A ACTIAN

Distributed Tuning
Interface Guide

Zen v16

Activate Your Data™

Copyright © 2024 Actian Corporation. All Rights Reserved.

This Documentation is for the end user’s informational purposes only and may be subject to change or withdrawal by
Actian Corporation (“Actian”) at any time. This Documentation is the proprietary information of Actian and is
protected by the copyright laws of the United States and international treaties. The software is furnished under a
license agreement and may be used or copied only in accordance with the terms of that agreement. No part of this
Documentation may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, or for any purpose without the express written permission of Actian. To the extent
permitted by applicable law, ACTIAN PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY
OF ANY KIND, AND ACTIAN DISCLAIMS ALL WARRANTIES AND CONDITIONS, WHETHER EXPRESS
OR IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF
MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OR OF NON-INFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT WILL ACTIAN BE LIABLE TO THE END USER OR ANY THIRD
PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION,
GOODWILL, OR LOST DATA, EVEN IF ACTIAN IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The manufacturer of this Documentation is Actian Corporation.

For government users, the Documentation is delivered with “Restricted Rights” as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Actian, Actian DataCloud, Actian DataConnect, Actian X, Avalanche, Versant, PSQL, Actian Zen, Actian Director,
Actian Vector, DataFlow, Ingres, OpenROAD, and Vectorwise are trademarks or registered trademarks of Actian
Corporation and its subsidiaries. All other trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

Contents

About This Document xxiii
Who Should Read This Manual xXxiii
Distributed Tuning Interface Guide 1
Overview of Distributed Tuning Interface 1
String Arguments Encoding 1
APT Categories . . . ot ottt ettt 1
Execution Privileges. 1
Basics Of Using DT o e e e e 2
Header Files oo e 2
Link Librariesottt e e 2
Before Calling Any Functions e 3
Sample Programs For DTL 3
Common Tasks With DTI. e 4
Making a Connection to a Server Using DTI. 4
Obtaining a Setting ID Using DTT 5
Passing a DTI Structure asa Parameter. 5
Distributed Tuning Interface Reference 7
Using the DTI Function Reference. i, 8
DTI Function Groupso ottt e e e e e e e e e e e et e 9
DTI Error MESSageS . . . o o v v ottt et ettt e e e e e 13
DTIStructureso e e e e e 14
CONFIG.H Structuresttt et 14
DDFSTRCT.H Structures.o e e e 14
MONITOR.H Structures e e e 17
DTICalling SeqUenCeottt e e e e ettt 18
DTI Function Definitionsottt e et et 19
PvAddIndex() 20
Sy AKX .« et 20
ATZUMENES . . oottt et e e e e 20
Return Values o 20
Remarks o 20
SEE AlSO . .ot 21
PVAAALACENSE() . . v oot ettt 22
Sy AKX .« et 22

ATGUIMENES . .ottt e e e e 22

Return Values 22
Remarks. 22
Example.o 23
SEE AlSO. . et 23
PvAddTable() e 24
)4 11 24
ATGUMENLS . . oo e 24
Return Values 24
Remarks. 25
SEE AlSO. . et 25
PvAddUSerToGroup()ottt e e e e 26
)4 11 26
ATGUMENLS . . oo e 26
Return Values 26
Remarks. e 26
SEE AlSO. . et 27
PvAlterUserName()ttt e e e 28
)4 11 28
ATGUMENLS . . oo e 28
Return Values 28
Remarks. 28
SEE AlSO. . et 29
PvAlterUserPassword()t e 30
)4 1 30
ATGUMENLS . . oo e 30
Return Values 30
Remarks. 30
SEE AlSO. . et 31
PvCheckDbInfo()o 32
Sy AKX . .ttt e 32
ATGUMENLS . . oo e 32
Return Values 32
Remarks. 33
Example.o 33
S AlSO. . i e 33
PvCloseDatabase()o.vv ittt 35
Sy MK . .t e 35
ATGUMENES . . .ottt e e 35
Return Values 35

S AlSO . vt 35
PvCloseDictionary()vuiir ittt e 37
Sy MtaX . . ot 37
ATGUIMENES . . ottt ettt e et e e e 37
Return Values o 37
Remarks 37
Example 37
SEE AlSO . .ot 38
PvConnectServer()t 39
Sy MK .« e 39
ATGUMENTS . . oo e 39
Return Values 39
Remarks 40
Example 40
S AlSO . v it 41
PvCopyDatabase()o oo ottt 42
N4 117 . QPP 42
ATGUIMENES . . .ottt et e e 42
Return Values o 42
Remarkso 43
Example 43
SEE AlSO . . ot 43
PvCOUNtDSNS() . oottt 44
)4 L O 44
ATGUMENLSo 44
Return Values 44
Remarks 44
SEE AlSO . . ot 45
PvCountSelectionItems()t 46
)4 1 O 46
ATGUMENLSo 46
Return Values 46
Remarks 46
SEE AlSO . . ot 47
PvCreateDatabase()ottt 48
Sy AKX .« et 48
ATGUMENLS . . .o e 48
Return Values 49
Remarks 49

Example. 50

S AlSO. . ottt e 51
PvCreateDatabase2()ottt 52
SYNEAX . .ot e 52
ATGUIMENES . .ottt e e 52
Return Values 53
Remarks. 54
S AlSO. . ottt e 54
PvCreateDictionary()ottt 55
SYNEAX . .ot e 55
ATZUMENES . . .ottt e e e 55
Return Values 55
Remarks. 56
S AlSO. . i e 56
PvCreateDSIN() . . oot 57
SYNEAX . .ot e 57
ATZUMENES . . .ottt e e e 57
Return Values 58
Remarks. 58
S AlSO. . it e 58
PvCreateDSIN2() . . oot 59
SYNEAX . .ot e 59
ATGUIMENES . . ottt e e e e 59
Return Values 60
Remarks. 60
S AlSO. . it e 61
PvCreateGroup() . ..o ov vt e 62
SYNEAX . .ot e 62
ATGUIMENES . .ottt e e e e 62
Return Values 62
Remarks. 62
S AlSO. . et e 63
PvCreatelUSer() . .. oo ot 64
SYNEAX . .ot e 64
ATGUIMENES . .ottt e e e e 64
Return Values 64
Remarks. 65
SE AlSO. . vt 65
PVDeleteDSIN() . . oot e 66
Sy MK . .t e 66

Vi

ATUMENTS . . .o 66

Return Values o 66
Remarks 66
S AlSO . vt 67
PVDEIeteliCeNSE() . . o oottt e 68
Sy MtaX . . ot 68
ATGUIMENES . . ottt e e e e 68
Return Values o 68
Remarks 68
Example 69
SEE AlSO . .ot 69
PvDISCONNECt()ot 70
Sy MK .« e 70
ATGUMENTS . . oo e 70
Return Values 70
Example 70
SEE AlSO . .ttt 70
PvDisconnectMkdeClient() oot 72
Sy MK .« e 72
ATGUMENLSo 72
Return Values 72
Example 72
Remarks 73
S AlSO . vt 73
PvDisconnectSQLCoNNECtioON()covt it e 74
N4 117 . QPP 74
ATGUIMENES . . .ottt e e e e 74
Return Values o 74
Example 74
Remarks 75
SEE AlSO . . ot 75
PvDropDatabase()t 76
)4 1 O 76
ATGUMENLSo 76
Return Values 76
Remarks 77
SEE AlSO . . ot e 77
PVDIropGroup()cvvt e 78
Sy X . . .ttt e e 78
ATGUMENLS . . . o e 78

Vii

Remarks. 78
SEE AlSO. . et 79
PvDropIndex()ot 80
)4 11 80
ATGUMENLS . . oo e 80
Return Values 80
Remarks. 80
SEE AlSO. . et 81
PvDroplndexByName()t e 82
)4 11 82
ATGUMENLS . . oo e 82
Return Values 82
Remarks. e 82
SEE AlSO. . et 83
PvDropTable() 84
)4 11 84
ATGUMENTS . . oo e 84
Return Values 84
Remarks. 84
SEE AlSO. . et 85
PVDIOPUSEI() - . oottt e e e 86
)4 1 86
ATGUMENTS . . oo e 86
Return Values 86
Remarks. 86
SEE AlSO. . et 87
PvFreeDbNamesData()ouiii i e 88
Sy AKX . .ttt e 88
ATGUMENLS . . oo e 88
Return Values 88
Remarks. 88
SEE AlSO. . it 89
PvFreeMkdeClientsData()t e 90
)4 11 90
ATGUMENLS . . oo e 90
Return Values 90
Remarks.o 90
SEE AlSO. . .t 91
PvFreeOpenFilesData() e 92

viii

ATGUMENLSo e 92
Return Values 92
Remarks 92
SEE AlSO . . ot 93
PvFreeSQLConnectionsData() i 94
)4 1 94
ATGUMENLS . . o 94
Return Values 94
Remarks 94
SEE AlSO . .ot 95
PvEreeTable() 96
Sy MK .« e 96
ATGUMENTS . . oo e 96
Return Values 96
Remarks 96
Example 96
S AlSO . .t 97
PvFEreeTableNames() ovvt ittt e 98
N4 117 . QPP 98
ATGUIMENES . . .ottt e e e 98
Return Values o 98
Remarks 98
Example 98
SEE AlSO . . ot 98
PvGetAllPossibleSelections()ut it 100
Sy AKX .+ e 100
ATGUMENLS . . oo e 100
Return Values o 100
Remarks 101
SEE AlSO . .ot 101
PvGetBooleanStrings()o it 102
)4 1 P 102
ATGUMENLS . . oo e 102
Return Values o 102
Remarks 103
SEE AlSO . .ot 103
PvGetBooleanValue() e 104
Sy A . . .ttt 104
ATGUMENLS . . .o e 104

Remarks.o 105
SEE AlSO. . .ttt 105
PvGetCategoryInfo()ot 106
Sy MK . Lot 106
ATGUMENLS . . oo e 106
Return Values 106
Remarks.o 106
SEE AlSO. . .ttt 107
PvGetCategoryList()ot e 108
Sy MK . .t 108
ATGUMENLS . . oo e 108
Return Values 108
Remarks.o 108
SEE AlSO. . .ttt 109
PvGetCategoryListCount() oottt 110
Sy MK . .ot 110
ATGUMENTS . . oo e 110
Return Values 110
Remarks. 110
SEE AlSO. . .ttt 111
PvGetDbCodePage()t 112
Sy MK . .ot 112
ATGUMENLS . . oo e 112
Return Values 112
Remarks. 112
SEE AlSO. . .ttt 113
PvGetDbDataPath() 114
)4 1 114
ATGUMENLS . . oo e 114
Return Values 114
S AlSO. . e 115
PvGetDbDictionaryPath() 116
SYNEAX . .o 116
ATGUIMENES . .ottt e e e e 116
Return Values 116
Remarks.o 117
SEE AlSO. . et 117
PvGetDDFIags() . ..o o 118

Sy AKX . Lttt 118

ATGUIMENES . o .ttt ettt e e e e e 118

Return Valueso o 118
Remarks . ..o 119
SEE ALSO . . oot e, 119
PvGetDBName() e 120
N 117 . G 120
ATGUIMENES . . ottt e e e e e e e 120
Return ValUueso 120
Example e 121
Remarks 121
SEE AISO . v v 121
PvGetDbNamesData() i 122
)4 1 P 122
ATGUMENLS . . oo e 122
Return Valueso 122
Remarks 122
SEE AISO . v v 123
PvGetDbServerName()ttt 124
)4 1 O 124
ATGUMENLS . . oo e 124
Return Valueso 124
Remarks 125
SEE AISO . v e 125
PVGEtD SN) .ot 126
)4 1 126
ATGUMENTS . . oo e 126
Return Valueso 126
Remarks 127
SEE AISO . v v 127
PVGetDSNEX() ..ottt 128
)4 1 128
ATGUMENLS . . oo e 128
Return Valueso 129
Remarks 129
SEE AISO . v v 130
PVGetDSNEX2() .ttt 131
)4 1 131
ATGUMENLS . . o o e 131
Return Values oo 132
Remarkso 132

Xi

See AlSO. . o oo, 133

PvGetEnginelnformation() i 134
Sy MK . Lot 134
ATGUMENLS . . oo e 134
Return Values 135
Remarks.o 135
SEE AlSO. . .ttt 135

PVGEtEITor() . . . oo 136
Sy MK . .t 136
ATGUMENLS . . oo e 136
Return Values 136
Remarks.o 136
SEE AlSO. . et 137

PvGetFileHandlesData() i 138
Sy MK . .ot 138
ATGUMENLS . . oo e 138
Return Values 138
Remarks.o 138
SEE AlSO. . .ttt 139

PvGetFileHandleInfo() 140
Sy MK . .ot 140
ATGUMENTS . . oo e 140
Return Values 140
Remarks. 141
SEE AlSO. . .ttt 141

PvGetFileInfo() 142
)4 1 142
ATGUMENTS . . oo e 142
Return Values 142
Remarks. 142
SEE AlSO. . .ttt 143

PvGetLongValue() 144
)4 1 144
ATGUMENTS . . oo e 144
Return Values 144
Remarks. 145
SEE AlSO. . .ttt 145

PvGetMkdeClientld()ot 146
Sy A . oo 146
ATGUMENLS . . oo e 146

Xii

Remarks 146
SEE AlSO . .ot 147
PvGetMkdeClientInfo() o 148
)4 1 O 148
ATGUMENLS . . oo e 148
Return Values o 148
Remarks 148
SEE AlSO . .ot 149
PvGetMkdeClientHandlesData() i 150
Sy AKX .+ e 150
ATGUMENLS . . oo e 150
Return Values o 150
Remarks 150
SEE AlSO . .ot 151
PvGetMkdeClientHandleInfo() 152
Sy AKX .+ e 152
ATGUMENLS . . oo e 152
Return Values o 152
Remarks 153
SEE AlSO . .ot 153
PvGetMkdeClientsData() i 154
Sy AKX .+ e 154
ATGUMENLS . . oo e 154
Return Values o 154
Remarks 154
SEE AlSO . .ot 155
PvGetMkdeCommStat() 156
)4 11 156
ATGUMENLS . . oo e 156
Return Values o 156
Remarks 156
SEE AlSO . .ot 157
PvGetMkdeCommStatEX()o 158
)4 1 O 158
ATGUMENLS . . oo e 158
Return Values 158
Remarks 158
S AlSO . .o 159
PvGetMKdeUsage() . .. oo ottt 160

Xiii

)4 1 160

ATGUMENLS . . oo e 160
Return Values 160
Remarks.o 160
SEE AlSO. . .ttt 161
PvGetMkdeUSageEX()ottt 162
Sy MK . Lot 162
ATGUMENLS . . oo e 162
Return Values 162
Remarks.o 162
SEE AlSO. . .ttt 163
PvGetMKdeVersion() 164
Sy MK . .t 164
ATGUMENLS . . oo e 164
Return Values 164
Remarks.o 164
SEE AlSO. . .ttt 165
PvGetOpenFilesData()o 166
Sy MK . .ot 166
ATGUMENTS . . oo e 166
Return Values 166
Remarks. 166
SEE AlSO. . et 167
PvGetOpenFileName()ot 168
)4 1 168
ATGUMENTS . . oo e 168
Return Values 168
Remarks. 169
SEE AlSO. . .ttt 169
PvGetProductsInfo()o 170
)4 1 170
ATGUMENTS . . oo e 170
Return Values 170
Remarks. 170
Example. . ..o 173
S AlSO. . i 175
PvGetSelectionString()ottt 176
Sy MK . .ot 176
ATZUMENES . . .ttt et e e 176
Return Values 176

Xiv

S AlSO . . it 177
PvGetSelectionStringSize()ot it 178
N4 117 . G 178
ATGUIMENES . . ottt et e e e e e e 178
Return Valueso 178
Remarks e 178
S AlSO . v it 179
PvGetSelectionValue()iiii i 180
N 017 . G 180
ATGUIMENES . . ottt ettt e e e e e 180
Return Values o 180
Remarks e 181
S AlSO . ot 181
PvGetServerName()o it e 182
N 117 . QP 182
ATGUIMENES . . ottt ettt e e e e e 182
Return Values o 182
Remarks 182
S AlSO . vt 183
PvGetSettingHelp()o 184
N 117 . QP 184
ATGUIMENES . . .ttt et e e e e e e 184
Return Values o 184
Remarks 184
S AlSO . vt 185
PvGetSettingHelpSize()t 186
N 117 . QP 186
ATGUIMENES . . .ttt et e e e e e e 186
Return Valueso 186
Remarks 186
S AlSO . vt 187
PvGetSettingInfo() e 188
N 117 G 188
ATGUIMENES . . .ttt et e e e e e e 188
Return Values o 188
Remarks 188
S AlSO . .ot 189
PvGetSettingList()ot i 190
Sy MK . et 190

XV

ATGUIMENES . .ottt e e e e 190

Return Values e 190
Remarks. 191
SEE AlSO. o oo 191
PvGetSettingListCount()ttt 192
SYNEAX . . o 192
ATGUIMENES . .ottt e e e 192
Return Values 192
Remarks. 192
SEE AlSO. o oo 193
PvGetSettingMap() oot e 194
SYNEAX . .o 194
ATGUIMENES . .ottt e e 194
Return Values 194
Remarks. 194
SEE AlSO. o oo 194
PvGetSettingUnits()ottt 196
SYNEAX . .o e 196
ATGUIMENES . . ottt e 196
Return Values 197
Remarks. 197
SEE AlSO. o ot 197
PvGetSettingUnitsSize()ottt e 198
SYNEAX . .o 198
ATGUIMENES . .ottt e e e e 198
Return Values 198
Remarks. 199
SEE AlSO. o oo 199
PvGetSQLConnectionsData()coiitini i 200
SYNEAX . .o 200
ATGUIMENES . .ottt e 200
Return Values 200
Remarks. e 200
SEE AlSO. o oo 201
PvGetSQLConnectionInfo()ot 202
SYNEAX . .o 202
ATGUIMENES . .ottt e 202
Return Values e 202
Remarks. 202
See AlSO. . . 203

XVi

N4 117 . G 204
ATGUIMENES . . ottt et e e e e e e 204
Return Values oo 204
Remarkso 204
SEE ALSO . . oot e, 205
PvGetStringValue() 206
N 017 . G 206
ATGUIMENES . . ottt ettt e e e e e 206
Return Values oo 206
Remarkso 207
SEE ALSO . . oot e, 207
PvGetStringValueSize()ot 208
N 017 . G 208
ATGUIMENES . . ottt ettt e e e e e 208
Return ValuEs oo 208
Remarkso 209
SEE ALSO . . oot e, 209
PvGetTable()o 210
N 117 . QP 210
ATGUIMENLS . o .ttt ettt e e e e e e 211
Return Values oo 211
Remarks . ..o 211
SEE ALSO . . oot 211
PvGetTableNames()ttt e e 212
N 117 . G 212
ATGUIMENES . o ottt et e e e e e 212
Return Values oo 212
Remarks . ..o 212
SEE ALSO . . oot e, 213
PvGetTableStat()o oot 214
N4 117 . G 214
ATGUIMENES . o ottt et e e e e e 214
Return Values oo 214
Remarks . ..o 214
SEE ALSO . . oottt 215
PvGetTableStat2() oot 216
Sy AKX . o et 216
ATZUMENLS . . oottt e e e e e e e 216
Return Values 216

XVii

Remarks. 216

S AlSO. . i 217
PvGetTableStat3()o oot 218
SYNEAX . . o 218
ATGUIMENES . . ottt e e e e 218
Return Values e 218
Remarks. 218
S AlSO. . i 219
PvGetValueLimit()ot 220
SYNEAX . . o 220
ATGUIMENES . .ottt e e e 220
Return Values e 220
Remarks. 221
S AlSO. . e 221
PvIsDatabaseSecured()ottt 222
SYNEAX . .o 222
ATGUIMENES . .ottt e e e 222
Return Values 222
Remarks. 222
S AlSO. . i 223
PvIsSettingAvailable() e 224
SYNEAX . .o 224
ATGUIMENES . .ottt e e 224
Return Values 224
Remarks. 224
S AlSO. . i 224
PVLAStDSNS() « oottt e 226
SYNEAX . .o 226
ATGUIMENES . . ottt e e e 226
Return Values 226
Remarks. e 227
Example.o 227
SC AlSO. . et 227
PvModifyDatabase()oiiii e 228
)4 1 228
ATGUMENTS . . oo e 228
Return Values 229
Remarks. o 229
S AlSO. . ot 230
PvModifyDatabase2()ttt 231

XViii

ATGUMENLS . . oo e 231
Return Values o 232
Remarks 233
SEE AlSO . .ot 233
PvModifyDSN() ..o 234
)4 11 O 234
ATGUMENLS . . oo e 234
Return Values o 234
Remarks 235
SEE AlSO . .ot 235
PvMoOdifyDSN2() ..o 236
Sy AKX .+ e 236
ATGUMENLS . . oo e 237
Return Values o 237
Remarks 238
SEE AlSO . .ot 238
PvOpenDatabase()o vt 239
Sy AKX .+ e 239
ATGUMENLS . . oo e 239
Return Values o 239
Remarks 240
SEE AlSO . .ot 240
PvOpenDictionary()c.iuiiin i e 241
Sy AKX .+ e 241
ATGUMENLS . . oo e 241
Return Values o 241
Remarks 242
SEE AlSO . .ot 242
PvRemoveUserFromGroup()coiuinii e 243
)4 1 P 243
ATGUMENLS . . oo e 243
Return Values o 243
Remarks 243
SEE AlSO . .ot 244
PvSecureDatabase()ot 245
)4 11 O 245
ATGUMENLS . . oo e 245
Return Values o 245
Remarks 245

XiX

See AlSO. . o oo, 246

PvSecureDatabase2()i i 247
Sy MK . Lot 247
ATGUMENLS . . oo e 247
Return Values 247
Remarks.o 248
SEE AlSO. . .ttt 248

PvSetBooleanValue() 249
Sy MK . .t 249
ATGUMENLS . . oo e 249
Return Values 249
Remarks.o 250
SEE AlSO. . et 250

PvSetLongValue()t 251
Sy MK . .ot 251
ATGUMENLS . . oo e 251
Return Values 251
Remarks.o 252
SEE AlSO. . .ttt 252

PvSetSelectionValue() 253
Sy MK . .ot 253
ATGUMENTS . . oo e 253
Return Values 253
Remarks. 254
SEE AlSO. . .ttt 254

PvSetStringValue() 255
)4 1 255
ATGUMENTS . . oo e 255
Return Values 255
Remarks. 256
SEE AlSO. . .ttt 256

PyStart()o 257
)4 1 257
ATGUMENLS . . oo e 257
Return Values 257
Remarks.o 257
Example. . ..o 257
SEE AlSO. . et 257

PV StOP() « oot 258
Sy MK . .ot 258

XX

ATUMENTS . . .o e 258

Return Valueso 258
Remarks o 258
Example e 258
SEE AlSO . .ot 258
PvUnSecureDatabase()ttt 259
)4 11 O 259
ATGUMENLS . . oo e 259
Return Values o 259
Remarks 259
SEE AlSO . .ot 260
PvValidateLicenses()o vt 261
Sy AKX .+ e 261
ATGUMENLS . . oo e 261
Return Values o 261
Remarks 261
Exampleo 262
S AlSO . vt 262

XXi

XXii

About This Document

This documentation covers the Zen Distributed Tuning Interface components provided in its
Software Development Kit (SDK).

Who Should Read This Manual

This document is designed for any user who is familiar with Zen and wants to develop
administrative applications using the Distributed Tuning Interface.

This manual does not provide comprehensive usage instructions for the software or instructions
for using other database access methods. It does provide a reference for using the Distributed
Tuning Interface.

We would appreciate your comments and suggestions about this document. Your feedback can
determine what we write about the use of our products and how we deliver information to you.
Please post your feedback in the community forum on the Zen website.

About This Document xxiii

https://www.actian.com/data-management/zen-embedded-database/

Who Should Read This Manual

xxiv About This Document

Distributed Tuning Interface Guide

The following topics introduce the Zen Distributed Tuning Interface:
* Overview of Distributed Tuning Interface

* Basics Of Using DTI

» Sample Programs For DTI

« Common Tasks With DTI

You can also go directly to Distributed Tuning Interface Reference for detailed information on the
use of DTT in Zen.

Overview of Distributed Tuning Interface

The purpose of Distributed Tuning Interface (DTI) is to provide an application programming
interface for configuration, monitoring, and diagnostics of Zen components.

Note: For brevity, throughout the rest of this manual Distributed Tuning Interface is referred to
by as DTL.

String Arguments Encoding

A user application uses the client’s OS encoding at the API level. DTI handles internally the
differences between OS encodings on the server and client.

If an older client is communicating with the server, the database engine assumes that the client is
using an encoding compatible with those available on the server.

API Categories

The categories of available APIs are summarized in DTI Function Groups.

Execution Privileges

Generally, you want your DTT application to be able to call any of the DTI functions and view or
modify all configuration settings. To ensure this full access, connect to the server by providing a
name and password of a user with administrative level privileges on the server machine. This
applies if the DTI application is running locally through a Terminal Services session or running

Distributed Tuning Interface Guide 1

Basics Of Using DTI

remotely. An application running locally can omit the user name and password and still be able
call any of the DTI functions and view or modify all configuration settings. See Making a
Connection to a Server Using DTI.

