
ODBC Guide

Zen v16

Activate Your Data™

Copyright © 2024 Actian Corporation. All Rights Reserved.

This Documentation is for the end user’s informational purposes only and may be subject to change or withdrawal by
Actian Corporation (“Actian”) at any time. This Documentation is the proprietary information of Actian and is
protected by the copyright laws of the United States and international treaties. The software is furnished under a
license agreement and may be used or copied only in accordance with the terms of that agreement. No part of this
Documentation may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, or for any purpose without the express written permission of Actian. To the extent
permitted by applicable law, ACTIAN PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY
OF ANY KIND, AND ACTIAN DISCLAIMS ALL WARRANTIES AND CONDITIONS, WHETHER EXPRESS
OR IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF
MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OR OF NON-INFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT WILL ACTIAN BE LIABLE TO THE END USER OR ANY THIRD
PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION,
GOODWILL, OR LOST DATA, EVEN IF ACTIAN IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The manufacturer of this Documentation is Actian Corporation.

For government users, the Documentation is delivered with “Restricted Rights” as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Actian, Actian DataCloud, Actian DataConnect, Actian X, Avalanche, Versant, PSQL, Actian Zen, Actian Director,
Actian Vector, DataFlow, Ingres, OpenROAD, and Vectorwise are trademarks or registered trademarks of Actian
Corporation and its subsidiaries. All other trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

iii

Contents

About This Document v

Who Should Read this Manual. v
For More Information. v

ODBC Specification Support 1

ODBC Specification Supported . 1
Exceptions to ODBC Interface Support . 1

ODBC API Support . 2
Exceptions to ODBC API Support . 4

ODBC Attribute Support . 6
Connection Attribute Support. 6
Statement Attribute Support . 6

ODBC Descriptor Field Support . 7
Descriptor Fields and Bitness Values . 7
SQLSetStmtOption Options . 7

Zen ODBC Reference 27

Data Source Name Connection String Keywords . 27
Closing an Open Table . 27

SQL Grammar Support. 28
Delimited Identifiers in SQL Statements . 29

Supported Data Types. 30
Representation of Infinity. 32
Transactions . 32

DSN Setup and Connection Strings 35

ODBC Database Access . 35
Zen ODBC Driver Names . 35
DSN Connections . 36
DSN-less Connections . 37

Zen DSN Setup. 37
ODBC Administrator . 37
Data Source Name . 38
Description . 38
Server Name/IP. 38
Transport Hint. 38

iv

Database Name . 38
Read-Only DSN . 39
Database Configuration Details . 39
Engine DSN. 39
Advanced Connection Attributes . 39

Zen Engine DSN Setup . 44
Data Source Name. 45
Description . 45
Database Name . 45
Database Configuration Details . 45
Engine DSN Advanced Connection Attributes . 45

Create Database Through DSN Setup . 48
ODBC Connection Strings . 49

ODBC Driver Parameter . 49

v

About This Document

This documentation covers Zen support for the ODBC specification.

Who Should Read this Manual
This manual assumes you have a general understanding of ODBC architecture and ODBC driver
components, and have access to the Microsoft ODBC Software Development Kit.

This document also assumes you have a working understanding of modern database principles
and terminology, the C language, and your development environment (compiler and linker).

We would appreciate your comments and suggestions about this document. Your feedback can
determine what we write about the use of our products and how we deliver information to you.
Please post your feedback in the community forum on the Actian Zen website.

Note: Unless otherwise noted, all references in this book to the Zen product refer to the current
version.

For More Information
For complete information on the ODBC specification, see the Microsoft ODBC documentation.

https://www.actian.com/data-management/zen-embedded-database/

vi

1

ODBC Specification Support

The following topics overview Zen support for the Open Database Connectivity Specification
(ODBC) specification:

• ODBC Specification Supported

• ODBC API Support

• ODBC Attribute Support

• ODBC Descriptor Field Support

For instructions on setting up ODBC configuration options in Zen, see DSN Setup and
Connection Strings.

ODBC Specification Supported
ODBC (Open Database Connectivity) is a standard API originally developed by Microsoft for
accessing database management systems (DBMS). The standard has evolved over the years. The
Zen relational interface supports the ODBC v3.51 specifications for Core, Level 1, and Level 2
interface support levels (Level 3 is not supported).

Exceptions to ODBC Interface Support

Core Level

SQL_BEST_ROWID

The relational interface uses unique indexes as the optimal set of columns that identifies a row in
the table.

