
Java Class Library Guide

Zen v16

Activate Your Data™

Copyright © 2024 Actian Corporation. All Rights Reserved.

This Documentation is for the end user’s informational purposes only and may be subject to change or withdrawal by
Actian Corporation (“Actian”) at any time. This Documentation is the proprietary information of Actian and is
protected by the copyright laws of the United States and international treaties. The software is furnished under a
license agreement and may be used or copied only in accordance with the terms of that agreement. No part of this
Documentation may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, or for any purpose without the express written permission of Actian. To the extent
permitted by applicable law, ACTIAN PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY
OF ANY KIND, AND ACTIAN DISCLAIMS ALL WARRANTIES AND CONDITIONS, WHETHER EXPRESS
OR IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF
MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OR OF NON-INFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT WILL ACTIAN BE LIABLE TO THE END USER OR ANY THIRD
PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION,
GOODWILL, OR LOST DATA, EVEN IF ACTIAN IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The manufacturer of this Documentation is Actian Corporation.

For government users, the Documentation is delivered with “Restricted Rights” as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Actian, Actian DataCloud, Actian DataConnect, Actian X, Avalanche, Versant, PSQL, Actian Zen, Actian Director,
Actian Vector, DataFlow, Ingres, OpenROAD, and Vectorwise are trademarks or registered trademarks of Actian
Corporation and its subsidiaries. All other trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

iii

Contents

About This Document v

Who Should Read This Manual . v

Introduction to the Zen Java Interface 1

The Zen Java Interface . 1
Java Class Library and MicroKernel Engine . 1
Database Concepts . 2

How to Set Up your Environment . 3
Supported JDKs . 3
CLASSPATH Environment Variable . 3

Running the Video Store Java Sample Application . 4
Viewing the Source of the Java Video Store Application. 5
Developer Resources . 5

Online Resources . 5
Javadoc Reference . 5

Programming with the Java Class Library 7

Zen Java Interface Class Structure . 7
General Classes . 8
Rowset Family Classes. 9
Cursor Family Classes . 9

Overview of Major Classes and Methods . 10
Sequence of Steps for a Java Application. 13
First Steps with the Java Class Library . 15

Verify your Environment is Correct . 15
Create Your Database and Tables . 15
Connect to the Database . 16
Obtain the Tables and Create Rowsets . 16
Navigate the Rows in a Row Set . 17
Restrict or Filter the Data . 19
Insert, Update, or Delete Rows. 21
Combine Operations into a Transaction . 22
Store and Retrieve Binary Large Objects . 23

Java Data Type Issues. 26
Sample Database Files . 28
Additional Java Samples . 28

iv

v

About This Document

This documentation covers the use of the Java Class Library to develop Zen applications.

Who Should Read This Manual
This document is designed for any user who is familiar with Zen and wants to know how to
develop an application using Java Class Library.

This manual does not provide comprehensive usage instructions for the software or instructions
for using other database access methods.

Actian Corporation would appreciate your comments and suggestions about this manual. As a
user of our documentation, you are in a unique position to provide ideas that can have a direct
impact on future releases of this and other manuals. If you have comments or suggestions for the
product documentation, post your request at the community forum on the Actian website.

vi

1

Introduction to the Zen Java Interface

The Zen Java interface is an object-oriented addition to the classic Btrieve API.

The following topics introduce the interface and its basic use:

• The Zen Java Interface

• How to Set Up your Environment

• Running the Video Store Java Sample Application

• Viewing the Source of the Java Video Store Application

• Developer Resources

For detailed information on developing for the Java interface in Zen, see Programming with the
Java Class Library.

The Zen Java Interface
The Zen Java Classes are an interface to the MicroKernel Engine.

Java Class Library and MicroKernel Engine

The Zen Relational Engineallows the users to reference databases with column level granularity.
On the other hand, the MicroKernel Engine is concerned only with files, records, and indexes, and
the application programs themselves are responsible for field-level access within the data buffer
returned by a Btrieve API call.

In a SQL database, column-level information is available in the data dictionary stored in the data
dictionary files.

Note: Btrieve has been using the "file/record/field" terminology. However, in this section we use
table, row and column instead when we describe classes that can be used in conjunction with
databases that have Zen dictionaries.

The purpose of this API is not only to provide language binding to object-oriented languages, like
Java and C++, but also to furnish a logical structure that fits into object-oriented applications.

The design of the object-oriented API addresses the following goals:

• Providing Btrieve application developers a set of abstractions.

2

• Ensuring ease of use.

• Hiding the platform-dependent byte-orders.

• Enabling developers to use all features of the Btrieve system.

• Ensuring that the performance of the MicroKernel Engine is not jeopardized.