Without administrator level privileges, an application running locally through a Terminal Services
session or running remotely returns an access error for most of the DTI functions. Only a subset of
the functions work. For example, many of the functions that can modify configuration settings
when full access is permitted are restricted to read-only access.

Basics Of Using DTI

Header Files

The DTI functions are defined in the following header files:
* Dbtitypes.h

« catalog.h

« config.h

» connect.h

* ddfh

+ dticonst.h

+ dtilicense.h

 dtisecurity.h

e monitor.h

Link Libraries

The following table lists the link libraries for DTI and the release version in which the library was
first available on Windows and Linux. Link your application to the appropriate library as defined
in the table.

Library! Windows Linux Version of Library First Available
w3dbav90.lib? 32-bit PSQL v9.0
wo64dba.lib 64-bit PSQL v10.0

2 Distributed Tuning Interface Guide

Sample Programs For DTI

Library' Windows Linux Version of Library First Available
w3dbav&0.1lib? 32-bit Pervasive.SQL V8.0

w3dbav78.lib% 32-bit Pervasive.SQL 20001 (SP3)
w3dbav75.1ib? 32-bit Pervasive.SQL 2000

libpsqldti.so 32-bit Pervasive.SQL V8.5

libpsqldti.so 64-bit PSQL 10.10

I All libraries have been compiled with Microsoft Visual Studio 2019.

2 Each 32-bit library is a superset of the previous library. For example, w3dbav90.1ib is a superset of
w3dbav75.1ib, w3dbav78.1ib, and w3dbav80.lib.

The functions for the DTI are documented in Distributed Tuning Interface Reference.

Before Calling Any Functions

When you want to invoke DTI, you must first call the PvStart() function. Then you can call
multiple DTI functions before ending the session.

When ending a session, you must call PvStop() to close the session.

Sample Programs For DTI

By default, the runtime files for the DTI access method are installed with the Zen database engine
and with Zen Client. At a minimum, you need Zen Client to create a DTI application.

The header files and sample files are available by online download. Sample files pertaining to a
particular development environment are installed in separate directories, as shown in the
following table.

Development Environment Location

MS Visual C++ 8 install location\SAMPLES\MSVC2005
MS Visual C++ 7 install_location\ SAMPLES\MSVC2003
MS Visual C++ 6 install location\SAMPLES\MSVC
Delphi 5 install location\SAMPLES\DELPHIS

Distributed Tuning Interface Guide 3

Common Tasks With DTI

For additional information, see the DTI release notes (readme_dti.htm) installed with the Zen
database engine.

Common Tasks With DTI

This topic outlines key tasks that are often used with DTIL.

Making a Connection to a Server Using DTI

This documents the procedure for obtaining a connection handle to a server, which is a first step
for many DTI functions.

To obtain a Connection handle to a server

1. Start a DTI session

// initialize status code return

BTI_LONG status = 0;

// Call PvStart function with its reserved
// parameter

status = PvStart(9);

2. Connect to a server

// initialize variables
BTI_LONG status = 0;
BTI_CHAR_PTR uName = "jsmith";
BTI_CHAR_PTR pword = "123";
BTI_CHAR_PTR svrName = "myserver";
BTI_LONG hConn = OxFFFFFFFF;
// after execution, hConn contains connection
// handle to pass to other functions
status = PvConnectServer(svrName, uName, pword, &hConn);
// if status != @, handle errors now
Connection handles are required by many DTI functions. You can have multiple connections open

at a time. For each connection or handle, however, you should call the PvDisconnect() function to
release the handle.

status = PvDisconnect(phConn);

4 Distributed Tuning Interface Guide

Common Tasks With DTI

Obtaining a Setting ID Using DTI

Many of the configuration functions take a setting ID as a parameter. This procedure describes the
prerequisite functions for obtaining a setting ID.

To obtain the ID for a Specific Setting

1. Perform the procedure Making a Connection to a Server Using DTI to obtain a connection
handle.

2. Using the connection handle returned by PvConnectServer(), obtain a list of categories by
calling PvGetCategoryList().

3. For each category, get the list of settings using PvGetSettingList() and the settings count using
PvGetSettingListCount().

4. Scan for the setting that you want.
5. Retrieve information about the setting using PvGetSettingInfo().
6. When done, disconnect from the server by calling PvDisconnect().

7. End the DTI session by calling PvStop().

Passing a DTI Structure as a Parameter

Many functions require that you pass a DTI structure when making the functional call. The
following code segment shows an example of a function call including a structure. See DTI
Structures for more information about DTI structures.

WORD rValue = P_OK;

TABLEMAP* tablelist;

WORD tableCount;
rValue = PvGetTableNames(m_DictHandle, &tablelList, &tableCount);

Distributed Tuning Interface Guide 5

Common Tasks With DTI

6 Distributed Tuning Interface Guide

Distributed Tuning Interface Reference

The purpose of DTI is to provide an interface for configuring, monitoring, and diagnosing Zen
components. DTI provides the functionality of Zen utilities from within your application.

The following topics cover the interface and its use:

Using the DTI Function Reference
DTI Function Groups

DTI Error Messages

DTI Structures

DTI Calling Sequence

DTI Function Definitions

Distributed Tuning Interface Reference 7

Using the DTI Function Reference

For each function, the following information is provided:

Brief description — provides a short description of the function.
Syntax — shows the C prototype syntax for the function.

Arguments — provides detailed descriptions of the function arguments, and indicates which
values are modified by the function. Parameters marked "in" are input-only, not modified by
the function. Parameters marked "out" contain values modified by the function. Parameters
marked "in/out" contain values that are both used by the function as input and modified by the
function.

Return Values — lists the possible return values and their meanings.
Remarks — provides additional explanation about a function's parameters, effects, or usage.
Example — provides a sample code segment showing the function's use.

See Also — lists related functions and topics.

8 Distributed Tuning Interface Reference

DTI Function Groups

The Distributed Tuning Interface is divided into function groupings. For a summary of these
groupings, please see the following table. The function descriptions begin in the following section
in alphabetical order.

Function Purpose List of Functions
Group
Catalog Managing the database catalog information, PvCheckDblInfo()
catalog.h such as creating, opening, copying, or closing PvCloseDatabase()
named databases, and creating, modifying or ~ PvCopyDatabase()
deleting data source names (DSNs), PvCountDSNs()
PvCreateDatabase()
PvCreateDatabase2()

PvCreateDSN() (deprecated)
PvCreateDSN2() (deprecated)
PvDeleteDSN() (deprecated)
PvDropDatabase()
PvFreeDbNamesData()
PvGetDbCodePage()
PvGetDbDataPath()
PvGetDbDictionaryPath()
PvGetDbFlags()
PvGetDbName()
PvGetDbNamesData()
PvGetDbServerName()
PvGetDSN() (deprecated)
PvGetDSNEX() (deprecated)
PvGetDSNEx2() (deprecated)
PvGetEnginelnformation()
PvListDSNs() (deprecated)
PvModifyDatabase()
PvModifyDatabase2()
PvModifyDSN() (deprecated)
PvModifyDSN2() (deprecated)
PvOpenDatabase()

Distributed Tuning Interface Reference 9

Function Purpose List of Functions
Group

Configuration Controlling the configuration settings for the =~ PvCountSelectionltems()
config.h database engines, the communication PvGetAllPossibleSelections()
managers, and the local requester PvGetBooleanStrings()
components. PvGetBooleanValue()
PvGetCategorylnfo()
PvGetCategoryList()
PvGetCategoryListCount()
PvGetLongValue()

PvGetSelectionString()
PvGetSelectionStringSize()
PvGetSelectionValue()
PvGetSettingHelp()
PvGetSettingHelpSize()
PvGetSettingInfo()
PvGetSettingList()
PvGetSettingListCount()
PvGetSettingMap()
PvGetSettingUnits()
PvGetSettingUnitsSize()
PvGetStringType()
PvGetStringValue()
PvGetString ValueSize()
PvGetValueLimit()
PvlsSettingAvailable()
PvSetBooleanValue()
PvSetLongValue()
PvSetSelectionValue()
PvSetStringValue()

Connection Starting and stopping a DTI session, PvConnectServer()
connect.h connecting to a server, retrieving the name of ~ PvDisconnect()
the connected server, and disconnecting from PvGetServerName()
a server. PvStart()
PvStop()

10 Distributed Tuning Interface Reference

Function
Group

Purpose

List of Functions

Dictionary
ddfh

Creating and closing dictionaries (DDF's), and
creating or deleting tables, indexes, users and

groups.

PvAddIndex()

PvAddTable()
PvAddUserToGroup()
PvAlterUserName()
PvAlterUserPassword()
PvCloseDictionary()
PvCreateDictionary() (deprecated)
PvCreateGroup()
PvCreateUser()
PvDropGroup()
PvDroplndex()
PvDroplndexByName()
PvDropTable()
PvDropUser()

PvFreeTable()
PvFreeTableNames()
PvGetError()

PvGetTable()
PvGetTableNames()
PvGetTableStat()
PvGetTableStat2()
PvGetTableStat3()
PvOpenDictionary() (deprecated)
PvRemoveUserFromGroup()

License
Administration

dtilicense.h

Administering licensing such as authorizing

or deauthorizing a key or retrieving
information about keys.

PvAddLicense()
PvValidateLicenses()
PvDeleteLicense()
PvGetProductsInfo()

Distributed Tuning Interface Reference 11

Function
Group

Purpose

List of Functions

Monitoring and

Monitoring files, clients, and SQL

PvDisconnectMkdeClient()

Diagnostic connections, such as the following PvDisconnectSQLConnection()
monitor.h information for the MicroKernel Engine: PvFreeMkdeClientsData()
Active Files — count and list open files, query ~ PVFreeOpenFilesData()
if file is open, query user who opened/locked ~ PVFreeSQLConnectionsData()
the file, obtain page size, read-only flag, PvGetFileHandlesData()
record locks, transaction locks, number of PvGetFileHandleInfo()
handles, obtain handle information for each PvGetFilelnfo()
handle. PvGetMkdeClientld()
. . . . PvGetMkdeClientInfo()
Active Clients — count and list clients, que)
active handles, obtain client informatiocrll, Y PVGethdeCl%entHandlesData()
obtain handle information, disconnect a client PvGethdeCl%entHandlelnfo()
and all client functionality. PvGetMkdeClientsData)
PvGetMkdeCommStat()
Resource Usage — retrieve current, peak, and PvGetMkdeCommStatEx()
maximum settings for data, including files, PvGetMkdeUsage()
handles, clients, worker threads, licenses in PvGetMkdeUsageEx()
use, transactions, locks. PvGetMkde Version()
Communications Statistics — retrieve all PvGetOpenFilesData()
communications statistics, total, delta, PvGetOpenFileName()
current, peak, maximum where appropriate, PvGetSQLConnectionsData()
reset delta functionality. PvGetSQLConnectionInfo()
Security Enabling, disabling, or querying the status of ~ PvIsDatabaseSecured()
dtisecurity.h security on databases. PvSecureDatabase()
PvUnSecureDatabase()

12 Distributed Tuning Interface Reference

DTI Error Messages

Refer to dticonst.h and ddfstrct.h for the defined status codes.

Distributed Tuning Interface Reference 13

DTI Structures

The following describes the structures used in DTI. Each structure grouping details the type of
structures included and any notable settings or arguments that may be required. Structures are
stored in the following header files:

+ CONFIG.H
« DDFSTRCT.H
« MONITOR.H

For detailed information specific to each structure, refer to the corresponding header file for that
structure.

CONFIG.H Structures

The following lists the structures included in CONFIG.H. For detailed information about any of
these structures, refer to the config header file.

« PVCATEGORYINFO
« PVSETTINGINFO

DDFSTRCT.H Structures

The following lists the structures included in DDFSTRCT.H. For detailed information about any
of these structures, refer to the ddf header file.

« TABLEMAP

+ TABLEINFO

» TABLEINFO Flags
B_FLAG_TRUE_NULLABLE = 64

Table is true nullable. When the table is created, a one byte null indicator is added before each
column that is nullable.

« TABLESTAT

The systemDataKey (later systemData) field has a value of 0 if no system data is present and a
value of 1 if system data or system data v2 is present.

» TABLESTAT2
See Differences Between TABLESTAT2 and TABLESTAT.

14 Distributed Tuning Interface Reference

TABLESTAT3

See Differences Between TABLESTAT3 and TABLESTAT?2.

COLUMNMAP

COLUMNMAP Flags

B_FLAG_CASE_SENSITIVE = 1

Column values are case sensitive on comparisons and as part of index segments.
B_FLAG_NULLABLE = 4

If the table is created as true nullable, then a one byte null indicator column is added before
the column value to indicate whether the column value is null.

B_FLAG_NTEXT = 2048

If a column is created as B TYPE BLOB, the data is treated as wide-character rather than
character data.

B_FLAG_BINARY = 4096

If a column is created as B TYPE STRING or B TYPE BLOB, the data is treated as binary
rather than character data.

COLUMNMAP Data Types
COLUMNMAP DataType can take the following values:

B_TYPE_STRING = @
B_TYPE_INTEGER =
B_TYPE_FLOAT = 2,
B_TYPE_DATE = 3,
B_TYPE_TIME = 4
B_TYPE_DECIMAL
B_TYPE_MONEY =
B_TYPE_LOGICAL
B_TYPE_NUMERIC
B_TYPE_BFLOAT = 9
B_TYPE_LSTRING
B_TYPE_ZSTRING =
B_TYPE_NOTE = 12,
B_TYPE_LVAR = 13,
B_TYPE_BINARY = 14,
B_TYPE_AUTOINC = 15,
B_TYPE_BIT = 16,
B_TYPE_NUMERSTS = 17,
B_TYPE_NUMERSA = 18,
B_TYPE_CURRENCY = 19,
B_TYPE_TIMESTAMP = 20,
B_TYPE_BLOB = 21,
B_TYPE_GDECIMAL = 22,
B_TYPE_WSTRING = 25,
B_TYPE_WZSTRING = 26,
B_TYPE_GUID = 27,
B_TYPE_DATETIME = 30

B
1,

(%21
-

I n o~
-
-

00
-

[

[

R o
<

-

Distributed Tuning Interface Reference 15

INDEXMAP

INDEXMAP Flags
B_FLAG_DUPLICATES = 1
Duplicates allowed in index.
B_FLAG_MODIFIABLE = 2

Index is modifiable.
B_FLAG_SORT_DESCENDING = 64
Sort index descending.
B_FLAG_PARTIAL = 512

Index is partial. Partial Index flags on segments that are not the last segment in the index, are
ignored. Partial Indexes only apply to the last segment in an index.

Differences Between TABLESTAT2 and TABLESTAT

Note the following differences between the TABLESTAT? structure and the TABLESTAT
structure:

The fields for tableName and tableLocation allow more characters.
The numberOfRecords ficld increases from 16 bits to 32 bits.

File attribute fields were previously characters with values of "Y" or "N" to indicate whether
the attribute is present or not. Attribute fields are now single byte integers with values of 1 or
0. A value of 1 means the attribute is present.

The freespaceThreshold field is now an integer data type.

The field fileVersion is no longer a float data type. It is now a single-byte integer that contains
the same value that the Btrieve Stat (15) operation would return. For the 9.5 file format, the
value returned is 0x95.

A new field, pageCompression, indicates whether the physical file associated with the table
has compressed pages or not.

Previous fields dataCompression and systemDataKey have been renamed to
recordCompression and systemData, respectively.

16 Distributed Tuning Interface Reference

Differences Between TABLESTAT3 and TABLESTAT2

Note the following differences between the TABLESTAT?3 structure and the TABLESTAT?2
structure:

* The numberOfRecords field increases from 32 bits to 64 bits.

Backwards Compatibility

Zen clients can still make PvGetTableStat calls to the database engine. The database engine
converts the reply message to a TABLESTAT?2 structure or to a TABLESTAT structure as
required based on the version of the client.

A Zen client determines the version of the database engine to which the client is connected. If the
database engine version is prior to the current release, then PvGetTableStat2 returns a
TABLESTAT structure and sets the value returned for pageCompression to 0.

MONITOR.H Structures

The following lists the structures included in MONITOR.H. For detailed information about any of
these structures, refer to the monitor header file.

« PVDATETIME

* PVFILEINFO
 PVFILEHDLINFO
 PVCLIENTID

« PVMKDECLIENTINFO

« PVMKDECLIENTHDLINFO
« PVMKDEUSAGE

« PVMKDEUSAGEEX
 PVVERSION

« PVCOMMSTAT

« PVCOMMSTATEX

« PVCOMMPROTOCOLSTAT
* PVSQLCONNINFO
PVSQLCONNID

Distributed Tuning Interface Reference 17

DTI Calling Sequence

All Distributed Tuning Interface calls must initialize a DTI session by first calling PvStart().

status = PvStart(0);
// insert multiple DTI function calls here
status = PvStop(9);

The Remarks section of every function lists additional prerequisites and post requisites for that
particular function.

18 Distributed Tuning Interface Reference

DTI Function Definitions

This topic provides an alphabetical reference to the DTI functions.

Distributed Tuning Interface Reference 19

PvAddindex()

Adds indexes specified in indexList to the existing table and to the underlying data file.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

PRESULT PvAddIndex(
WORD dictHandle,
LPCSTR tableName,
INDEXMAP* indexList,
WORD indexCount) ;

Arguments

In dictHandle Handle of an open dictionary returned by PvOpenDatabase().

In tableName Name of the table where the indexes will be added.

In indexList Array of index definitions.

In indexCount Number of indexes in the indexList array.

Return Values

PCM_ Success The operation completed successfully.

PCM_errFailed The operation did not complete successfully.

PCM_errInvalidDictionaryHandle The specified dictionary handle does not exist.

PCM_errTableNotFound The specified table was not found.

PCM_errMemoryAllocation An error occurred during memory allocation.

PCM_errInvalidIndexName The specified index name is invalid.

PCM_errColumnNotFound The specified column was not found in the table.
Remarks

You must first open a dictionary successfully using PvOpenDatabase().

20 Distributed Tuning Interface Reference

The table specified by tableName must exist in the dictionary specified by dictHandle.

You will need to allocate and release INDEXMAP array used to describe the indexes.

See Also

PvStart()
PvOpenDatabase()
PvDroplndex()
PvDropIndexByName()
PvCloseDictionary()
PvStop()

Distributed Tuning Interface Reference 21

PvAddLicense()

Applies (authorizes) the specified license from the computer indicated by the connection.

Header File: dtilicense.h (See also Header Files)

Function First Available In Library: w3dbav80.dll (Windows), libpsqldti.so (Linux) (See also

Link Libraries)

Syntax

BTI_API PvAddLicense(
BTI_LONG hConnection,
BTI_CHAR_PTR license) ;

Arguments

In hConnection

Connection handle that identifies the server. Connection handles are obtained

with the PvConnectServer() function.

In license

License to be applied (authorized).

Return Values

P OK

The operation completed successfully.

P E FAIL

The operation did not complete successfully.

P E LIC_ ALREADY INSTALLED

The license is already applied.

P E LIC_INVALID

The license specified is invalid.

Status code pertaining to license administration
or to authorization

See Status Codes and Messages for License
Administrator Status Codes and Authorization
Status Codes.

Remarks

The following preconditions must be met:

» DTI session started by calling PvStart().

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

22 Distributed Tuning Interface Reference

Example

BTI_CHAR_PTR add_lic = "ERXVD3U4ZSS9KR94QPDHV5BN2";
status = PvAddLicense(P_LOCAL_DB_CONNECTION, add_lic);

See Also

PvValidateLicenses()
PvDeleteLicense()
PvGetProductsInfo()
PvStop()

PvStart()

Distributed Tuning Interface Reference 23

PvAddTable()

Creates a new table in the existing dictionary and a data file at the location specified in the table
properties.

Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

PRESULT PvAddTable(
WORD dictHandle,
TABLEINFO* tableProps,
COLUMNMAP * columnList,
WORD columnCount,
INDEXMAP* indexList,

WORD indexCount) ;
Arguments

In dictHandle Handle of an open dictionary returned by PvOpenDatabase().

In tableProps Structure containing table information.

In columnList Array of columns defined in the table.

In columnCount Number of columns in columnList.

In indexList Array of index definitions.

In indexCount Number of indexes in the following indexList array.

Return Values

PCM_Success The operation was successful.

PCM_errFailed The operation was not successful.
PCM_errInvalidDictionaryHandle The specified dictionary handle does not exist.
PCM_errTableNotFound The specified table was not found.
PCM_errMemoryAllocation An error occurred during memory allocation.
PCM_errlnvalidColumnName The specified column name is invalid.

24 Distributed Tuning Interface Reference

PCM_errInvalidDataType

The specified data type is invalid.

PCM_errDuplicateColumnName

The column name already exists in the table.

PCM_errInvalidDataSize

The data size is invalid.

PCM _errInvalidindexName

Index name is invalid.

PCM_errColumnNotFound

Column specified for a segment cannot be found.

Remarks

You must first open a dictionary successfully using PvOpenDatabase().

This function has to be provided with table information, columns, and indexes. The indexCount
and indexList parameters are optional because indexes are not required to create a table.

This function will fail if a table with the same name is already present in the specified dictionary.

Table properties must be set up correctly and an array of at least one column must be passed.

You will need to allocate and release COLUMNMAP and INDEXMAP arrays and TABLEINFO
structure used to describe table. See also COLUMNMAP Flags.

The offset of a field within its row can be accessed through the PvGetTable() function. The
COLUMNMAP structure has been modified in ddfstrct.h to contain this additional information.
This new field is ignored when calling the PvAddTable() and PvFreeTable() functions. Refer to

ddfstrct.h and ddf.h.

See Also

PvStart()
PvOpenDatabase()
PvGetTableNames()
PvFreeTableNames()
PvDropTable()
PvCloseDictionary()
PvStop()

Distributed Tuning Interface Reference 25

PvAddUserToGroup()

Adds an existing user to an existing group in the database.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
PRESULT DDFAPICALLTYPE PvAddUserToGroup(
BTI_WORD dbHandle,
const BTI_CHAR* user,
const BTI_CHAR* group) ;
Arguments
In dbHandle Handle of an open database returned by PvOpenDatabase().
In user Database user name
In group Database group name

Return Values

PCM_ Success The operation was successful.

PCM_errFailed The operation was not successful.

PCM_errInvalidAccountName The specified account or user name does not exist.

PCM_errUserAlreadyPartOfGroup User already part of the group.

PCM_errDatabaseHasNoSecurity Database has no security.

PCM_errSessionSecurityError Database opened with insufficient privilege.
Remarks

This function will fail if the specified group or user do not already exist in the database, or if the
user is a member of another group.

The following preconditions must be met:

26 Distributed Tuning Interface Reference

* You must first open a database successfully using PvOpenDatabase() as user 'Master'.
» The associated database has database-level security enabled.
» The user and group already exist in the specified database.

* The user is not a member of another group.

The following post condition must be met:

» Use PvCloseDatabase() to free the resources.

See Also

PvAlterUserName()
PvCreateGroup()
PvCreateUser()
PvDropGroup()
PvDropUser()
PvRemoveUserFromGroup()
PvOpenDatabase()
PvCloseDatabase()

Distributed Tuning Interface Reference 27

PvAlterUserName()

Alters an existing user name in the specified database.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
PRESULT DDFAPICALLTYPE PvAlterUserName(
BTI_WORD dbHandle,
const BTI_CHAR* user,
const BTI_CHAR* newName) ;
Arguments
In dbHandle Handle of an open database returned by PvOpenDatabase().
In user Database user name.
In newName New name for the database user. If set to NULL, the function fails.

Return Values

PCM_ Success The operation was successful.

PCM_errFailed The operation was not successful.

PCM_errInvalidAccountName The account or user name does not exist, or the new name is
invalid.

PCM_errUserAlreadyExists New user name already exists.

PCM_errDatabaseHasNoSecurity —Database has no security.

PCM _errSessionSecurityError Database opened with insufficient privilege.

Remarks

This function will fail if newName is set to NULL, or if newName is already present in the
database.

28 Distributed Tuning Interface Reference

The following preconditions must be met:

* You must first open a dictionary successfully using PvOpenDatabase() as user 'Master'.
» The associated database has database-level security enabled.

» The user name must already exist in the specified database.

» The new user name cannot already exist in the specified database.

The following post condition must be met:

» Use PvCloseDatabase() to free the resources.

See Also

PvAlterUserPassword()
PvAddUserToGroup()
PvRemoveUserFromGroup()
PvCreateUser()
PvDropUser()
PvOpenDatabase()
PvCloseDatabase()

Distributed Tuning Interface Reference 29

PvAlterUserPassword()

Alters an existing user password.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
PRESULT DDFAPICALLTYPE PvAlterUserPassword(
BTI_WORD dbHandle,
const BTI_CHAR* user,
const BTI_CHAR* newPassword) ;
Arguments
In dbHandle Handle of an open database returned by PvOpenDatabase().
In user Database user name.
In newPassword New user password. If set to NULL, the password is cleared.

Return Values

PCM_ Success The operation was successful.

PCM_errFailed The operation was not successful.

PCM_errInvalidAccountName The specified account or user name does not exist.

PCM_errDatabaseHasNoSecurity Database has no security.