When a new row is inserted into a table that includes an IDENTITY column, the relational
interface does not return the value assigned to the IDENTITY column. You may determine the
value for an IDENTITY column through the use of the @@IDENTITY variable. See
@@IDENTITY and @@BIGIDENTITY in SQL Engine Reference.

Level 2

The following are not supported:

• SQL_ATTR_LOGIN_TIMEOUT

2

• SQL_BEST_ROWID (see discussion above)

• SQL_ROWVER

ODBC API Support
The following table lists the ODBC API functions supported by the relational interface and the
ODBC support level. For detailed information on the ODBC API, see the Microsoft ODBC
documentation.

ODBC Function ODBC Support Level

SQLAllocHandle Core

SQLBindCol Core

SQLBindParameter Core

SQLBrowseConnect Level 1

SQLBulkOperations Level 1

SQLCancel Core

SQLCloseCursor Core

SQLColAttribute Core

SQLColumnPrivileges Level 2

SQLColumns Core

SQLConnect Core

SQLCopyDesc Core

SQLDataSources Core

SQLDescribeCol Core

SQLDescribeParam Level 2

SQLDisconnect Core

SQLDriverConnect Core

SQLDrivers Core

SQLEndTran Core

SQLExecDirect Core

3

SQLExecute Core

SQLExtendedFetch Core

SQLFetch Core

SQLFetchScroll Core

SQLForeignKeys Level 2

SQLFreeHandle Core

SQLFreeStmt Core

SQLGetConnectAttr Core

SQLGetCursorName Core

SQLGetData Core

SQLGetDescField Core

SQLGetDescRec Core

SQLGetDiagField Core

SQLGetDiagRec Core

SQLGetEnvAttr Core

SQLGetFunctions Core

SQLGetInfo Core

SQLGetStmtAttr Core

SQLGetTypeInfo Core

SQLMoreResults Level 1

SQLNativeSql Core

SQLNumParams Core

SQLNumResultCols Core

SQLParamData Core

SQLPrepare Core

SQLPrimaryKeys Level 1

SQLProcedureColumns Level 1

ODBC Function ODBC Support Level

4

Exceptions to ODBC API Support

The following section contains details on the exceptions to ODBC API support.

SQLGetData

If your application calls SQLGetData to return data into an SQL_C_NUMERIC structure, the
ODBC standard specifies that the SQL_DESC_SCALE field is set to zero and the
SQL_DESC_PRECISION field uses the driver-defined precision.

Zen use the values for scale and driver-defined precision as defined in the metadata. Consider the
following example, where scale is set to two:

CREATE TABLE testnum (col1 NUMERIC(10,2))

INSERT INTO testnum VALUES (10.34)

SELECT * FROM testnum

The SELECT statement returns 10.34, not 10.00.

SQLProcedures Level 1

SQLPutData Core

SQLRowCount Core

SQLSetConnectAttr Core

SQLSetCursorName Core

SQLSetDescField Core

SQLSetDescRec Core

SQLSetEnvAttr Core

SQLSetPos Level 1

SQLSetStmtAttr Core

SQLStatistics Core

SQLTablePrivileges Level 2

SQLTables Core

ODBC Function ODBC Support Level

5

SQLGetTypeInfo

SQLGetTypeInfo generates a list of native data type names (type_name) specified by the
relational interface. For example, SQL_CHAR is mapped to CHARACTER. Use the names
which are returned from this function for the data type names for columns in a CREATE TABLE
or ALTER TABLE statement or for parameters for procedures or declared variables in procedures
and triggers.

See Supported Data Types for a list of supported ODBC data types.

SQLGetInfo

The relational interface returns identical values for SQL_DRIVER_VER and SQL_DBMS_VER.
This version value is returned in the following format:

aa.bb.cccc ddd

This value can be interpreted as four components as explained in the following table:

The following table summarizes formats of other values typically returned by SQLGetInfo.