Shortly after the introduction of Java, a database interface, Java Database Connectivity (JDBC)
was introduced. JDBC is gaining more and more popularity among database developers. The
design of the new Zen Java API uses the JDBC API as a model and applies many of the ideas and
the methodology used in JDBC. However, some new concepts had to be introduced because
JDBC was designed to support SQL and generally the relational model, whereas this API set
supports the transactional Btrieve.

As was mentioned previously, if a Btrieve application accesses a data file that belongs to a SQL
database, the new API calls can use the column descriptions stored in the dictionary of the
database. In the case of Btrieve data files that are not part of any SQL database, the new API
provides other means to access these files.

Database Concepts

A set of Btrieve data files that do not belong to any SQL database still form a database if some
application programs tie them together in a logical sense. Such databases are referred to as
loosely-coupled databases. A loosely-coupled database has no database dictionary. On the other
hand, SQL databases will be referred to as tightly-coupled databases. A tightly-coupled database
does have a persistent database dictionary.

The Zen Java interface can operate at a high or low level depending on which classes you use.

Tightly-Coupled Databases

The high-level portion of the Java interface hides many of the implementation details that Btrieve
programmers have dealt with formerly, such as position blocks, data buffers, and so on.

Loosely-Coupled Databases

A user who currently has a loosely coupled database and wants to take full advantage of the
column-level support of the new API must choose one of the following options:

1. Create a database dictionary for the loosely coupled database by using the Zen Control Center.
In effect, the database is turned into a tightly coupled database before using the new API.

3

2. Create a new persistent dictionary and define tables, columns, and so on for each Btrieve file
in an application program by using the new API. In this case, the database is turned
programmatically into a tightly coupled database.

How to Set Up your Environment
This section contains information about proper configuration for use of the Zen Java interface.

• Supported JDKs

• CLASSPATH Environment Variable

An online tutorial called Accessing Actian Zen with Its Java Class Library is also available.

Supported JDKs

The Zen Java interface supports JDK 1.4 and later.

CLASSPATH Environment Variable

The Zen SDK configuration needs the CLASSPATH variable to point to the Zen classes.

The sample CLASSPATH assumes that Zen was installed to file_path\Zen. The Java Class
Library SDK is installed to file_path\Zen\SDK\JCL. For default locations of Zen files, see Where
are the files installed? in Getting Started with Zen.

You can update CLASSPATH within a session as follows or make the change permanent through
the Windows Control Panel in the steps below.

SET CLASSPATH=.; file_path\Zen\bin\psql.jar;

file_path\Zen\SDK\JCL\Samples\PVideo\pvideoj.jar;

file_path\Zen\SDK\JCL\Samples\PVideo;

where file_path equals the installation location of Zen.

Windows CLASSPATH

If you receive an error that a certain Zen class file cannot be found, your user CLASSPATH
variable in the Control Panel may be overriding the system CLASSPATH variable that contains
the Zen paths.

To verify your Windows setup (and correct if necessary):

https://zendocs.actian.com/accessing-actian-zen-with-its-java-class-library/

4

1. Click Start, point to Settings, and then Control Panel.

2. Double-click System.

3. Select the Environment tab.

4. Your Zen paths are contained in the system variable. Under User Variables, see if
CLASSPATH is present. If it is not, no action is required. If it is, prepend %CLASSPATH%; to
your user variable.

Running the Video Store Java Sample Application
The Video Store sample applications demonstrates some of the capabilities of the Zen Java
interface.

To run the JCL SDK sample application

1. Open your Zen SDK Java Pvideo folder. Assuming it is located in the default location, this
would be file_path\SDK\jcl\samples\Pvideo.

For default locations of Zen files, see Where are the files installed? in Getting Started with
Zen.

2. Double-click the PVideoJ.bat file.

The following main application window opens:

5

Viewing the Source of the Java Video Store
Application
The Java source files for the Zen video store sample application are contained in a .jar file. You
can extract these files to get a working example of the Zen Java interface connecting to Btrieve
tables.

The following procedure assumes that the JDK is installed and its \bin directory is in the path.

To unpack the Java source files

1. At a command prompt, enter:

cd \zen\sdk\jcl\samples\pvideo

2. Next enter the JAR command:

jar -xvf source.zip

The source is extracted to the current directory and subdirectories below
zen\sdk\jcl\samples\pvideo.

For default locations of Zen files, see Where are the files installed? in Getting Started with Zen.

Developer Resources
The following resources are available to assist you in developing applications using the Java
interface.

Online Resources

Javadoc Reference

The javadoc that accompany the Java Class Library provide a reference for the classes and
methods used in JCL-based applications.

