

Note: When seeking the percentage relative to a key path, Find Percentage does not require an
input value for the data buffer parameter. When seeking the percentage as relative to the physical
location of a record within the file, Find Percentage does not require an input value for the key
buffer parameter.

Prerequisites
• The file must be open.

• If you are seeking the percentage relative to a key path, the file cannot be a data-only file.

• When you are seeking the percentage by the physical location of a record in the file, you must
provide that physical location in the data buffer parameter. You can retrieve this location with
Get Position (22). Be consistent in the use of BTRV or BTRVEX type entry points.

Procedure

1. Set the operation code to 45.

2. Pass the position block for the file.

3. If you are seeking the percentage relative to the physical location of a record in the file, store
the record's 4- or 8-byte physical address in the data buffer. If you are seeking the percentage
relative to the record's key path and wish to specify a granularity for the search, set your data
buffer parameter as specified in Granularity. Otherwise, you do not need to provide a value for
the data buffer parameter.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X X

Returned X X X

60 Btrieve API Operations

4. Set the data buffer length to a minimum of 4 or 8 bytes. This 4-byte minimum is a requirement
of the MicroKernel Engine internal implementation. If specifying a granularity for the search,
set the data buffer length to a minimum of 12 or 16 bytes.

5. If you are seeking the percentage relative to a key path, set the key buffer parameter to the key
value. Otherwise, you do not need to provide a value for the key buffer parameter.

6. Set the key number parameter as follows:

• If you are seeking the percentage by a key path, set the key number parameter to the actual
key number.

• If you are seeking the percentage by the physical record location, set the key number
parameter to –1.

Details

The Find Percentage operation is provided specifically to support scroll bar implementation.
Because many factors affect the accuracy of this operation – that is, whether the returned
percentage value accurately reflects the position of the record or key value – you should not rely
on the accuracy of this operation for other purposes.

To optimize the Find Percentage operation, the MicroKernel Engine assumes that a file has an
even distribution of records among the data pages and keys among the index pages. However,
distribution can be affected by the following situations:

• The file is not index balanced, and a large number of records within the same range of keys
has been deleted.

• A large number of records within the same range of physical addresses has been deleted.

• The file contains numerous duplicate key values, and the key is a linked-duplicatable key.

Granularity

The granularity setting is optional and allows you to choose the factor by which the percentage is
measured. In releases before Zen 9, this value was always 10000.

If you want to specify the granularity, follow these steps:

To specify a granularity in the Find Percentage operation

1. Place the signature ExPc in the 4 bytes of the data buffer (0x45, 0x78, 0x50, 0x63) after the
record address area.

Btrieve API Operations 61

2. Place the desired granularity in the 4 bytes after the signature as a LoHi Intel integer. The
granularity you choose can be any number from 1 to 0xFFFFFFFF.

3. Ensure that your data buffer length is at least 12 or 16 bytes, depending on the entry point
used.

The following table summarizes positions and layouts for these steps.

For example, if you want to get the 100th record from a file that contains 365 records, you can use
Find Percentage (45) with 100 as the percentage and 365 as the granularity.

Result

If the Find Percentage operation succeeds, the MicroKernel Engine returns the relative position of
the specified key value or record to the data buffer. This position is expressed as a percentage of
the offset into the key path or file and is a value in the range of 0 (0 percent) through 10000
(100.00 percent). Note this is not the physical or logical position.

The percentage value is returned as a 4-byte integer in low-byte, high-byte order. For example,
when using default granularity:

The MicroKernel Engine also returns a data buffer length of at least 4 if the operation succeeds.

If the Find Percentage operation fails, the MicroKernel Engine returns one of the following status
codes:

BTRV, BTRVID, BTRCALL,
BTRCALLID

BTRVEX, BTRVEXID

Record address 4 bytes, offset 0 8 bytes, offset 0

Signature granularity 4 bytes, offset 4 4 bytes, offset 8

General granularity 4 bytes, offset 8 4 bytes, offset 12

Total size 4 or 12 bytes 8 or 16 bytes

Returned Value Hex Returned Value Dec Percentage in Key Path or File

88h 13h 5000 50%

3 The file is not open.

6 The key number parameter is invalid.

7 The key number has changed.

62 Btrieve API Operations

Positioning

The Find Percentage operation does not change any currency information.

8 The current positioning is invalid.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

41 The MicroKernel Engine does not allow the attempted operation.

43 The specified record address is invalid.

82 The MicroKernel Engine lost positioning.

Btrieve API Operations 63

Get By Percentage (44)
The Get By Percentage operation (B_SEEK_PERCENT) is one of two Btrieve API operations
that can be used by window-oriented applications for implementing scroll bars. The other is the
Find Percentage (45). Get By Percentage retrieves a record by the relative position of the record in
the file, where the position is based on a percentage value you supply when you call the operation.
You must also specify whether the position is relative to a specified key path or represents the
actual physical location of the record in the file.

Parameters

Note: The Get By Percentage operation, when seeking the record by its physical location in the
file, does not return any information in the key buffer parameter.

Prerequisites
• The file must be open.

• If you are seeking the record relative to a key path, the file cannot be a data-only file.

Procedure

1. Set the operation code to 44. Optionally, you can include a lock bias:

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as
the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

2. Pass the position block for the file.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X

Returned X X X X

64 Btrieve API Operations

3. Store the percentage value as a 4-byte integer in the data buffer. See Details for the acceptable
range of percentage values and related information.

4. Set the data buffer length to a value greater than or equal to the length of the largest possible
record that could be returned. (The MicroKernel Engine internal implementation requires that
you set the data buffer length value to a minimum of 4 bytes). If specifying a granularity for
the search, set the data buffer length to a minimum of 12 bytes.

5. Set the key number parameter.

• If you are seeking the record by a key path, set the key number parameter to the actual key
number. To use the system-defined log key (also called system data), specify 125. To use
the second system key for system data v2, specify 124.

• If you are seeking the record by the physical record position in the file, set the key number
parameter to –1.

Details

If you are not specifying a granularity (see Granularity), the range of acceptable percentage values
for the first two bytes of the data buffer parameter is from 0 (indicating the beginning of the key
path or file) through 10000 (the end of the key path or file). The value corresponds to a range of
0% to 100.00%, assuming two implied decimal places. If you want to find the record
approximately 33.33% through the file, pass the value 3333 in the data buffer. Be sure to store the
value as an integer (in low-byte, high-byte order). For example, to seek to the 50 percent point in
the file, use a value of 5000 (0x1388). After byte-swapping 0x1388, store 0x88 and 0x13 in the
first two bytes of the data buffer parameter.

If you wish to specify a granularity for the search, set your data buffer parameter as specified in
Granularity.

The Get By Percentage operation is provided specifically to support scroll bar implementation.
Because many factors affect the accuracy of this operation – that is, whether the returned record is
positioned at the actual percentage point you specify in the file – you should not rely on the
accuracy of this operation for other purposes.

To optimize the Get By Percentage operation, the MicroKernel Engine assumes that a file has an
even distribution of records among the data pages and keys among the index pages. However,
distribution can be affected by the following situations:

• The file is not index balanced, and a large number of records within the same range of keys
has been deleted.

• A large number of records within the same range of physical addresses has been deleted.

Btrieve API Operations 65

• The file contains numerous duplicate key values, and the key is a linked-duplicatable key.

Granularity

The granularity setting is optional and allows you to choose the factor by which the percentage is
measured. In releases before Zen 9, this value was always 10000.

If you want to specify the granularity, follow these steps:

To specify a granularity in the Get By Percentage operation

1. Place the signature ExPc in the second 4 bytes of the data buffer (0x45, 0x78, 0x50, 0x63)
after the percentage.

2. Place the desired granularity in the 4 bytes after the signature as a LoHi Intel integer. The
granularity you choose can be any number from 1 to 0xFFFFFFFF.

3. Ensure that your data buffer length is at least 12 bytes.

For example if you want to get the 100th record from a file that contains 365 records, you can use
Get By Percentage (44) with 100 as the percentage and 365 as the granularity.

Result

If the Get By Percentage operation succeeds, the MicroKernel Engine returns to the data buffer a
record that is either from the designated position relative to the specified key path or from the
physical position in the file. The MicroKernel Engine returns the length of the record in bytes into
the data buffer length parameter. If the operation seeks the record by a key path, the MicroKernel
Engine returns the key value for the specified key path in the key buffer parameter. If the
operation seeks the record by physical record order, the MicroKernel Engine does not return any
information in the key buffer parameter.

Note: When Get By Percentage is seeking a record relative to a key path, and the key contains
duplicate values, the MicroKernel Engine always returns the first record containing the duplicated
value. This implementation detail can affect the accuracy of the operation.

If the Get By Percentage operation fails, the MicroKernel Engine returns one of the following
status codes:

3 The file is not open.

6 The key number parameter is invalid.

7 The key number has changed.

8 The current positioning is invalid.

66 Btrieve API Operations

Positioning

If successful when seeking a record relative to a specified key path, the Get By Percentage
operation establishes the new logical and physical currencies based respectively on the specified
key number and the retrieved record.

If successful when seeking a record based on the physical location of the record in the file, the Get
By Percentage operation establishes the new physical currency based on the retrieved record.

If the Get By Percentage operation fails, the MicroKernel Engine changes no currency.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

41 The MicroKernel Engine does not allow the attempted operation.

43 The specified record address is invalid.

82 The MicroKernel Engine lost positioning.

Btrieve API Operations 67

Get Direct/Chunk (23)
The Get Direct/Chunk operation (B_GET_DIRECT) can retrieve one or more portions, called
chunks, of a record. This operation is especially useful on files containing records longer than the
maximum data buffer size. Such records are too long to be retrieved by the other Get and Step
operations due to restrictions on the length of the data buffer parameter. Your application specifies
the record from which chunks are to be retrieved by supplying its physical address. The location
of a chunk in a record is generally specified by its offset and length.

Parameters

Prerequisites
• The file must be open.

• You must provide the physical location of the record. You can retrieve this location with Get
Position (22). Be consistent in the use of BTRV or BTRVEX type of entry points.

• You must provide a large enough data buffer to contain all values that a Get Direct/Chunk
operation returns. The data buffer must also be able to contain the entire chunk descriptor (all
the chunk definitions) when the Get Direct/Chunk operation is performing an indirect chunk
operation.

Procedure

1. Set the operation code to 23. Optionally, you can include a lock bias:

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as
the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X

Returned X X X

68 Btrieve API Operations

2. Pass the position block for the file.

3. Specify a data buffer, as described in Details.

4. Specify the data buffer length as either the length of the input structure or the number of bytes
you requested for the MicroKernel Engine to retrieve, whichever is larger.

Some options for the Get Direct/Chunk operation retrieve chunks to locations other than the
data buffer. See the Details section for more information about calculating the data buffer
length.

5. Set the key number parameter to –2.

Details

Use one of the following chunk descriptors in the data buffer:

• Random Chunk Descriptor – To retrieve a single chunk per operation, or to retrieve multiple
chunks in a single operation when the chunks are spaced randomly throughout the record.

• Rectangle Chunk Descriptor – To retrieve multiple chunks in an operation, when each chunk
is the same length and chunks are spaced equidistantly in the record.

Random Chunks

The following example shows a record with three randomly spaced chunks (areas containing [*]):
chunk 0 (bytes 0x12 through 0x16), chunk 1 (bytes 0x2A through 0x31), and chunk 2 (bytes 0x41
through 0x4E).

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 [*] [*] [*] [*] [*] 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 [*] [*] [*] [*] [*] [*]

[*] [*] 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 [*] [*] [*] [*] [*] [*] [*] [*] [*] [*] [*] [*] [*] [*] 4F

Btrieve API Operations 69

Data Buffer for Random Chunk Operations

To fetch random chunks, you must create a structure in the data buffer, based on the following
table.

Element Length
(Bytes)

Description

Record
Address

4 or 81 The physical location of the record. You can retrieve this
location with Get Position (22).

Random Chunk Descriptor

Subfunction 4 Type of chunk descriptor. One of the following:

• 0x80000000 (Direct random chunk descriptor) – Retrieves
chunks directly into the data buffer. The first chunk is
retrieved and stored at offset 0 in the data buffer, the second
chunk immediately follows the first, and so on.

• 0x80000001 (Indirect random chunk descriptor) – Retrieves
chunks into addresses specified by the Chunk Definitions.

NumChunks 4 Number of chunks to retrieve. The value must be at least 1.
Although no explicit maximum value exists, the chunk
descriptor must fit in the data buffer.

Chunk
Definition
(Repeat for
each chunk)

12 (for 32-bit
applications)

16 (for 64-bit
applications)

Each Chunk Definition is a 4-byte Chunk Offset, followed by a
4-byte Chunk Length, followed by a 4-byte User Data for 32-bit
applications or an 8-byte User Data for 64-bit applications,
described as follows:

• Chunk Offset – Indicates where the chunk begins as an
offset in bytes from the beginning of the record. The
minimum value is 0, and the maximum value is the offset of
the last byte in the record.

• Chunk Length – Indicates how many bytes are in the chunk.

The minimum value is 0, and the maximum value 655352.

• User Data – (Used only for indirect descriptors.) For 32-bit
applications, a 32-bit pointer to the actual chunk data. For
64-bit applications, a 64-bit pointer to the actual chunk data.
The MicroKernel Engine ignores this element for direct
chunk descriptor subfunctions.

1Size depends on whether you use BTRV or BTRVEX type entry points.
2For BTRVEX, chunk size is limited to 65535, but multiple chunks can be returned in a large data
buffer.

70 Btrieve API Operations

The following table shows a sample data buffer for a 32-bit application for fetching direct random
chunks using a BTRV entry point.

Rectangle Chunk Descriptor Structure

When chunks of the same length are spaced equidistantly throughout a record, you can describe
all the chunks to retrieve with a rectangle chunk descriptor. For example, consider the following
diagram, which represents offset 0x00 through 0x4F in a record:

Element Sample Value Length (Bytes)

Record Address 0x00000628 4

Subfunction 0x80000000 4

NumChunks 3 4

Chunk 0

Chunk Offset 18 4

Chunk Length 5 4

User Data N/A 4

Chunk 1

Chunk Offset 42 4

Chunk Length 8 4

User Data N/A 4

Chunk 2

Chunk Offset 65 4

Chunk Length 14 4

User Data N/A 4

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 [*] [*] [*] [*] 1D 1E 1F

20 21 22 23 24 25 26 27 28 [*] [*] [*] [*] 2D 2E 2F

30 31 32 33 34 35 36 37 38 [*] [*] [*] [*] 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

Btrieve API Operations 71

The record contains three chunks (areas containing [*]): chunk 0 (bytes 0x19 through 0x1C),
chunk 1 (bytes 0x29 through 0x2C), and chunk 2 (bytes 0x39 through 0x3C). Each chunk is four
bytes long, and a total of 16 (0x10) bytes, calculated from the beginning of each chunk, separates
the chunks from one another.

Data Buffer for Rectangle Chunks

You can retrieve all three chunks using a single rectangle descriptor. To fetch rectangle chunks,
you must create a structure in the data buffer based on the following table.

Element Length
(Bytes)

Description

Record
Address

4 or 81 The 4-byte physical location of the record. You can retrieve this
location with Get Position (22).

Rectangle Chunk Descriptor

Subfunction 4 Type of chunk descriptor. One of the following:

• 0x80000002 (Direct rectangle chunk descriptor) – Retrieves
chunks directly into the data buffer. The first chunk is retrieved and
stored at offset 0 in the data buffer, the second chunk immediately
follows the first, and so on.

• 0x80000003 (Indirect rectangle chunk descriptor) – Retrieves
chunks into addresses specified by the User Data and Application
Distance Between Rows elements.

Number of
Rows

4 Number of chunks on which the rectangle chunk descriptor must
operate. The minimum value is 1. No explicit maximum value exists.

Offset 4 Offset from the beginning of the record of the first byte to retrieve.
The minimum value is 0, and the maximum value is the offset of the
last byte in the record. If the record is viewed as a rectangle, this
element refers to the offset of the first byte in the first row to be
retrieved.

Bytes Per
Row

4 Number of bytes to retrieve in each chunk. The minimum value is 0,

and the maximum value is 655352.

Distance
Between
Rows

4 Number of bytes between the beginning of each chunk.

72 Btrieve API Operations

When you use an indirect descriptor, be sure that the User Data pointer is initialized so that the
chunks retrieved do not overwrite your chunk descriptor. The MicroKernel Engine uses the
descriptor when copying the returned chunks to the locations specified by User Data elements. If
you overwrite your chunk descriptor, the MicroKernel Engine returns status code 62.

If the rectangle has the same number of bytes between rows when it is in memory as when it is
stored as a record, set Application Distance Between Rows with the same value as Distance
Between Rows. However, if the rectangle is arranged in application memory with either more or
fewer bytes between rows, Application Distance Between Rows allows you to pass that
information to the MicroKernel Engine.

When you use an indirect rectangle descriptor, the MicroKernel Engine uses both the User Data
and the Application Distance Between Rows elements to determine the locations in which to store
the data after retrieving it. The MicroKernel Engine stores data from the first row in offset 0 of
User Data. The MicroKernel Engine stores the data from the second to an address specified by
User Data + Application Distance Between Rows. The MicroKernel Engine stores data from the
third row in the address specified by User Data + (Application Distance Between Rows * 2), and
so on.

User Data 4 (for 32-bit
applications)

8 (for 64-bit
applications)

(Used only with indirect descriptors.) For 32-bit applications, a 32-bit
pointer to the location into which the MicroKernel Engine stores bytes
after retrieving them from each row. For 64-bit applications, a 64-bit
pointer to the location into which the MicroKernel Engine stores bytes
after retrieving them from each row.

The MicroKernel Engine ignores this element for direct rectangle
descriptors. However, you must still allocate the element and initialize
it to 0.

Application
Distance
Between
Rows

4 (Used only with indirect rectangle descriptors.) Number of bytes
between the beginning of each chunk in the rectangle, as the rectangle
is stored in application memory, at the address specified by User Data.
The MicroKernel Engine ignores this element for direct rectangle
descriptors. However, you must still allocate the element and initialize
it to 0.

1Size depends on whether you use BTRV or BTRVEX type entry points.
2For BTRVEX, chunk size is limited to 65535, but multiple chunks can be returned in a large data buffer.

Element Length
(Bytes)

Description

Btrieve API Operations 73

The following table shows a sample data buffer for a 32-bit application for fetching a direct
rectangle chunk using a BTRV entry point.

Next-in-Record Subfunction Bias

If you add a bias of 0x40000000 to any of the subfunctions previously listed, the MicroKernel
Engine calculates the subfunction Offset element values based on your physical intrarecord
currency (that is, your current physical location within the record). When you use the Next-in-
Record subfunction, the MicroKernel Engine ignores the Offset element in the chunk descriptor.

Result

If the Get Direct/Chunk operation succeeds and a direct chunk descriptor is used, the MicroKernel
Engine returns the chunks one after another in the data buffer. If you used an indirect random
chunk descriptor, the MicroKernel Engine returns the data to the locations specified by the User
Data element of each chunk. If you used an indirect rectangle descriptor, the MicroKernel Engine
returns the data to locations it derives from the User Data and Application Distance Between
Rows elements.

The MicroKernel Engine also stores the total length of the chunks retrieved in the data buffer
length parameter. (The returned value reflects all bytes retrieved, whether they were retrieved and
stored directly into the data buffer, or the indirect descriptor was used to retrieve and store the
bytes elsewhere.) If the operation was partially successful, your application can use the value
returned in the data buffer length parameter to determine which chunks could not be retrieved and
how many bytes of the final chunk were retrieved.