PCM_errSessionSecurityError Database opened with insufficient privilege.
Remarks

The following preconditions must be met:
* You must first open a database successfully using PvOpenDatabase() as user 'Master'.
» The associated database has database-level security enabled.

* The user name must already exist in the specified database.

30 Distributed Tuning Interface Reference

The following post condition must be met:

» Use PvCloseDatabase() to free the resources.

See Also

PvAlterUserName()
PvAddUserToGroup()
PvRemoveUserFromGroup()
PvCreateUser()
PvDropUser()
PvOpenDatabase()
PvCloseDatabase()

Distributed Tuning Interface Reference 31

PvCheckDblinfo()

Checks the consistency of a database.
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_API PvCheckDbInfo(
BTI_LONG hConnection,
BTI_CHAR_PTR dbName,
BTI_ULONG checkFlags) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained

with the PvConnectServer() function.

In dbName Name of an existing named database. A list of all named databases for a
particular server is obtained with the PvGetDbNamesData() function. A single
named database from the resulting list can be obtained with the
PvGetDbName() function.

In checkFlags Reserved. The function checks for all database flags.

Return Values

P OK The operation was successful.

P E INVALID HANDLE Connection handle that identifies the server is invalid.

P_E NULL PTR The function was called with a null pointer.

P E ACCESS RIGHT Insufficient access rights to call the function.

P_E NOT_EXIST Named database specified in dbName does not exist.
P _E FAIL A general failure occurred.

32 Distributed Tuning Interface Reference

Remarks

If the database is consistent, then the return value for this function is P_OK. If the database is not
consistent or if the function call fails, then the return value is one of the error codes listed above.

Example

BTI_WORD res; // returned value from function call
BTI_CHAR_PTR dbName; // database name

BTI_ULONG checkFlags; // database flags
BTI_LONG hConnection; // connection handle
BTI_LONG reserved;

// reserved value for PvStart() and PvStop()

// Initialize variables.
dbName = "demodata";

// The name of the database is demodata
checkFlags = OxFFFFFFFF; // Checks all flags
hConnection = P_LOCAL_DB_CONNECTION;

// Set the connection handle to local connection

// P_LOCAL_DB_CONNECTION is defined in config.h
reserved = 0;

// Start a DTI session before making any DTI calls.
res = PvStart (reserved);

if (res == P_0K)

// DTI session started successfully.
// You can now make multiple DTI calls here.

res = PvCheckDbInfo (hConnection,
dbName,
checkFlags);
if (res == P_OK)

// Database is consistent.

else

{

// Put your code here to handle the error code

// returned from PvCheckDbInfo ().

// Close DTI session.
Res = PvStop (&reserved);

See Also

PvStart()
PvConnectServer()
PvGetDbNamesData()
PvGetDbName()

Distributed Tuning Interface Reference 33

PvFreeDbNamesData()
PvDisconnect()
PvStop()

34 Distributed Tuning Interface Reference

PvCloseDatabase()

Closes an open database handle.
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

PRESULT PvCloseDatabase(
BTI_WORD dbHandle) ;

Arguments

In dbHandle Handle to a database opened by PvOpenDatabase().

Return Values

PCM_ Success The operation was successful.
PCM_errFailed Operation was not successful.
PCM_errMemoryAllocation An error occurred during memory allocation

PCM_errDictionaryNotOpen No database open with specified handle.

Remarks

The following preconditions must be met:
» DTI session started by calling PvStart()

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

* Valid database handle returned by PvOpenDatabase().

See Also

PvStart()
PvConnectServer()

Distributed Tuning Interface Reference 35

PvOpenDatabase()
PvDisconnect()
PvStop()

36 Distributed Tuning Interface Reference

PvCloseDictionary()

Closes an open dictionary.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

PRESULT PvCloseDictionary(
WORD dictHandle) ;

Arguments

In dictHandle Handle of an open or newly-created dictionary.

Return Values

PCM_ Success The operation was successful.

PCM_errFailed The operation was not successful.

PCM_errMemoryAllocation An error occurred during memory allocation.

PCM_errDictionaryNotOpen The specified dictionary was not open.

Remarks

This function requires a handle for an open dictionary file, which can be obtained with the
PvCreateDictionary() function.

Since multiple dictionaries can be open at one time, you need to call this function for every open
or newly-created dictionary.

Example

PRESULT status = 0;
status = PvCloseDictionary(myDictionaryHandle);

Distributed Tuning Interface Reference 37

See Also

PvStart()
PvOpenDatabase()
PvCreateDictionary()
PvStop()

38 Distributed Tuning Interface Reference

PvConnectServer()

Attempts to connect to the target server that has the Zen database engine installed. If connection is
established successfully, a connection handle is returned for subsequent references.

Header File: connect.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also

Link Libraries)
Syntax
BTI_SINT PvConnectServer(
BTI_CHAR_PTR serverName,
BTI_CHAR_PTR userName,
BTI_CHAR_PTR password,
BTI_LONG_PTR phConnection) ;
Arguments
In serverName Server name or IP address to which you want to connect.

See also Drive-based Formats in Getting Started with Zen.

In userName

User name with which you will connect to serverName. See the Remarks
section for information on omitting this parameter.

In password

User password. See the Remarks section for information on omitting this
parameter.

In/Out phConnectio
n

Address of a long integer that receives the connection handle if connection
is successful.

Return Values

P OK The operation was successful.

P_E NULL PTR Call with NULL pointer.

P _E FAIL Failed to connect to the named server.
P_E SERVER NOT_FOUND The specified server was not found

P E ENGINE NOT LOADED The specified engine is not running.
P_E REQUESTER NOT_LOADED The client requester is not loaded.

Distributed Tuning Interface Reference 39

P _E SERVER TABLE FULL The internal server name table is full.

P_E CLIENT CONNECTIONS LIMIT REACHED The operation could not connect because the
limit on client connections has been reached.
Check the configuration of the server.

P_E PERMISSION ERROR The operation encountered a permissions
erTor.
P E NO MEMORY The operation encountered a memory error.
P E NO _AVAILABLE TRANSPORT No remote connection could be established.
P_E CONNECTION LOST The remote connection to the server was lost.
Remarks

You must know the name of the server to which you want to connect. You can have open
connections to multiple servers.

An application running locally where the database engine is running can omit the user name and
password and still be able call any of the DTI functions and view or modify all configuration
settings.

However, if the DTI application is running locally through a Terminal Services session or running
remotely, provide the user name and password of a user with administrative level privileges on the
server machine. This ensures that the application has full access for the DTI functions. Without
administrator level privileges, an application returns an access error for most of the DTI
functions. Only a subset of the functions work. For example, many of the functions that can
modify configuration settings when full access is permitted are restricted to read-only access.

Note: You must call PvStart() to initialize DTI before attempting to connect to a server using this
function.

Example
BTI_CHAR_PTR uName = "jsmith";
BTI_CHAR_PTR pword = "123";

BTI_CHAR_PTR svrName = "myserver";
BTI_LONG_PTR phConn = @xFFFFFFFF;
BTI_SINT status = @;

status = PvConnectServer(svrName,
uName,
pword,
&phConn);

40 Distributed Tuning Interface Reference

See Also

PvStart()
PvGetServerName()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 41

PvCopyDatabase()

Copies a database to a new database, adjusting the referential integrity if needed.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_API PvCopyDatabase(
BTI_LONG

hConnection,

BTI_CHAR_PTR dbName,
BTI_CHAR_PTR newdbName,
BTI_CHAR_PTR newdictPath,
BTI_CHAR_PTR newdataPath) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained
with the PvConnectServer() function.
In dbName Name of the database to copy.
In newdbName Name of the new database.
In newdictPath Dictionary path of the new database.
In newdataPath Data path. Pass an empty string to use the default data path (that is, the same as

the dictionary path)

If you want to create a new database that consists of MicroKernel Engine data
files located in multiple paths, specify this parameter as a semicolon (;)
delimited list. For example: C: \data\path1;C:\data\path2

Return Values

P OK The operation was successful.

P _E INVALID HANDLE Invalid connection handle.

P E NULL PTR Call with NULL pointer

P E ACCESS RIGHT Insufficient access right for the operation

P_E DICTIONARY ALREADY EXISTS Cannot create dictionary because it already exists.

42 Distributed Tuning Interface Reference

P _E SHARED DDF EXIST The dictionary path is being used by another database.

P_E DUPLICATE NAME Named database already exists on the server.
P _E FAIL Failed for other reasons.
Remarks

The following preconditions must be met:
» The database and its files must be closed.
* DTI session started by calling PvStart()

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

Example

BTI_LONG connectionHandle = P_LOCAL_DB_CONNECTION;
BTI_CHAR_PTR newdataPath "c:\\data\\gallery2";
BTI_CHAR_PTR newdictPath "c:\\data\\gallery2";
BTI_CHAR_PTR databaseName = "Gallery";
BTI_CHAR_PTR newdatabaseName = "GalleryCopy";
BTI_SINT status = 0O;

BTI_CHAR_PTR server = "MyServer";

BTI_CHAR_PTR user = "Administrator";

BTI_CHAR_PTR pwd = "Admin";

//only need to connect to server if it is remote
//otherwise can pass P_LOCAL_DB_CONNECTION for the handle

status = PvCopyDatabase(
connectionHandle,
databaseName,
newdatabaseName
dictPath,

dataPath);

See Also

PvStart()
PvConnectServer()
PvCreateDatabase()
PvGetDbFlags()
PvModifyDatabase()
PvDropDatabase()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 43

PvCountDSNSs()

Retrieves the number of datasource names (DSN).
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_API PvCountDSNs (
BTI_LONG hConnection,
BTI_ULONG_PTR pdsnCount,
BTI_CHAR filtering) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained

with the PvConnectServer() function.

Out pdsnCount Address of an unsigned long to receive the number of DSNs.

In filtering Set to 1 if you want only Zen DSNSs. Set to 0 if you want all DSNs.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P E NULL PTR Call with NULL pointer
P _E FAIL Failed for other reasons.
Remarks

The following preconditions must be met:
» DTI session started by calling PvStart().

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

44 Distributed Tuning Interface Reference

To retrieve the number of DSNs without having to prompt the user to login, pass empty strings for
username and password when establishing the server connection with PvConnectServer().

Note: The connection established by passing empty strings for username and password is an
insecure connection, and will not have sufficient rights to perform most of the other operations in
DTI.

See Also

PvStart()
PvConnectServer()
PvListDSNs()
PvGetDSN()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 45

PvCountSelectionltems()

Count the number of selection items for a setting of types (PVSETTING SINGLE SEL or
PVSETTING _MULTI SEL).

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvCountSelectionItems(
BTI_LONG hConnection,
BTI_ULONG settinglD,
BTI_ULONG_PTR pNumltems) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained

with the PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of categories can be obtained with the
PvGetCategoryList() function. A list of settings for a particular category can be
obtained from PvGetSettingList().

Out pNumltems Address of an unsigned long that receives the number of selection items.

Return Values

P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.
P E NULL PTR Call with NULL pointer
P _E INVALID DATA TYPE The requested setting is not of selection type.
P_E FAIL Failed for other reasons.
Remarks

The following preconditions must be met:

» DTI session started by calling PvStart().

46 Distributed Tuning Interface Reference

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 47

PvCreateDatabase()

Creates a database by adding an entry to dbnames.cfg file. This entry is later used to create DSNSs.
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_API PvCreateDatabase(
BTI_LONG hConnection,
BTI_CHAR_PTR dbName,
BTI_CHAR_PTR dictPath,
BTI_CHAR_PTR dataPath,
BTI_ULONG dbFlags) ;

Arguments

In hConnection Connection handle that identifies the server. Connection handles are obtained

with the PvConnectServer() function.

In dbName Name of the database.

In dictPath Dictionary path.

In dataPath Data path. Pass an empty string to use the default data path (that is, the same as
the dictionary path)

If you want to create a database that consists of MicroKernel Engine data files
located in multiple paths, specify this parameter as a semicolon (;) delimited
list. For example: C:\data\path1;C:\data\path2

48 Distributed Tuning Interface Reference

In dbFlags Database flags, which can be a combination of the P DBFLAG constants.
» P DBFLAG_RI (enforce integrity constraints, including referential
integrity and triggers)
P_DBFLAG_BOUND. Create DDF files and stamp the database name on
the dictionary files so only that the database can use them. If the database is
not bound, then more than one database can use the same dictionary file set.
If you are creating a bound database and want to bind to DDF files that
already exist, specify both P. DBFLAG _CREATE DDF and
P DBFLAG BOUND.
+ P DBFLAG CREATE DDF (create DDF files. The directory specified for
dictPath has to exist.)
+ P DBFLAG _DBSEC_AUTHENTICATION (use database security
authentication, Mixed security policy. See Btrieve Security Policy.)
+ P DBFLAG _DBSEC_AUTHORIZATION (use database security
authorization, Database security policy. See Btrieve Security Policy.)

» P DBFLAG_LONGMETADATA (use V2 metadata. See Metadata

Version.)
Return Values
P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.
P E NULL PTR Call with NULL pointer
P E ACCESS RIGHT Insufficient access right for the operation

P _E DICTIONARY ALREADY_ EXISTS Cannot create dictionary because it already exists.

P _E SHARED DDF EXIST The dictionary path is being used by another database.
P_E DUPLICATE NAME Named database already exists on the server.
P _E FAIL Failed for other reasons.

Remarks

The following preconditions must be met:
» DTI session started by calling PvStart().

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

Distributed Tuning Interface Reference 49

Btrieve Security Policy

The following table indicates how to specify a security model in a new database, or to interpret
the security model of an existing database. Using any other combination of flags for security will
result in status code 7024.

This Flag Combination Represents This Security Model
No flags Classic

P DBFLAG _DBSEC_AUTHENTICATION Mixed

P DBFLAG DBSEC AUTHENTICATION Database

P DBFLAG DBSEC_AUTHORIZATION

Metadata Version

If you specify P DBFLAG LONGMETADATA, then the database property in dbnames.cfg is set
to V2 metadata. If you specify both P. DBFLAG_LONGMETADATA and
P DBFLAG CREATE DDF, then the DDFs created are also V2 metadata.

The result of DDF creation varies depending on the DDF versions that already exist in the
dictionary location.

Dictionary Location Contains Result of DDF Creation

No DDFs New DDFs added to dictionary location

DDFs of other metadata version New DDFs added to group of existing DDFs

DDFs of same metadata version New DDFs overwrite existing DDFs. Information in old DDFs is
lost.

For example, suppose that your dictionary location contains V1 metadata DDFs and you create
V2 metadata DDFs. The dictionary location will then contain a combination of V1 metadata
DDFs and V2 metadata DDFs. A particular database can use one set of DDFs or the other, but not
both concurrently.

Example

The following example creates a database and DDFs that uses V2 metadata.

BTI_LONG connectionHandle = P_LOCAL_DB_CONNECTION;
BTI_CHAR_PTR dataPath = "c:\\data\\gallery";
BTI_CHAR_PTR dictPath = "c:\\data\\gallery";
BTI_CHAR_PTR databaseName = "Gallery";

50 Distributed Tuning Interface Reference

BTI_SINT status = 0O;

BTI_CHAR_PTR server = "MyServer";

BTI_CHAR_PTR user = "Administrator";

BTI_CHAR_PTR pwd = "Admin";

//only need to connect to server if it is remote
//otherwise can pass P_LOCAL_DB_CONNECTION for the handle

status = PvCreateDatabase(
connectionHandle,
databaseName,

dictPath,

dataPath,
P_DBFLAG_CREATE_DDF,
P_DBFLAG_LONGMETADATA) ;

See Also

PvStart()
PvConnectServer()
PvGetDbFlags()
PvModifyDatabase()
PvDropDatabase()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 51

PvCreateDatabase2()

Creates a database by adding an entry to dbnames.cfg file. This function is the same as
PvCreateDatabase() except that the database code page is also specified.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_API PvCreateDatabase2(
BTI_LONG hConnection,
BTI_CHAR_PTR dbName,
BTI_CHAR_PTR dictPath,
BTI_CHAR_PTR dataPath,
BTI_ULONG dbFlags,
BTI_LONG dbCodePage) ;

Arguments

In hConnection Connection handle that identifies the server. Connection handles are obtained

with the PvConnectServer() function.

In dbName Name of the database.

In dictPath Dictionary path.

In dataPath Data path. Pass an empty string to use the default data path (that is, the same
as the dictionary path)

If you want to create a database that consists of MicroKernel Engine data files
located in multiple paths, specify this parameter as a semicolon (;) delimited
list. For example: C:\data\path1;C:\data\path2

52 Distributed Tuning Interface Reference

In dbFlags Database flags, which can be a combination of the P DBFLAG constants.

+ P _DBFLAG_RI (enforce integrity constraints, including referential
integrity and triggers)

+ P DBFLAG _BOUND (create DDF files and stamp the database name on
the dictionary files so only that database can use them. If the database is
not bound, then several databases can use the same dictionary file set.) If
trying to create a bound database and you want to bind to DDF files that
already exist, specify both P DBFLAG _CREATE DDF and
P DBFLAG BOUND.

+ P DBFLAG CREATE DDF (create DDF files. The directory specified
for dictPath has to exist.)

« P DBFLAG_DBSEC_AUTHENTICATION (use database security
authentication, Mixed security policy. See Btrieve Security Policy.)

« P DBFLAG_DBSEC_AUTHORIZATION (use database security
authorization, Database security policy. See Btrieve Security Policy.)

+ P DBFLAG_LONGMETADATA (use V2 metadata. See Metadata
Version.)

In dbCodePage For databases on Windows platforms, a number indicating the code page for
database data and metadata strings.

For databases on Linux distributions, one of the following to indicate the code
page for database data and metadata strings:

« P DBCODEPAGE UTF8

« P DBCODEPAGE EUCJP

+ P DBCODEPAGE ISO8859 1

For databases on Windows and Linux, a value of zero can also be used.

Zero indicates legacy behavior. That is, no code page is specified, defaulting

to the operating system encoding on the server machine. See also the Code
Page database property in Zen User’s Guide.

Note: The database engine does not validate the encoding of the data and
metadata that an application inserts into a database. The engine assumes that
all data was entered using the encoding of the server or the client as explained
under Database Code Page and Client Encoding in Advanced Operations

Guide.
Return Values
P OK The operation was successful.
P _E INVALID HANDLE Invalid connection handle.
P E NULL PTR Call with NULL pointer

Distributed Tuning Interface Reference 53

P E ACCESS RIGHT

Insufficient access right for the operation

P _E DICTIONARY ALREADY EXISTS

Cannot create dictionary because it already exists.

P E SHARED DDF EXIST

The dictionary path is being used by another database.

P_E DUPLICATE NAME

Named database already exists on the server.

P E FAIL

Failed for other reasons.

Remarks

The following preconditions must be met:

» DTI session started by calling PvStart().

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

Btrieve Security Policy and Metadata Version

See Btrieve Security Policy and Metadata Version, respectively.

See Also

PvConnectServer()
PvCreateDSN2()
PvDisconnect()
PvDropDatabase()
PvGetDbCodePage()
PvGetDbFlags()
PvGetDSNEx2()
PvModifyDatabase2()
PvStart()

PvStop()

54 Distributed Tuning Interface Reference

PvCreateDictionary()

Creates a new set of dictionary files. Given a fully-qualified path for the dictionary, it returns a
dictionary handle that will be used for any subsequent calls to catalog functions.

Note: This function is deprecated in Zen 9 and higher versions. See PvCreateDatabase() and
PvOpenDatabase() to replace this function in your application.

Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also

Link Libraries)

Syntax
PRESULT PvCreateDictionary(
LPCSTR path,
WORD* dictHandle,
LPCSTR user,
LPCSTR password) ;
Arguments
In path Fully-qualified path to the dictionary files.
Out dictHandle Handle to be used in subsequent calls
In user User name used with the new dictionary. This argument can be set to NULL.
In password Used in conjunction with user name to create new dictionary files. Can also
be NULL.

Return Values

PCM_Success

The operation was successful.

PCM_errFailed

The operation was not successful.

PCM_errMemoryAllocation

An error occurred during memory allocation.

PCM_errPathNotFound

The specified path is invalid.

PCM_errSessionSecurityError

Either the user name or password is invalid.

PCM _errDictionaryAlreadyExists

A set of ddf files already exists at the specified location.

Distributed Tuning Interface Reference 55

Remarks

Use PvCloseDictionary() to free the resources.

See Also

PvStart()
PvOpenDatabase()
PvGetDbDictionaryPath()
PvCloseDictionary()
PvStop()

56 Distributed Tuning Interface Reference

PvCreateDSN()

Creates a new engine data source name (DSN).

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav78.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

This function is deprecated in Zen v11 and higher versions. Use the ODBC API to create client
DSNs (or dsnadd utility on Linux).

Syntax

BTI_API PvCreateDSN(
BTI_LONG

hConnection,

BTI_CHAR_PTR pdsnName,
BTI_CHAR_PTR pdsnDesc,
BTI_CHAR_PTR pdsnDBQ,
BTI_LONG openMode) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained
with the PvConnectServer() function.
In pdsnName Name for the new DSN.
In pdsnDesc Description for the new DSN.
In pdsnDBQ Database name to which this DSN will connect. This name must already exist.
To create a database name, see PvCreateDatabase().
In OpenMode Open mode for the DSN, which is one of the following:

- NORMAL MODE

« ACCELERATED MODE
- READONLY MODE

« EXCLUSIVE_MODE

Distributed Tuning Interface Reference 57

Return Values

P OK

The operation was successful.

P _E_INVALID HANDLE

Invalid connection handle.

P E NULL PTR

Call with NULL pointer

P E INVALID NAME

The specified DSN name is invalid.

P E DSN_ALREADY EXIST

The specified DSN name already exists.

P E_ACCESS RIGHT

Insufficient access right for the operation.

P E INVALID OPEN MODE

The specified open mode is invalid.

P E FAIL

Failed to retrieve data path.

Remarks

This function creates engine DSNs only. To create a client DSN, you must use the ODBC API.

The following preconditions must be met:

» DTI session started by calling PvStart()

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

* The database name referenced in the pdsnDBQ parameter must already exist. To create a
database name, see PvCreateDatabase().

See Also

PvStart()
PvConnectServer()
PvListDSNs()
PvModityDSN()
PvGetDSN()
PvGetDSNEX()
PvDeleteDSN()
PvCountDSNs()
PvStop()

58 Distributed Tuning Interface Reference

PvCreateDSN2()

Creates a new engine data source name (DSN) and specifies the encoding option for data.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

This function is deprecated in Zen v11 and higher versions. Use the ODBC API to create client
DSNs (or dsnadd utility on Linux).

Syntax

BTI_API PvCreateDSN2(
BTI_LONG hConnection,
BTI_CHAR_PTR pdsnName,
BTI_CHAR_PTR pdsnDesc,
BTI_CHAR_PTR pdsnDBQ,

BTI_LONG openMode,
BTI_LONG translate) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In pdsnName Name for the new DSN.
In pdsnDesc Description for the new DSN.
In dsnDBQ Database name to which this DSN will connect. This name must already
exist. To create a database name, see PvCreateDatabase().
In OpenMode Open mode for the DSN, which is one of the following:

+ NORMAL MODE

*+ ACCELERATED MODE

« READONLY MODE

+ EXCLUSIVE MODE

See also DSN Open Mode in ODBC Guide.

Distributed Tuning Interface Reference 59

In translate Encoding option for data, which can be one of the following:
+ DSNFLAG DEFAULT
+ DSNFLAG_OEMANSI
* DSNFLAG_AUTO

See also Encoding Translation in ODBC Guide. Note that
DSNFLAG_DEFAULT corresponds to the "None" encoding option in

ODBC Administrator.
Return Values
P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.
P E NULL PTR Call with NULL pointer
P E INVALID NAME The specified DSN name is invalid.
P E DSN_ALREADY_ EXIST The specified DSN name already exists.
P E ACCESS RIGHT Insufficient access right for the operation.
P_E INVALID OPEN_MODE The specified open mode is invalid.

P_E INVALID TRANSLATE OPTION The specified encoding translation option is invalid.

P _E FAIL Failed to retrieve data path.

Remarks

This function creates engine DSNs only and requires a PSQL v10 client or later. To create a client
DSN, you must use the ODBC API. On Linux, you can also use the dsnadd utility to create a
client DSN.

The following preconditions must be met:
» DTI session started by calling PvStart()

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

» The database name referenced in the pdsnDBQ parameter must already exist. To create a
database name, see PvCreateDatabase().

60 Distributed Tuning Interface Reference

See Also

PvStart()
PvConnectServer()
PvListDSNs()
PvModityDSN()
PvGetDSN()
PvGetDSNEX()
PvDeleteDSN()
PvCountDSNs()
PvStop()

Distributed Tuning Interface Reference 61

PvCreateGroup()

Creates a new user group in the existing database.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
PRESULT DDFAPICALLTYPE PvCreateGroup(
BTI_WORD dbHandle,
const BTI_CHAR* group) ;
Arguments
In dbHandle Handle of an open database returned by PvOpenDatabase().
In Group Database group name.