Part Value Description

aa Major version The major version of the database engine

bb Minor version The minor version of the database engine, which is typically updated in a
service pack

cccc Build number The build further specifies the release

ddd Point build A minor update to the build

Item Example Value

SQL_DRIVER_NAME W3ODBCCI.DLL

SQL_DRIVER_VER 10.00.0147 012

SQL_DRIVER_ODBC_VER 03.51

SQL_DBMS_NAME Zen

SQL_DBMS_VER 10.00.0147 012

SQL_ODBC_VER 03.52.0000

SQL_ODBC_API_CONFORMANCE SQL_OAC_LEVEL2

SQL_ODBC_INTERFACE_CONFORMANCE SQL_OIC_LEVEL2

6

SQLSpecialColumns

The Zen relational interface uses unique indexes as the optimal set of columns that uniquely
identifies a row in the table. When a new row is inserted, the relational interface does not return
the values for IDENTITY columns. You may determine the value for an IDENTITY column
through the use of the @@IDENTITY variable. See @@IDENTITY and @@BIGIDENTITY in
SQL Engine Reference.

ODBC Attribute Support
The relational interface provides ODBC v3.51 attribute support, with the exceptions listed here.

Connection Attribute Support

The following table lists the exceptions to ODBC connection attribute support:

Statement Attribute Support

The following table lists the exceptions to ODBC statement attribute support:

fOption Comments

SQL_ATTR_AUTO_IPD The default value is SQL_TRUE. The Pervasive ODBC
Driver does not allow setting this attribute value to
SQL_FALSE.

SQL_ATTR_CONNECTION_TIMEOUT The default value is 0. No other value is supported.

SQL_ATTR_METADATA_ID The default value is SQL_FALSE. The Pervasive ODBC
Driver does not allow setting this attribute's value to
SQL_TRUE

fOption (numerical value) Comments

SQL_ATTR_ENABLE_AUTO_IPD (15) The default value is SQL_TRUE. Pervasive ODBC Driver
does not allow setting this attribute value to SQL_FALSE.

SQL_ATTR_METADATA_ID (10014) The default value is SQL_FALSE. Pervasive ODBC Driver
does not allow setting this attribute's value to SQL_TRUE.

SQL_ATTR_PARAM_BIND_TYPE (18) Only SQL_PARAM_BIND_BY_COLUMN is supported.

7

ODBC Descriptor Field Support
The Zen relational interface provides ODBC v3.51 descriptor field support except for the options
listed in the following table.

Descriptor Fields and Bitness Values

Note that some of the descriptor fields that can be set through the various ODBC SQLSet and
SQLGet functions have been changed to accommodate 64-bit values while others are still 32-bit
values. If you are using the 64-bit ODBC driver, ensure that you use the appropriate sized variable
when setting and retrieving these fields. For more information, refer to the Microsoft ODBC
documentation.

A point of clarification is that SQL_ROWSET_SIZE is supported by both SQLGetStmtOption
and SQLGetStmtAttr. If you are using the 64-bit ODBC driver and you call either
SQLGetStmtOption or SQLGetStmtAttr, a 64-bit value is returned in *ValuePtr when that
attribute parameter is set to SQL_ROWSET_SIZE.

SQLSetStmtOption Options

The section discusses the Zen support for the following SQLSetStmtOption options:

• SQL_BIND_TYPE

• SQL_CONCURRENCY

• SQL_CURSOR_TYPE

• SQL_RETRIEVE_DATA

SQL_ATTR_QUERY_TIMEOUT (0) Supported through SQLSetStmtAttr and
SQLSetConnectAttr. Applies only to SQLExecDirect,
SQLExecute, SQLFetch, and SQLExtendedFetch. Does
not apply to DDL statements.

Option Comments

SQL_DESC_BIND_TYPE For application parameter descriptors (APDs), only
SQL_BIND_BY_COLUMN is supported.

SQL_DESC_ROWVER See Exceptions to ODBC Interface Support.

fOption (numerical value) Comments

8

• SQL_ROWSET_SIZE

• SQL_USE_BOOKMARKS

The following tables indicate valid set values for each option.

Option ODBC Cursor Library Current Zen ODBC Drivers

SQL_BIND_TYPE SQL_BIND_BY_COLUMN or a
length to indicate row-wise binding

SQL_BIND_BY_COLUMN or a length
to indicate row-wise binding

SQL_CONCURRENCY SQL_CONCUR_READ_ONLY or
SQL_CONCUR_ VALUES

(for SQL_CONCUR_ROWVER the
library substitutes
SQL_CONCUR_VALUES, returns
SQL_SUCCESS_WITH_INFO and
sets SQLSTATE to 01S02)

(for SQL_CONCUR_LOCK the
library returns SQL_ERROR returned
with SQLSTATE of S1C00)

SQL_CONCUR_READ_ONLY or
SQL_CONCUR_ROWVER or
SQL_CONCUR_LOCK

(for SQL_CONCUR_VALUES the
driver automatically substitutes
SQL_CONCUR_ROWVER)