Element Name Sample Value Length
(Bytes)

Record Address 0x00000628 4

Subfunction 0x80000002 4

Number of Rows 3 4

Offset 25 4

Bytes Per Row 4 4

Distance Between Rows 16 4

User Data 0 4

Application Distance Between Rows 0 4

74 Btrieve API Operations

The Get Direct/Chunk operation is only partially successful if any chunk begins beyond the end
of the record (resulting in the MicroKernel Engine returning status code 103), or if the offset and
length of any chunk combine to exceed the length of the record. In the latter case, the
MicroKernel Engine returns status code 0 but ceases processing subsequent chunks, if any, in the
operation.

Note: Only the data buffer length parameter shows that not all of the chunks were properly
retrieved. For this reason, be sure that you always check the value returned in the data buffer
length parameter after a Get Direct/Chunk operation.

The following status codes indicate a partially successful Get Direct/Chunk operation. When the
MicroKernel Engine returns one of these status codes, your application should check the data
buffer length parameter return value to see how much data the MicroKernel Engine actually
returned.

If the MicroKernel Engine returns any of the following status codes, it has returned no data.

Positioning

The Get Direct/Chunk operation has no effect on logical currency. In terms of physical currency,
Get Direct/Chunk makes the record from which chunks are retrieved the physical current record.

22 The data buffer parameter is too short.

54 The variable-length portion of the record is corrupt.

103 The chunk offset is too big.

43 The specified record address is invalid.

58 The compression buffer length is too short.

62 The descriptor is incorrect.

97 The data buffer is too small.

106 The MicroKernel Engine cannot perform a Get Next Chunk operation.

Btrieve API Operations 75

Get Direct/Record (23)
The Get Direct/Record operation (B_GET_DIRECT) retrieves a record using its physical location
in the file instead of using one of the defined key paths.

Use Get Direct/Record to accomplish the following:

• Retrieve a record faster using its physical location instead of its key value.

• Use Get Position (22) to retrieve the location of a record, save the location, and use Get
Direct/Record to return directly to that location after performing other operations that affect
currency.

• Use the location to retrieve a record in a chain of duplicates without rereading all the records
from the beginning of the chain.

• Change the current key path. A Get Position operation, followed by a Get Direct/Record
operation with a different key number, establishes positioning for the current record in a
different index path. A subsequent Get Next returns the next record in the file based on the
new key path.

Parameters

Note: The key number parameter is not needed when you are performing a Get Direct/Record
operation on a data-only file.

Prerequisites
• The file must be open.

• You must provide the 4- or 8-byte physical location of the record. You can retrieve this
location with Get Position (22), which returns the physical address of the current record. Be
consistent in the use of BTRV or BTRVEX type of entry points.

Procedure

1. Set the operation code to 23. Optionally, you can include a lock bias:

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X

Returned X X X X

76 Btrieve API Operations

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as
the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

2. Pass the position block for the file.

3. Store the 4- or 8-byte position of the requested record in beginning of the data buffer. Size
depends on whether you are using BTRV or BTRVEX type entry points.

4. Set the data buffer length to a value greater than or equal to the length of the record to retrieve.

5. Set the key number to the key number of the path for which you want the MicroKernel Engine
to establish logical currency. Specify –1 if you do not want the MicroKernel Engine to
establish logical currency. To use the system-defined log key (also called system data), specify
125. To use the second system key for system data v2, specify 124.

Result

If the Get Direct/Record operation succeeds, the MicroKernel Engine returns the requested record
in the data buffer, the length of the record in the data buffer length parameter, and the key value
for the specified key path in the key buffer.

If the Get Direct/Record operation fails and the MicroKernel Engine cannot return the requested
record, the MicroKernel Engine returns one of the following status codes:

22 The data buffer parameter is too short. (Logical currency is still
established.)

43 The specified record address is invalid. (Logical currency is not
established.)

44 The specified key path is invalid. (Logical currency is not
established.)

82 The MicroKernel Engine lost positioning. (Logical currency is
not established.)

Btrieve API Operations 77

Positioning

The Get Direct/Record operation erases any existing logical currency information and establishes
the new logical currency according to the key number specified. It has no effect on the physical
currency information.

78 Btrieve API Operations

Get Directory (18)
The Get Directory operation (B_GET_DIR) returns the current directory for a specified logical
disk drive.

Parameters

Prerequisites

Your application can issue a Get Directory operation at any time. The key buffer should be at least
65 characters long.

Procedure

1. Set the operation code to 18.

2. Store the logical disk drive number in the key number parameter. Specify the drive as 1 for A,
2 for B, and so on. To use the default drive, specify 0.

Result

The MicroKernel Engine returns the current directory, terminated by a binary 0, in the key buffer.

Positioning

The Get Directory operation has no effect on any file currency information.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X

Returned X

Btrieve API Operations 79

Get Equal (5)
The Get Equal operation (B_GET_EQUAL) retrieves a record that has a key value equal to that
specified in the key buffer. If the key allows duplicates, this operation retrieves the first record
(chronologically) of a group with the same key values. You can use the Get Key (+50) bias to
detect the presence of a value in a file. A Get Key operation is generally faster.

Parameters

Prerequisites
• The file must be open.

• The file cannot be a data-only file.

Procedure

1. Set the operation code to 5. Optionally, you can include a lock bias:

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as
the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

2. Pass the position block for the file.

3. Set the data buffer length to a value greater than or equal to the length of the record to retrieve.

4. Specify the desired key value in the key buffer. If the key consists of multiple segments, make
sure you define the key buffer to represent all segments and fill in values for all segments. If
you don't have search criteria for all segments, use the GetGreaterOrEqual operation instead.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X

Returned X X X

80 Btrieve API Operations

5. Set the key number to the correct key path. To use the system-defined log key (also called
system data), specify 125. To use the second system key for system data v2, specify 124.

Result

If the Get Equal operation succeeds, the MicroKernel Engine returns the requested record in the
data buffer and the length of the record in the data buffer length parameter.

If the Get Equal operation fails, the MicroKernel Engine returns one of the following status codes:

This operation returns status code 4 if the key contains a nonzero value in a null indicator
segment. You cannot use GetEqual to find records that are NULL, because by definition NULL is
indeterminate, or not equal to anything. If you need to find NULL values, use GetFirst followed
by GetNext.

Positioning

The Get Equal operation establishes the complete logical and physical currencies and makes the
retrieved record the current one.

3 The file is not open.

4 The application cannot find the key value.

6 The key number parameter is invalid.

22 The data buffer parameter is too short.

Btrieve API Operations 81

Get First (12)
The Get First operation (B_GET_FIRST) retrieves the logical first record based on the specified
key. You can use the Get Key (+50) bias to detect the presence of a value in a file. A Get Key
operation is generally faster.

Parameters

Prerequisites
• The file must be open.

• The file cannot be a data-only file.

Procedure

1. Set the operation code to 12. Optionally, you can include a lock bias:

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as
the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

2. Pass the position block for the file.

3. Set the data buffer length to a value greater than or equal to the length of the record to retrieve.

4. Indicate the key number for the key path. To use the system-defined log key (also called
system data), specify 125. To use the second system key for system data v2, specify 124.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X

Returned X X X X

82 Btrieve API Operations

Result

If the Get First operation succeeds, the MicroKernel Engine returns the requested record in the
data buffer, stores the corresponding key value in the key buffer, and returns the length of the
record in the data buffer length parameter.

If the Get First operation fails, the MicroKernel Engine returns one of the following status codes:

Positioning

The Get First operation establishes the complete logical and physical currencies and makes the
retrieved record the current one. The logical previous position points beyond the beginning of the
file.

3 The file is not open.

6 The key number parameter is invalid.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

Btrieve API Operations 83

Get Greater Than (8)
The Get Greater Than operation (B_GET_GT) retrieves a record in which the field specified by
the key number has the next greater value than the one in the key buffer. If the key allows
duplicates, this operation retrieves the first record (chronologically) of the group with the same
key values. You can use the Get Key (+50) bias to detect the presence of a value in a file. A Get
Key operation is generally faster.

Note: If you are using the Get Greater Than operation on descending keys, the next greater value
refers to a value lower than the one specified in the key buffer.

Parameters

Prerequisites
• The file must be open.

• The file cannot be a data-only file.

Procedure

1. Set the operation code to 8. Optionally, you can include a lock bias:

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as
the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

2. Pass the position block for the file.

3. Set the data buffer length to a value greater than or equal to the length of the record you want
to retrieve.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X

Returned X X X X

84 Btrieve API Operations

4. Specify the desired key value in the key buffer parameter.

5. Set the key number parameter to correspond to the correct key path. To use the system-defined
log key (also called system data), specify 125. To use the second system key for system data
v2, specify 124.

Result

If the Get Greater Than operation succeeds, the MicroKernel Engine stores the record in the data
buffer, the key value in the key buffer, and the length of the record in the data buffer length
parameter.

If the Get Greater Than operation fails, the MicroKernel Engine returns one of the following
status codes:

Positioning

The Get Greater Than operation establishes the complete logical and physical currencies and
makes the retrieved record the current one.

3 The file is not open.

6 The key number parameter is invalid.

22 The data buffer parameter is too short.

Btrieve API Operations 85

Get Greater Than or Equal (9)
The Get Greater Than or Equal operation (B_GET_GE) retrieves a record in which the value for
the key specified by the key number is equal to or greater than the value you supply in the key
buffer. The MicroKernel Engine first tries to satisfy the equal requirement. If the key allows
duplicates, this operation retrieves the first record (chronologically) of the group with the same
key values. You can use the Get Key (+50) bias to detect the presence of a value in a file. A Get
Key operation is generally faster.

Note: If you are using the Get Greater Than or Equal operation on descending keys, the next
greater value refers to a value lower than the one specified in the key buffer.

Parameters

Prerequisites
• The file must be open.

• The file cannot be a data-only file.

Procedure

1. Set the operation code to 9. Optionally, you can include a lock bias:

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as
the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

2. Pass the position block for the file.

3. Set the data buffer length to a value greater than or equal to the length of the record you want
to retrieve.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X

Returned X X X X

86 Btrieve API Operations

4. Specify the key value in the key buffer parameter.

5. Set the key number parameter to correspond to the correct key path. To use the system-defined
log key (also called system data), specify 125. To use the second system key for system data
v2, specify 124.

Result

If the Get Greater Than or Equal operation succeeds, the MicroKernel Engine stores the record in
the data buffer, the key value in the key buffer, and the length of the record in the data buffer
length parameter.

If the Get Greater Than or Equal operation fails, the MicroKernel Engine returns one of the
following status codes:

Positioning

The Get Greater Than or Equal operation establishes the complete logical and physical currencies
and makes the retrieved record the current one.

3 The file is not open.

6 The key number parameter is invalid.

22 The data buffer parameter is too short.

Btrieve API Operations 87

Get Key (+50)
The Get Key bias allows you to perform a Get operation without actually retrieving a data record.
You can use Get Key to detect the presence of a value in a file. A Get Key operation is generally
faster than its corresponding Get operation. You can use the Get Key operation with any of the
following Get operations:

• Get Equal (5)

• Get Next (6)

• Get Previous (7)

• Get Greater Than (8)

• Get Greater Than or Equal (9)

• Get Less Than (10)

• Get Less Than or Equal (11)

• Get First (12)

• Get Last (13)

• Get By Percentage (44)

Parameters

The parameters are the same as those for the corresponding Get operation, except that the
MicroKernel Engine ignores the data buffer length and does not return a record in the data buffer.

Prerequisites

The prerequisites for a Get Key operation are the same as those for the corresponding Get
operation.

Procedure

1. Set the parameters as you would for the corresponding Get operation. You do not need to
initialize the data buffer length.

2. Set the operation code to the Get operation you want to perform, plus 50. For example, to
perform a Get Key (+50) with Get Equal (5), set the operation code to 55.

88 Btrieve API Operations

The MicroKernel Engine does not allow Delete or Update operations after a Get Key (+50).
Before the MicroKernel Engine performs Update or Delete operations, it compares the current
usage count of the data page it intends to modify with the usage count of the data page when the
record was read. To obtain the usage count, the MicroKernel Engine must read the data page.

Because the Get Key operation does not read the data page, no usage count is available for
comparison on the Update or Delete. The Update or Delete fails because the MicroKernel Engine
cannot perform its passive concurrency conflict checking without the compare. When the Update
or Delete fails, the MicroKernel Engine returns status code 8.

Result

If the MicroKernel Engine finds the requested key, it returns the key value in the key buffer and
status code 0. Otherwise, the MicroKernel Engine returns a status code indicating why it cannot
find the key value.

Positioning

The Get Key operation establishes the current positioning in a similar manner to the
corresponding Get operation. However, when a Get Key operation involves a key that allows
duplicates, the MicroKernel Engine ignores the duplicate instances of the current retrieved key
value. After a Get Key operation, the logical previous position points to the record containing the
previous lesser key value. The logical next position points to the record with the next greater key
value.

For example, assume you perform a Get Key/Get Equal operation (55) on a last name key that
contains eight occurrences of Smith and a single Smythe. The logical next position does not point
to the next Smith, but to Smythe.

Because a Get Key operation does not positively identify any one record, the MicroKernel Engine
does not allow an Update or Delete operation to follow a Get Key operation.

Btrieve API Operations 89

Get Last (13)
The Get Last operation (B_GET_LAST) retrieves the logical last record based on the specified
key. If duplicates exist for the last key value, the record returned is the last duplicate. You can use
the Get Key (+50) bias to detect the presence of a value in a file. A Get Key operation is generally
faster.

Parameters

Prerequisites
• The file must be open.

• The file cannot be a data-only file.

Procedure

1. Set the operation code to 13. Optionally, you can include a lock bias:

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as
the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

2. Pass the position block for the file.

3. Set the data buffer length to a value greater than or equal to the length of the record you want
to retrieve.

4. Specify the key number for the key path. To use the system-defined log key (also called
system data), specify 125. To use the second system key for system data v2, specify 124.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X

Returned X X X X

90 Btrieve API Operations

Result

If the Get Last operation succeeds, the MicroKernel Engine returns the requested record in the
data buffer, stores the corresponding key value in the key buffer, and returns the length of the
record in the data buffer length parameter.

If the Get Last operation fails, the MicroKernel Engine returns one of the following status codes:

Positioning

The Get Last operation establishes the complete logical and physical currencies and makes the
retrieved record the current one. The logical next position points beyond the end of the file.

3 The file is not open.

6 The key number parameter is invalid.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

Btrieve API Operations 91

Get Less Than (10)
The Get Less Than operation (B_GET_LT) retrieves a record in which the value for the key
specified by the key number has the previous lesser value than the value you supply in the key
buffer. If the key allows duplicate values, this operation retrieves the last record (chronologically)
of the group with the same key values. You can use the Get Key (+50) bias to detect the presence
of a value in a file. A Get Key operation is generally faster.

Note: If you are using the Get Less Than operation on descending keys, the next lesser value
refers to a value higher than the one specified in the key buffer.

Parameters

Prerequisites
• The file must be open.

• The file cannot be a data-only file.

Procedure

1. Set the operation code to 10. Optionally, you can include a lock bias:

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as
the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

2. Pass the position block for the file.

3. Set the data buffer length to a value greater than or equal to the length of the record you want
to retrieve.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X

Returned X X X X

92 Btrieve API Operations

4. Specify the desired key value in the key buffer parameter.

5. Set the key number parameter to the key path. To use the system-defined log key (also called
system data), specify 125. To use the second system key for system data v2, specify 124.

Result

If the Get Less Than operation succeeds, the MicroKernel Engine returns the record in the data
buffer, the key value for the record in the key buffer, and the length of the record in the data buffer
length parameter.

If the Get Less Than operation fails, the MicroKernel Engine returns one of the following status
codes:

Positioning

The Get Less Than operation establishes the complete logical and physical currencies and makes
the retrieved record the current one.

3 The file is not open.

6 The key number parameter is invalid.

22 The data buffer parameter is too short.

Btrieve API Operations 93

Get Less Than or Equal (11)
The Get Less Than or Equal operation (B_GET_LE) retrieves a record in which the value for the
key specified by the key number has an equal or a previous lesser value than the value you supply
in the key buffer. The MicroKernel Engine first tries to satisfy the equal requirement. If the key
allows duplicate values, this operation retrieves the last record (chronologically) of the group with
the same key values. You can use the Get Key (+50) bias to detect the presence of a value in a file.
A Get Key operation is generally faster.

Note: If you are using the Get Less Than or Equal operation on descending keys, the next lesser
value refers to a value higher than the one specified in the key buffer.

Parameters

Prerequisites
• The file must be open.

• The file cannot be a data-only file.

Procedure

1. Set the operation code to 11. Optionally, you can include a lock bias:

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as
the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

2. Pass the position block for the file.

3. Set the data buffer length to a value greater than or equal to the length of the record you want
to retrieve.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X

Returned X X X X

94 Btrieve API Operations

4. Specify the key value in the key buffer parameter.

5. Set the key number parameter to the key path. To use the system-defined log key (also called
system data), specify 125. To use the second system key for system data v2, specify 124.

Result

If the Get Less Than or Equal operation succeeds, the MicroKernel Engine returns the record in
the data buffer, the key value for the record in the key buffer, and the length of the record in the
data buffer length parameter.

If the Get Less Than or Equal operation fails, the MicroKernel Engine returns one of the
following status codes:

Positioning

The Get Less Than or Equal operation establishes the complete logical and physical currencies
and makes the retrieved record the current one.

3 The file is not open.

6 The key number parameter is invalid.

22 The data buffer parameter is too short.

Btrieve API Operations 95

Get Next (6)
The Get Next operation (B_GET_NEXT) retrieves the record in the logical next position (based
on the specified key). You can use the Get Next operation to retrieve records within a group of
records that have duplicate key values. You can use the Get Key (+50) bias to detect the presence
of a value in a file. A Get Key operation is generally faster.

Parameters

Prerequisites
• The file must be open.

• The file cannot be a data-only file.

• Your application must have an established logical next position based on the specified key.

Procedure

1. Set the operation code to 6. Optionally, you can include a lock bias:

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as
the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

2. Pass the position block for the file.

3. Set the data buffer length to a value greater than or equal to the length of the record you want
to retrieve.

4. Specify the key value from the previous operation in the key buffer that established logical
position.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X

Returned X X X X

96 Btrieve API Operations

Pass the key buffer exactly as the MicroKernel Engine returned it on the previous call, since
the information stored there may be needed to determine the current position in the file.

5. Set the key number parameter to the key path used on the previous call that established logical
position. You cannot change key paths using a Get Next operation.

Result

If the Get Next operation succeeds, the MicroKernel Engine returns the record in the data buffer,
the key value for the record in the key buffer, and the length of the record in the data buffer length
parameter.

If the Get Next operation fails, the MicroKernel Engine returns one of the following status codes:

The operation returns status code 9 if the logical next position points beyond the end of the file.

Positioning

The Get Next operation establishes the complete logical and physical currencies and makes the
retrieved record the current one.

3 The file is not open.

6 The key number parameter is invalid.

7 The key number has changed.

8 The current positioning is invalid.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

82 The MicroKernel Engine lost positioning.

Btrieve API Operations 97

Get Next Delete Extended (85)
The Get Next Delete Extended operation (B_GET_NEXT_EXT_DELETE) examines one or
more records, starting at the logical next position and proceeding toward the end of the file, based
on the specified key. It compares the examined record or records to a filter condition and deletes
those that match. The filter condition is a logic expression and is not limited to key fields.

As noted under this topic, this operation uses the same input and output buffer structures and
returns the result described under Get Next Extended (36). See that operation for more
information.