Resource Online Location

Developer content at the Actian website www.actian.com/databases/zen/

Oracle Java website www.oracle.com/java/technologies/?er=221886

Oracle Java tutorials docs.oracle.com/javase/tutorial/

https://www.oracle.com/technetwork/java/
https://docs.oracle.com/javase/tutorial/

6

7

Programming with the Java Class Library

The following topics provide instructions and information for programming Java in Zen:

• Zen Java Interface Class Structure

• Overview of Major Classes and Methods

• Sequence of Steps for a Java Application

• First Steps with the Java Class Library

• Java Data Type Issues

• Sample Database Files

• Additional Java Samples

Zen Java Interface Class Structure
This topic describes the classes for the Zen Java interface.

Applying the "factory" pattern, almost all classes (with the exception of Driver, Timestamp,
FieldDef and PsqlException) can only be produced through methods of another class (or other
classes). In the description of classes, under the label Constructors no constructors are listed when
no public constructors are available.

The Zen Java interface has a special class, PsqlException to handle error conditions occurring
when methods of the API are invoked. PsqlException extends the java.lang.Exception. Each
method of the Zen Java classes throws PsqlException and for brevity, the following clause is left
out from the method definitions:

throws PsqlException

8

The following figure shows the structure of all Java API classes and their relationships.

The classes of the Zen Java Interface can be divided into three groups:

• General Classes

• Rowset Family Classes

• Cursor Family Classes

General Classes

The following classes belong to General Classes group:

9

• Driver

• Session

• Database

• Timestamp

• PsqlException

These classes can be used both for tightly coupled and loosely coupled databases.

Rowset Family Classes

The following classes belong to the Rowset Family Classes group:

• Table

• Rowset

• Buffer

• Row

• Index

• DBMetaData

• TableMetaData

• RowSetMetaData

• ColumnDef

• IndexMetaData.

These classes make use of the metadata found in the dictionary of a Zen database and, therefore,
can be applied only for tightly coupled databases.

Cursor Family Classes

This is the low-level portion of the Zen Java Interface. If you use this portion of the interface, you
must handle position blocks, data buffers, and other elements of programming that are typical of
the Btrieve API.

Note: You must use this family of the Java interface if your Btrieve files do not have DDFs. You
can use the Zen Control Center utility to create DDF files for your data. See Zen User’s Guide for
more information.

10

The following classes belong to Cursor Family Classes group:

• SCursor

• XCursor

• FieldDef

These classes do not use any meta data, they directly support the "classic" Btrieve operations (for
example, through a BTRV method). Therefore, they are applied typically for loosely coupled
databases. However, they can also be used to access data files that store tables of a tightly coupled
database. (Although, it is more convenient to use the "rowset family" in the latter case.)

Overview of Major Classes and Methods
The following table lists the principal classes and methods in a basic Java application.

Principal Classes and Methods Used for

Driver

establishSession
killAllSessions

• Establishing one or more sessions.

• Stopping all Sessions

Session

connectToDatabase
startTransaction
commitTransaction
abortTransaction

• Connecting to Databases

• Handling transactions

Database

getTable
getTableNames
createxCursor

• Obtaining Table names and Tables

• Creating an xCursor to perform low-
level operations if needed.

Table

getTableMetaData
createRowSet

• Creating a RowSet, which is a view
into the table data.

• Obtaining metadata information about
tables.

TableMetaData

getIndexNames

• Obtaining the Indexes from a Table.

11

You can read about other classes and methods in the Zen Java Class Library javadoc, but these
classes are likely to be the ones you will use most often in your application.

The structure of the Java interface classes is flat, without inheritance.

DRIVER

Driver establishes sessions. You can use Driver to instantiate as many Session objects as needed.
You can also use the KillallSessions method to stop the application, as it will clean up socket
connections, database connections, open files, and system resources.

SESSION

Sessions use the connection to the driver and allow you to connect to databases using URIs and
start and end transactions. Each session receives a unique Btrieve client ID. Unless your
application specifically needs multiple Btrieve client IDs, you can generally use one Session for
the entire application. You can reset the session and the Btrieve client by calling Session.close.
For more information about client IDs, see Btrieve Clients in Zen Programmer’s Guide and
License Model in Zen User’s Guide.

RowSet

createRow
insertRow
deleteRow
updateRow
getNext
getByIndex
reset

• Obtaining part of a table

• Updating Row information

RowSetMetaData

AddColumns
DropColumns
AddFirstTerm
SetAccessPath
SetDirection

• Adding and Dropping Columns

• Performing "WHERE" clause
functionality

• Changing direction of navigation

Row

getString
setString
getFloat
setFloat

• Actual Updating of Data obtained
through RowSets.

Principal Classes and Methods Used for

12

DATABASE

Objects instantiated using this class are the database itself. Methods in this class allow the
developer to, in the case of tightly coupled databases, get the table names, tables and so forth. In
the case of the loosely coupled database, the developer can access familiar Btrieve-like APIs
including extended operations.