Return Values

PCM_ Success The operation was successful.
PCM_errFailed The operation was not successful.
PCM_errInvalidAccountName The specified group name is invalid.
PCM_errDatabaseHasNoSecurity Database has no security
PCM_ errSessionSecurityError Database opened with insufficient privilege
PCM_errGroupAlreadyExists Group already exists

Remarks

The following preconditions must be met:
* You must first open a database successfully using PvOpenDatabase() as user 'Master'.
» The associated database has database-level security enabled.

» A group with the same name cannot already exist in the specified database.

62 Distributed Tuning Interface Reference

The following post condition must be met:

» Use PvCloseDatabase() to free the resources.

See Also

PvAddUserToGroup()
PvRemoveUserFromGroup()
PvCreateUser()
PvAlterUserName()
PvAlterUserPassword()
PvDropGroup()
PvDropUser()
PvOpenDatabase()
PvCloseDatabase()

Distributed Tuning Interface Reference 63

PvCreateUser()

Creates a new user in the existing database. Optionally set a password and assign the new user to
an existing group.

Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
PRESULT DDFAPICALLTYPE PvCreateUser(
BTI_WORD dbHandle,
const BTI_CHAR* user,
const BTI_CHAR* password,
const BTI_CHAR* group) ;
Arguments
In dbHandle Handle of an open database returned by PvOpenDatabase().
In user Database user name.
In password User password. If set to NULL, no password is set.
In group Database group name for user. If set to NULL, user is not assigned to a
group.

Return Values

PCM_Success The operation was successful.
PCM_errFailed The operation was not successful.

PCM _errInvalidAccountName The specified account or user name is invalid.
PCM_errUserAlreadyExists User already exists.
PCM_errDatabaseHasNoSecurity Database has no security.

PCM _errSessionSecurityError Database opened with insufficient privilege.

64 Distributed Tuning Interface Reference

Remarks

The following preconditions must be met:
* You must first open a database successfully using PvOpenDatabase() as user 'Master'.
» The associated database has database-level security enabled.

* Auser with the same name cannot already exist in the specified database.

The following post condition must be met:

» Use PvCloseDatabase() to free the resources.

See Also

PvAlterUserName()
PvAlterUserPassword()
PvAddUserToGroup()
PvRemoveUserFromGroup()
PvCreateGroup()
PvDropUser()
PvOpenDatabase()
PvCloseDatabase()

Distributed Tuning Interface Reference 65

PvDeleteDSN()

Deletes a data source name.
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav78.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

This function is deprecated in Zen v11 and higher versions. Use the ODBC API to work with
client DSNs.

Syntax
BTI_API PvDeleteDSN(
BTI_LONG hConnection,

BTI_CHAR_PTR pdsnName);

Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In pdsnName DSN to delete.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P E NULL PTR Call with NULL pointer

P_E DSN DOES NOT_EXIST The specified DSN name does not exist.

P E ACCESS RIGHT Insufficient access right for the operation.

P _E FAIL Failed to retrieve data path.
Remarks

The following preconditions must be met:

» DTI session started by calling PvStart()

66 Distributed Tuning Interface Reference

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvListDSNs()
PvModifyDSN()
PvGetDSN()
PvGetDSNEXx()
PvCreateDSN()
PvCountDSNs()
PvStop()

Distributed Tuning Interface Reference 67

PvDeleteLicense()

Deletes (deauthorizes) the specified license from the computer indicated by the connection.
Header File: dtilicense.h (See also Header Files)

Function First Available In Library: w3dbav80.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_API PvDeletelicense(
BTI_LONG hConnection,
BTI_CHAR_PTR licenses) ;

Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In licenses License to be deleted.

Return Values

P OK The operation completed successfully
P _E FAIL The operation did not complete successfully
P_E LIC NOT_FOUND The license specified is not currently authorized.
P E LIC INVALID The license specified is invalid.
Status code pertaining to See Status Codes and Messages for License Administrator Status
license administration or to Codes and Authorization Status Codes.
authorization
Remarks

The following preconditions must be met:

» DTI session started by calling PvStart().

68 Distributed Tuning Interface Reference

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

Example

BTI_CHAR_PTR delete_lic = "ERXVD3U4ZS9KR94QPDHVS5BN2";
status = PvDeletelLicense(P_LOCAL_DB_CONNECTION, delete_lic);

See Also

PvAddLicense()
PvValidateLicenses()
PvGetProductsInfo()
PvStop()

PvStart()

Distributed Tuning Interface Reference 69

PvDisconnect()

Attempts to disconnect the connection established earlier by PvConnectServer function.
Header File: connect.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvDisconnect(
BTI_LONG hConnection);
Arguments
In hConnection Connection handle to be disconnected.Connection handles are obtained

with the PvConnectServer() function.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P _E FAIL Failed to disconnect to the named server.
Example

BTI_SINT status = 0O;
status = PvDisconnect(m_hConn);

See Also

PvStart()
PvConnectServer()
PvGetMkdeClientsData()
PvGetMkdeCommStat()
PvGetMkdeUsage()
PvGetOpenFilesData()
PvFreeOpenFilesData()

70 Distributed Tuning Interface Reference

PvDisconnectMkdeClient()
PvDisconnectSQLConnection()
PvStop()

Distributed Tuning Interface Reference 71

PvDisconnectMkdeClient()

Attempts to disconnect an active MicroKernel Engine client by specifying a client ID. In order to
obtain a valid client ID, use PvGetMkdeClientData and PvGetMkdeClientld functions.

Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvDisconnectMkdeClient(
BTI_LONG hConnection,
PVCLIENTID* pClientld);
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained

with the PvConnectServer() function.

In pClientld Address of the PVCLIENTID structure to identify the MicroKernel Engine
client.
Return Values
P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.
P_E DATA UNAVAILABLE Data related to active clients not available.
P E NULL PTR Call with NULL pointer.
P E INVALID CLIENT Invalid client ID.
P _E FAIL Failed to disconnect to the named server.
Example

unsigned long count = 0;

// This sample disconnects all active Mkde connections
BTI_SINT status = ©

PVCLIENTID clientId;

status = PvGetMkdeClientsData(connection, &count);

72 Distributed Tuning Interface Reference

while (count > 9)

{

status = PvGetMkdeClientId(connection, @, &client Id);
status = PvDisconnectMkdeClient(connection, &clientId);
status = PvGetMkdeClientsData(connection, &count)

PvFreeMkdeClientsData(connection);

Remarks

The following preconditions must be met:

» DTI session started by calling PvStart()

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

See Also

PvStart()

PvConnectServer()
PvGetMkdeClientsData()
PvGetMkdeClientld()
PvGetMkdeClientInfo()
PvGetMkdeClientHandlesData()
PvDisconnect()

PvStop()

Distributed Tuning Interface Reference 73

PvDisconnectSQLConnection()

Attempts to disconnect an active SQL connection by passing SQL connection Id. Use
PvGetSQLConnectionsData and PvSQLConnectionInfo to obtain a valid connection Id.

Note: Each SQL connection also establishes a MicroKernel Engine connection. Use
PvDisconnectMKDEClient to kill those connections.

Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvDisconnectSQLConnection(
BTI_LONG hConnection,
PVSQLCONNID* PSQLConnld);
Arguments
In hConnection Server connection handle that contains the SQL connection to be disconnected.

Server connection handles are obtained with the PvConnectServer() function.

In pSQOLConnld Address of the PVSQLCONNID structure to identify the SQL connection. SQL
connections are obtained with the PvGetSQLConnectionsData()

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P_E DATA UNAVAILABLE Data related to active clients not available.

P E NULL PTR Call with NULL pointer.

P E INVALID CLIENT Invalid client ID.

P _E FAIL Failed to disconnect to the named server.
Example

BTI_SINT status = 0O;

74 Distributed Tuning Interface Reference

PVSQLCONNINFO connectionInfo;

PVSQLCONNID connld;

status = PvGetSQLConnectionsData (connection, &count);
while (count > 0)

{

status = PvGetSQLConnectionInfo(connection, 0,
&connectionInfo);
connld.ul32ProcessId =
connectionInfo.ul32Processld;
connld.ul32Threadld =
connectionInfo.ul32Threadld;
status = PvDisconnectSQLConnection(connection,
&connId);
status = PvGetSQLConnectionsData (connection,
&count);

PvFreeSQLConnectionsData(connection, &count);

Remarks

The following preconditions must be met:

» DTI session started by calling PvStart()

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB_CONNECTION may be used as the connection handle.

See Also

PvStart()

PvConnectServer()
PvGetSQLConnectionsData()
PvGetSQLConnectionInfo()
PvDisconnect()

PvStop()

Distributed Tuning Interface Reference 75

PvDropDatabase()

Deletes a specified entry from dnames.cfg.
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_API PvDropDatabase(
BTI_LONG hConnection,
BTI_CHAR_PTR dbName,
BTI_CHAR option) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained

with the PvConnectServer() function.

In dbName Name of the database. A list of all database names for a particular server is
obtained with the PvGetDbNamesData() function. A single database name
from the resulting list can be obtained with the PvGetDbName() function.

In option Bit mask that specifies options. Set the low-order bit to one (0001h) if you want
DDF files to be deleted in addition to the database name. Otherwise, only the
database name will be deleted but DDF files will remain.

Return Values

P OK The operation was successful.

P E INVALID HANDLE Invalid connection handle.

P E NULL PTR Call with NULL pointer

P E ACCESS RIGHT Insufficient access right for the operation
P E NOT EXIST Named database does not exist.

P _E FAIL Failed for other reasons.

76 Distributed Tuning Interface Reference

Remarks

The following preconditions must be met:
» DTI session started by calling PvStart().

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvCreateDatabase()
PvModifyDatabase()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 77

PvDropGroup()

Drop an existing group from the database.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
PRESULT DDFAPICALLTYPE PvDropGroup(
BTI_WORD dbHandle,
const BTI_CHAR* group) ;
Arguments
In dbHandle Handle of an open database returned by PvOpenDatabase().
In group Database group name.

Return Values

PCM_ Success The operation was successful.

PCM_errFailed The operation was not successful.

PCM_errInvalidAccountName The specified group name does not exist.

PCM_errDatabaseHasNoSecurity Database has no security

PCM_ errSessionSecurityError Database opened with insufficient privilege

PCM_errGroupNotEmpty An user is associated with this group
Remarks

The following preconditions must be met:

* You must first open a database successfully using PvOpenDatabase() as user 'Master'.
» The associated database has database-level security enabled.

» The group must already exist in the specified database.

* The group cannot contain any members.

78 Distributed Tuning Interface Reference

The following post condition must be met:

» Use PvCloseDatabase() to free the resources.

See Also

PvCreateGroup()
PvAddUserToGroup()
PvRemoveUserFromGroup()
PvDropUser()
PvOpenDatabase()
PvCloseDatabase()

Distributed Tuning Interface Reference 79

PvDroplindex()

Drops the index from dictionary and data files, given the index number.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
PRESULT PvDropIndex(
WORD dictHandle,
LPCSTR tableName,
WORD indexNumber,
BOOL renumber) ;
Arguments
In dictHandle Handle of an open dictionary returned by PvOpenDatabase().
In tableName Name of the table with the index to be dropped.

In indexNumber ~ Number of the index to be dropped.

In renumber Indicates whether the remaining indexes should be renumbered.

Return Values

PCM_ Success The operation was successful.

PCM_errFailed The operation was not successful.

PCM_errInvalidDictionaryHandle The specified dictionary handle does not exist.

PCM_errTableNotFound The specified table was not found.

PCM _errInvalidindex The specified index was not found.
Remarks

You must first open a dictionary successfully using PvOpenDatabase().

The table specified by tableName must exist in the dictionary specified by dictHandle.

80 Distributed Tuning Interface Reference

See Also

PvStart()
PvOpenDatabase()
PvDropIndexByName()
PvAddIndex()
PvCloseDictionary()
PvStop()

Distributed Tuning Interface Reference 81

PvDroplndexByName()

Drops the index from dictionary and data files, given a name.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
PRESULT PvDropIndexByName (
WORD dictHandle,
LPCSTR tableName,
LPCSTR indexName) ;
Arguments
In dictHandle Handle of an open dictionary returned by PvOpenDatabase().
In tableName Name of the table with the index to be dropped.
In indexName Name of the index to be dropped.

Return Values

PCM_ Success The operation was successful.

PCM_errFailed The operation was not successful.

PCM_errInvalidDictionaryHandle = The specified dictionary handle does not exist.

PCM_errTableNotFound The table specified in tableName was not found in the dictionary.

Remarks
You must first open a dictionary successfully using PvOpenDatabase().

The table specified by tableName must exist in the dictionary specified by dictHandle.

82 Distributed Tuning Interface Reference

See Also

PvStart()
PvOpenDatabase()
PvAddIndex()
PvDroplIndex()
PvCloseDictionary()
PvStop()

Distributed Tuning Interface Reference 83

PvDropTable()

Drops the specified table from the open dictionary specified by the dictionary handle.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
PRESULT PvDropTable(
WORD dictHandle,
LPCSTR tableName,
WORD keepFile) ;
Arguments
In dictHandle Handle of an open dictionary returned by PvOpenDatabase().
In tableName Name of the table to delete.
In keepFile Indicates whether or not the data file will be deleted. If set to 0, the data file
associated with the table will be deleted. If non-zero, the data file will not be
deleted.

Return Values

PCM_Success The operation was successful.

PCM_errFailed The operation was not successful.

PCM_errInvalidDictionaryHandle The specified dictionary handle does not exist.

PCM_errTableNotFound The specified table name was not found.
Remarks

You must first open a dictionary successfully using PvOpenDatabase().

The table specified by tableName must exist in the dictionary specified by dictHandle.

84 Distributed Tuning Interface Reference

See Also

PvStart()
PvOpenDatabase()
PvGetTableNames()
PvGetTable()
PvAddTable()
PvCloseDictionary()
PvStop()

Distributed Tuning Interface Reference 85

PvDropUser()

Drop an existing user from the database.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

PRESULT DDFAPICALLTYPE PvDropUser (
BTI_WORD dbHandle,
const BTI_CHAR* user) ;

Arguments
In dbHandle Handle of an open database returned by PvOpenDatabase().
In user Database user name

Return Values

PCM_ Success The operation was successful.
PCM_errFailed The operation was not successful.
PCM_errInvalidAccountName The specified account or user name does not exist.

PCM_errNotAllowedToDropAdministrator Attempt to drop Master user.

PCM_errDatabaseHasNoSecurity Database has no security.
PCM _errSessionSecurityError Database opened with insufficient privilege.
Remarks

The following preconditions must be met:
* You must first open a database successfully using PvOpenDatabase() as user 'Master'.
» The associated database has database-level security enabled.

» Auser with the same name must already exist in the specified database.

86 Distributed Tuning Interface Reference

The following post condition must be met:

» Use PvCloseDatabase() to free the resources.

See Also

PvAddUserToGroup()
PvAlterUserName()
PvAlterUserPassword()
PvCreateUser()
PvRemoveUserFromGroup()
PvOpenDatabase()
PvCloseDatabase()

Distributed Tuning Interface Reference 87

PvFreeDbNamesData()

Free the resource allocated for database names on a connected server. This function needs to be
called after preceding calls to PvGetDbNamesData.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_API PvFreeDbNamesData(
BTI_LONG hConnection);

Arguments

In hConnection Connection handle that identifies the server. Connection handles are obtained
with the PvConnectServer() function.

Return Values

P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.
P_E DATA UNAVAILABLE Data related to database names not available.
P _E FAIL Failed for other reasons.
Remarks

The following preconditions must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

» Database names data retrieved by calling PvGetDbNamesData().

88 Distributed Tuning Interface Reference

See Also

PvStart()
PvConnectServer()
PvGetDbNamesData()
PvGetDbName()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 89

PvFreeMkdeClientsData()

Free the cached information related to the active MicroKernel Engine clients. This function needs
to be called after preceding calls to PvGetMkdeClientsData.

Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_SINT PvFreeMkdeClientsData(
BTI_LONG hConnection);

Arguments

In hConnection Connection handle that identifies the server. Connection handles are obtained
with the PvConnectServer() function.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P_E DATA UNAVAILABLE Data related to active clients not available.

P _E FAIL Failed to disconnect to the named server.
Remarks

The following preconditions must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

+ Data for active clients retrieved by calling PvGetMkdeClientsData();

90 Distributed Tuning Interface Reference

See Also

PvStart()
PvConnectServer()
PvGetMkdeClientsData()
PvGetMkdeClientInfo()
PvDisconnect()

PvStop()

Distributed Tuning Interface Reference 91

PvFreeOpenFilesData()

Free the cached information related to the open files. This function needs to be called after
preceding calls to PvGetOpenFilesData.

Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_SINT PvFreeOpenFilesData(
BTI_LONG hConnection);

Arguments

In hConnection Connection handle that identifies the server. Connection handles are obtained
with the PvConnectServer() function.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P_E DATA UNAVAILABLE Data related to active clients not available.

P _E FAIL Failed to disconnect to the named server.
Remarks

The following preconditions must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

» Data for open files retrieved by calling PvGetOpenFilesData().

92 Distributed Tuning Interface Reference

See Also

PvStart()
PvConnectServer()
PvGetOpenFilesData()
PvGetOpenFileName()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 93

PvFreeSQLConnectionsData()

Free the cached information related to SQL connections. This function needs to be called after
preceding calls to PvGetSQLConnectionsData.

Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_SINT PvFreeSQLConnectionsData(
BTI_LONG hConnection);

Arguments

In hConnection Connection handle that identifies the server. Connection handles are obtained
with the PvConnectServer() function.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P_E DATA UNAVAILABLE Data related to active clients not available.

P _E FAIL Failed to disconnect to the named server.
Remarks

The following preconditions must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

» Data for open files retrieved by calling PvGetSQLConnectionsData().

94 Distributed Tuning Interface Reference

See Also

PvStart()

PvConnectServer()
PvGetSQLConnectionsData()
PvGetSQLConnectionInfo()
PvDisconnect()

PvStop()

Distributed Tuning Interface Reference 95

PvFreeTable()

Frees memory allocated by a PvGetTable() function call.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav78.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
PRESULT PvFreeTable(
TABLEINFO* tableProps,
COLUMNMAP* columnlList,
INDEXMAP* indexList) ;
Arguments
In/Out tableProps Pointer to a structure containing table information
In/Out columnList Pointer to an array of columns defined in the table.
In/Out indexList Pointer to an array of segments defined in the table.
Return Values
PCM_ Success The operation was successful.
PCM _errFailed A general failure occurred
Remarks

This function frees the structures created during a PvGetTable() call.

Example

PRESULT status = 0;
status = PvFreeTable(mytableProps, MyColumnList MyindexList);

96 Distributed Tuning Interface Reference

See Also

PvStart()
PvOpenDatabase()
PvGetTableNames()
PvGetTable()
PvFreeTableNames()
PvCloseDictionary()
PvStop()

Distributed Tuning Interface Reference 97

PvFreeTableNames()

Frees memory allocated with a PvGetTableNames() call.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav78.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

PRESULT PvFreeTableNames (
TABLEMAP* tableList) ;

Arguments

In/Out tableList Array of TABLEMARP structures that contain table names.

Return Values

PCM_ Success The operation was successful.
PCM_errFailed The operation was not successful.
Remarks

The memory freed with this function is successfully allocated during a PvGetTableNames() call to
retrieve all of the table names for a specified dictionary.

Example

PRESULT status = 0;
status = PvFreeTableNames(&mytablelList);

See Also

PvStart()
PvOpenDatabase()
PvGetTableNames()
PvGetTable()

98 Distributed Tuning Interface Reference

PvFreeTable()
PvCloseDictionary()
PvStop()

Distributed Tuning Interface Reference 99

PvGetAllPossibleSelections()

Retrieves all available selection choices for a setting of types (PVSETTING SINGLE SEL or
PVSETTING _MULTI SEL).

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_SINT PvGetAllPossibleSelections(
BTI_LONG hConnection,
BTI_ULONG settinglD,
BTI_ULONG_PTR pNumltems,
BTI_ULONG_PTR pSelectionList) ;

Arguments

In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of settings can be obtained from
PvGetSettingList().
In/Out pNumltems Address of an unsigned long that receives the total number of selection

items. You can also retrieve the number of selection items by calling
PvCountSelectionltems()

Out pSelectionList Array that contains all available selection choices.

Return Values

P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.
P E NULL PTR Call with NULL pointer

P_E INVALID DATA TYPE The requested setting is not of selection type.

P_E BUFFER TOO SMALL The array size is too small. In this case, the required size is returned
in pNumltems.

P _E FAIL Failed for other reasons.

100 Distributed Tuning Interface Reference

Remarks

The following preconditions must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvCountSelectionltems()
PvDisconnect()

PvStop()

Distributed Tuning Interface Reference 101

PvGetBooleanStrings()

Retrieves display string related to Boolean type setting.

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also

Link Libraries)

Syntax

BTI_SINT PvGetBooleanStrings(

BTI_LONG
BTI_ULONG
BTI_LONG_PTR
BTI_CHAR_PTR

hConnection,
settinglD,
trueStringSize,
trueString ,

BTI_LONG_PTR falseStringSize,
BTI_CHAR_PTR falseString) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In settinglD Unique identifier for the setting. A list of settings can be obtained from
PvGetSettingList().
Out trueStringSize Long integer containing the length of trueString.
Out trueString Display string for TRUE (size >= 16 bytes).
Out falseStringSize Long integer containing the length of falseString.
Out falseString Display string for FALSE (size >= 16 bytes).

Return Values

P OK

The operation was successful.

P E INVALID HANDLE

Invalid connection handle.

P E NULL PTR

Call with NULL pointer.

P _E INVALID DATA TYPE The requested setting is not of long type.

P E FAIL

Failed for other reasons.

102 Distributed Tuning Interface Reference

Remarks

The following precondition must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 103

PvGetBooleanValue()

Retrieves the value for a Boolean type setting. Either default or current value can be retrieved.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_SINT PvGetBooleanValue(
BTI_LONG hConnection,
BTI_ULONG settinglD,
BTI_SINT_PTR pValue,
BTI_SINT whichData) ;

Arguments

In hConnection Connection handle that identifies the server. Connection handles are obtained

with the PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of settings can be obtained from
PvGetSettingList().

Out plalue Address of a Boolean variable that receives the setting value.

In whichData Flag to indicate which value is requested:

PVDATA DEFAULT returns default value.
PVDATA CURRENT returns current value

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P E NULL PTR Call with NULL pointer

P_E INVALID DATA TYPE The requested setting is not of Boolean type.
P _E FAIL Failed for other reasons.

104 Distributed Tuning Interface Reference

Remarks

The following precondition must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetBooleanStrings()
PvSetBooleanValue()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 105

PvGetCategoryinfo()

Retrieves information about a category of engine settings.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_SINT PvGetCategoryInfo(
BTI_LONG hConnection,
BTI_ULONG categorylD,

PVCATEGORYINFO* pCatinfo);

Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained
with the PvConnectServer() function.
In categorylD Unique identifier for the category. You can obtain a list of identifiers via the
PvGetCategoryList() function.
Out pCatlnfo Address of a PVCATEGORYINFO structure that will receive the category
information.
Return Values
P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.
P E NULL PTR Call with NULL pointer.
P_E FAIL Failed for other reasons.

Remarks

The following precondition must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

106 Distributed Tuning Interface Reference

The number of settings returned in the PVCATEGORYINFO structure represents the total
number of settings for that category, both client and server. To get the applicable number of
settings, call PvGetSettingList(). If it is a remote connection, the server side settings are not
applicable.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 107

PvGetCategoryList()

Retrieves the list of category IDs on the engine specified by the current connection.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetCategoryList(
BTI_LONG hConnection,
BTI_ULONG_PTR pnumCategories,
BTI_ULONG_PTR pCategoriesList) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In/Out pnumCategories Address of an unsigned long containing the number of categories that
can be returned in pCategoriesList. You can also call
PvGetCategoryListCount() to retrieve this value.

Out pCategoriesList Array containing the category IDs.

Return Values

P OK The operation was successful.
P E INVALID HANDLE Invalid connection handle.
P E NULL PTR Call with NULL pointer
P _E FAIL Failed for other reasons.
P_E BUFFER TOO SMALL Array size is too small. The required size is returned in
pnumCategories.
Remarks

The following precondition must be met:

108 Distributed Tuning Interface Reference

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategorylInfo()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 109

PvGetCategoryListCount()

Retrieves the number of categories on the engine specified by the current connection. This
number can then be used to allocate an array to pass to PvGetCategoryList().

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav78.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetCategoryListCount(
BTI_LONG hConnection,
BTI_ULONG_PTR pListCount) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

Out pListCount Address of an unsigned long containing the number of categories.

Return Values

P OK The operation was successful.

P E INVALID HANDLE Invalid connection handle.

P E NULL PTR Call with NULL pointer

P E FAIL Failed for other reasons.
Remarks

The following precondition must be met:

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

10 Distributed Tuning Interface Reference

See Also

PvStart()
PvConnectServer()
PvGetCategorylnfo()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 111

PvGetDbCodePage()

Retrieves the code page associated with a named database.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_API PvGetDbCodePage(
BTI_LONG hConnection,
BTI_CHAR_PTR dbName,
BTI_LONG_PTR pDbCodePage);

Arguments

In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.

In dbName Name of the database. A list of all database names for a particular
server is obtained with the PvGetDbNamesData() function. A single
database name from the resulting list can be obtained with the
PvGetDbName() function.