Parameters

Prerequisites
• The file must be open.

• The file cannot be a data-only file.

• You must have an established logical next position based on the specified key. You can
establish logical positioning by issuing any unextended Get operation, such as a Get Equal.

Procedure

1. Set the operation code to 85.

By default, the lock bias is no-wait, and any lock bias setting is ignored. Behavior is identical
to +500: If the engine cannot delete a locked record, it returns immediately without retrying
the operation.

2. Pass the position block for the file.

3. Specify a data buffer to accommodate either the input structure or the returned output,
whichever is larger. Initialize the data buffer according to the information for the input buffer
for extended operations found under Get Next Extended (36).

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X X

Returned X X X X

98 Btrieve API Operations

4. Specify the buffer size as either the length of the input structure or the length of the returned
output, whichever is larger, as described for the input and output buffer information found
under Get Next Extended (36).

5. Specify the key value from the previous operation in the key buffer that established logical
position.

Pass the key buffer exactly as the MicroKernel Engine returned it on the previous call, since
the information stored there may be needed to determine the current position in the file.

6. Set the key number parameter to the key path used on the previous call that established logical
position. You cannot change key paths using a Get Next Delete Extended operation.

Details

The following topics under Get Next Extended (36) cover the structure of the extended operation
input buffer and use of its filter segment, as well as the structure of the output buffer that returns
the result:

• Input Buffer for Extended Operations

• Output Buffer for Extended Operations

Result

If the Get Next Delete Extended operation succeeds, the MicroKernel Engine returns the
following:

• In the output buffer, one or more record addresses from one or more records. For details, see
Output Buffer for Extended Operations.

• In the output buffer length, the total number of bytes received.

• In the key buffer, the key value for the last data record examined.

A Get Next Delete Extended operation may fail for the same reasons as other Step and Get
Extended operations, returning one of the following status codes:

3 The file is not open.

6 The key number parameter is invalid.

7 The key number has changed.

8 The current positioning is invalid.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

Btrieve API Operations 99

If the output buffer length is zero, then no records were deleted. However, the operation may have
succeeded in deleting some records before failing. The following list gives some examples of
these partial successes:

• The output buffer no longer has room to write out the record address for the current record that
matches the filter conditions. That record is not deleted, and the operation fails with status
code 22.

• Another client has locked the current record, and the operation fails with status code 84.

In these cases, the output buffer length is greater than zero, and the first two bytes of the buffer
give a count of the number of deleted records.

Depending on the fields and operators used in the filter condition, the MicroKernel Engine may
be able to optimize your request. After reaching a certain rejected record, it returns status code 64,
indicating that no records in the rest of the file can satisfy the filter conditions.

Positioning

The Get Next Delete Extended operation does not establish currency. However, you can do a Get
Next or Get Previous operation, and the next or previous logical position is valid. A valid current
position also becomes available by using Get Position (22) and Get Direct/Record (23).

The following list shows the relationships of selected status codes to filter conditions:

• Status 60 (reject count reached): The current position is a record that does not match the filter
condition.

• Status 64 (filter limit reached): The current position is a record that may not match the filter
condition. Any attempt to step to the next record will not match the filter condition.

60 The specified reject count has been reached.

61 The work space is too small.

62 The descriptor is incorrect.

64 The filter limit has been reached.

65 The field offset is incorrect.

82 The MicroKernel Engine lost positioning.

134 The MicroKernel Engine cannot read the International Sorting Rule.

135 The specified International Sort Rule table is corrupt or otherwise invalid.

136 The MicroKernel Engine cannot find the specified alternate collating sequence in the file.

100 Btrieve API Operations

• Status 84 (record or page locked): The current position is a record that may not match the
filter condition. It is also possible that the next record matched the filter condition but could
not be deleted because of locking.

• Status 22 (data buffer full): The current position is a record that matches the filter condition,
but the data buffer does not have space to write the record address, so the MicroKernel Engine
did not delete the record.

• Status 9 (end of file): The current position is both logically and physically invalid.

Btrieve API Operations 101

Get Next Extended (36)
The Get Next Extended operation (B_GET_NEXT_EXTENDED) examines one or more records,
starting at the logical next position and proceeding toward the end of the file, based on the
specified key. It compares the examined record or records to a filter condition and retrieves those
that match. The filter condition is a logic expression and is not limited to key fields.

Get Next Extended can also extract specified portions of records and return only those to an
application.

Parameters

Prerequisites
• The file must be open.

• The file cannot be a data-only file.

• You must have an established logical next position based on the specified key. You can
establish logical positioning by issuing any unextended Get operation, such as a Get Equal.

Procedure

1. Set the operation code to 36. Optionally, you can include a lock bias:

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as
the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

2. Pass the position block for the file.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X X

Returned X X X X

102 Btrieve API Operations

3. Specify a data buffer to accommodate either the input structure or the returned output,
whichever is larger. Initialize the data buffer according to the information for the input buffer
for extended operations found under Get Next Extended (36).

4. Specify the buffer size as either the length of the input structure or the length of the returned
output, whichever is larger, as described for the input and output buffer information found
under Get Next Extended (36).

5. Set the key value from the previous operation in the key buffer that established logical
position. Pass the key buffer exactly as the MicroKernel Engine returned it on the previous
call, since the information stored there may be needed to determine the current position in the
file.

6. Set the key number parameter to the key path used on the previous call that established logical
position. You cannot change key paths using a Get Next Extended operation.

Details

The following topics cover the structure of the extended operation input buffer and use of its filter
segment, as well as the structure of the output buffer that returns the result of the operation.

• Input Buffer for Extended Operations

• Collation of LIKE Results

• Using the JSON QUERY Operator

• Processing of Logical AND and OR in a Filter

• Examples of Filtering Records

• Output Buffer for Extended Operations

Input Buffer for Extended Operations

The following table provides the structure of the input buffer for extended Get and Step
operations. This buffer applies to all extended operations, with differences in usage as noted.

Element Length
(Bytes)

Description

Header 2 Exact length of the input data buffer.

2 One of two string constant values (fixed length, do not null-terminate):
"EG" – Begin with the record after the one at which you are positioned.
"UC" – Begin with the record at which you are positioned.

Btrieve API Operations 103

Filter
(Fixed
portion)

2 Maximum reject count, the number of records that do not match the filter that
the database engine can skip. You can set a value from 0 to 65535. Zero means
the engine uses 4095 default.

2 Number of terms in the logic expression of the filter. Zero means MicroKernel
Engine performs no filtering. The only limit to the number of terms is the size
of the data buffer. In Pervasive.SQL 2000i SP3 only, the limit for the number
of terms is 119.

Element Length
(Bytes)

Description

104 Btrieve API Operations

Filter
(Repeat this
segment
once for
each term
in the logic
expression)

1 Data type of the field. Use one of the extended data type codes found under
Key Specification Block.

2 Field length.

2 Field offset (zero relative).

1 Specifies a comparison code:
1 – Equal
2 – Greater than
3 – Less than
4 – Not equal
5 – Greater than or equal
6 – Less than or equal
7 – Extended operation code

• Add a +8 bias to compare strings using a
collation sequence in the file.

• Add a +32 bias to compare strings using
the first ACS in the file. The +32 bias is
ignored if a +8 bias is used.

• Add a +64 bias if the second operand is
another field of the record.

• Add a +128 bias to compare strings
without case sensitivity.

1 Indicates an AND/OR logic expression:
0 – Identifies the last term
1 – Next term is connected with AND
2 – Next term is connected with OR

1 This field is present only when the comparison code is 7:
1 – LIKE operator
2 – NOT LIKE operator
3 – JSON QUERY operator

2 or n • When comparing two fields: a 2-byte, zero-relative offset to the second
field. The second field must be the same type and length.

• When comparing a field to a constant: the value of the constant. The length
of the constant (n) must equal the length of the field.

• When the comparison code is 7, this element has this structure:
– 2-byte length for the size of the LIKE clause, including a null terminator
– Null-terminated string containing the LIKE or NOT LIKE clause or

JSON query string
– To set an alternate escape character for the default backslash, append

the character to the match pattern after the null byte, then terminate with
another null byte. Adjust the 2-byte length to include the added bytes.

– The LIKE or NOT LIKE clause uses SQL LIKE syntax, except (1) Only
string types can be compared, (2) The LIKE clause or JSON query must
use the same format and text type as data to compare. (3) A single
quotation mark does not need to be quoted.

0, 9, or
17

When the comparison code is 7 (bias +8), the collation field may refer to an
ACS, ISR table, ICU collation, or code page name for the LIKE and NOT
LIKE operators (see Collation of LIKE Results). When the JSON QUERY
operator has been specified, this field should not be provided.

Element Length
(Bytes)

Description

Btrieve API Operations 105

Collation of LIKE Results

In operations that specify the comparison code as extended operation code 7 (bias +8), the
collation field may refer to an existing ACS, ISR table, ICU collation, or code page, as shown in
the following table. The format is the signature byte followed by the name.

Descriptor
(Fixed
portion)

2 Number of records to retrieve. To retrieve only one record instead of a set of
records, specify 1.

In the case of Delete operations, the number of records to delete.

2 Number of fields to extract from each record. For Delete operations, set to
zero.

Descriptor
(Repeat this
segment for
each
extracted
field)

2 Field length to extract. Not used for Delete operations.

2 Field offset (zero relative). Not used for Delete operations.

Note: If field length = 0xFF08 and offset = 0xFFFE (–2), then the 8-byte
syskey associated with the record is returned if it has been defined. If field
length = 0xFF04 and offset = 0xFFFD (–3), then the 4-byte record length,
including variable-length data, is returned.

Type Total
Length
(Bytes)

Signature
Byte

Name
Length
(Bytes)

Description

ACS 9 0xAC 8 Unique 8-byte name that identifies the ACS to the
MicroKernel Engine. Only existing ACS definitions
can be used.

ISR 17 0xAE 16 Unique 16-byte name that identifies the ISR table to
the MicroKernel Engine. See Zen Programmer’s
Guide for a list of ISR table names.

ICU 17 0xAE 16 Name a supported ICU collation, either u54-
msft_enus_0 or root. You must fill with spaces to 16
bytes.

Code page 17 0xAB 16 Name of a supported code page. You must fill with
spaces to 16 bytes.

Element Length
(Bytes)

Description

106 Btrieve API Operations

Using the JSON QUERY Operator

The JSON QUERY operator can be used to filter records that contain data stored as JSON strings.
In the record the string data may be stored as ZSTRING or CLOB data types. The filter element
must contain the comparison constant as a string that specifies the filter conditions that JSON data
in a record must satisfy. This string, also called a JSON query, is itself specified using JSON as
shown in the examples given here.

The JSON QUERY operator does not currently support a code page, ACS, or collation. The
encoding of the ZSTRING or CLOB data field can be a single-byte Windows ANSI code page or
UTF-8.

When you use the JSON QUERY operator, the comparison constant that you specify under the
filter term must be a valid JSON query, using JSON syntax as shown in the following example. It
must be null-terminated. If the filter string is not in proper JSON format, then the extended
operation fails with status code 62 for an incorrect descriptor.

When you use the JSON QUERY operator, if the field of the record to compare against does not
follow the JSON specification, the record is treated as failing to meet the filter condition.

JSON Query Examples

The following example shows the syntax required for JSON filtering.

query ::= { <expressions> }
<expressions> ::= <json_expression> | <json_expression> , <expressions>
<json_expression> ::=

"$and" : [<braced_json_expression> , <braced_json_expressions>] |
"$not" : <braced_json_expression> |
"$or" : [<braced_json_expression> , <braced_json_expressions>] |
<field_expression>

<braced_json_expressions> ::=
<braced_json_expression> |
<braced_json_expression> , <braced_json_expressions>

<braced_json_expression> ::= { <json_expression> }
<field_expression> ::=

<field> : <value> |
<field> : { "$exists" : false | true } |
<field> : { "$in" : [<value> , <values>] } |
<field> : { "$nin" : [<value> , <values>] } |
<field> : { "$type" : <type> } |
<field> : { <operator> : <value> } |
<field> : { <field_expression> }

<field> ::= <string>
<values> ::= <value> | <value> , <values>
<value> ::= false | true | NULL | <string> | <number> | <array>
<type> ::= "array" | "boolean" | "null" | "number" | "object" | "string"
<operator> ::= "$eq" | "$gt" | "$gte" | "$lt" | "$lte" | "$ne"

In a JSON expression, if the query value is not an array and the document value is an array, then
each element in the array is evaluated. If any evaluation returns true, then the JSON expression
returns true.

Btrieve API Operations 107

In another example, derived from the Bureau of Transportation Statistics data, records of airline
flight data in JSON format could have fields resembling the following:

{
"airport_code" : "ATL",
"carrier_code" : "AA"
...

}

To search for records that refer to American Airlines (AA) at Hartsfield-Jackson Atlanta
International Airport (ATL), you could use the following query string:

{ "$and" : [{ "airport_code" : { "$eq" : "ATL" } },
{ "carrier_code" : { "$eq" : "AA" } }] }

Note the use of JSON format for query string. JSON validation tools may be helpful for checking
syntax.

Processing of Logical AND and OR in a Filter

The MicroKernel Engine interprets AND and OR operators in a filter with extended operations in
strict left-to-right order. It evaluates an expression in the filter and proceeds as follows:

• If the expression is true when applied to the current record and the next operator is OR, the
engine accepts this record as meeting the filter condition.

• If the expression is true and the next operator is AND, the engine continues to evaluate each
expression until one of the following situations occurs:

• The engine reaches an OR expression.

• One of the expressions evaluates to false.

• The engine reaches the end of the filter.

• If the expression is false and the next operator is OR, the engine continues and evaluates the
next expression in the filter.

• If the expression is false and the next operator is AND, the engine rejects the record.

The search for records stops if any one of the following conditions is met:

• The engine finds the requested number of records that satisfy the filter.

• While the engine searches for records to satisfy the filter condition, the number of records it
examines exceeds the Maximum Reject Count you specify.

• The current key path is used as a filtering field and the engine reaches a rejected record after
which no records can satisfy the filter condition in the rest of the file.

• The engine reaches the end of the file.

108 Btrieve API Operations

Examples of Filtering Records

To get the next entire record that satisfies the filter condition, set the filter portion and then set the
descriptor fields as follows:

1. Set the Number of Records to 1.

2. Set the Number of Fields to 1.

3. Set the Field Length to the length of the entire record to retrieve.

4. Set the Field Offset to 0.

To retrieve the next 12 records without using a filter condition and extract 4 fields from each
record, set the filter Number of Terms to 0 and set the descriptor fields as follows:

1. Set the Number of Records to 12.

2. Set the Number of Fields to 4.

3. Set the Field Length and Field Offset parameters for each of the 4 fields extracted.

Output Buffer for Extended Operations

When you retrieve one or more fields or portions of records with an extended Get or Step
operation, you must make sure that the data buffer can hold the information the operation returns.
The following table shows the structure of the returned output buffer.

Element Length
(Bytes)

Description

Number of
Records

2 For Get and Step operations, number of records returned. For deleted
records, number removed.

Repeating portion (one for each record retrieved)

Length 0 2 Length of first record image retrieved, all fields combined. For Delete
operations, it is zero.

Position 0 4 or 8 Physical currency (address) of first record retrieved. For deleted records,
address of the first record removed. Size depends on type of entry point:
4 for BTRV or 8 for BTRVEX.

Record 0 n Image of first record, all fields combined. Not used for Delete
operations.

. . . (Repeated portions for each record)

Btrieve API Operations 109

If all returned records or fields of records are fixed length, your application can simply calculate
the location of data within the returned data buffer. However, your application may need to
perform extra steps to extract the variable-length portion of records from the data buffer that an
extended operation returns.

The MicroKernel Engine does not pad any record image in the returned data buffer when
returning the variable-length portion of a record. Consequently, if you allow room in the returned
data buffer for the maximum number of bytes that the variable-length portion of a record could
occupy, but the actual data returned is less than that maximum, the MicroKernel Engine starts the
field description for the next returned field immediately following the data for the current field.

For example, assuming an entry point using 4-byte record addresses, suppose your fixed-record
length is 100 bytes, your variable-length portion is up to 300 bytes, and you want to return just the
variable-length portion of 5 records. You would use the descriptor element of the input buffer to
set a Field Length of 300 and a Field Offset of 100. For the returned buffer, you need 2 bytes for
the Number of Records + 306 bytes for each record (that is, 2 bytes for the length, 4 bytes for the
address, and 300 bytes for the data), as shown in the following calculation:

2 + ((2 bytes + 4 bytes + 300 bytes) * 5) = 1532 bytes

However, suppose that the variable-length portion of the first record returned contains only 50
bytes of data. This means the 2-byte length for the second record returned is stored at offset 58 in
the data buffer, immediately following the image of the field of the first record. In such a
situation, your application must parse the length, position, and data from the data buffer that the
MicroKernel Engine returns.

Result

If the Get Next Extended operation succeeds, the MicroKernel Engine returns the following:

• In the output buffer, one or more fields from one or more records. For details, see Output
Buffer for Extended Operations.

Length x 2 Length in bytes of the last record image, all fields combined. For Delete
operations, it is zero.

Position x 4 or 81 Physical currency (address) of the last record retrieved or deleted.

Record x n Image of last record retrieved, all fields combined. Not used for Delete
operations.

Element Length
(Bytes)

Description

110 Btrieve API Operations

• In the output buffer length, the total number of bytes received.

• In the key buffer, the key value for the last data record received.

If the Get Next Extended operation fails, the MicroKernel Engine returns one of the following
status codes:

The MicroKernel Engine can return a nonzero status code and also valid data, but the last record
returned is incomplete. If the buffer length returned is greater than 0, check the buffer for
extracted data.

If a field can be only partially filled because the record is too short, then the MicroKernel Engine
returns what it can of the record up to and including the partial field. If the partial field is the last
field to extract, then the engine continues the operation. Otherwise, it aborts the operation with
status code 22.

For example, a Get Next Extended operation retrieves three fields from two variable-length
records, the first record 55 bytes long, the second 50 bytes. The output buffer allows 50 bytes for
return data. The three fields to be retrieved are defined as follows:

• Field 1 begins at offset 2 and is 2 bytes long.

• Field 2 begins at offset 45 and is 10 bytes long.

• Field 3 begins at offset 6 and is 2 bytes long.

3 The file is not open.

6 The key number parameter is invalid.

7 The key number has changed.

8 The current positioning is invalid.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

60 The specified reject count has been reached.

61 The work space is too small.

62 The descriptor is incorrect.

64 The filter limit has been reached.

65 The field offset is incorrect.

82 The MicroKernel Engine lost positioning.

134 The MicroKernel Engine cannot read the International Sorting Rule.

135 The specified International Sort Rule table is corrupt or otherwise invalid.

136 The MicroKernel Engine cannot find the specified alternate collating sequence
in the file.

Btrieve API Operations 111

When the MicroKernel Engine performs the Get Next Extended operation, it returns the first
record without any problem. However, when it attempts to extract the 10 bytes of field 2, the
MicroKernel Engine finds only 5 bytes available, between offset 45 and the end of the record at
offset 49. At this point, the MicroKernel Engine does not pad the missing 5 bytes of field 2 and
thus cannot extract field 3. Instead, it returns status code 22 and places all of field 1 and the first 5
bytes of field 2 in the return data buffer.

Depending on the fields and operators used in the filter condition, the MicroKernel Engine may
be able to optimize your request. After reaching a certain rejected record, it returns status code 64,
indicating that no records in the rest of the file can satisfy the filter conditions.