TABLE

An instance of this class represents a table as an object. Using Table objects, you can create row
sets and get meta data information about tables.

ROWSET

RowSet is an extremely important class. It is used to access the rows of the associated table. In
addition, rows can be inserted, updated, and deleted through methods of this class.

An instance of this class represents a set of rows that is derived from the base table. One other
way to look at it: a RowSet is a virtual table (a view) generated from a physically stored table.

Note: This object can be constructed only through the createRowSet method of Table.

A row set could include all rows or a subset of rows of the base table. A number of methods in
RowSetMetaData (e.g.addFirstTerm, addAndTerm, and so forth) is available to provide the terms
of a restriction criterion that determines which rows from the base table are included into the row
set.

A row set could include all columns or any number of selected columns of the base row. When a
RowSet object is created by Table.createRowSet, it is initialized according to the value of
noColumns specified explicitly or implicitly in the call. If noColumns is specified as true, then no
column is included into the row set and the application can selectively include the columns into
the row set by calling RowSetMetaData.addColumns. If noColumns is specified a false or it is not
included as an argument then the created RowSet includes all columns of the table.

The applications normally do not have to open and close the row sets. The associated data files are
opened at the construction time of the RowSet objects and the data files are closed when either the
application explicitly calls RowSet.close or as a result of closing a higher-level associated object
(Table, Database, etc).

The elements of a row set can be accessed through Row objects. There multiple options are
available to retrieve the rows.

For additional information about row sets, see the Zen Java Class Library javadoc.

13

ROW

An instance of this class represents a row buffer for a row in a RowSet instance. The Class Row
enables access to rows and to column values within a row. It can be used to retrieve rows, update,
or delete rows and to build rows for insertion.

This class has no methods of its own, but the methods inherited from Buffer can be used to get/set
values of columns in the row buffer.

Sequence of Steps for a Java Application
The following sequence of steps are typical of an application or applet. The first two steps are the
same for both tightly coupled and for loosely coupled databases:

1. Establish an instance of Session that is used as the execution environment. A Driver object
does not have to be instantiated because Driver is a static class. It is also possible for an
application/applet to create multiple sessions.

2. Get a Database object for the database by invoking Session.connectToDatabase specifying a
URI. See Zen Programmer’s Guide for more information on database URIs. It is also possible
to get multiple Database objects in a session, one for each database to be accessed.

For step 3, choose either Case 1: The application is accessing tables of a tightly coupled database.
(Btrieve database uses a DDF) or Case 2: The application is accessing data files of a loosely
coupled database (or data files that store tables of a tightly coupled database in the "classic" way).

Case 1: The application is accessing tables of a tightly coupled
database.

1. Optionally, get the names of tables in the database (if they are not known for the application)
by invoking Database.getTableNames.

2. Get a Table object for each table to be worked on by invoking Database.getTable.

3. Optionally, get a TableMetaData object for each table if the application has to get the column
names and/or index names from the dictionary.

4. Create at least one RowSet object for each table to be processed in the application. RowSet
objects are used to retrieve and modify data. A row set can be created including all or none of
columns of the table (see more in step 5).

An application creates more than one RowSet for a table if it wants to process the table in
some parallel fashion while maintaining multiple currencies (positioning) when navigating

14

through the table. A RowSet object for a given table can be used for the entire duration of the
application. That is, it can be used for retrievals by different indexes, by different conditions,
and so forth.

5. For a given row set

a. Get a RowSetMetaData object for the row set.

b. Add needed columns to the definition if the row set was created with no columns included.

c. Change the default characteristics (direction, access path, and so forth) of the row set if
necessary.

d. Define a selection criterion (addFirstTerm, addAndTerm, etc) if a row set should include
only some selected rows of the base table.

e. Invoke RowSet.getNext method to retrieve Row objects. Optionally, invoke other
methods of RowSet (getByIndex, getbyPercent, insertRow, updateRow, and so forth).

f. Invoke methods of Row (getString, setString, getInt, and so forth) to get/set values of
columns in a row.

Note: Steps a–d are optional and in some applications may not be needed for some row sets.

Case 2: The application is accessing data files of a loosely coupled
database (or data files that store tables of a tightly coupled database
in the "classic" way).

1. Create an SCursor or an XCursor object for each data file the application plans to work on.
XCursor is needed only if any extended get/step operation will be executed on the file.
Optionally, the application can get multiple cursor objects for the same file if it wants to
process the file in some parallel fashion maintaining multiple positions at the same time.

2. Execute "classic" Btrieve operations (open, get/step, insert, etc) using SCursor.BTRV.

Note: The BTRV method can be used also on XCursor because XCursor extends SCursor.

3. Optionally, define some FieldDef objects for data fields, use these field objects to set selection
criterion (XCursor.addFirstTerm, etc) and define extraction list and use the methods like
getNextExtended to execute extended operations.