Out pDbCodePage Code page of the database. A value of zero indicates the default code

page on the server.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P E NULL PTR Call with NULL pointer.

P_E NOT_EXIST Named database does not exist.

P_E FAIL Failed for other reasons.
Remarks

The following precondition must be met:

112 Distributed Tuning Interface Reference

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

See Also

PvConnectServer()
PvCreateDatabase2()
PvCreateDSN2()
PvModifyDatabase2()
PvModifyDSN2()
PvGetDSNEx2()
PvStart()

Distributed Tuning Interface Reference 113

PvGetDbDataPath()

Retrieves the data path (where data files reside) of a named database. This information is stored in
dbnames.cfg.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_API PvGetDbDataPath(
BTI_LONG hConnection,
BTI_CHAR_PTR dbName,
BTI_ULONG_PTR pBufSize,
BTI_CHAR_PTR dataPath) ;

Arguments

In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In dbName Name of the database. A list of all database names for a particular
server is obtained with the PvGetDbNamesData() function. A single
database name from the resulting list can be obtained with the
PvGetDbName() function.

In/Out pBufSize Address of an unsigned long containing size of the buffer. Receives
actual size of the path returned.

Out dataPath Contains the data path if successful, or empty string otherwise.

Return Values

P OK The operation was successful.

P E INVALID HANDLE Invalid connection handle.

P_E NULL PTR Call with NULL pointer

P_E BUFFER TOO SMALL The buffer is too small for the string. In this case, the required

buffer size is returned in pBufSize.

P E NOT EXIST Named database does not exist.

114 Distributed Tuning Interface Reference

P_E FAIL Failed for other reasons.

The following precondition must be met:

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetDbNamesData()
PvGetDbName()
PvGetDbDictionaryPath()
PvGetDbServerName()
PvDisconnect()

PvStop()

Distributed Tuning Interface Reference 115

PvGetDbDictionaryPath()

Retrieves the dictionary path (where DDF files reside) of a named database.
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_API PvGetDbDictionaryPath(
BTI_LONG hConnection,
BTI_CHAR_PTR dbName,
BTI_ULONG_PTR pBufSize,
BTI_CHAR_PTR dictPath) ;

Arguments

In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.

In dbName Name of the database. A list of all database names for a particular server
is obtained with the PvGetDbNamesData() function. A single database
name from the resulting list can be obtained with the PvGetDbName()
function.

In/Out pBufSize Address of an unsigned long containing size of the buffer. Receives
actual size of the path returned.

Out dictPath Contains the dictionary path if successful, or empty string otherwise.

Return Values

P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.
P E NULL PTR Call with NULL pointer

P E BUFFER TOO SMALL The buffer is too small for the string. In this case, the required buffer
size is returned in pBufSize.

P E NOT _EXIST Named database does not exist.

P _E FAIL Failed for other reasons.

116 Distributed Tuning Interface Reference

Remarks

The following precondition must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetDbNamesData()
PvGetDbName()
PvGetDbDataPath()
PvGetDbServerName()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 117

PvGetDbFlags()

Retrieves the database flags associated with a named database.
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_API PvGetDbFlags(
BTI_LONG hConnection,
BTI_CHAR_PTR dbName,
BTI_ULONG_PTR pDbFlags) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained

with the PvConnectServer() function.

In dbName Name of the database. A list of all database names for a particular server is
obtained with the PvGetDbNamesData() function. A single database name
from the resulting list can be obtained with the PvGetDbName() function.

Out pDbFlags Database flags, which can be a combination of the P DBFLAG constants.
+ P DBFLAG RI (integrity constraints, including referential integrity and
triggers)

+ P DBFLAG BOUND (DDF files stamped with the database name so
only that database can use them)

« P DBFLAG DBSEC AUTHENTICATION (Mixed security policy. See
Btrieve Security Policy.)

« P DBFLAG DBSEC AUTHORIZATION (Database security policy.
See Btrieve Security Policy.)

P DBFLAG LONGMETADATA (see Metadata Version)

Return Values

P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.
P E NULL PTR Call with NULL pointer

18 Distributed Tuning Interface Reference

P E NOT _EXIST Named database does not exist.

P _E FAIL Failed for other reasons.

Remarks

The following precondition must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

Btrieve Security Policy

The following table indicates how to interpret the security model of an existing database.

This Flag Combination Represent This Security Model
No flags Classic

P DBFLAG _DBSEC_AUTHENTICATION Mixed

P DBFLAG DBSEC AUTHENTICATION + Database

P DBFLAG DBSEC_AUTHORIZATION

See Also

PvStart()
PvConnectServer()
PvCreateDatabase()
PvModifyDatabase()
PvGetDbNamesData()
PvGetDbName()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 119

PvGetDbName()

Gets the name of a database on a connected server using a sequence number. You can obtain the
number of database names by calling the PvGetDbNamesData() function. The sequence number

1s 1 based.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also

Link Libraries)
Syntax
BTI_API PvGetDbName(
BTI_LONG hConnection,
BTI_ULONG sequence,
BTI_ULONG_PTR pBufSize,
BTI_CHAR_PTR dbName) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In sequence The sequence number (1 based) of the database name. Must be within a
valid range with upper limit defined by PvGetDbNamesData().

In/Out pBufSize Address of an unsigned long containing size of buffer allocated to receive
the database name. Receives actual size of chars copied. The size should
include the null terminator.

Out dbName String value returned.

Return Values

P OK

The operation was successful.

P _E_INVALID HANDLE

Invalid connection handle.

P E DATA UNAVAILABLE

Data related to database names not available.

P E NULL PTR

Call with NULL pointer

P E BUFFER TOO SMALL

Allocated buffer is too small for the string.

P E INVALID SEQUENCE

Sequence number is not valid.

120 Distributed Tuning Interface Reference

P_E FAIL Failed for other reasons.

Example

BTI_ULONG i;

BTI_ULONG count = O;

BTI_CHAR dbName[BDB_SIZE DBNAME+1];

BTI_SINT status = PvGetDbNamesData(connection, &count);
for (i=1; i<= count; i++)

BTI_ULONG dbNameSize = sizeof(dbName);
status = PvGetDbName(connection, i, &dbNameSize, dbName);

status = PvFreeDbNamesData(connection);

Remarks

The following preconditions must be met:

» DTI session started by calling PvStart().

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

» Database names data retrieved by calling PvGetDbNamesData()

» Caller has a valid database name sequence number.

See Also

PvStart()
PvConnectServer()
PvGetDbNamesData()
PvFreeDbNamesData()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 121

PvGetDbNamesData()

Retrieves the number of database names for a connected server. Use the PvGetDbName() function
to enumerate the names.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_API PvGetDbNamesData(
BTI_LONG hConnection,
BTI_ULONG_PTR pCount);
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained

with the PvConnectServer() function.

Out pCount Address of an unsigned long to receive the number of database names on the
server.

Return Values

P OK The operation was successful.

P E INVALID HANDLE Invalid connection handle.

P E NULL PTR Call with NULL pointer.

P _E FAIL Failed for other reasons.
Remarks

The following precondition must be met:
» DTI session started by calling PvStart().

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

122 Distributed Tuning Interface Reference

This function should be called first before calling any other functions to get database names
information. The caller should call PvFreeDbNamesData() to free the resources allocated for
database names.

See Also

PvStart()
PvConnectServer()
PvGetDbName()
PvFreeDbNamesData()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 123

PvGetDbServerName()

Retrieves the name of the server where the named database resides.
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_API PvGetDbServerName(
BTI_LONG hConnection,
BTI_CHAR_PTR dbName,
BTI_ULONG_PTR pBufSize,
BTI_CHAR_PTR serverName,
BTI_SINT_PTR plsLocal) ;

Arguments

In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In dbName Name of the database. A list of all database names for a particular server is
obtained with the PvGetDbNamesData() function. A single database name
from the resulting list can be obtained with the PvGetDbName() function.

In/Out pBufSize Address of an unsigned long containing the size of the buffer. Actual size of
server name is returned.

Out serverName Contains server name if successful, empty string otherwise.

Out plsLocal Returns zero for remote server, non-zero for local server.

Return Values

P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.
P E NULL PTR Call with NULL pointer

P_E BUFFER TOO SMALL The buffer is too small for the string. In this case, the required buffer
size is returned in pBufSize.

P_E NOT_EXIST Named database does not exist.

124 Distributed Tuning Interface Reference

P_E FAIL Failed for other reasons.

Remarks

The following preconditions must be met:
» DTI session started by calling PvStart().

» Connection established by PvConnectServer()or if you are performing the operation on a local
machine, P LOCAL DB CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetDbNamesData()
PvGetDbName()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 125

PvGetDSN()

Retrieves information about the datasource name (DSN).
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

This function is deprecated in Zen v11 and higher versions. Use the ODBC API to work with
client DSNs.

Syntax

BTI_API PvGetDSN(
BTI_LONG hConnection,
BTI_CHAR_PTR dsnName,
BTI_ULONG_PTR pdsnDescSize,
BTI_CHAR_PTR dsnDesc,
BTI_ULONG_PTR pdsnDBQSize,
BTI_CHAR_PTR dsnDBQ) ;

Arguments

In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In dsnName Name of the datasource. A list of DSNs can be obtained with the
PvListDSNs() function.

In/Out pdsnDescSize Address of an unsigned long containing size of the buffer for DSN
description. Receives actual size of DSN description.

Out dsnDesc Contains the description of DSN if successful.

In/Out pdsnDBQSize Address of an unsigned long containing size of the buffer for name of

database. Receives actual size of database name.

Out dsnDBQ Contains the name of the database if successful.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

126 Distributed Tuning Interface Reference

P E NULL PTR Call with NULL pointer

P E BUFFER TOO SMALL The buffer is too small for the string. In this case, the required buffer
size is returned in pdsnDescSize or pdsnDBQSize.

P _E FAIL Failed to retrieve data path.

Remarks

The following precondition must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

To retrieve information about a DSN without having to prompt the user to login, pass empty
strings for username and password when establishing the server connection with
PvConnectServer().

Note: The connection established by passing empty strings for username and password is an
insecure connection, and will not have sufficient rights to perform most of the other operations in
DTL

See Also

PvStart()
PvConnectServer()
PvGetDSNEX()
PvListDSNs()
PvCountDSN5s()
PvCreateDSN()
PvModityDSN()
PvDeleteDSN()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 127

PvGetDSNEX()

Retrieves information about the datasource name (DSN). This function is identical to
PvGetDSN() except that the DSN open mode is also retrieved.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav78.dll (Windows), libpsqldti.so (Linux) (See also

Link Libraries)
This function is deprecated in Zen v11 and higher versions. Use the ODBC API to work with
client DSNGs.
Syntax
BTI_API PvGetDSNEX(
BTI_LONG hConnection,
BTI_CHAR_PTR dsnName,
BTI_ULONG_PTR pdsnDescSize,
BTI_CHAR_PTR dsnDesc,
BTI_ULONG_PTR pdsnDBQSize,
BTI_CHAR_PTR dsnDBQ,
BTI_LONG_PTR pOpenMode) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In dsnName Name of the datasource. A list of DSNs can be obtained with the
PvListDSNs() function.

In/Out pdsnDescSize Address of an unsigned long containing size of the buffer for DSN
description. Receives actual size of DSN description.

Out dsnDesc Contains the description of DSN if successful.

In/Out pdsnDBQSize Address of an unsigned long containing size of the buffer for name of
database. Receives actual size of database name.

Out dsnDBQ Contains the name of the database if successful.

128 Distributed Tuning Interface Reference

Out pOpenMode Contains open mode of DSN, which is one of the following:
+ NORMAL MODE
* ACCELERATED_MODE,
* READONLY_MODE
* EXCLUSIVE_MODE
See also DSN Open Mode in ODBC Guide.

Return Values

P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.
P E NULL PTR Call with NULL pointer

P_E BUFFER TOO SMALL The buffer is too small for the string. In this case, the required
buffer size is returned in pdsnDescSize or pdsnDBQSize.

P E ACCESS RIGHT Insufficient access right for the operation.

P_E DSN _DOES NOT EXIST The specified DSN does not exist.

P E INVALID OPEN _MODE Invalid open mode.

P _E FAIL Failed to retrieve data path.

Remarks

The following precondition must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB_CONNECTION may be used as the connection handle.

To retrieve information about a DSN without having to prompt the user to login, pass empty
strings for username and password when establishing the server connection with
PvConnectServer().

Note: The connection established by passing empty strings for username and password is an

insecure connection, and will not have sufficient rights to perform most of the other operations in
DTI.

Distributed Tuning Interface Reference 129

See Also

PvStart()
PvConnectServer()
PvListDSNs()
PvCountDSNs()
PvGetDSN()
PvCreateDSN()
PvModifyDSN()
PvDeleteDSN()
PvDisconnect()
PvStop()

130 Distributed Tuning Interface Reference

PvGetDSNEXx2()

Retrieves information about the data source name (DSN). This function is the same as
PvGetDSNEX() except that the encoding option for data is also retrieved.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also

Link Libraries)
This function is deprecated in Zen v11 and higher versions. Use the ODBC API to work with
client DSNs.
Syntax
BTI_API PvGetDSNEX2(
BTI_LONG hConnection,
BTI_CHAR_PTR dsnName,
BTI_ULONG_PTR pdsnDescSize,
BTI_CHAR_PTR dsnDesc,
BTI_ULONG_PTR pdsnDBQSize,
BTI_CHAR_PTR dsnDBQ,
BTI_LONG_PTR pOpenMode,
BTI_LONG_PTR translate) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In dsnName Name of the datasource. A list of DSNs can be obtained with the
PvListDSNs() function.

In/Out pdsnDescSize Address of an unsigned long containing size of the buffer for DSN
description. Receives actual size of DSN description.

Out dsnDesc Contains the description of DSN if successful.

In/Out pdsnDBQSize Address of an unsigned long containing size of the buffer for name of
database. Receives actual size of database name.

Out dsnDBQ Contains the name of the database if successful.

Distributed Tuning Interface Reference 131

Out pOpenMode Open mode for the DSN, which is one of the following:
- NORMAL MODE
* ACCELERATED _MODE
« READONLY_MODE
+ EXCLUSIVE MODE
See also DSN Open Mode in ODBC Guide.

Out translate Encoding option for data, which can be one of the following:
« DSNFLAG DEFAULT
+ DSNFLAG_OEMANSI
+ DSNFLAG AUTO

See also DSN Open Mode in ODBC Guide. Note that
DSNFLAG_DEFAULT corresponds to the "None" encoding option in

ODBC Administrator.
Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P E NULL PTR Call with NULL pointer

P_E BUFFER TOO SMALL The buffer is too small for the string. In this case, the
required buffer size is returned in pdsnDescSize or
pdsnDBQSize.

P E ACCESS RIGHT Insufficient access right for the operation.

P E DSN DOES NOT _EXIST The specified DSN does not exist.

P_E INVALID OPEN _MODE Invalid open mode.

P_E INVALID TRANSLATE OPTION The specified encoding translation option is invalid.

P_E FAIL Failed to retrieve data path.

Remarks

The following precondition must be met:

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

132 Distributed Tuning Interface Reference

To retrieve information about a DSN without having to prompt the user to login, pass empty
strings for username and password when establishing the server connection with
PvConnectServer().

Note: The connection established by passing empty strings for username and password is an
insecure connection, and will not have sufficient rights to perform most of the other operations in
DTIL

See Also

PvConnectServer()
PvCountDSNs()
PvCreateDSN2()
PvDeleteDSN()
PvDisconnect()
PvGetDSNEX()
PvListDSNs()
PvModifyDSN2()
PvStart()

PvStop()

Distributed Tuning Interface Reference 133

PvGetEnginelnformation()

Retrieves the information about the database engine for a given hConnection.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also

Link Libraries)
Syntax
BTI_API PvGetEngineInformation(
BTI_LONG hConnection,
BTI_CHAR_PTR pserverClient,
BTI_ULONG_PTR pdbuApiVer,
BTI_ULONG_PTR pmajor,
BTI_ULONG_PTR pminor,
BTI_ULONG_PTR pserverClientType) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
Out pserverClient Address of a BTI CHAR PTR

True - MKDE_SERVR_ENGINE_CID
False - MKDE_CLNT ENGINE CID

Out pdbudpiVer Version of the structures. Can be NULL
Out pmajor Major version - can be NULL.

Out pminor Minor version - can be NULL.

Out pserverClientType Only for MKDE _SRVR_ENGINE_CID.

Returns one of the following:

UNKNOWN_ENGINE_CLIENT (0)
NT SERVER (1)

WIN32_CLIENT (3)
UNIX_SERVER (4)

CLIENT CACHE (5)
VXWIN_SERVER(6)

VXLINUX_ SERVER(7)

REPORT ENGINE(9)

134 Distributed Tuning Interface Reference

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P _E FAIL Failed for other reasons.
Remarks

The following precondition must be met:

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 135

PvGetError()

Returns an error description string, describing the preceding error. This function is only for errors
encountered in catalog functions.

Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
PRESULT PvGetError(
LPSTR errorDesc,
WORD* size) ;
Arguments

In/Out errorDesc String that will contain the error description.

In/Out size Size of errorDesc. If the size is not large enough to contain the error
description, an error is returned and the required size is contained in
size.

Return Values
PCM_Success The operation was successful.
PCM _errStringTooShort The size parameter was not large enough to contain the error

description. The required length is returned in the size argument.

Remarks

The errorDesc string is allocated by the caller.

The maximum size of the error description is specified in the constant ERROR_LEN found in the
header file ddf.h.

136 Distributed Tuning Interface Reference

See Also

PvStart()
PvStop()

Distributed Tuning Interface Reference 137

PvGetFileHandlesData()

Retrieves all the file handle information related to an open file.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetFileHandlesData(
BTI_LONG hConnection,
BTI_CHAR_PTR fileName,
BTI_ULONG_PTR pCount);
Arguments
In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In fileName Full path name of the file to be queried.
Out pCount Address of an unsigned long to receive the number of handles for the open
file.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P_E DATA UNAVAILABLE Data related to active clients not available.

P E NULL PTR Call with NULL pointer.

P _E FILE NOT OPEN Specified file is not currently open.

P_E FAIL Failed to disconnect to the named server.
Remarks

The information will be cached by DTI for subsequent calls related to file handles. This function
would be called first for an open file before calling any other functions to get file handle

138 Distributed Tuning Interface Reference

information. The cached information for the file handles will be freed when PvFreeOpenFilesData() is
called.

The following preconditions must be met:

» DTI session started by calling PvStart().

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

» Data for open files retrieved by calling PvGetOpenFilesData()

» Caller already has a valid open file name.

See Also

PvStart()
PvConnectServer()
PvGetOpenFilesData()
PvFreeOpenFilesData()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 139

PvGetFileHandlelnfo()

Query the information for a file handle associated with an open file.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetFileHandleInfo(
BTI_LONG hConnection,
BTI_CHAR_PTR fileName,
BTI_ULONG sequence,
PVFILEHDLINFO* pFileHdlInfo);
Arguments

In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.

In fileName Full path name of the file to be queried.

In sequence The sequence number (zero-based) of the file handle. Must be within a
valid range with upper limit defined by the number of file handles
obtained by PvGetFileHandlesData().

Out pFileHdlInfo Address of a PVFILEHDLINFO structure to receive the information on
the file handle.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P_E DATA UNAVAILABLE Data related to active clients not available.

P E NULL PTR Call with NULL pointer

P_E INVALID SEQUENCE Sequence number is not valid

P E FILE NOT OPEN Specified file is not currently open.

P_E FAIL Failed to disconnect to the named server.

140 Distributed Tuning Interface Reference

Remarks

The following preconditions must be met:
» DTI session started by calling PvStart().

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

» Data for open files retrieved by calling PvGetOpenFilesData()
» Data for open file handles retrieved by calling PvGetFileHandlesData();
» Caller already has a valid open file name.

» Caller already has a valid file handle sequence.

See Also

PvStart()
PvConnectServer()
PvGetOpenFilesData()
PvGetFileHandlesData()
PvGetOpenFileName()
PvFreeOpenFilesData()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 141

PvGetFilelnfo()

Query the information for an open file.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetFileInfo(
BTI_LONG hConnection,
BTI_CHAR_PTR fileName,
PVFILEINFO* pFilelnfo) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In fileName Full path name of the file to be queried.
Out pFilelnfo Address of a PVFILEINFO structure to receive the information on the
file.

Return Values

P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.
P_E DATA UNAVAILABLE Data related to active clients not available.
P E NULL PTR Call with NULL pointer
P _E FILE NOT OPEN Specified file is not currently open.
P _E FAIL Failed for other reasons.
Remarks

The following preconditions must be met:

142 Distributed Tuning Interface Reference

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

» Data for open files retrieved by calling PvGetOpenFilesData();

» Caller already has a valid open file name.

See Also

PvStart()
PvConnectServer()
PvGetOpenFilesData()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 143

PvGetLongValue()

Retrieves the value for a long integer type setting, from the data source specitied by whichData.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_SINT PvGetlLongValue(
BTI_LONG hConnection,
BTI_ULONG settinglD,
BTI_LONG_PTR pValue,
BTI_SINT whichData) ;

Arguments

In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of settings can be obtained from
PvGetSettingList().

Out plalue Address of a long integer variable that receives the setting value.

In whichData Flag to indicate which value is requested:

PVDATA DEFAULT returns default value.
PVDATA CURRENT returns current value

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P E NULL PTR Call with NULL pointer

P_E INVALID DATA TYPE The requested setting is not of long integer type.
P E FAIL Failed for other reasons.

144 Distributed Tuning Interface Reference

Remarks

The following preconditions must be met:
» DTI session started by calling PvStart().

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

To obtain the minimum and maximum values that the setting can accept, use the
PvGetValueLimit() function.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetValueLimit()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 145

PvGetMkdeClientid()

Get the client ID of an active MicroKernel Engine client.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetMkdeClientId(
BTI_LONG hConnection,
BTI_ULONG sequence,
PVCLIENTID* pClientld);
Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In sequence The sequence number (zero based) of the MicroKernel Engine client.
Must be within a valid range with upper limit returned by
PvGetMkdeClientsData().
Out pClientld Address of the PVCLIENTID structure to hold the returned client ID
information.
Return Values
P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.
P E DATA UNAVAILABLE Data related to active clients not available.
P_E NULL PTR Call with NULL pointer.
P _E INVALID SEQUENCE Sequence number is not valid.
P _E FAIL Failed for other reasons.

Remarks

The following preconditions must be met:

146 Distributed Tuning Interface Reference

» DTI session started by calling PvStart().

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

» Data for active clients retrieved by calling PvGetMkdeClientsData()

See Also

PvStart()
PvConnectServer()
PvGetMkdeClientsData()
PvGetMkdeClientInfo()
PvFreeMkdeClientsData()
PvDisconnect()

PvStop()

Distributed Tuning Interface Reference 147

PvGetMkdeClientinfo()

Query the information for an active MicroKernel Engine client.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_SINT PvGetMkdeClientInfo(
BTI_LONG hConnection,
PVCLIENTID* pClientld,
PVMKDECLIENTINFO* pClientInfo) ;

Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In pClientld Address of the PVCLIENTID structure to identify the MicroKernel
Engine client.
Out PClientInfo Address of a PVMKDECLIENTINFO structure to receive the

information for the MicroKernel Engine client.

Return Values

P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.
P_E DATA UNAVAILABLE Data related to active clients not available.
P E NULL PTR Call with NULL pointer.
P E INVALID CLIENT Invalid client ID.
P_E FAIL Failed for other reasons.
Remarks

The following preconditions must be met:

148 Distributed Tuning Interface Reference

» DTI session started by calling PvStart().

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

» Data for active clients retrieved by calling PvGetMkdeClientsDatal().

» Caller already has a valid active MicroKernel Engine client ID.

See Also

PvStart()
PvConnectServer()
PvGetMkdeClientsData()
PvGetMkdeClientId()
PvFreeMkdeClientsData()
PvDisconnect()

PvStop()

Distributed Tuning Interface Reference 149

PvGetMkdeClientHandlesData()

Retrieves the number of MicroKernel Engine client handles related to an active client.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetMkdeClientHandlesData(
BTI_LONG hConnection,
PVCLIENTID* pClientld,
BTI_ULONG_PTR pCount) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In pClientld Address of the PVCLIENTID structure to identify the MicroKernel
Engine client.

Out pCount Address of an unsigned long to receive the number of handles for the
MicroKernel Engine client.

Return Values

P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.
P_E DATA UNAVAILABLE Data related to MicroKernel Engine clients not available.
P E NULL PTR Call with NULL pointer.
P _E FAIL Failed for other reasons.
Remarks

When you call this function, all information regarding MicroKernel Engine client handles is
cached by DTI for subsequent function calls related to client handles. If you want to obtain other
information about clients, see PvGetMkdeClientsData().

150 Distributed Tuning Interface Reference

This function should be called first before calling any other functions that return client handle
information.

The cached information for the MicroKernel Engine client handles will be freed along with the
information about the clients when PvFreeMkdeClientsData() is called.

The following preconditions must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

» Data for active clients retrieved by calling PvGetMkdeClientsData().

» Caller already has a valid active MicroKernel Engine client ID.