Positioning

The Get Next Extended operation establishes the complete logical and physical currencies. The
last record examined becomes the current record. This record can be either a record that satisfies
the filter condition and is retrieved, or a record that does not satisfy the filter condition and is
rejected, but is still not past the optimization limit. For example, if the extended operation returns
status 9 (end of file), the current record is that last record in the file. If status 60 (reject count
reached) is returned, then the current record is the last record rejected. If status 64 (filter limit
reached) is returned, then the current record is the last one that satisfies the optimization criteria.
Even though the MicroKernel Engine had to look at the next record after this to determine that the
optimization limit was exceeded, it sets the current record back to the previous record that
satisfied the criteria.

112 Btrieve API Operations

Get Position (22)
The Get Position operation (B_GET_POSITION) returns the physical position of the current
record. Get Position fails if there is no established physical currency when you issue the
operation. Once you determine position (address) of a record, you can use Get Direct/Record (23)
to retrieve that record directly by its physical location in the file. The MicroKernel Engine does
not perform any disk I/O to process a Get Position request.

Parameters

Prerequisites
• The file must be open.

• Your application must have established physical currency.

Procedure

1. Set the operation code to 22.

2. Pass the position block for the file.

3. Set the data buffer length to at least 4 bytes. A minimum of 8 bytes is needed if you are using
the BTRVEX entry point.

4. Set the key number to 0.

Result

If the Get Position operation succeeds, the MicroKernel Engine returns the position of the record
in the data buffer. The position is a binary value that indicates the offset of the record in the file.
The MicroKernel Engine also sets the data buffer length to 4 bytes for BTRV type entry points or
8 bytes for BTRVEX type entry points.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X

Returned X X X

Btrieve API Operations 113

If the Get Position operation fails, the MicroKernel Engine returns one of the following status
codes:

Positioning

The Get Position operation has no effect on positioning.

3 The file is not open.

8 The current positioning is invalid.

137 The operation with this access method is incompatible. API mismatch. The record
address cannot be stored in 4 bytes.

114 Btrieve API Operations

Get Previous (7)
The Get Previous operation (B_GET_PREVIOUS) retrieves the record in the logical previous
position based on a specified key. You can use the Get Previous operation to retrieve a record
within a group of records that have duplicate key values. You can use the Get Key (+50) bias to
detect the presence of a value in a file. A Get Key operation is generally faster.

Parameters

Prerequisites
• The file must be open.

• The file cannot be a data-only file.

• Your application must have established a logical previous position based on the specified key.

Procedure

1. Set the operation code to 7. Optionally, you can include a lock bias:

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as
the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

2. Pass the position block for the file.

3. Set the data buffer length to a value greater than or equal to the length of the record you want
to retrieve.

4. Specify the key value from the previous operation in the key buffer that established logical
position.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X

Returned X X X X

Btrieve API Operations 115

Pass the key buffer exactly as the MicroKernel Engine returned it on the previous call, since
the information stored there may be needed to determine the current position in the file.

5. Set the key number parameter to the key path used on the previous call that established logical
position. You cannot change key paths using a Get Previous operation.

Result

If the Get Previous operation succeeds, the MicroKernel Engine updates the key buffer with the
key value for the previous record, returns the previous record in the data buffer, and returns the
length of the record in the data buffer length parameter.

If the Get Previous operation fails, the MicroKernel Engine returns one of the following status
codes:

This operation returns status code 9 if the logical previous position points beyond the beginning
of the file.

Positioning

The Get Previous operation establishes the complete logical and physical currencies and makes
the retrieved record the current one.

3 The file is not open

6 The key number parameter is invalid

7 The key number has changed

8 The current positioning is invalid

9 The operation encountered the end-of-file

22 The data buffer parameter is too short

82 The MicroKernel Engine lost positioning

116 Btrieve API Operations

Get Previous Delete Extended (86)
The Get Previous Delete Extended operation (B_GET_PREV_EXT_DELETE) examines one or
more records, starting at the logical previous position and proceeding toward the beginning of the
file, based on the specified key. It compares the examined record or records to a filter condition
and retrieves those that match. The filter condition is a logic expression and is not limited to key
fields.

As noted under this topic, this operation uses the same input and output buffer structures and
returns the result described under Get Next Extended (36). See that operation for more
information.

Parameters

Prerequisites
• The file must be open.

• The file cannot be a data-only file.

• You must have an established logical previous position based on the specified key.

Procedure

1. Set the operation code to 86.

By default, the lock bias is no-wait, and any lock bias setting is ignored. Behavior is identical
to +500: If the engine cannot delete a locked record, it returns immediately without retrying
the operation.

2. Pass the position block for the file.

3. Specify a data buffer to accommodate either the input structure or the returned output,
whichever is larger. Initialize the data buffer according to the information for the input buffer
for extended operations found under Get Next Extended (36).

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X X

Returned X X X X

Btrieve API Operations 117

4. Specify the buffer size as either the length of the input structure or the length of the returned
output, whichever is larger, as described for the input and output buffer information found
under Get Next Extended (36).

5. Specify the key value from the previous operation in the key buffer that established logical
position.

Pass the key buffer exactly as the MicroKernel Engine returned it on the previous call, since
the information stored there may be needed to determine the current position in the file.

6. Set the key number parameter to the key path used on the previous call that established logical
position. You cannot change key paths using a Get Previous Delete Extended operation.

Details

The following topics under Get Next Extended (36) cover the structure of the extended operation
input buffer and use of its filter segment, as well as the structure of the output buffer that returns
the result:

• Input Buffer for Extended Operations

• Output Buffer for Extended Operations

Result

This operation returns the same result as Get Next Delete Extended (85). See that operation for
more information.

Positioning

The Get Previous Delete Extended operation does not establish currency. However, you can do a
Get Next or Get Previous operation, and the next or previous logical position is valid. A valid
current position also becomes available by using Get Position (22) and Get Direct/Record (23).

The following list shows the relationships of selected status codes to filter conditions:

• Status 60 (reject count reached): The current position is a record that does not match the filter
condition.

• Status 64 (filter limit reached): The current position is a record that may not match the filter
condition. Any attempt to step to the next or previous record will not match the filter
condition.

118 Btrieve API Operations

• Status 84 (record or page locked): The current position is a record that may not match the
filter condition. It is also possible that the next record matched the filter condition but could
not be deleted because of locking.

• Status 22 (data buffer full): The current position is a record that matches the filter condition,
but the data buffer does not have space to write the record address, so the MicroKernel Engine
did not delete the record.

• Status 9 (end of file): The current position is both logically and physically invalid.

Btrieve API Operations 119

Get Previous Extended (37)
The Get Previous Extended operation (B_GET_PREV_EXTENDED) examines one or more
records, starting at the logical previous position and proceeding toward the beginning of the file,
based on the specified key. It compares the examined record or records to a filter condition and
retrieves those that match. The filter condition is a logic expression and is not limited to key
fields.

Get Previous Extended can also extract specified portions of records and return only those
portions to an application.

As noted under this topic, this operation uses the same input and output buffer structures and
returns the result described under Get Next Extended (36). See that operation for more
information.

Parameters

Prerequisites
• The file must be open.

• The file cannot be a data-only file.

• You must have an established logical previous position based on the specified key.

Procedure

1. Set the operation code to 37. Optionally, you can include a lock bias:

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as
the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X X

Returned X X X X

120 Btrieve API Operations

2. Pass the position block for the file.

3. Specify a data buffer to accommodate either the input structure or the returned output,
whichever is larger. Initialize the data buffer according to the information for the input buffer
for extended operations found under Get Next Extended (36).

4. Specify the buffer size as either the length of the input structure or the length of the returned
output, whichever is larger, as described for the input and output buffer information found
under Get Next Extended (36).

5. Specify the key value from the previous operation in the key buffer that established logical
position.

Pass the key buffer exactly as the MicroKernel Engine returned it on the previous call, since
the information stored there may be needed to determine the current position in the file.

6. Set the key number parameter to the key path used on the previous call that established logical
position. You cannot change key paths using a Get Previous Extended operation.

Details

This operation uses the same input and output buffers as Get Next Extended (36). See that
operation for more information.

Result

This operation returns the same result as Get Next Extended (36). See that operation for more
information.

Positioning

The Get Previous Extended operation establishes the complete logical and physical currencies.
The last record examined becomes the current record. This record can be either a record that
satisfies the filter condition and is retrieved, or a record that does not satisfy the filter condition
and is rejected.

Btrieve API Operations 121

Insert (2)
The Insert operation (B_INSERT) inserts a record into a file. The MicroKernel Engine adjusts the
B-trees for the keys to reflect the key values for the new record.

Parameters

Note: When using the no-currency-change (NCC) option, the Insert operation does not update
the value of the key buffer parameter. It does not return any information in that parameter.

Prerequisites
• The file must be open.

• The record to be inserted must be the proper length, and the key values must conform to the
keys defined for the file.

Procedure

1. Set the operation code to 2.

2. Pass the position block for the file.

3. In the data buffer, store the record to be inserted.

4. Specify the data buffer length. This value must be at least as long as the fixed-length portion
of the record.

5. Specify the key number that the MicroKernel Engine uses to establish positioning information
(currency). To use the NCC option, specify –1 for the key number. To use the system-defined
log key (also called system data), specify 125. To use the second system key for system data
v2, specify 124.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X

Returned X X

122 Btrieve API Operations

Result

If the Insert operation succeeds, then the MicroKernel Engine places the new record in the file,
updates the B-trees for the keys to reflect the new record, and returns the value of the specified
key in the key buffer. If you insert a record that contains an autoincrement key value initialized to
binary 0, the MicroKernel Engine also returns the inserted record in the data buffer, including the
autoincrement value assigned by the MicroKernel Engine. An NCC Insert operation does not
change the value of the key buffer parameter.

If the Insert operation fails, the MicroKernel Engine returns one of the following status codes:

Positioning

An Insert operation that does not specify the NCC option establishes the complete logical and
physical currencies and makes the inserted record the current one. The logical currency is based
on the specified key.

An NCC Insert operation establishes physical currency without affecting logical currency. This
means that an application, having performed an NCC Insert operation, has the same logical
position in the file as it had prior to the Insert operation. In such a situation, operations that follow
an NCC Insert – such as Get Next (6), Get Next Extended (36), Get Previous (7), and Get
Previous Extended (37) – return values based on the logical currency of the application before the
NCC Insert.

Note: The MicroKernel Engine does not return any information in the key buffer parameter as
the result of an NCC Insert operation. Therefore, an application that must maintain the logical
currency must not change the value of the key buffer following the NCC Insert operation.
Otherwise, the next Get operation has unpredictable results.

The MicroKernel Engine establishes the physical currency to a newly inserted record for both the
standard Insert and the NCC Insert operations. Operations following an NCC Insert operation –
such as Step Next (24), Step Next Extended (38), Step Previous (35), Step Previous Extended
(39), Update (3), Delete (4), and Get Position (22) – operate based on the new physical currency.

2 The application encountered an I/O error.

3 The file is not open.

5 The record has a key field containing a duplicate key value.

18 The disk is full.

21 The key buffer parameter is too short.

22 The data buffer parameter is too short.

Btrieve API Operations 123

Insert Extended (40)
The Insert Extended operation (B_EXT_INSERT) inserts one or more records into a file. The
MicroKernel Engine adjusts the B-trees for the keys to reflect the key values for the new records.

Parameters

Note: When using the no-currency-change (NCC) option, the Insert Extended operation does not
update the value of the key buffer parameter. It does not return any information in that parameter.

Prerequisites
• The file must be open.

• The records to be inserted must be the proper length, and the key values must conform to the
keys defined for the file.

Procedure

1. Set the operation code to 40.

2. Pass the position block for the file.

3. Specify the data buffer according to the structure shown under Details.

4. Specify the data buffer length. This value must be exactly the size of the data buffer structure.

5. Specify the key number that the MicroKernel Engine uses to establish currency. To use the
NCC option, specify –1 for the key number. To use the system-defined log key (also called
system data), specify 125. To use the second system key for system data v2, specify 124.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X

Returned X X X

124 Btrieve API Operations

Details

The following table shows the structure of the input data buffer for Insert Extended operations.

Result

If the Insert Extended operation succeeds, the MicroKernel Engine places the new records in the
file, updates all B-trees to reflect the new records inserted if it is not an NCC Insert Extended
operation, returns in the key buffer the value of the specified key from the last record inserted. In
addition, in the first 2- or 4-byte unsigned integer of the returned data buffer, the MicroKernel
Engine places the number of records successfully inserted into the file. Following the count, the
MicroKernel Engine stores the record addresses of the inserted records. The following table
shows the structure of the output data buffer.

If the operation is only partially successful and the MicroKernel Engine returns a nonzero status
code, the first 2- or 4-byte unsigned integer of the data buffer equals the number of records that
were successfully inserted. The record that caused the error is the number of records that were
successfully inserted plus one.

Element Length (Bytes) Description

Fixed
portion

2 or 41 Number of records inserted.

Repeating portion (one for each record)

2 or 41 Length of the record image.

n Record image.

1Size depends on whether you use BTRV or BTRVEX type entry points.

Element Length
(Bytes)

Description

Fixed
portion

2 or 41 Number of records inserted.

Repeating portion (one for each record)

4 or 81 Record address.

1Size depends on whether you use BTRV or BTRVEX type entry points.

Btrieve API Operations 125

If Insert Extended is unsuccessful, the MicroKernel Engine returns one of the following status
codes:

Positioning

An Insert Extended operation that does not specify the NCC option establishes the complete
logical and physical currencies and makes the last inserted record the current one, unless the key
value of the inserted record is null. The logical currency is based on the specified key.

An NCC Insert Extended operation establishes physical currency without affecting logical
currency. This means that an application, having performed an NCC Insert Extended operation,
has the same logical position in the file as it had prior to the operation. In such a situation,
operations that follow an NCC Insert Extended operation – such as Get Next (6), Get Next
Extended (36), Get Previous (7), and Get Previous Extended (37) – return values based on the
logical currency of the application prior to the NCC Insert Extended operation.

Note: The MicroKernel Engine does not return any information in the key buffer parameter as
the result of an NCC Insert Extended operation. Therefore, an application that must maintain the
logical currency must not change the value of the key buffer following the NCC Insert Extended
operation. Otherwise, the next Get operation has unpredictable results.

The MicroKernel Engine establishes the physical currency to a newly inserted record for both the
standard Insert Extended and the NCC Insert Extended operations. Therefore, operations
following an NCC Insert Extended operation – such as Step Next (24), Step Next Extended (38),
Step Previous (35), Step Previous Extended (39), Update (3), Delete (4), and Get Position (22) –
operate based on the new physical currency.

An NCC Insert Extended operation is useful when an application must save its logical position in
the file prior to executing the Insert Extended operation in order to perform another operation
based on the original logical currency, such as a Get Next (6)operation.

To achieve this effect without an NCC Insert Extended operation, your application would have to
execute the following steps:

2 The application encountered an I/O error.

3 The file is not open.

5 The record has a key field containing a duplicate key value.

18 The disk is full.

21 The key buffer parameter is too short.

22 The data buffer parameter is too short.

126 Btrieve API Operations

1. Get Position (22) – Obtains the physical address for the logical current record. The application
saves this value and passes it back in Step 3.

2. Insert Extended (40) – Inserts the new records. This operation establishes new logical and
physical currencies.

3. Get Direct/Record (23) – Reestablishes logical and physical currencies as they were in Step 1.

The NCC Insert Extended operation has the same effect in terms of logical currency, but can have
a different effect in terms of physical currency. For example, executing Get Next (6) after either
procedure produces the same result, but executing Step Next (24) might return different records.

Btrieve API Operations 127

Login/Logout (78)
The Login/Logout operation (B_LOGIN/B_LOGOUT) allows a user to specify credentials to
obtain authentication and authorization tokens from the database engine. This operation also
allows the user to reset the credentials so that they must be entered again to gain access to the
database.

Parameters

Prerequisites
• The database name and the user ID must be predefined.

Login Procedure

1. Set the operation code to 78.

2. Set the key number to 0.

3. Place the server name, database name, user ID, and password in the key buffer in the form of
a database URI. For details about URI connection strings, see Database URIs in Zen
Programmer’s Guide.

Logout Procedure

1. Set the operation code to 78.

2. Set the key number to 1.

3. Place the server name, database name, user ID, and password in the key buffer in the form of
a database URI. In Zen Programmer’s Guide, see Database URIs.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X

Returned

128 Btrieve API Operations

Result

If the Login or Logout operation succeeds, the database engine returns status 0. Otherwise, one of
the following status codes may be returned:

Notes

The combined length of the database URI must be less than 255 bytes. This is due to the
maximum size of the key buffer.

The Login operation has a performance cost. You should not code applications to log in and log
out on every file. Instead, log in once to a database at the beginning of a session, then log out
when the database work is complete.

Positioning

The Login/Logout operation has no effect on any file currency information.

1 Invalid operation

172 Database name not found

3103 Unknown server

Btrieve API Operations 129

Open (0)
The Open operation (B_OPEN) makes a file available for access. To access a file, your
application must first perform an Open operation. The file does not have to reside in the current
directory as long as you specify the full or relative path name.

Parameters

Prerequisites
• The file to be opened must exist on an accessible logical disk drive.

• A file handle must be available for the file.

Procedure

1. Set the operation code to 0.

2. If the file has an owner, specify the owner name, terminated by a binary 0, in the data buffer
parameter.

3. Specify the length of the owner name, including the binary 0 in the data buffer length
parameter.

Place the path name of the file to open in the key buffer parameter. Terminate the path name
with a NULL (binary zero) depending on the setting for embedded spaces. The path name can
be up to 255 bytes. Any fully-qualified Unified Naming Convention (UNC) path name
including the null terminator can be up to 255 bytes long.

The MicroKernel Engine normally expands the file name to a fully-qualified UNC file name.
For example, Z:\Data\File.dat would be converted to \\Servername\ShareName\Data\File.dat.
This expanded name must fit into 255 bytes including the null terminator. See also Database
URIs in Zen Programmer’s Guide.

However, if the Btrieve Open request is sent to a local engine, the MIF will not replace the
local drive letter with the computer and share name. Even though a file with a longer path
name may be successfully opened locally, remote clients may not be able to open the file.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X

Returned X

130 Btrieve API Operations

In client configurations, the Embedded Spaces setting enables support for file names with
embedded spaces. By default this setting is on, which means spaces are considered part of the
path. When the setting is on, a NULL byte must delimit the file name. When the setting is off,
you cannot use file names that contain embedded spaces (such as C:\My Folder\my file.mkd).
See Long File Names and Embedded Spaces Support in Advanced Operations Guide.

For details about path names supported by Zen clients, see Network Path Formats Supported
by Zen Requesters in Getting Started with Zen.

4. In the key number parameter, specify one of the mode values listed in the table shown later in
this topic.

Details

This section describes the open modes that are supported.

Caution! The database engine cannot guarantee transaction atomicity, transaction durability, or
archival log safety for any client during use of Accelerated mode by any client. The reason for this
restriction is that in the event a restore from log is needed, the log may not contain adequate
information to complete the restore, because it is only a partial record of operations on a data file.

For example, if a system failure occurs while the same file is being accessed by a client
performing inserts using Accelerated mode and a client performing updates using Normal mode,
it is possible for the transaction log to contain updates to records that do not yet exist in the data
files, since the Accelerated insert operation in memory was never flushed to disk, while the
transactional update operation was written to the transaction log.

An attempt to roll forward an archival log containing this combination of operations will fail.

When you open a file, you can instruct the MicroKernel Engine through the open modes shown in
the following table to use either a local or remote engine. You specify the open mode in the key
number parameter.