4. Invoke methods like getDString, setKString, getDInt4, and so forth, to get/set values of fields
in the private data and key buffers of SCursor (XCursor) objects.

The topics that follow explain these overview steps in more detail.

15

First Steps with the Java Class Library
To build your first Java Btrieve application:

1. Verify your Environment is Correct

2. Create Your Database and Tables

3. Connect to the Database

4. Obtain the Tables and Create Rowsets

5. Navigate the Rows in a Row Set

6. Restrict or Filter the Data

7. Insert, Update, or Delete Rows

8. Combine Operations into a Transaction

9. Store and Retrieve Binary Large Objects

Verify your Environment is Correct

Make sure your environment is set up correctly as described in How to Set Up your Environment.

In addition, make sure that "psql.jar" is in your CLASSPATH environment variable. The
installation procedure should have performed this step for you. To access the classes in the Zen
Java interface class library, you must import the package in your Java source files.

import PSQL.database.*;

Create Your Database and Tables

Currently, the Zen Java interface class library does not support the creation of databases and
database tables. Use the Zen Control Center utility to perform these tasks. Once the database Data
Dictionary Files (DDFs) and data files have been created, you can use the Java API classes to
populate and access the tables.

For more information on the Zen Control Center and creating tables, see Zen User’s Guide.

16

Connect to the Database

There are two options for connecting to a Zen database. Either connect directly to the engine or
connect using the I*net Data Server.

To connect to the database using a URI

1. Get a Session object from the Driver.

Session session = Driver.establishSession();

2. Use the Session object to connect to the database. Specify a URI to connect to the database. At
a minimum, this URI should contain btrv:///dbname.

Database db = session.connectToDatabase("btrv:///demodata");

or

Database db = session.connectToDatabase("btrv://user@host/demodata?pwd=password");

See Advanced Operations Guide for more information on database security and URIs.

Obtain the Tables and Create Rowsets

To retrieve a table from the database

Table table = db.getTable("MyTable");

where "MyTable" is the name of the database table. The table name is case sensitive.

You can also get a list of the database’s table names.

String [] names = db.getTableNames();

 To access properties of a Table object

Once you have a Table object, you can obtain information about the columns and indexes from its
TableMetaData object.

TableMetaData tmd = table.getTableMetaData();

Some examples:

// Get the number of columns.

int num_columns = tmd.getColumnCount();

// Get the data type for column 0

int data_type = tmd.getColumnDef(0).getType());

17

// Get the length in characters for the column 0

int col_length = tmd.getColumnDef(0).getOffset();

 To access rows of a Table object

To access table rows, you need a RowSet object which can only be created by a Table object.

RowSet rowset = table.createRowSet();

You can create multiple RowSet objects from the same table. RowSet objects are used to retrieve
a table’s rows, insert new rows, and delete and update existing rows. To iterate through all the
table rows, create a RowSet object and call getNext until an PsqlEOFException occurs.

try {

while(true)

Row row = rowset.getNext();

}

catch(PsqlEOFException ex) {

// No more rows

}

To access a RowSet object’s properties

Once you have a RowSet object, you can obtain information about the row set from
RowSetMetaData.

RowSetMetaData rsmd = rowset.getRowSetMetaData();

Consult the methods of the RowSetMetaData class in the Zen Java Class Library javadoc for
details.

Navigate the Rows in a Row Set

As previously shown, you can iterate through the row set’s rows by repeatedly calling the
"getNext" method. You can iterate backwards by changing the "direction" property of the row
set’s RowSetMetaData object.

rsmd.setDirection(Const.BTR_BACKWARDS);

After setting this property, the behavior of the "getNext" method becomes "getPrevious."

Note: You can "reset" the currency of the row set at any time to be before the first or after the last
row (as shown in the following procedures). This is an efficient way to retrieve the first row or
last row without having to iterate through the entire row set.

18

To retrieve the first row in the row set

1. Set the direction to forwards. This is the default.

rsmd.setDirection(Const.BTR_FORWARDS);

2. Set the row set’s currency to before the 1st row.

rowset.reset();

3. Retrieve the first row.

Row first = rowset.getNext();

To retrieve the last row in a row set

1. Set the direction to backwards.

rsmd.setDirection(Const.BTR_BACKWARDS);

2. Set the row set’s currency to after the last row.

rowset.reset();

3. Retrieve the last row.

Row last = rowset.getNext();

 To access a Row object’s column data

Row objects inherit a multitude of accessor/mutator methods from the Buffer class. These
methods allow you to set/get column data to/from a Row object’s buffer.

1. For example, to retrieve the data in column 0 as a String, do one of the following.

String str = row.getString(0);

or

String str = row.getString("ColumnName");

where "ColumnName" is the name defined in the data dictionary for column 0. Column names are
case sensitive.