SQL_CURSOR_TYPE SQL_CURSOR_FORWARD_ONLY
or SQL_CURSOR_STATIC

(for
SQL_CURSOR_KEYSET_DRIVEN
and SQL_CURSOR_DYNAMIC the
library substitutes
SQL_CURSOR_STATIC, returns
SQL_SUCCESS_WITH_INFO and
sets SQLSTATE to 01S02)

SQL_CURSOR_FORWARD_ONLY or
SQL_CURSOR_STATIC or
SQL_CURSOR_DYNAMIC

(for
SQL_CURSOR_KEYSET_DRIVEN
the driver substitutes
SQL_CURSOR_STATIC, returns
SQL_SUCCESS_WITH_INFO and sets
SQLSTATE to 01S02)

SQL_RETRIEVE_DATA SQL_RD_ON

(for SQL_RD_OFF the library returns
SQL_ERROR returned with
SQLSTATE of S1C00)

SQL_RD_ON or SQL_RD_OFF

SQL_ROWSET_SIZE Any value indicating number of rows
in the rowset as long as it does not
exceed maximum rowset size.

Any value indicating number of rows in
the rowset as long as it does not exceed
maximum rowset size.

SQL_USE_BOOKMARKS SQL_UB_ON or SQL_UB_OFF SQL_UB_ON or SQL_UB_OFF

27

Zen ODBC Reference

This reference covers information for the relational interface and ODBC, including connection
strings, metadata versions, limits, and SQL grammar under the following topics:

• Data Source Name Connection String Keywords

• Closing an Open Table

• SQL Grammar Support

• Supported Data Types

• Representation of Infinity

Data Source Name Connection String Keywords
A connection string used to connect to a DSN may include any number of driver-defined
keywords. Using these keywords, the driver has enough information to connect to the data source.
The driver defines which keywords are required to connect to the data source.

See ODBC Connection Strings for a complete discussion of Zen connection strings and the
keywords.

Closing an Open Table

Calling SQLFreeStmt with the SQL_CLOSE option changes the SQLSTATE but does not close
the open tables used by the hStmt. To close the tables currently used by hStmt, SQLFreeStmt must
be called with the SQL_DROP option.

In the following example, the Emp and Dept tables remain open:

SQLPrepare(hStmt, "SELECT * FROM Emp, Dept", SQL_NTS)

SQLExecute(hStmt)

SQLFetch until SQL_No_Data_Found

SQLFreeStmt(hStmt, SQL_CLOSE)

When SQLPrepare is subsequently called on the hStmt, the tables used in the previous statement
are closed. For example, when the following call is made, both the Emp and Dept tables are
closed by Zen:

SQLPrepare(hStmt, "SELECT * FROM Customer",SQL_NTS)

28

The following call would then close the table Customer:

SQLFreeStmt(hStmt, SQL_DROP)

SQL Grammar Support
The ODBC v2.5 specification provides three levels of SQL grammar support: Minimum, Core,
and Extended. Each higher level provides more fully implemented data definition and data
manipulation language support.

The relational interface fully supports the minimum SQL grammar, as well as many core and
extended grammar statements. The relational interface support for SQL grammar is summarized
in the following table. The grammar statements are documented in SQL Engine Reference.

SQL Grammar Statement Minimum Core Extended

ALTER TABLE X

CREATE GROUP X

CREATE INDEX X

CREATE TABLE X

CREATE TABLE X

CREATE TRIGGER X

CREATE VIEW X

DELETE (positioned) X

DELETE (searched) X

DROP GROUP X

DROP INDEX X

DROP PROCEDURE X

DROP TABLE X

DROP TRIGGER X

DROP VIEW X

GRANT X

INSERT X

JOIN LEFT OUTER (Select) X

29

Delimited Identifiers in SQL Statements

Column names and table names can occur as delimited identifiers if they contain non-standard
characters. If an identifier is a keyword, it must delimited.

The delimiter character for identifiers is the double-quote.

Examples

SELECT "last-name" FROM "non-standard-tbl"

The hyphen is a non-standard character.