Note: The Open operation makes no distinction between workstation, workgroup, and server
engines when you specify that the local engine should open the file.

Btrieve API Operations 131

There is no fixed limit on the maximum number of open files. The number of files that can be
opened at once depends on the available memory.

A file is opened only once by the MicroKernel Engine. The engine recognizes and handles the
situation in which more than one client at a time opens a file, or where a single client has more
than one position block in the file. When you open an extended file, the engine uses a single
handle and opens the base file and all extension files.

Description No
preference

Force local
engine

Force remote
engine

Normal 0 6 99

Accelerated
To improve performance on specific files, you can
open a file in Accelerated mode. (The 6.x
MicroKernel Engine accepted accelerated mode
opens, but interpreted them as normal opens.) When
you open a file in Accelerated mode, the MicroKernel
Engine does not perform transaction logging on the
file. See the caution above.

–1 7 100

Read-Only
When you open a file in read-only mode, you can only
read the file. You cannot perform updates. This mode
allows you to open a file with corrupt data that the
MicroKernel Engine cannot automatically recover. If
data in the file indexes has been corrupted, you can
retrieve the records by opening the file in read-only
mode and then using Step Next (24).

–2 8 101

Writable
If the MicroKernel Engine cannot open a file for
writing, then the writable mode returns an error. One
common scenario is a file without file system write
permission.

–3 9 102

Exclusive
Exclusive mode gives an application exclusive access
to a file. No other application can open that file until
the application that has exclusive access to the file
closes it.

–4 10 103

132 Btrieve API Operations

Result

If the Open operation succeeds, the MicroKernel Engine assigns a file handle to the file, reserves
the position block passed on the Open call for the newly opened file, and makes the file available
for access.

If the Open operation fails, the MicroKernel Engine returns one of the following status codes:

The following table shows open mode combinations involving local clients.

2 The application encountered an I/O error.

11 The specified file name is invalid.

12 The MicroKernel Engine cannot find the specified file.

20 The MicroKernel Engine or Btrieve Requester is inactive.

46 Access to the requested file is denied.

84 The record or page is locked.

85 The file is locked.

86 The file table is full.

87 The handle table is full.

88 The application encountered an incompatible mode error.

Open Mode for Local
Client 1

Open Mode for Local
Client 2

Result

Normal/Writable Normal Successful

Writable Successful

Read-Only Successful

Exclusive Status code 88

Accelerated Successful

Read-Only Normal Successful

Writable Successful

Read-Only Successful

Exclusive Status code 88

Accelerated Successful

Exclusive Normal Status code 88

Writable Status code 88

Btrieve API Operations 133

Positioning

An Open operation does not establish any positioning except that the physical next record
becomes the first physical record of the file.

Read-Only Status code 88

Exclusive Status code 88

Accelerated Status code 88

Accelerated Normal Successful

Writable Successful

Read-Only Successful

Exclusive Status code 88

Accelerated Successful

Open Mode for Local
Client 1

Open Mode for Local
Client 2

Result

134 Btrieve API Operations

Reset (28)
The Reset operation (B_RESET) releases all resources held by a client. This operation aborts any
transactions the client has pending, releases all locks, and closes all open files for the client.

Parameters

Prerequisites

Your application can issue a Reset operation at any time after the MicroKernel Engine or
Requester is loaded, as long as the client issuing the Reset call has established a connection with
the MicroKernel Engine – for example, by opening a file or by requesting the status of a file using
a Zen tool.

Procedure

1. Set the operation code to 28.

2. Set the key number and key buffer to 0.

Result

If the Reset operation succeeds, the MicroKernel Engine performs the following actions for the
specified client, window, or session:

1. Aborts any active transactions.

2. Releases all locks held.

3. Closes all open files.

If the Reset operation fails, the MicroKernel Engine returns a nonzero status code.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X

Returned

Btrieve API Operations 135

Positioning

The Reset operation destroys all currencies because it closes any open files.

136 Btrieve API Operations

Set Directory (17)
The Set Directory operation (B_SET_DIR) sets the current directory to a specified path name.

Parameters

Prerequisites

The target logical disk drive and directory must be accessible.

Procedure

1. Set the operation code to 17.

2. Store the logical disk drive and directory path, terminated by a binary 0, in the key buffer. If
you omit the drive name, the MicroKernel Engine uses the default drive. If you do not specify
the complete path for the directory, the MicroKernel Engine appends the directory path
specified in the key buffer to the current directory.

For details about path names supported by Zen clients, see Network Path Formats Supported
by Zen Requesters in Getting Started with Zen.

Result

If the Set Directory operation succeeds, the MicroKernel Engine makes the directory specified in
the key buffer the current directory.

If the Set Directory operation fails, the MicroKernel Engine leaves the current directory
unchanged and returns a nonzero status code.

Positioning

The Set Directory operation has no effect on positioning.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X

Returned

Btrieve API Operations 137

Set Owner (29)
The Set Owner operation (B_SET_OWNER) assigns an owner name to a file, which serves as an
access password. If a file is given an owner name, users or applications must provide that string
each time they access the file. You can specify that an owner name be required for any access or
only for update privileges. Owner names are in ASCII and in the case of long owner names can
also be hexadecimal. When you assign an owner name, you can also direct the MicroKernel
Engine to encrypt the file data on the disk. If so, the MicroKernel Engine encrypts all data during
the Set Owner operation. Performance may be affected, since longer files lengthen Set Owner
execution time. For more information, see Owner Names in Advanced Operations Guide.

Parameters

Prerequisites
• The file must be open.

• No transactions can be active.

• The file cannot already have an owner name.

Procedure

1. Set the operation code to 29.

Optionally, you can include a bias of +17000 to create a long owner name up to 24 bytes in
length. This bias is also defined in btrconst.h as B_LONG_OWNER_NAME_BIAS.

2. Pass the position block that identifies the file to protect.

3. Store the owner name in both the data buffer and the key buffer. The MicroKernel Engine
requires that the name be in both buffers to avoid accidentally providing an incorrect value.

If the +17000 bias is not set, a short owner name can be up to 8 bytes long and must end with
a binary 0. If the +17000 bias is set, a long owner name can be used and must end with a
binary 0. In either case, the owner name cannot consist of all spaces (0x20). The length of a
long owner name depends on the file format. For more information, see Owner Names.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X X

Returned X

138 Btrieve API Operations

4. Set the length of the owner name, including the binary 0, in the data buffer length parameter.

5. Set the key number to an integer that specifies the type of access restrictions and encryption
for the file. The following table lists the four key numbers and their results.

Details

Once you specify an owner name, it remains in effect until you issue a Clear Owner (30)
operation. The table above lists the access restriction codes you can set for the key number.

Result

If the Set Owner operation succeeds, the MicroKernel Engine prevents future operations from
accessing or modifying the file unless those operations specify the correct owner name. The only
exception is if read-only access is allowed without an owner name.

In addition, if the Set Owner operation succeeds, the MicroKernel Engine encrypts the data in the
file if encryption is specified. Encryption begins immediately. The MicroKernel Engine has
control until the entire file is encrypted.

Regarding performance, it is helpful to note that the MicroKernel Engine decrypts an encrypted
page when it loads it from the disk and encrypts it before writing it to the disk again. Reading data
from an encrypted file is slower than reading data from an unencrypted file. Also, the larger the
file, the longer it takes to encrypt or decrypt. In an encrypted file scenario, if you have a small
cache or use a relatively large number of modification operations, the MicroKernel Engine must
execute the encryption routine more frequently.

If the Set Owner operation fails, the MicroKernel Engine returns one of these status codes:

Key Number Description

0 Requires an owner name for any access mode (no data encryption).

1 Permits read-only access without an owner name (no data encryption).

2 Requires an owner name for any access mode (with data encryption).

3 Permits read-only access without an owner name (with data encryption).

41 The MicroKernel Engine does not allow the attempted operation.

50 An owner name is already set.

51 The submitted owner name is invalid.

Btrieve API Operations 139

Positioning

The Set Owner operation has no effect on positioning.

140 Btrieve API Operations

Stat (15)
The Stat operation (B_STAT) uses the data buffer to retrieve statistics about the file specification,
such as the number of records it contains, the number of unique key values stored for each of its
indexes, its number of empty pages, and any alternate collating sequences (ACS). New keys and
ACS values may have been added since the file was created. Since you must account for this new
information, you may not be able to reuse the original data buffer size that was used for the Create
(14) operation.

Parameters

Prerequisites

The file must be open.

Procedure

1. Set the operation code to 15.

2. Pass the position block for the file.

3. Indicate a data buffer to hold the statistics defined for the file.

4. Specify the data buffer length, which must be long enough to hold the file statistics.

5. Specify a key buffer at least 255 characters long.

6. Set the key number as follows:

• 0 to exclude file version

• –1 to include file version

Details

Because Create (14) and Stat (15) use the same data buffer structure, they are documented
together under Create (14) with the slight differences noted.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X X

Returned X X X

Btrieve API Operations 141

File Specifications

The File Specification fields in the returned data buffer are the same as those described for Create
(14), with the following exceptions in the File Specification area:

• If the data buffer includes file version information, the Number of Indexes is 1 byte long and
is followed by a 1-byte File Version Number. Do not translate the File Version Number value
to decimal. A value of 0x95 indicates that the file is a 9.5 file, a value of 0x80 indicates that
the file is 8.x, and so on. When creating a file, the MicroKernel Engine assigns a version
number according to these attributes.

• The Number of Records is a 4- or 8-byte value representing the number of records in the file.

• In the File Flags word, Bits 9(0x0200) and 12 (0x1000) have the following meaning:

Stat does not indicate whether system data was included by default or explicitly.

• Number of Unused Duplicate Pointers indicates how many unused duplicate pointers remain
in the file.

• The reserved areas are allocated even though the MicroKernel Engine ignores them on a Stat
operation.

Key Specifications

The Key Specification fields in the returned data buffer are the same as those described under Key
Specification Block, except that a 4- or 8-byte Number of Unique Key Values indicates the
number of records that have a unique, nonduplicate value for the specified key.

Alternate Collating Sequences

The alternate collating sequences (ACS) in the returned data buffer are the same as those
described under Create (14).

Result

If the Stat operation succeeds, the MicroKernel Engine returns the file and key characteristics to
the data buffer and the length of the data buffer in the data buffer length. If the file is an extended

Bit 9 = 1 and
Bit 12 = 0

File was created with system data or system data v2. This does not necessarily mean that
the system keys are currently in use. It may have been dropped. See Stat Extended (65).

Bit 9 = 1 and
Bit 12 = 1

File was created without system data.

142 Btrieve API Operations

file, the MicroKernel Engine returns the file name of the first extension file in the key buffer. If
the file name of the first extension file is longer than 63 bytes, the MicroKernel Engine truncates
the file name. If the file is not an extended file, the MicroKernel Engine initializes the first byte of
the key buffer to 0. You can also use the Stat Extended (65) operation to retrieve information on
extended files.

If the Stat operation fails, the MicroKernel Engine returns one of the following status codes:

Positioning

The Stat operation has no effect on positioning.

3 The file is not open.

22 The data buffer parameter is too short.

Btrieve API Operations 143

Stat Extended (65)
The Stat Extended operation (B_EXTENDED_STAT) has several subfunctions that allow an
application to gather information about an open file.

See the following subfunction topics for more information.

Parameters

Prerequisites

The file must be open.

Procedure

1. Set the operation code to 65.

2. Pass the position block for the given file.

Subfunction ID Description

1 Listing of extension file names

2 System data information for the file

3 Duplicate conflict record and key identification

4 File information

5 Gateway identification

6 Lock owner identification

7 Security information

8 Listing of table or file name causing a status code 71 (a violation of the referential
integrity definitions)

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X

Returned X X X

144 Btrieve API Operations

3. Store the stat extended structure in the data buffer. See the subsections below for more
information about the stat extended structure required for each subfunction.

4. Specify the data buffer length.

5. Set the key number to 0.

Subfunction 1: Extended File Information

For the file specified by the input position block, this subfunction returns information about the
extension files associated with the specified data file. Returned information includes number of
extension files that exist, number returned by the function, and file names for the returned files.

Input Data Buffer Structure

To receive information about extension files, you must create an extended files descriptor in the
data buffer, as shown in the following table.

Element Length
(Bytes)

Description

Signature 4 Type of stat extended call. Specify the following 4 bytes to indicate a stat
extended call: 0x45, 0x78, 0x53, 0x74. These are equivalent to ASCII
ExSt or to the value 0x74537845 on Intel-types, LoHi and little-endian
hardware.

Subfunction 4 Type of stat extended call. Specify 0x00000001.

Namespace 4 File naming convention. Specify 0x00000000.

Max Files 4 Maximum number of file names to return. You can set this value higher
than the number of extension files composing the extended file. (An
extended file can contain up to 32 extension files.)

First File
Sequence

4 Sequence number of the first file name to return. Specify 0 to begin with
the base file, 1 to begin with the first extension file, and so on. If you
specify a number higher than the number of extension files, the
MicroKernel Engine returns status code 0 and no file names.

Buffer space n Allow enough additional space for the return data. If you receive status
code 22, retry the operation with a larger data buffer size.

Btrieve API Operations 145

Output Data Buffer Structure

For the extended files subfunction, the MicroKernel Engine updates the value of the data buffer
length parameter and returns an extended files structure in the data buffer, as illustrated in the
following table.

Subfunction 2: System Data Information

For the file specified by the input position block, this subfunction returns information about
whether a file has system keys defined, and whether the file can be logged (transaction durable).

Input Data Buffer Structure

To receive information about use of system data in a file, you must create a system data descriptor
in the data buffer, as shown in the following table.

Element Length (Bytes) Description

Number of Files 4 Number of operating system files that comprise the
extended file.

Number of Extensions 4 Number of extension files returned.

File Name Portion (Repeated for each file name returned)

Length of File Name 4 Length of the extension file name.

File Name n Extension file name.

Element Length
(Bytes)

Description

Signature 4 Type of stat extended call. Specify the following 4 bytes to indicate a stat
extended call: 0x45, 0x78, 0x53, 0x74. These are equivalent to ASCII
ExSt or to the value 0x74537845 on Intel-types, LoHi and little-endian
hardware.

Subfunction 4 Type of stat extended call. Specify 0x00000002.

146 Btrieve API Operations

Output Data Buffer Structure

For the system data subfunction, the MicroKernel Engine returns a system data structure in the
data buffer, as follows.

Subfunction 3: Duplicate Record Conflict Information

For the file specified by the input position block, this subfunction returns information about
duplicate record conflicts. Returned information includes the record address and key number that
caused a status code 5 (Duplicate Key) on a previous failed insert or update operation.

Input Data Buffer Structure

To receive information about the record address and key number that caused the most recent
status code 5 (duplicate key) to report duplicate record conflicts, you must create a duplicate
record information descriptor in the data buffer, as follows.

Element Length
(Bytes)

Description

Has System Data 1 Indicates whether the file has system data defined. 0 = None, 1 =
Has System Data, 2 = Has System Data v2.

Has System Keys 1 Indicates presence of system keys. 0 = None, 1 = System key
125, 2 = System key 124, 3 = Both.

Is Loggable 1 Indicates whether the file has any unique key that can be used for
transaction logging and durability. The key can be user- or
system-defined. 1 = Yes and 0 = No.

Log Key Number 1 Key number used as a transaction log key. If the system-defined
key is the one being used, this value is 125.

Size of System Data 2 8 = System data only in key 125.
16 = System data v2 in keys 125 and 124.

Engine Major
Version

2 A two-byte field that contains the major version of the database
engine.

Element Length
(Bytes)

Description

Signature 4 Type of stat extended call. Specify the following 4 bytes to
indicate a stat extended call: 0x45, 0x78, 0x53, 0x74. These are
equivalent to ASCII ExSt or to the value 0x74537845 on Intel-
types, LoHi and little-endian hardware.

Btrieve API Operations 147

Output Data Buffer Structure

For the duplicate record conflict subfunction, the MicroKernel Engine returns a duplicate record
conflict structure in the data buffer, as follows.

Subfunction 4: File Information

For the file specified by the input position block, this subfunction returns file information.
Returned information includes: the internal file ID used by the MicroKernel Engine to identify the
file, the number of file handles currently open, the time stamp of the last time the file was opened,
and a variety of flags indicating file properties.

Input Data Buffer Structure

To receive information about an open file, you must create a file information descriptor in the data
buffer, as follows.

Subfunction 4 Type of stat extended call. Specify 0x00000003.

Element Length
(Bytes)

Description

Duplicate Record
Address

4 or 81 Physical address of record containing the duplicate key value.
The 13.0 and 16.0 file formats require 8 bytes.

Key Number 2 Key number of the key containing the duplicate value.

1Size depends on whether you use BTRV or BTRVEX type entry points.

Element Length
(Bytes)

Description

Signature 4 Type of stat extended call. Specify the following 4 bytes to
indicate a stat extended call: 0x45, 0x78, 0x53, 0x74. These are
equivalent to ASCII ExSt or to the value 0x74537845 on Intel-
types, LoHi and little-endian hardware.

Subfunction 4 Type of stat extended call. Specify 0x00000004.

Element Length
(Bytes)

Description

148 Btrieve API Operations

Output Data Buffer Structure

For the file information subfunction, the MicroKernel Engine returns a file information structure
in the data buffer, as follows.

The permitted values for the Flags field are described in the following tables.

Buffer space 12 Additional bytes needed for returned information. See Output
Data Buffer Structure. For the file information subfunction, the
MicroKernel Engine returns a file information structure in the
data buffer.

Element Length
(Bytes)

Description

FileID 4 A unique number that the MicroKernel Engine uses to identify
the file.

Number of Handles 4 The current number of handles that the MicroKernel Engine has
open on this file.

Open Time Stamp 4 The system time when the physical file was last opened by the
MicroKernel Engine. This system time is expressed as the
number of seconds since midnight on January 1, 1970 in
coordinated universal time (UTC) time.

File Usage Count 4 This number increments at each checkpoint or System
Transaction. It is also the usage count placed in the FCR. The
number returned here is the usage count of the file as it is
represented in the MicroKernel Engine cache. When a
checkpoint starts, this number increments.

Flags 4 A four-byte bitmap in which various values may be set. See the
following table for descriptions of the possible values. More flags
may be added in the future.

Value Name Description

0x00000001 Explicit Locks There are explicit locks currently on the file.

0x00000002 Client Transactions There is at least one client transaction currently open on the file.

0x00000004 Read Only The file was opened by the MicroKernel Engine as Read Only.
This may be a CD-ROM drive or a read-only directory.

Element Length
(Bytes)

Description

Btrieve API Operations 149

Subfunction 5: Gateway Information

For the file specified by the input position block, this subfunction returns information about the
Gateway engine that has control of the file.

0x00000008 Continuous
Operations

The file is currently in continuous operations.

0x00000010 Referential
Integrity

The file has referential integrity constraints on it.

0x00000020 Owner Read/Write The file has a Read/Write Owner name assigned to it. The
owner name is required to read from or write to the file.

0x00000040 Owner Reads OK The file has an owner name that is required only to write to the
file. Reads can be done without an owner name.

0x00000080 Opened with Wrong
Owner

The file has a Reads-OK Owner name assigned to it and the
handle was opened with the wrong owner name.

0x00000100 Owner Encryption The file has the encryption flag on the owner name. This flag
means that every page in the file is encrypted and cannot be
read using a text editor.

0x00000200 Opened by Cache
Engine

If set, this file has been opened by a cache engine.

0x00000400 Traditional
Encryption

The file is encrypted using the Btrieve traditional encryption
algorithm.