2. Now, to set the data for column 0, you use one of the setString methods.

row.setString(0, "MyColumnData");

or

row.setString("ColumnName", "MyColumnData");

3. Consult the methods of the Buffer class in the Zen Java Class Library javadoc for details.

19

Restrict or Filter the Data

To restrict/filter rows in a row set

To restrict/filter the rows in a row set, you have to use the RowSetMetaData’s "addFirstTerm,"
"addOrTerm," and "addAndTerm." For example, if the first column of a table contains integer
data and you want all the rows where the first column’s value is greater that 25, do the following.

1. Get the row set’s RowSetMetaData.

RowSetMetaData rsmd = rowset.getRowSetMetaData();

2. Get the ColumnDef for first column, column number 0.

ColumnDef cmd = rsmd.getColumnDef(0);

3. Reset the row set’s currency to the beginning.

rowset.reset();

4. Add the first term.

rowset.addFirstTerm(cmd, Const.BTR_GR, "25");

5. Call getNext to get the first row where column 0 is greater than 25.

Row row = rowset.getNext();

You can add additional terms with the RowSetMetaData’s "addOrTerm" and "addAndTerm."
These methods allow you to build up more complex filtering conditions similar to a SQL
"WHERE" clause.

To select columns from a row set

You can specify a subset of the columns to retrieve, similar to the SQL "select" statement, by
using the RowSetMetaData methods, "addColumns" and "dropColumns." By default, a row set
will retrieve all the column data unless the row set was created with the "noColumns" parameter
set to "true."

RowSet rowset = table.createRowSet(true);

In this case, no columns will be retrieved. Alternatively, after creating the row set, you can drop
all or some of the columns.

RowSetMetaData rsmd =rowset.getRowSetMetaData();

rsmd.dropAllColumns();

Now you can add the set of columns you’re interested in to the row set.

rsmd.addColumns("LastName", "FirstName");

20

You can add columns to the row set by column names or by column numbers. See the various
"addColumns" and "dropColumns" methods of the "RowSetMetaData" class in the Zen Java
Class Library javadoc for details.

If you access column data in the rows by column number, be aware that the column numbers will
be affected by the new ordering produced by "addColumns" and "dropColumns" methods. For
example, if "FirstName" was originally column number 3 in the row set, after dropping all the
columns and then adding "LastName" and "FirstName," the "FirstName" column number will be
1.

To retrieve a row by index

You can retrieve a row by using a defined index along with a comparison operator. For instance, if
an index, "Last_Name" has been created on the "LastName" column for a hypothetical table, you
can do the following to find a row with a "LastName" equal to "Smith."

1. Using the row set’s RowSetMetaData object, set the access path to use index "Last_Name."

rsmd.setAccessPath("Last_Name");

2. Create an index object using the index name. You can use the index number instead of the
name.

Index index = rowset.createIndex("Last_Name");

3. Set the "LastName" column data for the index.

index.setString("LastName", "Smith");

4. Get the first row with LastName == Smith.

try {

Row row = rowset.getByIndex(Const.BTR_EQ, index);

}

5. Catch any exceptions that occur.

catch(PsqlOperationException ex) {

// If the error code == 4, then no row with LastName
// == Smith exists. This could be considered
// normal operation.

// If the status code is not 4, the operation failed
// for some other reason than "not found."

21

if (ex.getErrorCode() != 4)

throw(ex);

}

If the index allows duplicate key values, the first row which satisfies the comparison operator will
be returned. The returned row becomes the current row, allowing you to retrieve the next logical
row, based on the index, with the row set’s "getNext" method.

You can get the list of index names from the table’s TableMetaData object.

String [] index_names = table.getTableMetaData().getIndexNames();

Be aware that an index is not required to have a name. In that case, you should use the index
number instead. Index numbers are zero based.

Insert, Update, or Delete Rows

To insert a new row

1. First create a new Row object.

Row row = rowset.createRow();

2. Set the column data for the row.

// Set column 0 data

row.setString(0, "Column0String");

// Set column 1 data

row.setInt(1, 45);

// Update column 2 data

row.setDouble(2, 99.99);

3. Now insert the row.

rowset.insertRow(row);

This newly inserted row becomes the current row of the row set. If you do not want the row
set’s currency to be changed by the insertion, you can use the overloaded version of
"insertRow" that takes a boolean argument indicating no currency change(NCC).

rowset.insertRow(row, true);

The row set’s current row will be unchanged.