See Also

PvStart()
PvConnectServer()
PvGetMkdeClientsData()
PvFreeMkdeClientsData()
PvDisconnect()

PvStop()

Distributed Tuning Interface Reference 151

PvGetMkdeClientHandlelnfo()

Query the information for a MicroKernel Engine client handle associated with an active client.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_SINT PvGetMkdeClientHandleInfo(
BTI_LONG hConnection,
PVCLIENTID* pClientld,
BTI_ULONG sequence,

PVMKDECLIENTHDLINFO* pClientHdlInfo) ;

Arguments

In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.

In pClientld Address of the PVCLIENTID structure to identify the MicroKernel
Engine client.

In sequence The sequence number (zero based) of the client handle. Must be within a
valid range with upper limit defined by the number of handles obtained by
PvGetMkdeClientHandlesData().

Out pClientHdlInfo Address of a PVMKDECLIENTHDLINFO structure to receive the

information on the client handle.

Return Values

P OK The operation was successful.

P E NULL PTR Call with NULL pointer.

P_E INVALID HANDLE Invalid connection handle.

P _E INVALID CLIENT Invalid client ID.

P_E INVALID SEQUENCE Sequence number is not valid.

P _E FAIL Failed to disconnect to the named server.
P E DATA UNAVAILABLE Data related to active clients not available.

152 Distributed Tuning Interface Reference

Remarks

The following preconditions must be met:

Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

Data for active MicroKernel Engine clients retrieved by calling PvGetMkdeClientsData();

Data for MicroKernel Engine client handles retrieved by calling
PvGetMkdeClientHandlesData();

Caller already has a valid active MicroKernel Engine client ID.

Caller already has a valid handle sequence for the active MicroKernel Engine client.

See Also

PvStart()

PvConnectServer()
PvGetMkdeClientsData()
PvGetMkdeClientHandlesData()
PvFreeMkdeClientsData()
PvDisconnect()

PvStop()

Distributed Tuning Interface Reference 153

PvGetMkdeClientsData()

Retrieves all the information related to the active MicroKernel Engine clients.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetMkdeClientsData(
BTI_LONG hConnection,
BTI_ULONG_PTR pCount);
Arguments
In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

Out pCount Address of an unsigned long to receive the number of active
MicroKernel Engine clients.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P E NULL PTR Call with NULL pointer.

P _E FAIL Failed for other reasons.
Remarks

When you call this function, all information regarding MicroKernel Engine clients is cached by
DTI for subsequent function calls related to clients. The one exception is information regarding
client handles, which is cached using a similar function PvGetMkdeClientHandlesData().

This function should be called first before calling any other functions that return client
information. The caller should call PvFreeMkdeClientsData() to free the cached information
when it is no longer needed.

154 Distributed Tuning Interface Reference

This function can also be called to refresh the cached information.

The following precondition must be met:

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB_CONNECTION may be used as the connection handle.

See Also

PvStart()

PvConnectServer()
PvFreeMkdeClientsData()
PvGetMkdeClientHandlesData()
PvDisconnect()

PvStop()

Distributed Tuning Interface Reference 155

PvGetMkdeCommsStat()

Retrieves all the MicroKernel Engine communication statistics data.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetMkdeCommStat(
BTI_LONG hConnection,
PVCOMMSTAT* pCommStat) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

Out pCommStat Address of a PVCOMMSTAT structure to receive the MicroKernel
Engine communication statistics.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P E COMPONENT NOT LOADED Component is not loaded

P_E NULL PTR Call with NULL pointer.

P _E FAIL Failed to disconnect to the named server.
Remarks

The following preconditions must be met:

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

» Data for open files retrieved by calling PvGetSQLConnectionsData()

156 Distributed Tuning Interface Reference

See Also

PvStart()

PvConnectServer()
PvGetSQLConnectionsData()
PvGetMkdeUsage()
PvFreeSQLConnectionsData()
PvDisconnect()

PvStop()

Distributed Tuning Interface Reference 157

PvGetMkdeCommStatEx()

Retrieves all the MicroKernel Engine communication statistics data.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav78.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetMkdeCommStatEx(
BTI_LONG hConnection,
PVCOMMSTATEX* pCommStatEx) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

Out pCommStatEx Address of a PVCOMMSTATEX structure to receive the MicroKernel
Engine communication statistics.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P E COMPONENT NOT LOADED Component is not loaded

P_E NULL PTR Call with NULL pointer.

P _E FAIL Failed to disconnect to the named server.
Remarks

This function returns the same data as PvGetMkdeCommStat but uses a new structure
PVCOMMSTATEX that contains two additional elements. The added elements (totalTimeouts
and totalRecoveries) are related to the auto reconnect feature. See Advanced Operations Guide for
more information on auto reconnect.

The following preconditions must be met:

158 Distributed Tuning Interface Reference

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

» Data for open files retrieved by calling PvGetSQLConnectionsData()

See Also

PvStart()

PvConnectServer()
PvGetSQLConnectionsData()
PvGetMkdeUsage()
PvFreeSQLConnectionsData()
PvDisconnect()

PvStop()

Distributed Tuning Interface Reference 159

PvGetMkdeUsage()

Retrieves the resource usage information from the MicroKernel Engine, including current, peak,
and maximum settings for licenses, files, handles, transactions, clients, threads, and locks.

Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetMkdeUsage(
BTI_LONG hConnection,
PVMKDEUSAGE * pMkdeUsage) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

Out pMkdeUsage Address of a PVMKDEUSAGE structure to receive the MicroKernel
Engine resource usage information.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P_E NULL PTR Call with NULL pointer.

P E FAIL Failed for other reasons.
Remarks

The following preconditions must be met:

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

160 Distributed Tuning Interface Reference

See Also

PvStart()
PvConnectServer()
PvGetMkdeCommStat()
PvGetMkdeUsageEx()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 161

PvGetMkdeUsageEXx()

Retrieves the resource usage information from the MicroKernel Engine database engine,
including current, peak, and maximum settings for use count, session count, data in use, files,
handles, transactions, clients, threads, and locks, and the duration, in seconds, that the database
engine has been running (referred to as "engine uptime").

Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav78.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetMkdeUsageEx(
BTI_LONG hConnection,
PVMKDEUSAGEEX* pMkdeUsage) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

Out pMkdeUsage Address of a PVMKDEUSAGEEX structure to receive the
MicroKernel Engine resource usage information.

Return Values

P OK The operation was successful.

P E INVALID HANDLE Invalid connection handle.

P_E NULL PTR Call with NULL pointer.

P _E FAIL Failed for other reasons.
Remarks

This function, PvGetMkdeUsageEx(), is similar to PvGetMkdeUsage(); the only difference is in
the structures. While supplying the same elements, PVMKDEUSAGEEX supplies four-byte
elements when PVMKDEUSAGE supplies two-byte ones.

The following preconditions must be met:

162 Distributed Tuning Interface Reference

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetMkdeCommStat()
PvGetMkdeUsage()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 163

PvGetMkdeVersion()

Retrieves the MicroKernel Engine version information.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav78.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetMkdeVersion(
BTI_LONG hConnection,
PVVERSION* pMideVersion) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

Out pMkdeVersion Address of a PVVERSION structure to receive the MicroKernel
Engine version information.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P E NULL PTR Call with NULL pointer.

P_E COMPONENT NOT LOADED Component not loaded.

P _E FAIL Failed for other reasons.
Remarks

The following preconditions must be met:

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

164 Distributed Tuning Interface Reference

See Also

PvStart()
PvConnectServer()
PvGetMkdeCommStat()
PvGetMkdeUsageEx()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 165

PvGetOpenFilesData()

Retrieves all the information related to the open files.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetOpenFilesData(
BTI_LONG hConnection,
BTI_ULONG_PTR pCount) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

Out pCount Address of an unsigned long to receive the number of open files.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P E NULL PTR Call with NULL pointer.

P _E FAIL Failed for other reasons.
Remarks

The information will be cached by DTTI for subsequent calls related to open files. This function
should be called first before calling any other functions to get open file information.

The following precondition must be met:

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

The following post condition must be met:

166 Distributed Tuning Interface Reference

» The caller should call PvFreeOpenFilesData() to free the cached information when it is no
longer needed.

See Also

PvStart()
PvConnectServer()
PvGetOpenFileName()
PvFreeOpenFilesData()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 167

PvGetOpenFileName()

Retrieves the full path name of an open file.

Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also

Link Libraries)
Syntax
BTI_SINT PvGetOpenFileName(
BTI_LONG hConnection,
BTI_ULONG sequence,
BTI_ULONG_PTR pBufSize,
BTI_CHAR_PTR fileName) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In sequence The sequence number (zero based) of the file. Must be within a

valid range with upper limit returned by PvGetOpenFilesData().

In/Out pBufSize

Address of an unsigned long containing size of buffer allocated to
receive the file name. Receives actual size of chars copied. The size
should include the null terminator.

In/Out fileName

String value returned.

Return Values

P OK

The operation was successful.

P E INVALID HANDLE

Invalid connection handle.

P E DATA UNAVAILABLE

Data related to active clients not available.

P E NULL PTR

Call with NULL pointer.

P E BUFFER TOO SMALL

Allocated buffer is too small for the string, returned string is
truncated. In this case the required size is in pBufSize.

P E INVALID SEQUENCE

Sequence number is not valid.

P E FAIL

Failed to disconnect to the named server.

168 Distributed Tuning Interface Reference

Remarks

The following preconditions must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

» Data for open files retrieved by calling PvGetOpenFilesData().

See Also

PvStart()
PvConnectServer()
PvGetOpenFilesData()
PvFreeOpenFilesData()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 169

PvGetProductsinfo()

Retrieves xml string with information on all Zen products found by the License Manager.
Header File: dtilicense.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_API PvGetProductsInfo (
BTI_LONG hConnection,
BTI_CHAR_PTR productinfo,
BTI_ULONG_PTR pBufSize);
Arguments
In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

Out productinfo XML string returned with product information.

In/Out pBufSize Address of an unsigned long containing size of the buffer allocated to
receive the string. It receives the actual length of selection string.

Return Values

DBU_SUCCESS The operation was successful.

P_E FAIL Failed for other reasons.

Status code pertaining to license administration See Status Codes and Messages for License
or to authorization Administrator Status Codes and Authorization
Status Codes.

Remarks

The following preconditions must be met:
» DTI session started by calling PvStart().

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

170 Distributed Tuning Interface Reference

Product Information Returned by PvGetProductsinfo()

Following is the document type definition (DTD) for the XML string returned by
PvGetProductsInfo() and an explanation of its terms:

<!DOCTYPE
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

products [

products (product*)>
product (name,id,licenses)>
name (#PCDATA)>

id (#PCDATA)>

licenses (license*)>
license

(type, productCode*,productKey*,state*, feature*,edition*,maxUserCount*,maxSessionCount*,maxDataInUseG
B*,platform*, sequence*,userCount*,sessionCount*,dataInUseGB*,timeStamp*,oemId*,application*,descript
ion*,isremovable*, gracePeriodEnd*)>

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

type (#PCDATA)>
productCode (#PCDATA)>
productKey (#PCDATA)>
state (#PCDATA)>

feature (#PCDATA)>
edition (#PCDATA)>
maxUserCount (#PCDATA)>
maxSessionCount (#PCDATA)>
maxDataInUseGB (#PCDATA)>
platform (#PCDATA)>
sequence (#PCDATA)>
userCount (#PCDATA)>
sessionCount (#PCDATA)>
dataInUseGB (#PCDATA)>
timeStamp (#PCDATA)>
oemId (#PCDATA)>

<!ELEMENT application (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT isremovable (#PCDATA)>
<!ELEMENT gracePeriodEnd (#PCDATA)>
1>
products A container for all products returned by PvGetProductsInfo().
product A container for information about a single product.
name The name of the product.
id The Zen code for the product. Refer to the dtilicense header file for the list of
product codes returned.
licenses A container for all licenses that apply to the product.
license A container for information about a single license.

Distributed Tuning Interface Reference 171

type

The license type:

1: Permanent

2: Expiring license set at issue date

4: Expiring license applied at install time

7: User count increase

productCode

The Zen code for the product. See the dtilicense header file for the list of product
codes returned.

productKey

The key used for product authorization. Can be empty if product authorization
was not used.

state

The current state of the license:
0: Active

1: Expired

2: Disabled

3: Inactive

4: Failed validation

feature

Reserved.

edition

Reserved.

maxUserCount

Maximum concurrent users allowed. Zero indicates unlimited users on Zen
Enterprise Server and Workgroup editions. Not applicable on Zen Cloud Server
edition and always returns zero.

maxSessionCount

Maximum concurrent sessions allowed. Zero indicates unlimited sessions on the
Zen Cloud Server edition. Not applicable on Zen Enterprise Server and
Workgroup editions and always returns zero.

maxDatainUseGB

Maximum amount of data allowed to be used simultaneously, measured in
gigabytes. Zero indicates unlimited amount of data on the Zen Cloud Server
edition. Not applicable on Zen Enterprise Server and Workgroup editions and
always returns zero.

platform

The supported platforms:
0: ANY

1: WIN

2: WIN32

3: WIN64

4: LINUX

5: LINUX32

6: LINUX64

sequence

The license sequence number.

172 Distributed Tuning Interface Reference

userCount

The number of users permitted by the license. A -1 indicates unlimited number of
users on Zen Enterprise Server and Workgroup editions. Not applicable on Zen
the Cloud Server edition and always returns zero.

sessionCount The number of sessions permitted by the license. A -1 indicates unlimited number
of users on the Zen Cloud Server edition. Not applicable on Zen Enterprise Server
and Workgroup editions and always returns zero.

datalnUseGB The amount of data in use permitted by the license, measured in gigabytes. A -1
indicates unlimited data count size on the Zen Cloud Server edition. Not
applicable on Zen Enterprise Server and Workgroup editions and always returns
Zero.

timeStamp For temporary keys, the expiration day represented as the number of days from
January 1, 2000.

oemld The vendor ID.

application The vendor’s application ID.

description Reserved.

isremovable The license key is removable:
0: Not removable
1: Removable

gracePeriodEnd Number of days remaining before the engine is disabled for failing license
validation. Empty if a failed-validation period is not applicable to this product. -1
if a failed-validation period is applicable but not in effect for this product.

Example

<?xml version="1.0" encoding='UCS-4' ?>

<!DOCTYPE products [

<!ELEMENT products (product*)>
<!ELEMENT product (name,id,licenses)>
<!ELEMENT name (#PCDATA)>

<!ELEMENT id (#PCDATA)>

<!ELEMENT licenses (license*)>

<!ELEMENT license

(type, productCode*, productKey*,state*,feature*,edition*,maxUserCount*,maxSessionCount*,maxDataInUseG
B*,platform*, sequence*,userCount*,sessionCount*,dataInUseGB*,timeStamp*,oemId*,application*,descript
ion*,isremovable*, gracePeriodEnd*)>

<|ELEMENT type (#PCDATA)>

<!ELEMENT productCode (#PCDATA)>

<!ELEMENT productKey (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT feature (#PCDATA)>

<!ELEMENT edition (#PCDATA)>

<!ELEMENT maxUserCount (#PCDATA)>

<IELEMENT maxSessionCount (#PCDATA)>

<!ELEMENT maxDataInUseGB (#PCDATA)>

<IELEMENT platform (#PCDATA)>

<!ELEMENT sequence (#PCDATA)>

Distributed Tuning Interface Reference 173

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

1>

<products>

userCount (#PCDATA)>
sessionCount (#PCDATA)>
dataInUseGB (#PCDATA)>
timeStamp (#PCDATA)>
oemId (#PCDATA)>
application (#PCDATA)>
description (#PCDATA)>
isremovable (#PCDATA)>
gracePeriodEnd (#PCDATA)>

<product>
<name>DataExchange 5 Server: Real-Time Backup</name>
<id>78</id>
<licenses>
<license>
<type>1</type>
<productCode>78</productCode>
<productKey> ABCDE-55555-FGHIJ-55555-KLMNO-55555</productKey>
<state>0</state>
<feature>0</feature>
<edition>@</edition>
<maxUserCount>0</maxUserCount>
<maxSessionCount>@</maxSessionCount>
<maxDataInUseGB>0</maxDataInUseGB>
<platform>2</platform>
<sequence>0</sequence>
<userCount>1</userCount>
<sessionCount>0</sessionCount>
<dataInUseGB>0</dataInUseGB>
<timeStamp>0</timeStamp>
<oemId>0</oemId>
<application>@</application>
<description></description>
<isremovable>1</isremovable>
<gracePeriodEnd>-1</gracePeriodEnd>
</license>
</licenses>
</product>
<product>
<name>PSQL 12 Server</name>
<id>425</id>
<licenses>
<license>
<type>2</type>
<productCode>425</productCode>
<productKey></productKey>
<state>0</state>
<feature>0</feature>
<edition>@</edition>
<maxUserCount>0</maxUserCount>
<maxSessionCount>0</maxSessionCount>
<maxDatalnUseGB>0</maxDatalnUseGB>
<platform>2</platform>
<sequence>0</sequence>
<userCount>10</userCount>
<sessionCount>@</sessionCount>
<dataInUseGB>0</dataInUseGB>
<timeStamp>4489</timeStamp>
<oemId>8</oemId>
<application>604</application>
<description></description>
<isremovable>@</isremovable>
<gracePeriodEnd></gracePeriodEnd>
</license>

174 Distributed Tuning Interface Reference

<license>
<type>4</type>
<productCode>425</productCode>
<productKey></productKey>
<state>0</state>
<feature>0</feature>
<edition>0@</edition>
<maxUserCount>0</maxUserCount>
<maxSessionCount>@</maxSessionCount>
<maxDataInUseGB>0</maxDataInUseGB>
<platform>1</platform>
<sequence>11200</sequence>
<userCount>20</userCount>
<sessionCount>0@</sessionCount>
<dataInUseGB>0</dataInUseGB>
<timeStamp>4429</timeStamp>
<oemId>0</oemId>
<application>1</application>

<description></description>

<isremovable>@</isremovable>
<gracePeriodEnd></gracePeriodEnd>

</license>

<license>
<type>1</type>
<productCode>425</productCode>
<productKey>ABCDE-55555-FGHIJ-55555-KLMNO-55555</productKey>
<state>0</state>
<feature>0</feature>
<edition>0@</edition>
<maxUserCount>0</maxUserCount>
<maxSessionCount>@</maxSessionCount>
<maxDataInUseGB>0</maxDataInUseGB>
<platform>2</platform>
<sequence>0@</sequence>
<userCount>10</userCount>
<sessionCount>0@</sessionCount>
<dataInUseGB>0</dataInUseGB>
<timeStamp>0</timeStamp>
<oemId>333</oemId>

<application>334</application>

<description></description>
<isremovable>1</isremovable>
<gracePeriodEnd>-1</gracePeriodEnd>

</license>

</licenses>
</product>
</products>

See Also

PvValidateLicenses()
PvConnectServer()
PvStart()

PvStop()

Distributed Tuning Interface Reference 175

PvGetSelectionString()

Retrieves display string for a specific choice of selection type setting.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetSelectionString(
BTI_LONG hConnection,
BTI_ULONG settinglD,
BTI_ULONG selection,
BTI_ULONG_PTR pBufSize,
BTI_CHAR_PTR dispString) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In settinglD Unique identifier for the setting. A list of settings can be obtained from
PvGetSettingList().
In selection Selection choice index. PSelectionList returned from
PvGetAllPossibleSelections().
In/Out pBufSize Address of an unsigned long containing size of the buffer allocated to
receive the string. It receives the actual length of selection string.
Out dispString Display string returned.

Return Values

P OK The operation was successful.
P E INVALID HANDLE Invalid connection handle.
P_E NULL PTR Call with NULL pointer.

P_E INVALID DATA TYPE The requested setting is not of selection type.

P_E BUFFER TOO SMALL The array size is too small. In this case, the required size is returned
in pBufSize.

176 Distributed Tuning Interface Reference

P_E FAIL Failed for other reasons.

Remarks

The following precondition must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetSelectionStringSize()
PvDisconnect()

PvStop()

Distributed Tuning Interface Reference 177

PvGetSelectionStringSize()

Retrieves size of buffer needed for successful PvGetSelectionString () call.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav78.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetSelectionStringSize(
BTI_LONG hConnection,
BTI_ULONG settinglD,
BTI_ULONG_PTR pBufSize) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In settinglD Unique identifier for the setting. A list of settings can be obtained from
PvGetSettingList().
In/Out pBufSize Address of an unsigned long containing size of the buffer in

PvGetSelectionString() call allocated to receive the string. It receives
the actual length of selection string.

Return Values

P OK The operation was successful.
P E INVALID HANDLE Invalid connection handle.
P_E NULL PTR Call with NULL pointer.
P E INVALID DATA TYPE The requested setting is not of selection type.
P _E FAIL Failed for other reasons.
Remarks

The following precondition must be met:

178 Distributed Tuning Interface Reference

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 179

PvGetSelectionValue()

Retrieves the value for a selection type setting, from the data source specified by whichData.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetSelectionValue(
BTI_LONG hConnection,
BTI_ULONG settinglD,
BTI_ULONG_PTR pNumlitems,
BTI_LONG_PTR pValue,
BTI_SINT whichData) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In settinglD Unique identifier for the setting. A list of settings can be obtained from
PvGetSettingList().
In/Out pNumltems Address of an unsigned long that specifies the array size on input, and
receives the number of individual selection items on return.
Out pValue Array of individual selection indexes.
In whichData Flag to indicate which value is requested:

PVDATA DEFAULT returns default value.
PVDATA CURRENT returns current value

Return Values

P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.
P E NULL PTR Call with NULL pointer.

P_E INVALID DATA TYPE The requested setting is not of string type.

180 Distributed Tuning Interface Reference

P_E BUFFER TOO SMALL The array size is too small. In this case, the required size is
returned in pNumlitems.

P E FAIL Failed for other reasons.

Remarks

The following preconditions must be met:

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 18I

PvGetServerName()

Retrieves the name of the connected server indicated by the connection handle.
Header File: connect.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetServerName(
BTI_LONG hConnection,
BTI_ULONG_PTR pBufSize,
BTI_CHAR_PTR serverName);
Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In/Out pBufSize Address of an unsigned long containing size of the buffer allocated to
receive server name.
In/Out serverName Returned server name if successful, empty string otherwise.

Return Values

P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.
P E NULL PTR Call with NULL pointer.

P_E BUFFER TOO SMALL The buffer is too small for the string. In this case, the required buffer
size is returned in PBufSize.

P _E FAIL Failed to connect to the named server.

Remarks
The implementation should perform the necessary initializations when called the first time.

Multiple simultaneous connections are allowed.

182 Distributed Tuning Interface Reference

See Also

PvStart()
PvConnectServer()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 183

PvGetSettingHelp()

Retrieves help string related to setting.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_SINT PvGetSettingHelp(
BTI_ULONG settinglD,
BTI_ULONG_PTR pBufSize,
BTI_CHAR_PTR pHelpString) ;

Arguments

In settinglD Unique identifier for the setting. A list of settings can be obtained from
PvGetSettingList().

In/Out pBufSize Address of an unsigned long containing size of buffer allocated to
receive setting value. Receives actual size of setting value. The size
should include the NULL terminator.

Out pHelpString String value returned.

Return Values

P OK The operation was successful.

P E NULL PTR Call with NULL pointer.

P E BUFFER TOO SMALL The buffer allocated is too small and the display string is truncated.
In this case, the required buffer size is returned in pBufSize.

P E FAIL Failed for other reasons.

Remarks

The following preconditions must be met:

» DTI session started by calling PvStart().

184 Distributed Tuning Interface Reference

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetSettingInfo()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 185

PvGetSettingHelpSize()

Retrieves help string related to setting.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav78.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetSettingHelpSize(
BTI_ULONG settinglD,
BTI_ULONG_PTR pBufSize) ;
Arguments
In settinglD Unique identifier for the setting. A list of settings can be obtained from
PvGetSettingList().
In/Out pBufSize Address of an unsigned long containing size of buffer allocated to

receive setting value. Receives actual size of setting value. The size
should include the NULL terminator.

Return Values

P OK The operation was successful.
P E NULL PTR Call with NULL pointer.
Remarks

The following preconditions must be met:
» DTI session started by calling PvStart().

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

186 Distributed Tuning Interface Reference

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetSettingInfo()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 187

PvGetSettinginfo()

Retrieves setting information for a setting.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetSettingInfo(
BTI_LONG hConnection,
BTI_ULONG settinglD,
PVSETTINGINFO* pSettingInfo) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of settings can be obtained from
PvGetSettingList().

Out pSettinglnfo Address of a PVSETTINGINFO structure that receives setting
information.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P E NULL PTR Call with NULL pointer.

P_E FAIL Failed for other reasons.
Remarks

The following preconditions must be met:
» DTI session started by calling PvStart().

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

188 Distributed Tuning Interface Reference

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetSettingHelp()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 189

PvGetSettingList()

Retrieves a list of settings belonging to the specified category.

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also

Link Libraries)

Syntax

BTI_SINT PvGetSettinglList(
BTI_LONG hConnection,
BTI_ULONG categorylD,
BTI_ULONG_PTR pNumSettings,
BTI_ULONG_PTR pSettingList) ;

Arguments

In hConnection

Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.

In categorylD

Unique identifier for the category

Out pNumSettings

Address of an unsigned long containing size of the array on input, and
receives number of items in the returned list.