0x00000800 128-Byte
Encryption

The file is encrypted using a 128-byte encryption algorithm.

0x00001000 AES-192
Encryption

The file is encrypted using AES-192 encryption.

0x00002000 AES-256
Encryption

The file is encrypted using AES-256 encryption.

Value Name Description

150 Btrieve API Operations

Input Data Buffer Structure

To receive information about the Gateway engine that is responsible for the specified file, you
must create a gateway information descriptor in the data buffer, as follows.

Output Data Buffer Structure

For the gateway information subfunction, the MicroKernel Engine modifies the data buffer length
parameter and returns a file information structure in the data buffer, as follows.

Subfunction 6: Lock Owner Identification

For the file specified by the input position block, this subfunction returns information about the
cause of the most recent status code 84 or 85 that occurred when accessing the file.

Element Length
(Bytes)

Description

Signature 2 Type of stat extended call. Specify the following 4 bytes to indicate a stat
extended call: 0x45, 0x78, 0x53, 0x74. These are equivalent to ASCII ExSt
or to the value 0x74537845 on Intel-types, LoHi and little-endian hardware.

Subfunction 2 Type of stat extended call. Specify 0x00000005.

Buffer Space at least
80

Additional bytes needed for returned information. See Output Data Buffer
Structure for details.

Element Length
(Bytes)

Description

Major Version 2 The major version of the engine, such as version 7 or 8.

Minor Version 2 The minor version of the engine, such as 05 or 82.

Patch Level 2 The patch level of the engine, such as 1, 2, or 3.

Platform 2 The type of requester or engine, as listed under Version (26).

Server Name 64 A null-terminated string indicating the name of the machine
where the database engine is running. The data buffer length
returned by the Btrieve API call contains the actual length of the
data returned, including the server name and the null terminator.

Btrieve API Operations 151

Input Data Buffer Structure

To receive information about the cause of a status code 84 or 85, you must create a lock owner
information descriptor in the data buffer, as follows.

Output Data Buffer Structure

For the lock owner information subfunction, the MicroKernel Engine modifies the data buffer
length parameter and returns a file information structure in the data buffer, as follows.

Element Length
(Bytes)

Description

Signature 4 Unique identifier for a stat extended call. Specify ExSt. See
Subfunction 1: Extended File Information.

Subfunction 4 Type of stat extended call. Specify 0x00000006.

Buffer Space at least 96 Additional bytes needed for returned information. See
Subfunction 7: Security Information for details.

Element Length
(Bytes)

Description

Client ID 16 The 16-byte client ID of the blocking client.

Flags 4 A four-byte bitmap containing flags indicating the type of
conflict that occurred. See the following table for a description
of each flag value.

Time In Transaction 4 Number of milliseconds in which the blocking client has been in
a transaction. This can be helpful in determining whether to
retry the operation.

Key Number 4 If the conflict occurred on a key page, this element indicates
which key is involved. Tracking this information can be useful
in designing a database with fewer potential conflicts.

Transaction Level 4 If this number is nonzero, then the blocking client is currently in
a transaction. Since some page and record locks are held until
the transaction completes, this information might be useful in
determining if the operation should be retried.

Reserved 8 Reserved for future use. If there is some information about the
blocking client which you think may be useful, please contact
technical support.

152 Btrieve API Operations

If there is no record in the MicroKernel Engine of a previous blocking client, then the output data
buffer length is set to zero.

The permitted values for the Flags field are described in the following table.

Display Name 64 This is a null-terminated string which is the same identifying
name that is displayed in Monitor for each client. Use at least 64
bytes since that is the current maximum display name length.
The data buffer length returned by the Btrieve API call contains
the actual length of the data returned, including the display name
and the null terminator.

Value Name Description

0x00000001 Implicit
Lock

The blocking client is using an implicit lock.

0x00000002 Explicit
Lock

The blocking client is using an explicit lock.

0x00000010 File Lock The blocking client is using a file lock.

0x00000020 Page Lock The blocking client is using a page lock.

0x00000040 Record Lock The blocking client is using a record lock.

0x00000100 Data Page If the conflict was a Page Lock, this flag indicates the conflict
occurred on a data page.

0x00000200 Key Page If the conflict was a Page Lock, this flag indicates the conflict
occurred on a key page.

0x00000400 Variable
Page

If the conflict was a Page Lock, this flag indicates the conflict
occurred on a variable page.

0x00000800 Same
Process

If this flag is set, then the first 12 bytes of the blocking client ID are
the same as the first 12 bytes of the client that got blocked, that is, the
client that is issuing the Stat Extended call. In this case, it means that
the two blocking clients came from the same process on the same
system. If you have a single threaded application making Btrieve API
calls, then retrying this operation will not help. You need to complete
or abort the work that is blocking.

0x00001000 Write No
Wait

Indicates that the blocking client is using the 500 bias.

Element Length
(Bytes)

Description

Btrieve API Operations 153

Subfunction 7: Security Information

This subfunction returns information about how the client was authenticated and authorized to
access the current file. It also shows information about the current database being used for
security.

Input Data Buffer Structure

To receive security information about how this handle is authenticated and what permissions it
has, you must create a security information descriptor in the data buffer, as follows.

0x00002000 Write Hold Indicates that the blocking client made a change to a page that caused
that client to keep the full page lock until its transaction completes.
This situation can occur on implicit key page locks when a change
causes key entries to move to another page.

0x00004000 Read No
Wait

For explicit record locks, this flag indicates that the blocking client is
using either lock bias 200 or 400.

0x00008000 Read
Multiple

For explicit record locks, this flag indicates that the blocking client is
using either lock bias 300 or 400.

Element Length
(Bytes)

Description

Signature 4 Type of stat extended call. Specify the following 4 bytes to indicate a
stat extended call: 0x45, 0x78, 0x53, 0x74. These are equivalent to
ASCII ExSt or to the value 0x74537845 on Intel-types, LoHi and little-
endian hardware.

Subfunction 4 Type of stat extended call. Specify 0x00000007.

Buffer Space at least
142

Additional bytes needed for returned information. See Result for details.

Value Name Description

154 Btrieve API Operations

Output Data Buffer Structure

For the security information subfunction, the MicroKernel modifies the data buffer length
parameter and returns a file information structure in the data buffer, as follows.

Element Length
(Bytes)

Description

Flags for Handle 4 A four-byte bitmap containing flags indicating the methods used
for security on this handle. See the following table for a
description of each flag value.

Flags for Database 4 A four-byte bitmap containing flags indicating the methods used
for security on the current default database for this client. See the
following table for a description of each flag value.

Permissions 4 These are the permissions granted to the client using this handle.
See the permission following table for a description of each flag
value.

Buffer Size for
Handle Database
Name

2 Length of the buffer used to store the null-terminated Handle
Database Name string.

Buffer Size for
Handle Table Name

2 Length of the buffer used to store the null-terminated Handle
Table Name string. Note: The table name will not be known
unless the file is bound to a database (Referential Constraints, for
example), or the file was opened using a URI connection string
that referred to the file by its Table Name. For details about URI
connection strings, see Database URIs in Zen Programmer’s
Guide.

Buffer Size for
Handle User Name

2 Length of the buffer used to store the null-terminated Handle
User Name string.

Buffer Size for
Current Database
Name

2 Length of the buffer used to store the null-terminated Current
Database Name string.

Buffer Size for
Current User Name

2 Length of the buffer used to store the null-terminated Current
User Name string.

Handle Database
Name

Variable The database name used to establish security for this handle.

Handle Table Name Variable The table name associated with this handle

Handle User Name Variable The user name used to establish security for this handle.

Btrieve API Operations 155

The permitted values for the two Flags fields are described in the following tables.

Current Database
Name

Variable The current default database name for this client.

Current User Name Variable The user name associated with the current default database for
this client.

Value Name Security Flag Description

0x00000001 Trusted This handle is trusted, no database is assigned.

0x00000002 Implicit Database login is implicit - during the open.

0x00000004 Explicit Database login is explicit - a Btrieve login was made.

0x00000008 Authentication
by Database

Authentication was done by database security. If not set,
authentication was done using operating system security.

0x00000010 Authorization by
Database

Authorization was done by database security. If not set,
authorization was done using operating system security.

0x00000020 Windows Named
Pipe

If authentication is by the operating system, this indicates that an
NT named pipe connection was used for security.

0x00000040 Workgroup If authentication is by the operating system, this indicates that
Workgroup Engine style security was done, which means that no
authentication or authorization was done.

0x00000080 Btpasswd If authentication is by a Linux or Raspbian operating system, this
indicates that etc/btpasswd file was used.

0x00000100 PAM If authentication is by the Linux or Raspbian operating system, this
indicates that PAM authentication was used.

0x00000200 RTSS Complete If authentication is by the operating system, this indicates that
authentication was done using RTSS with the Complete setting.

0x00000400 RTSS
Preauthorized

If authentication is by the operating system, this indicates that
authentication was done using RTSS with the Preauthorized
setting.

0x00000800 RTSS Disabled If authentication is by the operating system, this indicates that
authentication was done using RTSS with the Disabled setting.

Element Length
(Bytes)

Description

156 Btrieve API Operations

Subfunction 8: Listing of Table or File Name Causing a Status
Code 71

This subfunction returns information on the table or data file that caused a status code 71, a
violation of the referential integrity definitions. Returned information includes the file name,
Btrieve operation code, and position of the record that caused the referential integrity error.

Input Data Buffer Structure

To receive information about an open file, you must create a file information descriptor in the data
buffer, as follows.

Value Name Permission Flag Description

0x00000000 No Rights No rights to the database object. No permission granted.

0x00000001 Open Permission granted to open the file. This also implies that the
records can be read.

0x00000002 Insert Permission granted to insert records.

0x00000004 Update Permission granted to update records.

0x00000008 Create Permission granted to create this file.

0x00000010 Delete Permission granted to delete records.

0x00000020 Execute Permission granted to execute stored procedures in SQL.

0x00000040 Alter Permission granted to alter this file in SQL.

0x00000080 Refer Permission granted to refer to this file in SQL.

0x00000100 Create View Permission granted to create views to this file in SQL.

0x00000200 Create Stored
Procedure

Permission granted to create stored procedures for this file in
SQL.

Element Length
(Bytes)

Description

Signature 4 Type of stat extended call. Specify the following 4 bytes to indicate a
stat extended call: 0x45, 0x78, 0x53, 0x74. These are equivalent to
ASCII ExSt or to the value 0x74537845 on Intel-types, LoHi and
little-endian hardware.

Btrieve API Operations 157

Output Data Buffer Structure

For the file information subfunction, the MicroKernel Engine returns a file information structure
in the data buffer, as follows. The data buffer supplied must be large enough to hold the data
returned.

Result

If the Stat Extended operation fails, the MicroKernel Engine returns one of the following status
codes:

Subfunction 4 Type of stat extended call. Specify 0x00000008.

Element Length
(Bytes)

Description

File Name 255 File name causing the RI error.

Btrieve Op Code 4 Btrieve operation code that caused the RI error.

Record Position 4 or 81 Physical record position of the record that caused the RI error.
The 13.0 and 16.0 file formats require 8 bytes.

1Size depends on whether you use BTRV or BTRVEX type entry points.

3 The file is not open.

06 The key number parameter is invalid.

22 The data buffer parameter is too short.

62 The descriptor is incorrect.

Element Length
(Bytes)

Description

158 Btrieve API Operations

Step First (33)
The Step First operation (B_STEP_FIRST) retrieves the first physical record of the file. The
MicroKernel Engine does not use a key path to retrieve the record.

Parameters

Prerequisites

The file must be open.

Procedure

1. Set the operation code to 33. Optionally, you can include a lock bias:

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as
the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

2. Pass the position block for the file.

3. Set the data buffer length to a value greater than or equal to the length of the record to retrieve.

Result

If the Step First operation succeeds, the MicroKernel Engine returns the first physical record of
the file in the data buffer and sets the data buffer length parameter to the number of bytes
returned.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X

Returned X X X

Btrieve API Operations 159

If the Step First operation fails, the MicroKernel Engine returns one of the following status codes:

Positioning

The Step First operation destroys logical currency. Step First sets the physical currency using the
retrieved record as the physical current record. The previous physical position points beyond the
beginning of the file.

3 The file is not open.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

160 Btrieve API Operations

Step Last (34)
The Step Last operation (B_STEP_LAST) retrieves the last physical record of the file. The
MicroKernel Engine does not use a key path to retrieve the record.

Parameters

Prerequisites

The file must be open.

Procedure

1. Set the operation code to 34. Optionally, you can include a lock bias:

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as
the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

2. Pass the position block for the file.

3. Set the data buffer length to a value greater than or equal to the length of the record to retrieve.

Result

If the Step Last operation succeeds, the MicroKernel Engine returns the last physical record of the
file in the data buffer and sets the data buffer length parameter to the number of bytes returned.

Op Code Pos Block Data Buf Data Buf
Len

Key Buffer Key Number

Sent X X X

Returned X X X

Btrieve API Operations 161

If the Step Last operation fails, the MicroKernel Engine may return one of the following status
codes:

Positioning

The Step Last operation destroys logical currency. Step Last sets the physical currency using the
retrieved record as the current physical record. The next physical position points beyond the end
of the file.

3 The file is not open.

9 The operation encountered the end-of-file. (when the file is empty)

22 The data buffer parameter is too short.

162 Btrieve API Operations

Step Next (24)
The Step Next operation (B_STEP_NEXT) retrieves the record to which the next physical
position points. The MicroKernel Engine does not use a key path to retrieve the record.

A Step Next operation issued immediately after any Get or Step operation returns the record
physically following the record retrieved by the previous operation.

Parameters

Prerequisites

The file must be open.

Procedure

1. Set the operation code to 24. Optionally, you can include a lock bias:

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as
the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

2. Pass the position block for the file.

3. Set the data buffer length to a value greater than or equal to the length of the record to retrieve.

Result

If the Step Next operation succeeds, the MicroKernel Engine returns the next physical record in
the file in the data buffer and sets the data buffer length parameter to the number of bytes
returned.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X

Returned X X X

Btrieve API Operations 163

If the Step Next operation fails, the MicroKernel Engine returns one of the following status codes:

Positioning

The Step Next operation does not establish logical currency. Step Next sets the physical currency
using the retrieved record as the physical current record.

If a Step Next operation is issued immediately following a Delete (4), Step Next returns the record
that was established as the next physical record by the operation preceding the Delete.

If a Step Next operation is issued immediately after an Open (0), it returns the first record in the
file.

3 The file is not open.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

164 Btrieve API Operations

Step Next Extended (38)
The Step Next Extended operation (B_STEP_NEXT_EXT) examines one or more records,
starting at the next physical position and proceeding toward the end of the file. It compares the
examined record or records to a filter condition and retrieves those that match. The filter condition
is a logic expression and is not limited to key fields.

Step Next Extended can also extract specified fields from existing records and return a new set of
records that contain only the extracted fields.

As noted under this topic, this operation uses the same input and output buffer structures and
returns the result described under Get Next Extended (36). See that operation for more
information.

Parameters

Prerequisites
• The file must be open.

• You must have established a next physical position. For example, a Step Next Extended
operation cannot follow a Delete operation.

Procedure

1. Set the operation code to 38. Optionally, you can include a lock bias:

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as
the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

2. Pass the position block for the file.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X

Returned X X X

Btrieve API Operations 165

3. Specify a data buffer to accommodate either the input structure or the returned output,
whichever is larger. Initialize the data buffer according to the information for the input buffer
for extended operations found under Get Next Extended (36).

4. Specify the buffer size as either the length of the input structure or the length of the returned
output, whichever is larger, as described for the input and output buffer information found
under Get Next Extended (36).

5. Specify the data buffer length from the preceding step.

Details

The Step Next Extended operation shares the same details as the Get Next Extended operation.
See the Details topic for that operation for more information.

Result

If the Step Next Extended operation succeeds, the MicroKernel Engine returns one or more fields
from one or more records to the data buffer (see Output Buffer for Extended Operations). The
MicroKernel Engine also sets the data buffer length parameter to the number of bytes it returned
to the data buffer.

If the Step Next Extended operation fails, the MicroKernel Engine returns one of the following
status codes:

The MicroKernel Engine can return a nonzero status code and also valid data, but the last record
returned is incomplete. If the buffer length returned is greater than zero, check the output buffer
for extracted data.

3 The file is not open.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

60 The specified reject count has been reached.

61 The work space is too small.

62 The descriptor is incorrect.

65 The field offset is incorrect.

82 The MicroKernel Engine lost positioning.

134 The MicroKernel Engine cannot read the International Sorting Rule.

135 The specified International Sort Rule table is corrupt or otherwise invalid.

136 The MicroKernel Engine cannot find the specified alternate collating sequence in the file.

166 Btrieve API Operations

If a field can be only partially filled because the record is too short, then the MicroKernel Engine
returns what it can of the record up to and including the partial field. If the partial field is the last
field to extract, then the engine continues the operation. Otherwise, it aborts the operation with
status code 22.

For example, a Step Next Extended operation retrieves three fields from two variable-length
records, the first record 55 bytes long, the second 50 bytes. The output buffer allows 50 bytes for
return data. The three fields to be retrieved are defined as follows:

• Field 1 begins at offset 2 and is 2 bytes long.

• Field 2 begins at offset 45 and is 10 bytes long.

• Field 3 begins at offset 6 and is 2 bytes long.

When the MicroKernel Engine performs the Step Next Extended operation, it returns the first
record without any problem. However, when attempting to extract 10 bytes from field 2 of the
second record, the MicroKernel Engine finds that only 5 bytes are available (between offset 45
and the end of the record, at offset 49). At this point, the MicroKernel Engine does not pad the
missing 5 bytes of field 2, and thus cannot extract field 3. Instead, the MicroKernel Engine returns
status code 22 and places all of field 1 and first 5 bytes of field 2 in the return data buffer.

Depending on the fields and operators used in the filter condition, the MicroKernel Engine may
be able to optimize your request. After reaching a certain rejected record, it returns status code 64,
indicating that no records in the rest of the file can satisfy the filter conditions.

Positioning

The Step Next Extended operation does not establish any logical currency, but the last record
examined becomes the current physical record. This record can be either a record that satisfies the
filter condition and is retrieved or a record that does not satisfy the filter condition and is rejected.

Btrieve API Operations 167

Step Next Delete Extended (87)
The Step Next Delete Extended operation (B_STEP_NEXT_EXT_DELETE) examines one or
more records, starting at the next physical position and proceeding toward the end of the file. It
compares the examined record or records to a filter condition and deletes those that match. The
filter condition is a logic expression and is not limited to key fields.

As noted under this topic, this operation uses the same input and output buffer structures and
returns the result described under Get Next Extended (36). See that operation for more
information.

Parameters

Prerequisites
• The file must be open.

• You must have established a next physical position. For example, a Step Next Extended
operation cannot follow a Delete operation.

Procedure

1. Set the operation code to 87.

By default, the lock bias is no-wait, and any lock bias setting is ignored. Behavior is identical
to +500: If the engine cannot delete a locked record, it returns immediately without retrying
the operation.

2. Pass the position block for the file.

3. Specify a data buffer to accommodate either the input structure or the returned output,
whichever is larger. Initialize the data buffer according to the information for the input buffer
for extended operations found under Get Next Extended (36).

4. Specify the buffer size as either the length of the input structure or the length of the returned
output, whichever is larger, as described for the input and output buffer information found
under Get Next Extended (36).