SELECT "password" FROM my_pword_tbl

REVOKE X

SELECT (with INTO) X

Approximate Numeric Literal X

Between Predicate X

Correlation Name X

Date Arithmetic X

Date Literal X

Exact Numeric Literal X

extended predicates X

In Predicate X

Set Functions X

Time Literal X

Time Stamp Literal X

Subqueries X

SET SECURITY X

UPDATE (positioned) X

UPDATE (searched) X

UNION X

SQL Grammar Statement Minimum Core Extended

30

"Password" is a keyword in the SET PASSWORD statement.

Supported Data Types
The following table shows information about the relational data types supported by Zen for
ODBC. The SRDE converts the relational data types to ODBC default types unless another data
type conversion is specified when SQLGetData or SQLBindCol is called. For a discussion of
data type conversions, refer to data types in the Microsoft ODBC documentation.

See Zen Supported Data Types in SQL Engine Reference for the following information about the
data types:

• Zen metadata type code

• Size

• Create and Add parameters

• Notes specific to each data type

Relational Type ODBC Type (code)1

AUTOTIMESTAMP SQL_TIMESTAMP(93)

BFLOAT4 SQL_REAL(7)

BFLOAT8 SQL_DOUBLE(8)

BIGIDENTITY SQL_BIGINT(-5)

BIGINT SQL_BIGINT(-5)

BINARY SQL_BINARY(-2)

BIT SQL_BIT(-7)

CHAR SQL_CHAR(1)

CURRENCY SQL_DECIMAL(3)

DATE SQL_DATE(91)

DATETIME SQL_TIMESTAMP(93)

DECIMAL SQL_DECIMAL(3)

DOUBLE SQL_DOUBLE(8)

IDENTITY SQL_INTEGER(4)

31

INTEGER SQL_INTEGER(4)

LONGVARBINARY SQL_LONGVARBINARY(-4)

LONGVARCHAR SQL_LONGVARCHAR(-1)

MONEY SQL_DECIMAL(3)

NCHAR SQL_WCHAR(-8)

NLONGVARCHAR SQL_WLONGVARCHAR(-10)

NUMERIC SQL_NUMERIC(2)

NUMERICSA SQL_NUMERIC(2)

NUMERICSLB SQL_NUMERIC(2)

NUMERICSLS SQL_NUMERIC(2)

NUMERICSTB SQL_NUMERIC(2)

NUMERICSTS SQL_NUMERIC(2)

NVARCHAR SQL_WVARCHAR(-9)

REAL SQL_REAL(7)

SMALLIDENTITY SQL_SMALLINT(5)

SMALLINT SQL_SMALLINT(5)

TIME SQL_TIME(92)

TIMESTAMP SQL_TIMESTAMP(93)

TIMESTAMP2 SQL_TIMESTAMP(93)

TINYINT SQL_TINYINT(-6)

UBIGINT SQL_BIGINT(-5)

UINTEGER SQL_INTEGER(4)

UNIQUEIDENTIFIER SQL_GUID(-11)

USMALLINT SQL_SMALLINT(5)

UTINYINT SQL_TINYINT(-6)

VARCHAR SQL_VARCHAR(12)

1SQL_FLOAT and SQL_VARBINARY are not supported by Zen.

Relational Type ODBC Type (code)1

32

Representation of Infinity
When Zen is required by an application to represent infinity, it can do so in either a 4-byte (C float
type) or 8-byte (C double type) form, and in either a hexadecimal or character representation, as
shown in the following table.

Transactions
The START TRANSACTION statement is not supported outside of a stored procedure because
the ODBC standard specifies that every statement is by default inside a transaction. The ODBC
standard does not have an API to start a transaction. See START TRANSACTION in SQL Engine
Reference.

ODBC provides for the application to decide if each SQL statement is in its own transaction or if
the application will specify when each transaction is completed. ODBC automatically opens a
transaction prior to any statement that is not in a transaction. Thus, with the first statement of a
given connection, or with the first statement after a COMMIT or ROLLBACK, ODBC
automatically starts a new transaction.

Within the ODBC standard, SQLSetConnectOption is used to specify whether each statement is
in its own transaction or the application groups statements within a transaction.

 Each statement is in its own transaction if SQLSetConnectOption is called specifying the option
SQL_AUTOCOMMIT and the value SQL_AUTOCOMMIT_ON (this is the default). This usage
means that a transaction is started at the beginning of executing a statement and the transaction is
either automatically committed, if no error occurs, or rolled back, if error occurred, upon
completion of statement execution.