Out pSettingList

Pointer to the list of returned setting IDs.

Return Values

P OK

The operation was successful.

P _E_INVALID HANDLE

Invalid connection handle.

P E NULL PTR

Call with NULL pointer.

P E BUFFER_TOO SMALL

The array size is too small. In this case, the required size is returned
in pNumSettings.

P E FAIL

Failed for other reasons.

190 Distributed Tuning Interface Reference

Remarks

If the connection is a remote connection, only server-side settings for the category are returned. If
the connection is a local connection, both client-side and server-side settings for this category will
be returned.

Use PvisSettingAvailable() to determine if the setting can be set at this time.

The following preconditions must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvIsSettingAvailable()
PvGetSettingHelp()
PvGetSettingInfo()
PvGetSettingMap()
PvGetSettingUnits()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 191

PvGetSettingListCount()

Retrieves number of settings belonging to the specified category. This number can then be used to
allocate an array to pass to PvGetSettingList().

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav78.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetSettinglListCount(
BTI_LONG hConnection,
BTI_ULONG categorylD,
BTI_ULONG_PTR pNumSettings) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In categorylD Unique identifier for the category.

Out pNumSettings Address of an unsigned long containing size of the array on input, and
receives number of items in the returned list.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P E NULL PTR Call with NULL pointer.

P _E FAIL Failed for other reasons.
Remarks

If the connection is a remote connection, only server-side settings for the category are returned. If
the connection is a local connection, both client-side and server-side settings for this category will
be returned.

Use PvisSettingAvailable() to determine if the setting can be set at this time.

192 Distributed Tuning Interface Reference

The following preconditions must be met:

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvIsSettingAvailable()
PvGetSettingHelp()
PvGetSettingInfo()
PvGetSettingMap()
PvGetSettingUnits()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 193

PvGetSettingMap()

Retrieves option ID and component ID for a setting.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetSettingMap(
BTI_ULONG settinglD,
BTI_WORD_PTR pComponentID,
BTI_WORD_PTR pOptionID) ;
Arguments
In settinglD Unique identifier for the setting. A list of settings can be obtained from
PvGetSettingList().
Out pComponentID Address of an unsigned short for Component.
Out pOptionlD Address of an unsigned short for Option

Return Values

P OK The operation was successful.

P E NULL PTR Call with NULL pointer.

P _E FAIL Failed for other reasons.
Remarks

Option and Component maps setting to DBUGetInfo or DBUSetInfo calls.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()

194 Distributed Tuning Interface Reference

PvGetSettingList()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 195

PvGetSettingUnits()

Retrieves default units and suggested factor. This function is only valid for settings of long integer
type.

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_SINT PvGetSettingUnits(
BTI_LONG hConnection,
BTI_ULONG settinglD,
BTI_ULONG_PTR pBufSize,
BTI_CHAR_PTR pValue,
BTI_ULONG_PTR pFactor,
BTI_ULONG_PTR pFBufSize,
BTI_CHAR_PTR pFValue);

Arguments

In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of settings can be obtained from
PvGetSettingList().
In/Out pBufSize Address of an unsigned long containing size of the buffer allocated to

receive string of default units. Receives actual size of string of default
units. The size should include the NULL terminator.

Out pValue String of default value returned.
Out pFactor Address of an unsigned long for factor.
In/Out pFBufSize Address of an unsigned long containing size of buffer allocated to

receive string of "factor" units. Receives actual size of string of default
units. The size should include the NULL terminator.

Out pFValue String of "factor" value returned.

196 Distributed Tuning Interface Reference

Return Values

P OK The operation was successful.

P E NULL PTR Call with NULL pointer.

P_E INVALID DATA TYPE The setting requested is not of long integer type.

P_E BUFFER TOO SMALL The buffer is too small for the string. In this case, the required buffer
size is returned in pBufSize.

P_E FAIL Failed to connect to the named server.

Remarks

The following precondition must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 197

PvGetSettingUnitsSize()

Returns the size in bytes of buffer size required to receive information in PvGetSettingUnits()
call.

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav78.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_SINT PvGetSettingUnitsSize(
BTI_LONG hConnection,
BTI_ULONG settinglD,
BTI_ULONG_PTR pBufSize,
BTI_ULONG_PTR pFBufSize);

Arguments

In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of settings can be obtained from
PvGetSettingList().
In/Out pBufSize Address of an unsigned long containing size of the buffer allocated to

receive string of default units. Receives actual size of string of default
units. The size should include the NULL terminator.

In/Out pFBufSize Address of an unsigned long containing size of buffer allocated to
receive string of "factor" units. Receives actual size of string of default
units. The size should include the NULL terminator.

Return Values

P OK The operation was successful.
P E NULL PTR Call with NULL pointer.
P_E INVALID DATA TYPE The setting requested is not of long integer type.

198 Distributed Tuning Interface Reference

Remarks

The following precondition must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 199

PvGetSQLConnectionsData()

Retrieves the number of connections to the SQL Connection Manager and all information related
to the connections.

Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetSQLConnectionsData(
BTI_LONG hConnection,
BTI_ULONG_PTR pCount) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
Out pCount Address of an unsigned long to receive the number of SQL
connections.
Return Values
P OK The operation was successful.
P E INVALID HANDLE Invalid connection handle.
P_E NULL PTR Call with NULL pointer.
P _E FAIL Failed for other reasons.

Remarks

The information will be cached by DTI for subsequent calls related to SQL connections. This
function should be called first before calling any other functions to get SQL connection
information.

The following preconditions must be met:

200 Distributed Tuning Interface Reference

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

The following post conditions must be met:

* The caller should call PvFreeSQLConnectionsData() to free the cached information when it is
no longer needed.

See Also

PvStart()

PvConnectServer()
PvGetMkdeCommStat()
PvGetSQLConnectionInfo()
PvFreeSQLConnectionsData()
PvDisconnect()

PvStop()

Distributed Tuning Interface Reference 201

PvGetSQLConnectioninfo()

Query the information for a SQL connection.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetSQLConnectionInfo(
BTI_LONG hConnection,
BTI_ULONG sequence,
PVSQLCONNINFO* pSOLConnlinfo) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained

with the PvConnectServer() function.

In sequence The sequence number (zero based) of the SQL connection. Must be within a
valid range with upper limit defined by the number of SQL connections
obtained by PvGetSQLConnectionsData().

Out pSQOLConninfo Address of a PVSQLCONNINFO structure to receive the information on the
SQL connection.

Return Values

P OK The operation was successful.
P_E INVALID HANDLE hConnection parameter is not a valid connection handle.
P_E DATA UNAVAILABLE Data not available for the SQL connection.
P E NULL PTR PpSOLConnlnfo pointer is NULL.
P_E INVALID SEQUENCE Sequence number is not valid.
P _E FAIL Failed to disconnect to the named server.
Remarks

The following preconditions must be met:

202 Distributed Tuning Interface Reference

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

» Data for SQL connections retrieved by calling PvGetSQLConnectionsData()

» Caller already has a valid SQL connection sequence.

See Also

PvStart()

PvConnectServer()
PvGetSQLConnectionsData()
PvFreeSQLConnectionsData()
PvDisconnect()

PvStop()

Distributed Tuning Interface Reference 203

PvGetStringType()

Retrieves additional information about PVSETTING STRING setting which only applies to
string type setting.

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvGetStringType(
BTI_LONG hConnection,
BTI_ULONG settinglD,
BTI_ULONG_PTR pTypeString) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained

with the PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of settings can be obtained from
PvGetSettingList().
Out pDypeString Subtype of PVSETTING STRING returned.

Return Values

P OK The operation was successful.
P E NULL PTR Call with NULL pointer.
P_E INVALID DATA TYPE The setting requested is not of string type.
P _E FAIL Failed for other reasons.
Remarks

The following precondition must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

204 Distributed Tuning Interface Reference

Here are possible subtypes of PVSETTING STRING:

* PVSTRING - a string that is neither dir or file

* PVFILESTRING - a string that indicates the path to a file

* PVDIRECTORYSTRING - a string that indicates a directory

The subtypes are defined in config.h.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetStringValue()
PvSetStringValue()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 205

PvGetStringValue()

Retrieves the value (Null terminated string) for a string type setting, from the data source
specified by whichData. Some settings may return a list of strings separated by semicolons (;).

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also

Link Libraries)

Syntax

BTI_SINT PvGetStringValue(

BTI_LONG hConnection,
BTI_ULONG settinglD,
BTI_ULONG_PTR pBufSize,
BTI_CHAR_PTR value,
BTI_SINT whichData) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In settinglD Unique identifier for the setting. A list of settings can be obtained from

PvGetSettingList().

In/Out pBufSize

Address of an unsigned long containing the size of the buffer allocated to
receive the setting value. Receives the actual size of setting value.

Out value

Address of a long integer variable that receives the setting value.

In whichData

Flag to indicate which value is requested:

PVDATA DEFAULT returns default value.
PVDATA CURRENT returns current value

Return Values

P OK

The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P E NULL PTR

Call with NULL pointer.

P _E INVALID DATA TYPE The requested setting is not of string type.

206 Distributed Tuning Interface Reference

P_E BUFFER TOO SMALL Allocated buffer is too small for the string (the return string is
truncated). In this case, the required size is returned in pBufSize.

P E FAIL Failed for other reasons.

Remarks

The following preconditions must be met:

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetStringType()
PvSetStringValue()
PvGetStringValueSize()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 207

PvGetStringValueSize()

Retrieves the value (Null terminated string) for a string type setting, from the data source
specified by whichData. Some settings may return a list of strings separated by semicolons (;).

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav78.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_SINT PvGetStringValueSize(
BTI_LONG hConnection,
BTI_ULONG settinglD,
BTI_ULONG_PTR pBufSize,
BTI_SINT whichData) ;

Arguments

In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of settings can be obtained from
PvGetSettingList().
In/Out pBufSize Address of an unsigned long containing the size of the buffer allocated to

receive the setting value. Receives the actual size of setting value.

In whichData Flag to indicate which value is requested:

PVDATA DEFAULT returns default value.
PVDATA_CURRENT returns current value

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P E NULL PTR Call with NULL pointer.

P_E INVALID DATA TYPE The requested setting is not of string type.
P_E FAIL Failed for other reasons.

208 Distributed Tuning Interface Reference

Remarks

The following preconditions must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetStringType()
PvSetStringValue()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 209

PvGetTable()

Returns table attributes for a given table.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

PRESULT PvGetTable(
WORD dictHandle,
LPSTR tableName,
TABLEINFO** tableProps,
COLUMNMAP ** columnList,
WORD* columnCount,
INDEXMAP** indexList,

WORD* indexCount) ;

210 Distributed Tuning Interface Reference

Arguments

In dictHandle Handle of an open dictionary returned by PvOpenDatabase().
In tableName Name of table to retrieve.

Out tableProps Structure containing table information.

Out columnList Array of columns defined in the table.

Out columnCount Number of columns in columnList.

Out indexList Array of segments defined in the table.

Out indexCount Number of indexes in the indexList array.

Return Values

PCM_ Success The operation was successful.

PCM_errFailed A general failure occurred

PCM_errMemoryAllocation Error during memory allocation

PCM_errInvalidDictionaryHandle The specified dictionary handle does not exist.
Remarks

You must first open a dictionary successfully using PvOpenDatabase().

TableProps, indexList, and columnList arrays will need to be released using PvFreeTable.

See Also

PvStart()
PvOpenDatabase()
PvGetTableNames()
PvFreeTable()
PvFreeTableNames()
PvCloseDictionary()
PvStop()

Distributed Tuning Interface Reference 211

PvGetTableNames()

Returns table names of all the tables in the open data dictionary.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

PRESULT PvGetTableNames(
WORD dictHandle,
TABLEMAP** tableList,
WORD* tableCount) ;

Arguments

In dictHandle Handle of an open dictionary returned by PvOpenDatabase().

Out tableList Array of TABLEMAP structures that contain table names.

Out tableCount Number of table names returned in tableList.

Return Values

PCM_Success The operation was successful.
PCM_errFailed The operation was not successful.
PCM_errMemoryAllocation An error occurred during memory allocation.
PCM _errInvalidDictionaryHandle The specified dictionary handle obtained by

PvOpenDatabase() is invalid.

Remarks
You must first open a dictionary successfully using PvOpenDatabase().
TableList array will need to be released using PvFreeTableNames().

You can retrieve more information about a specific table using PvGetTable().

212 Distributed Tuning Interface Reference

See Also

PvStart()
PvOpenDatabase()
PvGetTable()
PvFreeTable()
PvFreeTableNames()
PvCloseDictionary()
PvStop()

Distributed Tuning Interface Reference 213

PvGetTableStat()

Returns statistical information on a given table.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
PRESULT DDFAPICALLTYPE PvGetTableStat(
BTI_WORD dbHandle,
const BTI_CHAR* tableName,
TABLESTAT* tableStat) ;
Arguments
In dbHandle Handle of an open database returned by PvOpenDatabase().
In tableName Table name for which you want statistical information.
Out tableStat TABLESTAT structure containing table statistics information.

Return Values

PCM_ Success The operation was successful.
PCM_errFailed The operation was not successful.
PCM_errMemoryAllocation An error occurred during memory allocation.
PCM_errlnvalidDictionaryHandle The specified dictionary handle obtained by
PvOpenDatabase() is invalid.
PCM_errTableNotFound The specified table was not found.
Remarks

You must first obtain a database handle using PvOpenDatabase().

You can retrieve more information about a specific table using PvGetTable().

214 Distributed Tuning Interface Reference

If the number of records in the data file is greater than the maximum value that the TABLESTAT
structure can return, then the maximum possible value is returned instead, which is 65535 as a 2-
byte unsigned integer.

See Also

PvCloseDatabase()
PvFreeTable()
PvFreeTableNames()
PvGetTable()
PvGetTableStat2()
PvGetTableStat3()
PvOpenDatabase()
PvStart()

PvStop()

Distributed Tuning Interface Reference 215

PvGetTableStat2()

Returns statistical information on a given table, including whether its data file is using
compressed data pages. See also Creating a File with Page Level Compression in Zen
Programmer’s Guide and Record and Page Compression in Advanced Operations Guide.

Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
PRESULT DDFAPICALLTYPE PvGetTableStat2 (
BTI_WORD dbHandle,
const BTI_CHAR* tableName,
TABLESTAT2* tableStat2) ;
Arguments
In dbHandle Handle of an open database returned by PvOpenDatabase().
In tableName Table name for which you want statistical information.
Out tableStat TABLESTAT?2 structure containing table statistics information.

Return Values

PCM_ Success The operation was successful.
PCM_errFailed The operation was not successful.
PCM_errMemoryAllocation An error occurred during memory allocation.

PCM_errInvalidDictionaryHandle The specified dictionary handle obtained by PvOpenDatabase()
is invalid.

PCM_Success The operation was successful.

Remarks

You must first obtain a database handle using PvOpenDatabase().

You can retrieve more information about a specific table using PvGetTable().

216 Distributed Tuning Interface Reference

For more information see Differences Between TABLESTAT?2 and TABLESTAT.

If the number of records in the data file is greater than the maximum value that the TABLESTAT?2
structure can return, then the maximum possible value is returned instead, which is 2,147,483,647

as a 4-byte signed integer.

See Also

PvGetTable()
PvGetTableStat()
PvGetTableStat3()
PvStart()
PvOpenDatabase()
PvOpenDatabase()
PvGetTable()
PvFreeTable()
PvFreeTableNames()
PvCloseDictionary()
PvCloseDatabase()
PvStop()

Distributed Tuning Interface Reference 217

PvGetTableStat3()

Returns statistical information on a given table, including a 64-bit record count capable of
indicating up to 23~1 records, or 9223372036854775807.

Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
PRESULT DDFAPICALLTYPE PvGetTableStat3 (
BTI_WORD dbHandle,
const BTI_CHAR* tableName,
TABLESTAT3* tableStat3) ;
Arguments
In dbHandle Handle of an open database returned by PvOpenDatabase().
In tableName Table name for which you want statistical information.
Out tableStat TABLESTATS3 structure containing table statistics information.

Return Values

PCM_ Success The operation was successful.
PCM_errFailed The operation was not successful.
PCM_errMemoryAllocation An error occurred during memory allocation.
PCM_errInvalidDictionaryHandle The specified dictionary handle obtained by
PvOpenDatabase() is invalid.
PCM_errTableNotFound The specified table was not found
Remarks

You must first obtain a database handle using PvOpenDatabase().

You can retrieve more information about a specific table using PvGetTable().

218 Distributed Tuning Interface Reference

For more information see Differences Between TABLESTAT3 and TABLESTAT?2.

See Also

PvGetTable()
PvGetTableStat()
PvGetTableStat2()
PvStart()
PvOpenDatabase()
PvOpenDatabase()
PvGetTable()
PvFreeTable()
PvFreeTableNames()
PvCloseDictionary()
PvCloseDatabase()
PvStop()

Distributed Tuning Interface Reference 219

PvGetValueLimit()

Retrieves upper and lower limits for settings of long type.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_SINT PvGetValueLimit(
BTI_LONG hConnection,
BTI_ULONG settinglD,
BTI_LONG_PTR pMaxValue,
BTI_LONG_PTR pMinValue) ;

Arguments

In hConnection Connection handle that identifies the server. Connection handles are obtained

with the PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of settings can be obtained from
PvGetSettingList().
Out pMaxValue Address of a long integer that receives the upper limit value. I[f NULL is

passed here, no value will be returned.

If a negative value is returned, interpret it as follows:

/* Maximum valid memory or disk size */P. MAX MEM DISK SIZE -
129

/* Maximum size limited by available disk space */

P MAX LIMITED BY DISK -2

/* Maximum size limited by available memory */
P MAX LIMITED BY MEMORY -1

Out pMinValue Address of a long integer that receives the lower limit value. If NULL is
passed here, no value will be returned.

Return Values

P OK The operation was successful.

P E INVALID HANDLE Invalid connection handle.

220 Distributed Tuning Interface Reference

P_E INVALID DATA TYPE The requested setting is not of long type.

P _E FAIL Failed for other reasons.

Remarks

The following precondition must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetLongValue()
PvSetLongValue()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 221

PvisDatabaseSecured()

Determines whether a given database has security enabled.
Header File: dtisecurity.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_API PvIsDatabaseSecured(
BTI_LONG hConnection,
BTI_CHAR_PTR dbName,
BTI_LONG_PTR dbAuthentication) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In dbName Name of the database to check.
Out dbAuthentication 2 if database is secured using domain authentication

1 if database is secured using Zen database authentication
0 if database is not secured

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P_E NULL PTR Call with NULL pointer.

P E ACCESS RIGHT Insufficient access right for the operation.

P _E FAIL Failed to open the database for other reasons.
Remarks

The following preconditions must be met:

» DTI session started by calling PvStart().

222 Distributed Tuning Interface Reference

» Connection established by PvConnectServer(), or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvOpenDatabase()
PvSecureDatabase()
PvSecureDatabase2()
PvUnSecureDatabase()
PvCloseDatabase()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 223

PvisSettingAvailable()

Query to see if a setting is available for configuring.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvIsSettingAvailable(
BTI_LONG hConnection,
BTI_ULONG settingID) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In settinglD Unique identifier for the setting.

Return Values

Zero Setting is unavailable.
Non-zero Setting is available.
Remarks

The following preconditions must be met:

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

Setting may be unavailable due to insufficient rights to access the setting or if no such setting ID
exist.

See Also

PvStart()
PvConnectServer()

224 Distributed Tuning Interface Reference

PvGetCategoryList()
PvGetSettingList()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 225

PvListDSNs()

Retrieves the list of system datasource names (DSN) of type Pervasive ODBC Engine Interface.
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

This function is deprecated in Zen v11 and higher versions. Use the ODBC API to work with
client DSNs.

Syntax
BTI_API PvListDSNs(
BTI_LONG hConnection,
BTI_ULONG_PTR pdsnListSize,
BTI_CHAR_PTR pdsnList,
BTI_CHAR filtering) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In/Out pdsnListSize Address of an unsigned long containing the size of the buffer for the
list of DSNs. Receives actual size of the returned DSN list.
Out pdsnList Contains the list of DSNs if successful.
In filtering Set to 1 if you want only Zen DSNs. Set to 0 if you want all DSNs.

Return Values

P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.
P E NULL PTR Call with NULL pointer.

P_E BUFFER TOO SMALL The buffer is too small for the string. In this case, the required
buffer size is returned in pdsnListSize.

P _E FAIL Failed for other reasons.

226 Distributed Tuning Interface Reference

Remarks

The following precondition must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

To retrieve the list of DSNs without having to prompt the user to login, pass empty strings for
username and password when establishing the server connection with PvConnectServer().

Note: The connection established by passing empty strings for username and password is an
insecure connection, and will not have sufficient rights to perform most of the other operations in

DTIL

Example

BTI_WORD res = 0;
BTI_ULONG dsncount = 0;
BTI_ULONG dsnListSize = 9;
BTI_CHAR * dsnList;

// MAX_DSN_NAME_LENGTH is defined to be 32
// in catalog.h
res = PvCountDSNs (hConnection,

&dsnCount,

1);
dsnlistSize = dsnCount * (MAX_DSN_NAME_LENGTH+1);
dsnList = new char[dsnListSize];
res = PvListDSNs (hConnection,

&dsnListSize,

dsnList,

1);

See Also

PvStart()
PvConnectServer()
PvCountDSNs()
PvGetDSN()
PvDisconnect()
PvStop()

Distributed Tuning Interface Reference 227

PvModifyDatabase()

Modify an existing database using the specified information for the new database name,
dictionary and data paths and the database flag.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_API PvModifyDatabase(
BTI_LONG

hConnection,

BTI_CHAR_PTR dbNameExisting,
BTI_CHAR_PTR dbNameNew,
BTI_CHAR_PTR dictPath,
BTI_CHAR_PTR dataPath,
BTI_ULONG dbFlags)
Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In dbNameExisting Name of the existing database
In dbNameNew Name of the new database. Set this parameter to NULL if you want the
database name to remain unchanged.
In dictPath Dictionary path.
In dataPath Data path. Set this value to NULL to use the default data path (that is,

the same as the dictionary path)

If you want to modify a database to include MicroKernel Engine data
files located in multiple paths, specify this parameter as a semicolon (;)
delimited list. For example: C:\data\pathl;C:\data\path2

228 Distributed Tuning Interface Reference

In dbFlags

Database flags, which can be a combination of the P DBFLAG
constants.

L]

P_DBFLAG_RI (enforce integrity constraints, including referential
integrity and triggers)

P_DBFLAG_BOUND (stamps the database name on the dictionary
files so only that database can use them)

P DBFLAG_DBSEC_AUTHENTICATION (use database security
authentication, Mixed security policy. See Btrieve Security Policy.)
P DBFLAG DBSEC AUTHORIZATION (use database security
authorization, Database security policy. See Btrieve Security
Policy.)

P DBFLAG_LONGMETADATA (use V2 metadata. See Metadata
Version.)

Return Values

P OK

The operation was successful.

P E INVALID HANDLE

Invalid connection handle.

P E NULL PTR

Call with NULL pointer

P E ACCESS RIGHT

Insufficient access right for the operation

P E NOT EXIST

Named database does not exist on the server.

P E FAIL

Failed for other reasons.

Remarks

The following precondition must be met:

DTI session started by calling PvStart().

Connection established by PvConnectServer(), or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

Distributed Tuning Interface Reference 229

Btrieve Security Policy

The following table indicates how to specify a security model in a new database, or to interpret
the security model of an existing database. Using any other combination of flags for security will

result in status code 7024.

This Flag Combination Represents This Security Model
No flags Classic

P DBFLAG _DBSEC_AUTHENTICATION Mixed

P DBFLAG DBSEC AUTHENTICATION Database

P DBFLAG DBSEC_AUTHORIZATION

See Also

PvStart()
PvConnectServer()
PvCreateDatabase()
PvGetDbNamesData()
PvGetDbName()
PvGetDbFlags()
PvGetDbDataPath()
PvGetDbDictionaryPath()
PvGetDbServerName()
PvFreeDbNamesData()
PvDisconnect()
PvStop()

230 Distributed Tuning Interface Reference

PvModifyDatabase2()

Modify an existing database using the specified information for the new database name,
dictionary and data paths, database flag, and code page. This function is the same as
PvModifyDatabase() except that the database code page is also specified.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also

Link Libraries)

Syntax

BTI_API PvModifyDatabase2(
BTI_LONG hConnection,
BTI_CHAR_PTR dbNameExisting,
BTI_CHAR_PTR dbNameNew ,
BTI_CHAR_PTR dictPath,
BTI_CHAR_PTR dataPath,
BTI_ULONG dbFlags,
BTI_LONG dbCodePage) ;

Arguments

In hConnection

Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.

In dbNameExisting

Name of the existing database

In dbNameNew

Name of the new database. Set this parameter to NULL if you want the
database name to remain unchanged.

In dictPath

Dictionary path.

In dataPath

Data path. Set to NULL to use the default data path (that is, the same as
the dictionary path)

If you want to modify a database to include MicroKernel Engine data files
located in multiple paths, specify this parameter as a semicolon (;)
delimited list. For example: C:\data\path1;C:\data\path2

Distributed Tuning Interface Reference 231

In dbFlags

Database flags, which can be a combination of the P DBFLAG
constants.