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X

Returned X X X

168 Btrieve API Operations

Details

The following topics under Get Next Extended (36) cover the structure of the extended operation
input buffer and use of its filter segment, as well as the structure of the output buffer that returns
the result:

• Input Buffer for Extended Operations

• Output Buffer for Extended Operations

Result

If the Step Next Delete Extended operation succeeds, the MicroKernel Engine deletes one or
more records. The MicroKernel Engine also sets the data buffer length parameter to the number of
bytes it returned to the data buffer.

If the Step Next Delete Extended operation fails, the MicroKernel Engine returns one of the
following status codes:

If the output buffer length is zero, then no records were deleted. However, the operation may have
succeeded in deleting some records before failing. The following list gives some examples of
these partial successes:

• The output buffer no longer has room to write out the record address for the current record that
matches the filter conditions. That record is not deleted, and the operation fails with status
code 22.

• Another client has locked the current record, and the operation fails with status code 84.

3 The file is not open.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

60 The specified reject count has been reached.

61 The work space is too small.

62 The descriptor is incorrect.

65 The field offset is incorrect.

82 The MicroKernel Engine lost positioning.

134 The MicroKernel Engine cannot read the International Sorting Rule.

135 The specified International Sort Rule table is corrupt or otherwise invalid.

136 The MicroKernel Engine cannot find the specified alternate collating sequence in the file.

Btrieve API Operations 169

In these cases, the output buffer length is greater than zero, and the first two bytes of the buffer
give a count of the number of deleted records.

Positioning

The Step Next Delete Extended operation does not establish currency. When a record is deleted,
both the logical and physical current positions are no longer valid. However, you can do a Step
Next or Step Previous operation because those physical positions are accessible and then have a
valid position. If the deleted record has been reached by a Get operation, the next and previous
logical positions are also valid. A valid current position becomes available when those operations
are called or by using Get Position (22) and Get Direct/Record (23).

The following list shows the relationships of selected status codes to filter conditions:

• Status 60 (reject count reached): The current position is a record that does not match the filter
condition.

• Status 84 (record or page locked): The current position is a record that may not match the
filter condition. It is also possible that the next record matched the filter condition but could
not be deleted because of locking.

• Status 22 (data buffer full): The current position is a record that matches the filter condition,
but the data buffer does not have space to write the record address, so the MicroKernel Engine
did not delete the record.

• Status 9 (end of file): The current position is both logically and physically invalid.

170 Btrieve API Operations

Step Previous (35)
The Step Previous operation (B_STEP_PREVIOUS) retrieves the record to which the previous
physical position points. The MicroKernel Engine does not use an index path to retrieve a record
for a Step Previous operation.

A Step Previous operation performed immediately after any Get or Step operation returns the
record physically preceding the record that the previous operation retrieves.

Parameters

Prerequisites
• The file must be open.

• You must have an established previous physical position. For example, a Step Previous cannot
follow a Delete operation.

Procedure

1. Set the operation code to 35. Optionally, you can include a lock bias:

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as
the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

2. Pass the position block for the file.

3. Set the data buffer length to a value greater than or equal to the length of the record to retrieve.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X

Returned X X X

Btrieve API Operations 171

Result

If the operation succeeds, the MicroKernel Engine returns the previous physical record in the data
buffer and sets the data buffer length parameter to the number of bytes returned.

If the operation fails, the MicroKernel Engine returns one of the following status codes:

Positioning

The Step Previous operation does not establish logical currency. Step Previous sets the physical
currency using the retrieved record as the physical current record.

3 The file is not open.

9 The operation encountered the end-of-file. (at the beginning of the file)

22 The data buffer parameter is too short.

172 Btrieve API Operations

Step Previous Delete Extended (88)
The Step Previous Delete Extended operation (B_STEP_PREV_EXT_DELETE) examines one or
more records, starting at the previous physical position and proceeding toward the beginning of
the file. It compares the examined record or records to a filter condition and deletes those that
match. The filter condition is a logic expression and is not limited to key fields.

As noted under this topic, this operation uses the same input and output buffer structures and
returns the result described under Get Next Extended (36). See that operation for more
information.

Parameters

Prerequisites
• The file must be open.

• You must have established a previous physical position. For example, a Step Previous
Extended operation cannot follow a Delete operation.

Procedure

1. Set the operation code to 88.

By default, the lock bias is no-wait, and any lock bias setting is ignored. Behavior is identical
to +500: If the engine cannot delete a locked record, it returns immediately without retrying
the operation.

2. Pass the position block for the file.

3. Specify a data buffer to accommodate either the input structure or the returned output,
whichever is larger. Initialize the data buffer according to the information for the input buffer
for extended operations found under Get Next Extended (36).

4. Specify the buffer size as either the length of the input structure or the length of the returned
output, whichever is larger, as described for the input and output buffer information found
under Get Next Extended (36).

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X

Returned X X X

Btrieve API Operations 173

Details

The following topics under Get Next Extended (36) cover the structure of the extended operation
input buffer and use of its filter segment, as well as the structure of the output buffer that returns
the result:

• Input Buffer for Extended Operations

• Output Buffer for Extended Operations

Result

This operation returns the same result as Step Next Delete Extended (87). See that operation for
more information.

Positioning

The Step Previous Delete Extended operation does not establish currency. When a record is
deleted, both the logical and physical current positions are no longer valid. However, you can do a
Step Next or Step Previous operation because those physical positions are accessible and then
have a valid position. If the deleted record has been reached by a Get operation, the next and
previous logical positions are also valid. A valid current position becomes available when those
operations are called or by using Get Position (22) and Get Direct/Record (23).

The following list shows the relationships of selected status codes to filter conditions:

• Status 60 (reject count reached): The current position is a record that does not match the filter
condition.

• Status 84 (record or page locked): The current position is a record that may not match the
filter condition. It is also possible that the next record matched the filter condition but could
not be deleted because of locking.

• Status 22 (data buffer full): The current position is a record that matches the filter condition,
but the data buffer does not have space to write the record address, so the MicroKernel Engine
did not delete the record.

• Status 9 (end of file): The current position is both logically and physically invalid.

174 Btrieve API Operations

Step Previous Extended (39)
The Step Previous Extended operation (B_STEP_PREVIOUS_EXT) examines one or more
records, starting at the previous physical position and proceeding toward the beginning of the file.
It compares the examined record or records to a filter condition and retrieves those that match.
The filter condition is a logic expression and is not limited to key fields.

Step Previous Extended can also extract specified fields from existing records and return a new
set of records that contain only the extracted fields.

As noted under this topic, this operation uses the same input and output buffer structures and
returns the result described under Get Next Extended (36). See that operation for more
information.

Parameters

Prerequisites
• The file must be open.

• You must have established a previous physical position. For example, a Step Previous
Extended operation cannot follow a Delete operation.

Procedure

1. Set the operation code to 39. Optionally, you can include a lock bias:

• +100 – Single wait record lock.

• +200 – Single no-wait record lock.

• +300 – Multiple wait record lock.

• +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as
the Wait Lock Timeout property for configuring Zen servers in Advanced Operations Guide.

2. Pass the position block for the file.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X

Returned X X X

Btrieve API Operations 175

3. Specify a data buffer to accommodate either the input structure or the returned output,
whichever is larger. Initialize the data buffer according to the information for the input buffer
for extended operations found under Get Next Extended (36).

4. Specify the buffer size as either the length of the input structure or the length of the returned
output, whichever is larger, as described for the input and output buffer information found
under Get Next Extended (36).

Details

This operation uses the same input and output buffers as Get Next Extended (36). See that
operation for more information.

Result

This operation returns the same result as Get Next Extended (36). See that operation for more
information.

Positioning

The Step Previous Extended operation does not establish logical currency, but the last record
examined becomes the current physical record. This record can be either a record that satisfies the
filter condition and is retrieved or a record that does not satisfy the filter condition and is rejected.

176 Btrieve API Operations

Stop (25)
The Stop operation (B_STOP) performs a number of termination routines for the client, such as
releasing all locks and closing all open files associated with that client.

Parameters

Procedure

Set the operation code to 25.

Result

If the Stop operation succeeds, the MicroKernel Engine performs the following actions:

1. Aborts any active transactions.

2. Releases all locks held by the client.

3. Closes all files open for the client.

4. If no other clients (other applications registered with the MicroKernel Engine) exist and
depending on the MicroKernel Engine configuration, the MicroKernel Engine may terminate
itself and free a number of resources.

If the Stop operation fails, the MicroKernel Engine returns a nonzero status code. The most
common nonzero status code is 20 (Record Manager Inactive). This status occurs because the
MicroKernel Engine or the Requester is not loaded.

Positioning

The Stop operation destroys all currencies because it closes any open files.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X

Returned

Btrieve API Operations 177

Unlock (27)
The Unlock operation (B_UNLOCK) unlocks one or more records that have been locked
explicitly (that is, the records were locked using a lock bias of +100, +200, +300, or +400). The
Unlock operation releases locks held by the specified position block. Therefore, if you have the
same file opened more than once, you must issue an Unlock for each position block before the
record is completely unlocked. Similarly, each client that holds a lock on records in the file must
issue an Unlock before the record is completely unlocked.

Parameters

Prerequisites

You must have at least one record lock.

Procedure

To unlock a single-record lock

1. Set the operation code to 27.

2. Pass the position block for the file that contains the locked record.

3. Set the key number to a nonnegative value.

To unlock a record locked by a multiple-record lock

1. Retrieve the 4- or 8-byte position of the record to unlock by issuing a Get Position (22) for
that record. Then, continue to the next steps to issue the Unlock operation.

2. Set the operation code to 27.

3. Pass the position block for the file that contains the locked record.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X

Returned

178 Btrieve API Operations

4. Store in the data buffer the 4- or 8-byte position that Get Position (22) returned. Use the same
BTRV or BTRVEX type entry point for Get Position and Unlock to be consistent with record
address size.

5. Set the data buffer length to 4 or 8.

6. Set the key number parameter to –1.

To unlock all the multiple record locks on a file

1. Set the operation code to 27.

2. Pass the position block for the file that contains the multiple locks.

3. Set the key number parameter to –2.

Result

If the Unlock operation succeeds, the MicroKernel Engine releases all the locks that the operation
specified.

If the Unlock operation fails, the MicroKernel Engine returns a nonzero status code – most likely,
status code 81.

Positioning

The Unlock operation has no effect on positioning.

Btrieve API Operations 179

Update (3)
The Update operation (B_UPDATE) changes the information in an existing record.

Parameters

Note: When using the no-currency-change (NCC) option, the Update operation does not update
the value of the key buffer parameter. It does not return any information in that parameter.

Prerequisites
• The file must be open.

• You must have established physical currency in the file. Note that although an Extended Get,
Extended Step, or Get Key operation establishes the required position, these operations cannot
be followed by an Update.

Procedure

1. Set the operation code to 3.

2. Pass the position block for the file containing the record.

3. Store the updated data record in the data buffer.

4. Set the data buffer length to the length of the updated record.

5. Set the key number used for retrieving the record. To use the NCC option, specify –1 for the
key number. To use the system-defined log key (also called system data), specify 125. To use
the second system key for system data v2, specify 124.

When you are performing a non-NCC Update operation immediately following a Get
operation, pass the key number exactly as the MicroKernel Engine returned it on the Get
operation. Otherwise, the MicroKernel Engine updates the record successfully but returns
status code 7 on the first Get operation performed after the update.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X

Returned X X

180 Btrieve API Operations

Result

If the Update operation succeeds, the MicroKernel Engine updates the record stored in the file
with the new value in the data buffer, adjusts the indexes to reflect any change in the key values,
and returns the value of the specified key in the key buffer. An NCC Update operation does not
update the value of the key buffer parameter.

If the application holds a single-record lock on the record to be updated, the MicroKernel Engine
releases the lock. However, a multiple-record lock is never released by an Update operation.

If the Update operation fails, the MicroKernel Engine returns one of the following status codes:

Positioning

The Update operation and the NCC Update operation do not affect physical currency.

An Update operation that does not use the NCC option can affect logical currency if the value of
the updated key repositions the record in the index. For example, suppose the logical current
record of an INTEGER has a value of 1. For that same key, the logical next record has a value of
2. If you update 1 to 4, you no longer have the same logical next record. In this example, after the
Update operation, the logical next record has a value that is greater than 4.

An NCC Update operation does not affect logical currency. This means that an application,
having performed an NCC Update operation, has the same logical position in the file as it had
prior to the Update operation. In such a situation, operations that follow an NCC Update – such as
Get Next (6), Get Next Extended (36), Get Previous (7), and Get Previous Extended (37) – return
values based on the logical currency of the application prior to the NCC Update.

Note: The MicroKernel Engine does not return any information in the key buffer parameter as
the result of an NCC Update operation. Therefore, an application that must maintain the logical
currency must not change the value of the key buffer following the NCC Update operation.
Otherwise, the next Get operation has unpredictable results.

5 The record has a key field containing a duplicate key value.

8 The current positioning is invalid.

10 The key field is not modifiable.

22 The data buffer parameter is too short.

80 The MicroKernel Engine encountered a record-level conflict.

Btrieve API Operations 181

Update Chunk (53)
The Update Chunk operation (B_CHUNK_UPDATE) can change the information in one or more
portions of a record (each portion being a chunk). It can also append information to an existing
record (thereby lengthening the record), or truncate an existing record at a specified offset.

Parameters

Prerequisites
• The file must be open.

• You must have an established current physical or logical record in the file.

Note: Although an extended operation or a Get Key (+50) establishes the required position, you
cannot issue an Update Chunk operation immediately after these operations, since they do not
return a single record.

Procedure

1. Set the operation code to 53.

2. Pass the position block for the file containing the record.

3. Specify a data buffer, as described in Details.

4. Set the data buffer length to a value greater than or equal to the number of bytes your
application has placed in the data buffer. See the Details section for more information about
calculating the data buffer length.

5. Set the key number used for retrieving the record in the key number parameter. To use the
system-defined log key (also called system data), specify 125. To use the second system key
for system data v2, specify 124.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X X X X

Returned X X

182 Btrieve API Operations

Details

Use one of the following chunk descriptors in the data buffer:

• Random Chunk Descriptor – To update a single chunk per operation, or to update more than
one chunk in a single operation when the chunks are spaced randomly throughout the record.

• Rectangle Chunk Descriptor – To update many chunks in an operation, when each chunk is
the same length and chunks are spaced equidistantly in the record.

• Truncate Chunk Descriptor – To truncate a record at a specified offset.

Random Chunk Descriptor Structure

The following example shows a record with three randomly spaced chunks (areas containing [*]):
chunk 0 (bytes 0x12 through 0x16), chunk 1 (bytes 0x2A through 0x31), and chunk 2 (bytes 0x41
through 0x4E).

To define a random chunk descriptor, your application must create a structure in the data buffer,
based on the following table.

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 [*] [*] [*] [*] [*] 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 [*] [*] [*] [*] [*] [*]

[*] [*] 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 [*] [*] [*] [*] [*] [*] [*] [*] [*] [*] [*] [*] [*] [*] 4F

Element Length (Bytes) Description

Subfunction 4 Type of chunk descriptor. One of the following:

• 0x80000000 (Direct random chunk descriptor) – Updates chunks
stored directly in the data buffer. The data for updating the first
chunk is stored in the data buffer immediately after the last chunk
definition (Chunk n), the data for the second chunk immediately
follows the first, and so on.

• 0x80000001 (Indirect random chunk descriptor) – Updates
chunks from data at addresses specified by the Chunk
Definitions.

Btrieve API Operations 183

The following table shows a sample direct random chunk descriptor structure for a 32-bit
application.

NumChunks 4 Number of chunks to be updated. The value must be at least 1.
Although no explicit maximum value exists, the chunk definitions
must fit in the data buffer.

Chunk
Definition
(Repeat for
each chunk)

12 (for 32-bit
applications)

16 (for 64-bit
applications)

Each Chunk Definition is a 4-byte Chunk Offset, followed by a 4-
byte Chunk Length, followed by a 4-byte User Data for 32-bit
applications or an 8-byte User Data for 64-bit applications,
described as follows:

• Chunk Offset – Indicates where the chunk begins as an offset in
bytes from the beginning of the record. The minimum value is 0,
and the maximum value is the offset of the last byte in the record,
plus 1.

• Chunk Length – Indicates how many bytes are in the chunk. The
minimum value is 0, and the maximum value 65535. However,
the chunk definitions must fit in the data buffer.

• User Data – (Used only for indirect descriptors.) For 32-bit
applications, a 32-bit pointer to the actual chunk data. For 64-bit
applications, a 64-bit pointer to the actual chunk data. The format

you should use depends on your operating system.1 The
MicroKernel Engine ignores this element for direct chunk
descriptor subfunctions.

1For DOS applications, initialize User Data as a 16-bit offset and a 16-bit segment. User Data cannot
address memory beyond the end of its segment. When Chunk Length is added to the offset portion of
User Data, the result must be within the segment that User Data defines. By default, the MicroKernel
Engine does not check for violations of this rule and does not properly handle such violations.

Element Sample Value Length (Bytes)

Subfunction 0x8000000 4

NumChunks 3 4

Chunk 0

Chunk Offset 0x12 4

Chunk Length 0x05 4

User Data N/A 4

Chunk 1

Element Length (Bytes) Description

184 Btrieve API Operations

Rectangle Chunk Descriptor Structure

When chunks of the same length are spaced equidistantly throughout a record, you can describe
all the chunks to update with a rectangle chunk descriptor. For example, consider the following
diagram, which represents offset 0x00 through 0x4F in a record:

The record contains three chunks (areas containing [*]): chunk 0 (bytes 0x19 through 0x1C),
chunk 1 (bytes 0x29 through 0x2C), and chunk 2 (bytes 0x39 through 0x3C). Each chunk is four
bytes long, and a total of 16 (0x10) bytes, calculated from the beginning of each chunk, separates
the chunks from one another.

Chunk Offset 0x2A 4

Chunk Length 0x08 4

User Data N/A 4

Chunk 2

Chunk Offset 0x41 4

Chunk Length 0x0E 4

User Data N/A 4

Data for Chunk 0 N/A 5

Data for Chunk 1 N/A 8

Data for Chunk 2 N/A 14

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 [*] [*] [*] [*] 1D 1E 1F

20 21 22 23 24 25 26 27 28 [*] [*] [*] [*] 2D 2E 2F

30 31 32 33 34 35 36 37 38 [*] [*] [*] [*] 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

Element Sample Value Length (Bytes)

Btrieve API Operations 185

You can update all three chunks using a single rectangle descriptor. To update rectangle chunks,
you must create a structure in the data buffer based on the following table.

Element Length (Bytes) Description

Subfunction 4 Type of chunk descriptor. One of the following:

• 0x80000002 (Direct rectangle chunk descriptor) – Updates
chunks stored directly in the data buffer. The data for
updating the first chunk is stored in the data buffer
immediately after the last chunk definition (Chunk n), the
data for the second chunk immediately follows the first, and
so on.

• 0x80000003 (Indirect rectangle chunk descriptor) – Updates
chunks from data at addresses specified by the Chunk
Definitions.

Number of Rows 4 Number of chunks on which the rectangle chunk descriptor must
operate. The minimum value is 1. No explicit maximum value
exists.

Offset 4 Offset from the beginning of the record of the first byte to
update. The minimum value is 0, and the maximum value is the
offset of the last byte in the record, plus 1. If the record is viewed
as a rectangle, this element refers to the offset of the first byte in
the first row to be retrieved.

Bytes Per Row 4 Number of bytes in each chunk to be updated. The minimum
value is 0, and the maximum value is 65535. However, the chunk
definitions must fit in the data buffer.