22

To update a row/record

1. First retrieve the row by calling one of the row set’s retrieval methods, "getNext,"
"getByIndex," and so forth.

Row row = rowset.getNext();

2. Make the changes to the column data for the row.

// Update column 1

row.setInt(1, 45);

3. Now update the row.

rowset.updateRow(row);

Like "insertRow," the newly updated row becomes the current row of the row set unless "no
currency changed" is indicated, as shown following.

rowset.updateRow(row, true);

To delete a row/record

1. First retrieve the row by calling one of the row set’s retrieval methods, "getNext,"
"getByIndex," and so forth.

Row row = rowset.getNext();

2. Then delete the row.

rowset.deleteRow(row);

The row to be deleted does not have to be the "current" row i.e. the row returned from the last
retrieval operation. If it is not the current row, the "deleteRow" method will make the deleted
row the "current" row before deleting it. After the deletion, a call to "getNext" will return the
row following the deleted row.

Combine Operations into a Transaction

Transactions allow you to combine a series of operations into a single operation that will either be
committed or aborted.

To make a set of operations a transaction

You can make a set of operations a transaction by using the transaction methods of the Session
class.

Here is an example of a transaction:

23

1. Start the transaction

try {

session.startTransaction(BTR_CONCURRENT_TRANS);

2. Perform some operations that you want to rollback if a failure occurs.

// insert one or more operations here

3. Attempt to commit the transaction.

session.commitTransaction(); }

catch(PsqlException ex)

4. If an error is detected, abort the transaction.

{ // An error occurred.

session.abortTransaction(); }

Transactions can be "exclusive" or "concurrent." See the Zen Programmer’s Guide for more
information about transactions.

Store and Retrieve Binary Large Objects

The setObject and getObject methods can be used to store and retrieve Java objects that
implement the java.io.Serializable interface. The setBinaryStream and getBinaryStream methods
can be used to store and retrieve binary data using Java InputStreams. If we have a "simple"
object Employees with the following interface:

public class Employee implements java.io.Serializable

 public int getID(); //Gets the Employee ID

 public void setID(int ID); //Sets the Employee ID

 public String getName(); //Gets the Employee Name

 public void setName(String name); //Sets Employee Name

 public String getManagerName(); //Gets the Manager Name

 public void setManagerName(); //Sets the Manager Name

...and we have a file that we wish to read at C:\Employees\Java Duke\report.txt, we can instantiate
an Employee object, set its state with the mutator methods, and store it into the database in the
Employee_Data column as well as storing the file in the Manager_Report column:

// Already performed usual setup

// (Driver.establishSession, and so forth)

24

// and instantiated an Employee object

// named employeeObject.

employeeObject.setName("Java Duke");

employeeObject.setID(123456789);

employeeObject.setManagerName("Big Boss");

FileInputStream managerReport = null;

try

{

 managerReport = new FileInputStream(C:\Employees\Java Duke\report.txt);

}

catch(IOException ioe)

{

 //Handle the exception.

}

//Set the column values for the row,

// assuming that a RowSet object

//(rowset) has already been created.

Row employeeRow = rowset.createRow();

//Set the ID column of the database.

employeeRow.setInt("ID", employeeObject.getID());

//Set the Employee object into the row.

try

{

 employeeRow.setObject("Employee_Data", employeeObject);

}

catch(PsqlIOException pioe)

{

 //Handle the exception.

25

}

//Set the manager's report into the row.

employeeRow.setBinaryStream("Manager_Report", managerReport);

//Insert the row.

rowset.insertRow(employeeRow);

//Now we can retrieve this row from the database

RowSetMetaData rsmd = rowset.getRowSetMetaData();

ColumnDef cdef = rsmd.getColumnDef("ID");

rsmd.addFirstTerm(cdef, Const.BTR_EQ, "123456789");

Row rowRetrieved = rowset.getNext();

//After the row is retrieved, we can

// perform the getObject and

// getBinaryStream methods on the row in

// order to retrieve the desired data.

try

{

 Employee employeeRetrieved =

 (Employee)rowRetrieved.getObject("Employee_Data");

}

catch(PsqlException pe) //This method throws both

 // PsqlIOException

{ //and PsqlClassNotFoundException

 //Handle the exception.

}

InputStream reportRetrieved =

 rowRetrieved.getBinaryStream("Manager_Report");

26

// These objects have now been reconstituted.

// You can invoke the methods that have been

// defined for either the object itself or

// its parents as you normally would.

String managerName = employeeRetrieved.getManagerName();

// You probably wouldn't normally want

// to process the entire file.

// in one chunk, but you could

// if you have the resources.

byte file[] = new byte[reportRetrieved.available()];

reportRetrieved.read(file);

For more information, see Binary Large Object Support.

Java Data Type Issues
This topic contains information that may be of use to the Zen Java programmer.