» P DBFLAG_RI (enforce integrity constraints, including referential
integrity and triggers)

P DBFLAG_BOUND (stamps the database name on the dictionary
files so only that database can use them)

« P DBFLAG DBSEC _AUTHENTICATION (use database security
authentication, Mixed security policy. See Btrieve Security Policy.)

« P DBFLAG DBSEC AUTHORIZATION (use database security
authorization, Database security policy. See Btrieve Security Policy.)

» P DBFLAG _LONGMETADATA (use V2 metadata. See Metadata
Version.)

In dbCodePage

For databases on Windows platforms, a number indicating the code page
for database data and metadata strings.

For databases on Linux distributions, one of the following to indicate the
code page for database data and metadata strings:

« P DBCODEPAGE UTF8
- P_DBCODEPAGE EUCJP
. P _DBCODEPAGE IS0O8859 1

For databases on Windows and Linux, the value can also be a zero or
P _DBCODEPAGE NA.

A zero indicates legacy behavior. That is, no code page is specified,
defaulting to the operating system encoding on the server machine. See
also the Code Page database property in Zen User’s Guide.

P_DBCODEPAGE_NA specifies to leave the code page as is (the
database code page is not to be changed).

Note: The database engine does not validate the encoding of the data and
metadata that an application inserts into a database. The engine assumes
that all data was entered using the encoding of the server or the client as
explained under Database Code Page and Client Encoding in Advanced
Operations Guide.

Return Values

P OK

The operation was successful.

P E INVALID HANDLE

Invalid connection handle.

P E NULL PTR

Call with NULL pointer

P E ACCESS RIGHT

Insufficient access right for the operation

232 Distributed Tuning Interface Reference

P E NOT EXIST

Named database does not exist on the server.

P E FAIL

Failed for other reasons.

Remarks

The following precondition must be met:

» DTI session started by calling PvStart().

* Connection established by PvConnectServer(), or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

Btrieve Security Policy

See Btrieve Security Policy.

See Also

PvConnectServer()
PvCreateDatabase2()
PvCreateDSN2()
PvDisconnect()
PvFreeDbNamesData()
PvGetDbCodePage()
PvGetDbDataPath()
PvGetDbDictionaryPath()
PvGetDbFlags()
PvGetDbName()
PvGetDbNamesData()
PvGetDbServerName()
PvGetDSNEx2()
PvModifyDSN2()
PvStart()

PvStop()

Distributed Tuning Interface Reference 233

PvModifyDSN()

Modifies an existing data source name.
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav78.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

This function is deprecated in Zen v11 and higher versions. Use the ODBC API to work with
client DSNs.

Syntax

BTI_API PvModifyDSN(
BTI_LONG hConnection,
BTI_CHAR_PTR pdsnName,
BTI_CHAR_PTR pdsnDesc,
BTI_CHAR PTR pdsnDBQO,

BTI_LONG openMode) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In pdsnName Name of the DSN to modify.
In pdsnDesc New description for the DSN.
In pdsnDBQ New Database name for the DSN.
In openMode New Open mode for the DSN, which is one of the following:

* NORMAL MODE

* ACCELERATED MODE

* READONLY MODE

 EXCLUSIVE MODE

See also DSN Open Mode in ODBC Guide.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

234 Distributed Tuning Interface Reference

P E NULL PTR

Call with NULL pointer.

P E DSN_DOES_NOT_EXIST

The specified DSN name does not exist.

P E ACCESS RIGHT

Insufficient access right for the operation.

P _E INVALID OPEN_MODE

The specified open mode is invalid.

P E FAIL

Failed to retrieve data path.

Remarks

The following preconditions must be met:

» DTI session started by calling PvStart()

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvListDSNs()
PvCreateDSN()
PvGetDSN()
PvGetDSNEXx()
PvDeleteDSN()
PvCountDSNs()
PvStop()

Distributed Tuning Interface Reference 235

PvModifyDSN2()

Modifies an existing data source name. This function is the same as PvModifyDSN() except that
the encoding option for data is also specified.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

This function is deprecated in Zen v11 and higher versions. Use the ODBC API to work with
client DSNs.

Syntax

BTI_API PvModifyDSN(
BTI_LONG hConnection,
BTI_CHAR_PTR pdsnName,
BTI_CHAR_PTR pdsnDesc,
BTI_CHAR_PTR pdsnDBO,
BTI_LONG openMode,
BTI_LONG translate) ;

236 Distributed Tuning Interface Reference

Arguments

In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.

In pdsnName Name of the DSN to modify.

In pdsnDesc New description for the DSN.

In pdsnDBQ New Database name for the DSN.

In openMode Open mode for the DSN, which is one of the following:

* NORMAL MODE
 ACCELERATED MODE

» READONLY MODE

 EXCLUSIVE MODE

See also DSN Open Mode in ODBC Guide.

In translate Encoding option for data, which can be one of the following:
« DSNFLAG DEFAULT
+ DSNFLAG_OEMANSI
*+ DSNFLAG AUTO

See also Encoding Translation in ODBC Guide. Note that
DSNFLAG _DEFAULT corresponds to the "None" encoding option in

ODBC Administrator.
Return Values
P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.
P E NULL PTR Call with NULL pointer.
P_E DSN DOES NOT _EXIST The specified DSN name does not exist.
P E ACCESS RIGHT Insufficient access right for the operation.
P _E INVALID OPEN_MODE The specified open mode is invalid.

P_E INVALID TRANSLATE OPTION The specified encoding translation option is invalid.

P E FAIL Failed to retrieve data path.

Distributed Tuning Interface Reference 237

Remarks

The following preconditions must be met:
» DTI session started by calling PvStart()

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

See Also

PvConnectServer()
PvCountDSNs()
PvCreateDatabase2()
PvCreateDSN2()
PvDeleteDSN()
PvGetDSN()
PvGetDSNEx2()
PvListDSNs()
PvStart()

PvStop()

238 Distributed Tuning Interface Reference

PvOpenDatabase()

Opens a database by name and returns a handle that can be used to manipulate the database
catalog.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_API PvOpenDatabase(
BTI_LONG hConnection,
BTI_CHAR_PTR dbName,
BTI_CHAR_PTR dbUser,
BTI_CHAR_PTR dbPassword,
BTI_WORD PTR dbHandle) ;

Arguments

In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In dbName Name of the database.

In dbUser Database user name if security is defined.
In dbPassword Database password if security is defined.
Out dbHandle Returned handle to the database.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P_E NULL PTR Call with NULL pointer.

P E ACCESS RIGHT Insufficient access right for the operation.
P_E FAIL Failed to open the database for other reasons.
PCM_errSessionSecurityError Invalid user name or password.

Distributed Tuning Interface Reference 239

Remarks

The following preconditions must be met:
» DTI session started by calling PvStart()

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

» If the database has security enabled, you must specify a valid database user name and
password. Security for the returned database handle is enforced based on the access rights
defined for the database, and should match behavior seen in SQL or ODBC access methods.

See Also

PvStart()
PvConnectServer()
PvGetDbFlags()
PvModifyDatabase()
PvCloseDatabase()
PvDropDatabase()
PvDisconnect()
PvStop()

240 Distributed Tuning Interface Reference

PvOpenDictionary()

Opens an existing dictionary. Given an absolute path of the dictionary or data source names, it
returns a dictionary handle that will be used for any subsequent calls to any functions.

Note: This function is deprecated in Zen 9 and higher versions. See PvOpenDatabase() to replace

this function in your application.

Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also

Link Libraries)

Syntax
PRESULT PvOpenDictionary(
LPTSTR path,
WORD* dictHandle,
LPSTR user,
LPSTR password) ;
Arguments
In path Fully-qualified path to the dictionary files.
Out dictHandle Handle to be used in subsequent calls
In user User name needed to open the dictionary. This argument can be set to NULL.
In password Used in conjunction with user name to open the dictionary files. Can also be
NULL.

Return Values

PCM_Success

The operation was successful.

PCM_errFailed

The operation was not successful.

PCM_errMemoryAllocation

An error occurred during memory allocation.

PCM _errDictionaryPathNotFound

The specified dictionary path is invalid.

PCM _errDictionaryAlreadyOpen

The specified dictionary files are currently open.

PCM_SessionSecurityError

Either the user name or password is invalid.

Distributed Tuning Interface Reference 241

Remarks
This function should be called first when accessing DDFs via DTL
Multiple dictionaries can be open at one time.

Use PvCloseDictionary() to free the resources.

See Also

PvStart()
PvCreateDictionary()
PvCreateDatabase()
PvCloseDictionary()
PvStop()

242 Distributed Tuning Interface Reference

PvRemoveUserFromGroup()

Remove an existing user from an existing group.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

PRESULT DDFAPICALLTYPE PvRemoveUserFromGroup (
BTI_WORD dbHandle,
const BTI_CHAR* user,
const BTI_CHAR* group) ;

Arguments
In dbHandle Handle of an open database returned by PvOpenDatabase().
In user Database user name.
In group Database group name.

Return Values

PCM_ Success The operation was successful.

PCM_errFailed The operation was not successful.

PCM_errInvalidAccountName The specified account or user name does not exist.

PCM_errUserNotPartOfGroup The specified user is not a member of the group.

PCM_errDatabaseHasNoSecurity Database has no security.

PCM _errSessionSecurityError Database opened with insufficient privilege.
Remarks

The following preconditions must be met:
* You must first open a database successfully using PvOpenDatabase() as user 'Master'.

» The associated database has database-level security enabled.

Distributed Tuning Interface Reference 243

* The specified group and user names must already exist in the database.

» The specified user is a member of the specified group.

The following post condition must be met:

» Use PvCloseDatabase() to free the resources.

See Also

PvCreateGroup()
PvCreateUser()
PvAlterUserName()
PvAddUserToGroup()
PvDropGroup()
PvDropUser()
PvOpenDatabase()
PvCloseDatabase()

244 Distributed Tuning Interface Reference

PvSecureDatabase()

Enables security for an existing database.
Header File: dtisecurity.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_API PvSecureDatabase(
BTI_LONG hConnection,
BTI_CHAR_PTR dbName,
BTI_CHAR_PTR dbUser,
BTI_CHAR_PTR dbPassword) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In dbName Name of the database.
In dbUser Database user name — must be Master to set security.
In dbPassword Database password for Master user.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P E NULL PTR Call with NULL pointer.

P_E ACCESS RIGHT Insufficient access right for the operation.

P _E FAIL Failed to open the database for other reasons.

PCM_errSessionSecurityError Invalid user name or password.
Remarks

The following preconditions must be met:

Distributed Tuning Interface Reference 245

» DTI session started by calling PvStart().

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

* When you enable security, you must specify Master as the database user name and choose a
password. Security for the database is enforced based on the access rights defined for the
database and should match behavior seen in SQL or ODBC access methods.

See Also

PvStart()
PvConnectServer()
PvOpenDatabase()
PvUnSecureDatabase()
PvIsDatabaseSecured()
PvCloseDatabase()
PvDisconnect()
PvStop()

246 Distributed Tuning Interface Reference

PvSecureDatabase2()

Enables database security for an existing database. It differs from PvSecureDatabase() in that it
supports domain authentication.

Header File: dtisecurity.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_API PvSecureDatabase(
BTI_LONG hConnection,
BTI_CHAR_PTR dbName,
BTI_CHAR_PTR dbPassword,
BTI_LONG dbAuthentication) ;

Arguments

In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In dbName Name of the database.

In dbPassword Database password for Master user.

In dbAuthentication Type of authentication to enable. Values are 1 for database and 2 for
domain.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P E NULL PTR Call with NULL pointer.

P E ACCESS RIGHT Insufficient access right for the operation.

P _E FAIL Failed to open the database for other reasons.
PCM_errSessionSecurityError Invalid password.

Distributed Tuning Interface Reference 247

Remarks

The following preconditions must be met:
» DTI session started by calling PvStart().

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

* When you enable security, you must choose a password for the Master user. Security for the
database is enforced based on the access rights defined for the database and should match
behavior seen in SQL or ODBC access methods.

* You must be connecting to a Windows server. Calls to Linux servers return a general failure
(status code 7004), since Active Directory domain authentication is Windows only.

See Also

PvStart()
PvConnectServer()
PvOpenDatabase()
PvSecureDatabase()
PvUnSecureDatabase()
PvIsDatabaseSecured()
PvCloseDatabase()
PvDisconnect()
PvStop()

248 Distributed Tuning Interface Reference

PvSetBooleanValue()

Save new value for a Boolean type setting, to the data target specified by whichData.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_SINT PvSetBooleanValue(
BTI_LONG hConnection,
BTI_ULONG settinglD,
BTI_SINT newValue,
BTI_SINT whichData) ;

Arguments

In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of settings can be obtained from
PvGetSettingList().

In newValue Integer value to be set.

In whichData Flag to indicate which value is to be set:

* PVDATA CURRENT means apply setting changes to current session
and save to registry, ini or ncf file. Only valid for Trace Op in Btr 6.15
NT release.

« PVDATA PERSISTENT don’t apply setting change to the current
session. Save setting to registry, ini or ncf files only.

Return Values

P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.

P E INVALID DATA TYPE The setting is not of Boolean type.
P _E FAIL Failed for other reasons.

Distributed Tuning Interface Reference 249

Remarks

The following preconditions must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

* You must logon with administrator-level rights with PvConnectServer () before you can set a
new value for a Boolean type setting.

Note: This function cannot be called by a user logged-in with the "restricted" user type.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetBooleanValue()
PvGetBooleanStrings()
PvIsSettingAvailable()
PvDisconnect()
PvStop()

250 Distributed Tuning Interface Reference

PvSetLongValue()

Save new value for a long integer type setting, to the data target specified by whichData.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvSetlLongValue(
BTI_LONG hConnection,
BTI_ULONG settinglD,
BTI_LONG newValue,
BTI_SINT whichData) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In settinglD Unique identifier for the setting. A list of settings can be obtained from
PvGetSettingList().
In newValue Integer value to be set.
Before calling this function, check to see that the value is within the
limits for the particular setting by using the PvGetValueLimit()
function.
In whichData Flag to indicate which value is to be set:

PVDATA CURRENT sets current value.
PVDATA PERSISTENT sets persistent value

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P E INVALID DATA TYPE The setting is not of long type.

P_E OUT_OF RANGE The value specified to be set is out of range.
P _E FAIL Failed for other reasons.

Distributed Tuning Interface Reference 251

Remarks

The following preconditions must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

* You must logon with administrator-level rights with PvConnectServer () before you can set a
new value for a Long type setting.

Note: This function cannot be called by a user logged-in with the "restricted" user type.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetLongValue()
PvGetValueLimit()
PvIsSettingAvailable()
PvDisconnect()
PvStop()

252 Distributed Tuning Interface Reference

PvSetSelectionValue()

Save new value for a selection type setting, to the data target specified by whichData.

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also

Link Libraries)
Syntax
BTI_SINT PvSetSelectionValue(
BTI_LONG hConnection,
BTI_ULONG settinglD,
BTI_ULONG numlitems,
BTI_LONG_PTR pNewValue,
BTI_SINT whichData) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are

obtained with the PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of settings can be obtained from
PvGetSettingList().

In numltems Number of individual selection items to be set.

In pNewValue Array of individual selection items to be set.

In whichData Flag to indicate which value is to be set:

PVDATA CURRENT sets current value.
PVDATA_ PERSISTENT sets persistent value

Return Values

P OK

The operation was successful.

P E INVALID HANDLE

Invalid connection handle.

P E NULL PTR

Call with NULL pointer.

P E INVALID DATA TYPE

The setting is not of selection type.

P E INVALID SELECTION

At least one selection item is invalid.

P E FAIL

Failed for other reasons.

Distributed Tuning Interface Reference 253

Remarks

This function is used to work with both single-selection and multi-selection data types. If more
than one selection items are set for a single-selection item, the first value is used.

The following preconditions must be met:

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

* You must logon with administrator-level rights with PvConnectServer () before you can set a
new value for a Selection type setting.

Note: This function cannot be called by a user logged-in with the "restricted" user type.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetSelectionValue()
PvGetSelectionString()
PvGetAllPossibleSelections()
PvCountSelectionltems()
PvIsSettingAvailable()
PvDisconnect()

PvStop()

254 Distributed Tuning Interface Reference

PvSetStringValue()

Save new value for a string type setting, to the data target specified by whichData.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvSetStringValue(
BTI_LONG hConnection,
BTI_ULONG settinglD,
BTI_CHAR_PTR newValue,
BTI_SINT whichData) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In settinglD Unique identifier for the setting. A list of settings can be obtained from
PvGetSettingList().
In newValue String value to be set.
In whichData Flag to indicate which value is to be set:

PVDATA CURRENT sets current value.
PVDATA PERSISTENT sets persistent value

Return Values

P OK The operation was successful.
P_E INVALID HANDLE Invalid connection handle.

P E NULL PTR Call with NULL pointer.

P_E INVALID DATA TYPE The setting is not of string type.
P _E FAIL Failed for other reasons.

Distributed Tuning Interface Reference 255

Remarks
Some settings may take multiple strings separated by semicolons (;).

The following preconditions must be met:

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

* You must logon with administrator-level rights with PvConnectServer() before you can set a
new value for a String type setting.

Note: This function cannot be called by a user logged-in with the "restricted" user type.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetStringType()
PvGetStringValue()
PvIsSettingAvailable()
PvDisconnect()
PvStop()

256 Distributed Tuning Interface Reference

PvStart()

Start a Distributed Tuning Interface (DTI) session. This function must be called before any DTI
calls are made.

Header File: connect.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_SINT PvStart(BTI_LONG reserved);

Arguments
In reserved Reserved for future use.
Return Values
P OK The operation was successful.
P _E FAIL A general failure occurred.
Remarks

This function performs initialization and binds resources for DTIL.

Example

BTI_SINT status = 0;

status = PvStart(9);
// invoke multiple DTI calls
status = PvStop (9);

See Also

PvStop()

Distributed Tuning Interface Reference 257

PvStop()

Closes a DTI session and frees the related resources.
Header File: connect.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_SINT PvStop(BTI_LONG_PTR preserved);
Arguments

In preserved Reserved for future use.

Return Values

P OK The operation was successful.
P_E FAIL A general failure occurred.
Remarks

This function frees resources of DTI and closes the DTI session. This function should be called
before your application exits.

Example

BTI_LONG status = 0;

status = PvStop(9);

See Also

PvStart()

258 Distributed Tuning Interface Reference

PvUnSecureDatabase()

Disables database security on a database.
Header File: dtisecurity.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax
BTI_API PvUnSecureDatabase(
BTI_LONG hConnection,
BTI_CHAR_PTR dbName,
BTI_CHAR_PTR dbUser,
BTI_CHAR_PTR dbPassword) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In dbName Name of the database.
In dbUser Database user name - must be Master to enable or disable security.
In dbPassword Database password for Master user.

Return Values

P OK The operation was successful.

P_E INVALID HANDLE Invalid connection handle.

P E NULL PTR Call with NULL pointer.

P_E ACCESS RIGHT Insufficient access right for the operation.

P _E FAIL Failed to open the database for other reasons.

PCM_errSessionSecurityError Invalid user name or password.
Remarks

The following preconditions must be met:

Distributed Tuning Interface Reference 259

» DTI session started by calling PvStart().

» Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

e Database is secured.

See Also

PvStart()
PvConnectServer()
PvOpenDatabase()
PvSecureDatabase()
PvIsDatabaseSecured()
PvCloseDatabase()
PvDisconnect()
PvStop()

260 Distributed Tuning Interface Reference

PvValidateLicenses()

Initiates a check of the validity of all keys on the computer indicated by the connection.
Header File: dtilicense.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsqldti.so (Linux) (See also
Link Libraries)

Syntax

BTI_API PvValidatelLicenses(BTI_LONG hConnection);

Arguments

In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.

Return Values

P OK The validation operation completed successfully.

P_E FAIL The validation operation did not complete successfully.

Status code pertaining to See Status Codes and Messages for License Administrator Status Codes
license administration or and Authorization Status Codes.

to authorization

Remarks

PvValidateLicenses returns only the result from requesting a validation check. It does not return
any information about the state of the keys. You must separately call PvGetProductsinfo() to get
the XML string of product information that includes information about the state of the keys.
The following preconditions must be met:

» DTI session started by calling PvStart().

* Connection established by PvConnectServer() or if you are performing the operation on a
local machine, P LOCAL DB _CONNECTION may be used as the connection handle.

Distributed Tuning Interface Reference 261

Example

status = PvValidatelLicenses(P_LOCAL_DB_CONNECTION);

See Also

PvGetProductsInfo()
PvStart()
PvStop()

262 Distributed Tuning Interface Reference

	Contents
	About This Document
	Who Should Read This Manual

	Distributed Tuning Interface Guide
	Overview of Distributed Tuning Interface
	String Arguments Encoding
	API Categories
	Execution Privileges

	Basics Of Using DTI
	Header Files
	Link Libraries
	Before Calling Any Functions

	Sample Programs For DTI
	Common Tasks With DTI
	Making a Connection to a Server Using DTI
	Obtaining a Setting ID Using DTI
	Passing a DTI Structure as a Parameter

	Distributed Tuning Interface Reference
	Using the DTI Function Reference
	DTI Function Groups
	DTI Error Messages
	DTI Structures
	CONFIG.H Structures
	DDFSTRCT.H Structures
	Differences Between TABLESTAT2 and TABLESTAT
	Differences Between TABLESTAT3 and TABLESTAT2
	Backwards Compatibility

	MONITOR.H Structures

	DTI Calling Sequence
	DTI Function Definitions
	PvAddIndex()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvAddLicense()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvAddTable()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvAddUserToGroup()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvAlterUserName()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvAlterUserPassword()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvCheckDbInfo()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvCloseDatabase()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvCloseDictionary()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvConnectServer()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvCopyDatabase()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvCountDSNs()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvCountSelectionItems()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvCreateDatabase()
	Syntax
	Arguments
	Return Values
	Remarks
	Btrieve Security Policy
	Metadata Version

	Example
	See Also

	PvCreateDatabase2()
	Syntax
	Arguments
	Return Values
	Remarks
	Btrieve Security Policy and Metadata Version

	See Also

	PvCreateDictionary()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvCreateDSN()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvCreateDSN2()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvCreateGroup()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvCreateUser()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvDeleteDSN()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvDeleteLicense()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvDisconnect()
	Syntax
	Arguments
	Return Values
	Example
	See Also

	PvDisconnectMkdeClient()
	Syntax
	Arguments
	Return Values
	Example
	Remarks
	See Also

	PvDisconnectSQLConnection()
	Syntax
	Arguments
	Return Values
	Example
	Remarks
	See Also

	PvDropDatabase()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvDropGroup()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvDropIndex()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvDropIndexByName()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvDropTable()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvDropUser()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvFreeDbNamesData()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvFreeMkdeClientsData()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvFreeOpenFilesData()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvFreeSQLConnectionsData()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvFreeTable()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvFreeTableNames()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvGetAllPossibleSelections()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetBooleanStrings()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetBooleanValue()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetCategoryInfo()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetCategoryList()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetCategoryListCount()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetDbCodePage()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetDbDataPath()
	Syntax
	Arguments
	Return Values
	See Also

	PvGetDbDictionaryPath()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetDbFlags()
	Syntax
	Arguments
	Return Values
	Remarks
	Btrieve Security Policy

	See Also

	PvGetDbName()
	Syntax
	Arguments
	Return Values
	Example
	Remarks
	See Also

	PvGetDbNamesData()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetDbServerName()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetDSN()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetDSNEx()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetDSNEx2()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetEngineInformation()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetError()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetFileHandlesData()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetFileHandleInfo()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetFileInfo()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetLongValue()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetMkdeClientId()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetMkdeClientInfo()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetMkdeClientHandlesData()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetMkdeClientHandleInfo()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetMkdeClientsData()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetMkdeCommStat()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetMkdeCommStatEx()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetMkdeUsage()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetMkdeUsageEx()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetMkdeVersion()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetOpenFilesData()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetOpenFileName()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetProductsInfo()
	Syntax
	Arguments
	Return Values
	Remarks
	Product Information Returned by PvGetProductsInfo()

	Example
	See Also

	PvGetSelectionString()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSelectionStringSize()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSelectionValue()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetServerName()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSettingHelp()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSettingHelpSize()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSettingInfo()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSettingList()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSettingListCount()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSettingMap()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSettingUnits()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSettingUnitsSize()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSQLConnectionsData()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSQLConnectionInfo()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetStringType()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetStringValue()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetStringValueSize()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetTable()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetTableNames()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetTableStat()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetTableStat2()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetTableStat3()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetValueLimit()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvIsDatabaseSecured()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvIsSettingAvailable()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvListDSNs()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvModifyDatabase()
	Syntax
	Arguments
	Return Values
	Remarks
	Btrieve Security Policy

	See Also

	PvModifyDatabase2()
	Syntax
	Arguments
	Return Values
	Remarks
	Btrieve Security Policy

	See Also

	PvModifyDSN()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvModifyDSN2()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvOpenDatabase()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvOpenDictionary()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvRemoveUserFromGroup()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvSecureDatabase()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvSecureDatabase2()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvSetBooleanValue()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvSetLongValue()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvSetSelectionValue()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvSetStringValue()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvStart()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvStop()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvUnSecureDatabase()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvValidateLicenses()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