Distance
Between Rows

4 Number of bytes between the beginning of each chunk.

User Data 4 (for 32-bit
applications)

8 (for 64-bit
applications)

(Used only with indirect descriptors.) For 32-bit applications, a
32-bit pointer to the actual chunk data. For 64-bit applications, a
64-bit pointer to the actual chunk data. The format you should

use depends on your operating system.1 The MicroKernel
Engine ignores this element for direct rectangle descriptors.
However, you must still allocate the element and initialize it to 0.

Application
Distance
Between Rows

4 (Used only with indirect rectangle descriptors.) Number of bytes
between the beginning of chunks in the rectangle, as the
rectangle is stored in application memory, at the address
specified by User Data. The MicroKernel Engine ignores this
element for direct rectangle descriptors. However, you must still
allocate the element and initialize it to 0.

1For DOS applications, express User Data as a 16-bit offset followed by a 16-bit segment.

186 Btrieve API Operations

If the rectangle has the same number of bytes between rows when it is in memory as when it is
stored as a record, set Application Distance Between Rows with the same value as Distance
Between Rows. However, if the rectangle is arranged in application memory with either more or
fewer bytes between rows, Application Distance Between Rows allows you to pass that
information to the MicroKernel Engine.

When you use an indirect rectangle descriptor, the MicroKernel Engine uses both the User Data
and the Application Distance Between Rows elements to determine the locations from which to
read the data for the update. The MicroKernel Engine reads data for the first row from offset 0 of
User Data. The MicroKernel Engine reads data in the second row from an address specified by
User Data + Application Distance Between Rows. The MicroKernel Engine reads data in the third
row from the address specified by User Data + (Application Distance Between Rows * 2), and so
on.

The following table shows a sample direct rectangle chunk descriptor structure for a 32-bit
application.

Element Name Sample Value Length (Bytes)

Subfunction 0x80000002 4

Number of Rows 3 4

Offset 0x19 4

Bytes Per Row 0x04 4

Distance Between Rows 0x10 4

User Data 0 4

Application Distance Between Rows 0 4

Data (Row 0) N/A 4

Data (Row 1) N/A 4

Data (Row 2) N/A 4

Btrieve API Operations 187

Truncate Descriptor Structure

The truncate descriptor allows you to truncate a record at a specified offset. To use this type of
chunk descriptor, you must create a structure in the data buffer, based on the following table:

Next-in-Record Subfunction Bias

If you add a bias of 0x40000000 to any of the subfunctions previously listed, the MicroKernel
Engine calculates the subfunction Offset element values based on your physical intrarecord
currency (that is, your current physical position within the record). When you use the Next-in-
Record subfunction, the MicroKernel Engine ignores the Offset element in the chunk descriptor.

If you use this bias in combination with a random chunk descriptor and it updates more than one
chunk in a single operation, the MicroKernel Engine calculates the offset for all chunks (except
the first) by adding the length of the previous chunk to the offset of the previous chunk. In other
words, the next-in-record bias applies to all chunks in the operation.

Append Subfunction Bias

If you add a bias of 0x20000000 to the random chunk descriptor subfunction or to the rectangle
chunk descriptor subfunction, the MicroKernel Engine calculates the subfunction Offset element
value to be one byte beyond the end of the record.

Note: Do not use this bias with the Next-in-Record bias or the Truncate subfunction.

If you use this bias in combination with a random chunk descriptor and it updates more than one
chunk in a single operation, the MicroKernel Engine calculates the offset for all chunks (except
the first chunk) based on the record length after the MicroKernel Engine appends the previous
chunk.

Result

If the Update Chunk operation succeeds, the MicroKernel Engine updates the portions of the
record identified as chunks in the chunk descriptor portion of the data buffer. The new data for

Element Length
(Bytes)

Description

Subfunction 4 Type of chunk descriptor. Specify 0x80000004.

ChunkOffset 4 Byte offset into the record where truncation begins. That byte and
every byte following it is eliminated. The minimum value is 4. The
maximum value is the offset of the final byte in the record.

188 Btrieve API Operations

updating the chunks is contained either in the chunk descriptor itself (for direct chunk descriptor
subfunctions) or in the memory address specified by the 32-bit pointer in each chunk's User Data
element (for indirect chunk descriptor subfunctions). After the Update Chunk operation
completes, the MicroKernel Engine adjusts the key indexes to reflect any change in the key
values, and, if necessary, updates the key buffer parameter.

In addition, if the application holds a single-record lock on the record to be updated, the
MicroKernel Engine releases the lock. However, a multiple-record lock is never released by an
Update Chunk operation.

If the Update Chunk operation fails, the MicroKernel Engine returns one of the following status
codes:

Positioning

The Update Chunk operation does not change the physical currency or the current logical record.

Note: When you perform an Update Chunk operation following a Get operation, do not pass to
the Update Chunk operation a key number that differs from the one specified in the preceding Get
operation. If you do, the positioning established by the MicroKernel Engine is unpredictable.

5 The record has a key field containing a duplicate key value.

8 The current positioning is invalid.

10 The key field is not modifiable.

22 The data buffer parameter is too short.

58 The compression buffer length is too short.

62 The descriptor is incorrect.

80 The MicroKernel Engine encountered a record-level conflict.

97 The data buffer is too small.

103 The chunk offset is too big.

106 The MicroKernel Engine cannot perform a Get Next Chunk operation.

Btrieve API Operations 189

Version (26)
For client applications, the Version operation (B_VERSION) returns the local MicroKernel
Engine version and the Requester version, if applicable. If a client application opens a file on a
server or specifies a server file path name in the key buffer, the Version operation also returns the
MicroKernel Engine version on that server. For server-based applications, the Version operation
returns the server-based MicroKernel Engine version and revision numbers.

Parameters

Prerequisites

Either the MicroKernel Engine or the Requester must be loaded before you can issue a Version
operation.

Procedure

1. Set the operation code to 26.

2. Set the data buffer length to at least 15. For more information, see Result.

3. To retrieve the version number of a server-based MicroKernel Engine, you must specify either
a valid position block for an opened file on that server or a valid path name in the key buffer.

Result

If you have both a workstation MicroKernel Engine and client Requester configured for access
and the Version operation succeeds, the operation returns the version information for the
workstation MicroKernel Engine, the client Requester, and the server-based MicroKernel Engine.

Specify a 15-byte data buffer and data buffer length.

If both the client Requester and the workstation MicroKernel Engine are loaded and you specify
only a 5-byte data buffer and data buffer length, the operation returns only version information for
the client Requester.

Op Code Pos Block Data Buf Data Buf Len Key Buffer Key Number

Sent X X

Returned X X

190 Btrieve API Operations

If you specify only a 10-byte data buffer and data buffer length, the operation returns the client
Requester and the local workstation engine.

If you specify a 15-byte data buffer and data buffer length, the operation returns the client
Requester, the local workstation engine, and the server engine (if applicable).

In the data buffer, the Version operation returns a 5-byte Version Block for each MicroKernel
Engine or Requester, according to the format shown in the following table. The fifth byte of each
block identifies each MicroKernel Engine or Requester.

For example, if you are running Zen 14.10 on a Windows server, the Version operation returns the
following hexadecimal values in the data buffer:

0E 00 0A 00 54

After converting these values to decimal, the version number is 14 and the revision number is 10.
If the Version operation fails, the MicroKernel Engine returns a nonzero status code.

Positioning

The Version operation has no effect on positioning.

Element Length (Bytes) Description

Version Number 2 Zen version number.

Revision Number 2 Zen revision number.

Requester or
Engine Type

1 Type of engine or requester. One of the following:

• B (0x42) for the Btrieve engine

• C (0x43) for the Client engine

• 9 (0x39) for the Workgroup database engine or Linux
database server using Workgroup authentication mode

• D (0x44) for DOS workstation

• N (0x4E) for client Requester

• R (0x52) for Reporting Engine

• T (0x54) for Windows server

• U (0x55) for a Linux or Raspbian server using PAM or
BTPASSWD authentication

Quick Reference of Btrieve Operations 191

A. Quick Reference of Btrieve Operations

The following table summarizes Btrieve API operations in numerical order by operation code.

Operation Code Constant Description

Open 0 B_OPEN Makes a file available for access.

Close 1 B_CLOSE Releases a file from availability.

Insert 2 B_INSERT Inserts a new record into a file.

Update 3 B_UPDATE Updates the current record.

Delete 4 B_DELETE Removes the current record from the
file.

Get Equal 5 B_GET_EQUAL Returns the record whose key value
matches the specified key value.

Get Next 6 B_GET_NEXT Returns the record following the
current record in the index path.

Get Previous 7 B_GET_PREVIOUS Returns the record preceding the
current record in the index path.

Get Greater Than 8 B_GET_GT Returns the record whose key value
is greater than the specified key
value.

Get Greater Than
or Equal

9 B_GET_GE Returns the record whose key value
is equal to or greater than the
specified key value.

Get Less Than 10 B_GET_LT Returns the record whose key value
is less than the specified key value.

Get Less Than or
Equal

11 B_GET_LE Returns the record whose key value
is equal to or less than the specified
key value.

Get First 12 B_GET_FIRST Returns the first record in the
specified index path.

Get Last 13 B_GET_LAST Returns the last record in the
specified index path.

Create 14 B_CREATE Creates a file with the specified
characteristics.

192 Quick Reference of Btrieve Operations

Stat 15 B_STAT Returns file and index
characteristics, and number of
records.

Extend 16 B_EXTEND Divides a data file over two logical
disk drives. This operation is not
supported in Btrieve 6.0 and later.

Set Directory 17 B_SET_DIR Sets the current directory to a
specified path name.

Get Directory 18 B_GET_DIR Returns the current directory for a
specified logical disk drive.

Begin
Transaction

19
1019

B_BEGIN_TRAN Marks the beginning of a set of
logically related operations.
Operation 19 begins an exclusive
transaction. Operation 1019 begins a
concurrent transaction.

End Transaction 20 B_END_TRAN Marks the end of a set of logically
related operations.

Abort
Transaction

21 B_ABORT_TRAN Removes operations performed
during an incomplete transaction.

Get Position 22 B_GET_POSITION Returns the position of the current
record.

Get Direct/
Chunk

23 B_GET_DIRECT Returns data from the specified
chunks of a record at a specified
position.

Get Direct/
Record

23 B_GET_DIRECT Returns the record at a specified
position.

Step Next 24 B_STEP_NEXT Returns the record from the physical
location following the current record.

Stop 25 B_STOP Terminates the Workgroup
MicroKernel Engine. Not available
for other instances of MicroKernel
Engine.

Version 26 B_VERSION Returns the version number of the
MicroKernel Engine.

Unlock 27 B_UNLOCK Unlocks a record or records.

Operation Code Constant Description

Quick Reference of Btrieve Operations 193

Reset 28 B_RESET Releases all resources held by a
client.

Set Owner 29 B_SET_OWNER Assigns an owner name to a file.

Clear Owner 30 B_CLEAR_OWNER Removes an owner name from a file.

Create Index 31 B_BUILD_INDEX Creates an index.

Drop Index 32 B_DROP_INDEX Removes an index.

Step First 33 B_STEP_FIRST Returns the record in the first
physical location in the file.

Step Last 34 B_STEP_LAST Returns the record in the last
physical location in the file.

Step Previous 35 B_STEP_PREVIOUS Returns the record in the physical
location preceding the current
record.

Get Next
Extended

36 B_GET_NEXT_EXTENDED Returns one or more records that
follow the current record in the index
path. Filtering conditions can be
applied.

Get Previous
Extended

37 B_GET_PREV_EXTENDED Returns one or more records that
precede the current record in the
index path. Filtering conditions can
be applied.

Step Next
Extended

38 B_STEP_NEXT_EXT Returns one or more successive
records from the location physically
following the current record.
Filtering conditions can be applied.

Step Previous
Extended

39 B_STEP_PREVIOUS_EXT Returns one or more preceding
records from the location physically
preceding the current record.
Filtering conditions can be applied.

Insert Extended 40 B_EXT_INSERT Inserts one or more records into a
file.

Continuous
Operation

42 B_CONTINUOUS Allows system backups without
closing active MicroKernel Engine
files.

Operation Code Constant Description

194 Quick Reference of Btrieve Operations

Get By
Percentage

44 B_SEEK_PERCENT Returns the record located
approximately at a position derived
from the specified percentage value.

Find Percentage 45 B_GET_PERCENT Returns a percentage figure based on
the current record's position in the
file.

Get Key +50 KEY_BIAS Detects the presence of a key value
in a file, without returning an actual
record.

Update Chunk 53 B_CHUNK_UPDATE Updates specified portions (chunks)
of the current record. This operation
can also append data to a record or
truncate a record.

Stat Extended 65 B_EXTENDED_STAT Returns file names and paths of an
extended file's components and
reports whether a file is using a
system-defined log key.

Login/Logout 78 B_LOGIN/B_LOGOUT Enters user credentials to obtain
authentication and authorization
tokens from the database engine, or
resets the credentials so that they
must be entered again.

Get Next Delete
Extended

85 B_GET_NEXT_EXT_DELETE Removes records matching a filter
condition, from the logical next
position to the end of the file.

Get Previous
Delete Extended

86 B_GET_PREV_EXT_DELETE Removes records matching a filter
condition, from the logical previous
position to the beginning of the file.

Step Next Delete
Extended

87 B_STEP_NEXT_EXT_DELETE Removes records matching a filter
condition, from the physical next
position to the end of the file.

Step Previous
Delete Extended

88 B_STEP_PREV_EXT_DELETE Removes records matching a filter
condition, Removes records
matching a filter condition, from the
physical previous position to the
beginning of the file.

Operation Code Constant Description

Quick Reference of Btrieve Operations 195

Single-record
wait lock

+100 S_WAIT_LOCK Locks only one record at a time. If
the record is already locked, the
MicroKernel Engine retries the
operation.

Single-record
no-wait lock

+200 S_NOWAIT_LOCK Locks only one record at a time. If
the record is already locked, the
MicroKernel Engine returns an error
status code.

Multiple-record
wait lock

+300 M_WAIT_LOCK Locks several records concurrently
in the same file. If the record is
already locked, the MicroKernel
Engine retries the operation.

Multiple-record
no-wait lock

+400 M_NOWAIT_LOCK Locks several records concurrently
in the same file. If the record is
already locked, the MicroKernel
Engine returns an error status code.

No-wait page
lock

+500 NOWRITE_WAIT In a concurrent transaction, tells the
MicroKernel Engine not to wait if
the page to be changed has already
been changed by another active
concurrent transaction. This bias can
be combined with any of the record
locking biases (+100, +200, +300, or
+400).

Operation Code Constant Description

196 Quick Reference of Btrieve Operations

	Contents
	About This Document
	Who Should Read This Document

	Introduction to Btrieve APIs
	Btrieve API Functions
	BTRV
	BTRVID
	BTRCALL
	BTRCALLID
	BTRVEX
	BTRVEXID
	Obsolete Functions

	Btrieve API Function Parameters
	Operation Code
	Status Code
	Position Block
	Data Buffer
	Data Buffer Length
	Key Buffer
	Key Number
	Client ID
	Key Length

	Summary of Btrieve API Operations
	Session-Specific Operations
	File-Specific Operations
	File Access and Information
	Data Retrieval
	Data Manipulation
	Unsupported Operations

	Sequence of Events in Performing a Btrieve API Operation

	Btrieve API Operations
	Abort Transaction (21)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Begin Transaction (19 or 1019)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Clear Owner (30)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Close (1)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Continuous Operation (42)
	Parameters
	Procedure
	Details
	Result
	Positioning

	Create (14)
	Parameters
	Prerequisites
	Procedure
	Details
	File Specification for BTRV Type Entry Points Used by Create and Stat
	File Specification for BTRVEX Type Entry Points Used by Create and Stat
	File Specification Block
	Logical Fixed Record Length
	Page Size
	Record Count
	Number of Keys
	File Version
	Number of Extra Pointers
	Physical Page Size
	File Flags
	Preallocated Pages
	Key Specification Block
	Key Position
	Key Length
	Key Flags
	Extended Data Type
	Null Value
	Manually Assigned Key Number
	ACS Number
	Alternate Collating Sequence
	User-Defined ACS Files
	International Sort Rules (ISRs)
	Unicode Collations
	Data Buffer Length
	Key Number
	Delete and Rename Subfunctions for the Create Operation
	Notes on Rename and Delete Subfunctions

	Result
	Positioning

	Create Index (31)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Delete (4)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Drop Index (32)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	End Transaction (20)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Find Percentage (45)
	Parameters
	Prerequisites
	Procedure
	Details
	Granularity

	Result
	Positioning

	Get By Percentage (44)
	Parameters
	Prerequisites
	Procedure
	Details
	Granularity

	Result
	Positioning

	Get Direct/Chunk (23)
	Parameters
	Prerequisites
	Procedure
	Details
	Random Chunks
	Data Buffer for Random Chunk Operations
	Rectangle Chunk Descriptor Structure
	Data Buffer for Rectangle Chunks
	Next-in-Record Subfunction Bias

	Result
	Positioning

	Get Direct/Record (23)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Directory (18)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Equal (5)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get First (12)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Greater Than (8)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Greater Than or Equal (9)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Key (+50)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Last (13)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Less Than (10)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Less Than or Equal (11)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Next (6)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Next Delete Extended (85)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Get Next Extended (36)
	Parameters
	Prerequisites
	Procedure
	Details
	Input Buffer for Extended Operations
	Collation of LIKE Results
	Using the JSON QUERY Operator
	JSON Query Examples
	Processing of Logical AND and OR in a Filter
	Examples of Filtering Records
	Output Buffer for Extended Operations

	Result
	Positioning

	Get Position (22)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Previous (7)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Previous Delete Extended (86)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Get Previous Extended (37)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Insert (2)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Insert Extended (40)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Login/Logout (78)
	Parameters
	Prerequisites
	Login Procedure
	Logout Procedure
	Result
	Notes
	Positioning

	Open (0)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Reset (28)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Set Directory (17)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Set Owner (29)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Stat (15)
	Parameters
	Prerequisites
	Procedure
	Details
	File Specifications
	Key Specifications
	Alternate Collating Sequences

	Result
	Positioning

	Stat Extended (65)
	Parameters
	Prerequisites
	Procedure
	Subfunction 1: Extended File Information
	Input Data Buffer Structure
	Output Data Buffer Structure

	Subfunction 2: System Data Information
	Input Data Buffer Structure
	Output Data Buffer Structure

	Subfunction 3: Duplicate Record Conflict Information
	Input Data Buffer Structure
	Output Data Buffer Structure

	Subfunction 4: File Information
	Input Data Buffer Structure
	Output Data Buffer Structure

	Subfunction 5: Gateway Information
	Input Data Buffer Structure
	Output Data Buffer Structure

	Subfunction 6: Lock Owner Identification
	Input Data Buffer Structure
	Output Data Buffer Structure

	Subfunction 7: Security Information
	Input Data Buffer Structure
	Output Data Buffer Structure

	Subfunction 8: Listing of Table or File Name Causing a Status Code 71
	Input Data Buffer Structure
	Output Data Buffer Structure

	Result

	Step First (33)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Step Last (34)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Step Next (24)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Step Next Extended (38)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Step Next Delete Extended (87)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Step Previous (35)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Step Previous Delete Extended (88)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Step Previous Extended (39)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Stop (25)
	Parameters
	Procedure
	Result
	Positioning

	Unlock (27)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Update (3)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Update Chunk (53)
	Parameters
	Prerequisites
	Procedure
	Details
	Random Chunk Descriptor Structure
	Rectangle Chunk Descriptor Structure
	Truncate Descriptor Structure
	Next-in-Record Subfunction Bias
	Append Subfunction Bias

	Result
	Positioning

	Version (26)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	A. Quick Reference of Btrieve Operations