Binary Large Object Support

Support has been added to the Java Class Library to handle Binary Large Objects or BLOBs.
BLOBs represent large (up to 4 GB) binary data, and are represented as LONGVARBINARY data
types in the Zen engine. The Java Class Library supports these data types through the following
methods, which are found in the PSQL.database.Row class:

public void setObject(int columnNumber, Serializable object),

public void setObject(String columnName, Serializable object),

public Serializable getObject(int columnNumber),

public Serializable getObject(String columnName),

public InputStream getBinaryStream(int columnNumber),

27

public InputStream getBinaryStream(String columnName),

public void setBinaryStream(int columnNumber, InputStream inStream),

public void setBinaryStream(String columnName, InputStream inStream)

where columnNumber = the zero based sequence number of a column in the row buffer.
columnName = the name of a column in the row buffer. object = a serializable Java object to store
into the database. inStream = a Java InputStream object used to stream bytes into the database.

The methods above can be split into two categories: those that operate on Serialized Java objects
and those that operate on Java InputStream objects. Each of these categories will be discussed
further in the following sections. In the following sections, examples will be assuming that a table
named Employees has been created with the following schema:

Note: Employee_Data and Manager_Report have the "not null" specification in their definitions
because the Zen Java Class Library does not yet support the true null feature found in
Pervasive.SQL 2000 and later versions.

table Employees (SS_Num ubigint primary key,

Employee_Data longvarbinary not null,

Manager_Report longvarbinary not null)

Data inserted into a "one-byte integer column" with the SQL Interface
cannot be retrieved with the Java Interface

The Zen database engine interprets one-byte integers as having possible values from 0 to 255.
Java interprets its byte type as signed quantities with possible values from -128 to 127.

Because of this difference in interpretation, your code must perform the procedure described here
so that data is not misinterpreted.

To convert single-byte integers between Java’s interpretation and that of the Zen
Database engine

int theOneByteInt = 0;

PSQL.database.Row row = _rowset.getNext();

theOneByteInt = row.getByte("OneByte") & 0x00FF;

listCourses.add(theOneByteInt + " ");

Note: All Java data types are signed.

28

For more information on Java data types and other language information, please see
docs.oracle.com/javase/tutorial.

Sample Database Files
You can use the sample database files provided with the SDK to write Java applications. If you
damage the database files because of faulty programming, you can restore them from a backup
directory installed with the SDK.

To restore the sample database files

1. Before restoring, close any programs that have the database files open, such as the sample
application or your development environment.

2. Assuming you installed to the default location of file_path\Zen\SDK, open the following
folder:

file_path\zen\sdk\jcl\samples\pvideo\pvideodb\dbbackup

For default locations of Zen files, see Where are the files installed? in Getting Started with
Zen.

3. Copy the files located in that directory to the next higher level folder, which in the case of step
1 is:

file_path\zen\sdk\jcl\samples\pvideo\pvideodb\

Additional Java Samples
There are additional samples included with the Java API. One sample demonstrates joining two
tables provided in the SDK package. Another is a simple connection to the Demodata database.
The final one demonstrates object serialization.

These samples are located in the following directories, (assuming you installed to the default
location):

file_path\zen\sdk\jcl\samples\join

file_path\zen\sdk\jcl\samples\helloworld\

file_path\zen\sdk\jcl\samples\serialization

29

For default locations of Zen files, see Where are the files installed? in Getting Started with Zen.
For additional Zen Java information, see the Actian website.

30

	Contents
	About This Document
	Who Should Read This Manual

	Introduction to the Zen Java Interface
	The Zen Java Interface
	Java Class Library and MicroKernel Engine
	Database Concepts
	Tightly-Coupled Databases
	Loosely-Coupled Databases

	How to Set Up your Environment
	Supported JDKs
	CLASSPATH Environment Variable
	Windows CLASSPATH

	Running the Video Store Java Sample Application
	Viewing the Source of the Java Video Store Application
	Developer Resources
	Online Resources
	Javadoc Reference

	Programming with the Java Class Library
	Zen Java Interface Class Structure
	General Classes
	Rowset Family Classes
	Cursor Family Classes

	Overview of Major Classes and Methods
	DRIVER
	SESSION
	DATABASE
	TABLE
	ROWSET
	ROW

	Sequence of Steps for a Java Application
	Case 1: The application is accessing tables of a tightly coupled database.
	Case 2: The application is accessing data files of a loosely coupled database (or data files that store tables of a tightly coupled database in the "classic" way).

	First Steps with the Java Class Library
	Verify your Environment is Correct
	Create Your Database and Tables
	Connect to the Database
	To connect to the database using a URI

	Obtain the Tables and Create Rowsets
	Navigate the Rows in a Row Set
	Restrict or Filter the Data
	Insert, Update, or Delete Rows
	Combine Operations into a Transaction
	Store and Retrieve Binary Large Objects

	Java Data Type Issues
	Binary Large Object Support
	Data inserted into a "one-byte integer column" with the SQL Interface cannot be retrieved with the Java Interface

	Sample Database Files
	Additional Java Samples