The application can group statements in a transaction if SQLSetConnectOption is called
specifying the option SQL_AUTOCOMMIT and the value SQL_AUTOCOMMIT_OFF value.
This usage means that a transaction is started at the beginning of the first statement executed. The
application then decides when and how to end the transaction by calling SQLTransact or

Value Float
Hexadecimal

Float
Character

Double Hexadecimal Double
Character

Maximum Positive 0x7FEFFFFFFFFFFFFF

Maximum Negative 0xFFEFFFFFFFFFFFFF

Infinity Positive 0x7F800000 1E999 0x7FF0000000000000 1E999

Infinity Negative 0xFF800000 -1E999 0xFFF0000000000000 -1E999

33

executing a 'COMMIT WORK' or 'ROLLBACK WORK' statement. When the application ends
one transaction, another transaction is automatically started on execution of the next statement.

34

35

DSN Setup and Connection Strings

The following topics cover the administration of domain source names and connection strings in
Zen:

• ODBC Database Access

• Zen DSN Setup

• Zen Engine DSN Setup

• Create Database Through DSN Setup

• ODBC Connection Strings

ODBC Database Access
The ODBC standard specifies that applications using ODBC connect to databases through data
source names (DSNs) defined in the operating system. With Zen, you can use DSN connections or
DSN-less connection strings. Zen provides ODBC drivers for communication with the database
engine. These drivers are associated with a DSN or specified in the connection string.

The following sections list the Zen ODBC drivers and briefly introduce DSN database access and
DSN-less connection string access.

Zen ODBC Driver Names

Communication with the database engine is through a Zen ODBC driver. The setup will associate
the appropriate driver during DSN creation. If you are using connection strings, you must specify
the appropriate driver. The following table lists the Zen ODBC drivers.

Driver Name Bitness Remarks

Pervasive ODBC Unicode
Interface

32- and
64-bit

• Available only on Windows operating systems1

• Connects to a local or remote named database

• With the 32-bit ODBC Administrator, creates 32-bit DSNs
for use by 32-bit applications that use wide character data

• With the 64-bit ODBC Administrator, creates 64-bit DSNs
for use by 64-bit applications that use wide character data

36

DSN Connections

Zen does not support File DSNs. You must use User or System DSNs. System DSNs are generally
preferred, because they are available to all users on a given computer.

If your ODBC application expects to use DSNs, then the DSN must identify the database.

A Zen Unicode DSN points to a local or remote named database and is for use with Windows 32-
bit or 64-bit applications that use wide character data.

Zen also provides both 32- and 64-bit non-Unicode DSNs. These also point to a local or remote
named database. The 32-bit DSN is referred to as a Client DSN. A DSN on a 64-bit operating
system is simply referred to as a 64-bit DSN, without the Client designation and is for use by a
64-bit application.

For setting up and configuring a DSN with the ODBC Administrator, see Zen DSN Setup.

Pervasive ODBC Interface 64-bit • Setup creates 64-bit DSNs

• Connects to a local or remote named database

• For use by 64-bit applications

Pervasive ODBC Client
Interface

32-bit • Setup creates 32-bit Client DSNs

• Connects to a local or remote named database or an Engine
DSN

• Interface GUI lists both named databases and Engine DSNs

• For use by 32-bit applications

Pervasive ODBC Engine
Interface

32-bit • Setup creates 32-bit Engine DSNs2

• Connects to a local named database

• For use by 32-bit applications

• Deprecated

1On Linux, the system encoding is usually UTF-8, which allows SQL text to contain wide character
data. SQL text using UTF-8 is compatible with the existing Pervasive ODBC Client Interface driver, so
an ODBC Unicode driver on Linux is not required.
2New or revised 32-bit applications, local or remote, should connect to a named database or use a Client
DSN instead of using Engine DSNs. Alternately, applications could use DSN-less connections by
specifying "Pervasive ODBC Client Interface." Avoiding the use of Engine DSNs positions your
application for the future when Engine DSNs will no longer be supported in Zen.

Driver Name Bitness Remarks

37

Note: Zen also continues to provide an additional 32-bit Engine DSN. Engine DSNs are
deprecated. New or revised 32-bit applications, local or remote, should connect to a named
database rather than using Engine DSNs. Avoiding the use of Engine DSNs positions your
application for the future when Engine DSNs will no longer be supported in Zen. An Engine DSN
points only to a local named database. Client DSNs may also point to an Engine DSN.

DSN-less Connections

As an alternative to DSNs, applications can use DSN-less connections by specifying the Zen
driver name directly (see ODBC Connection Strings).

DSNs are not required for applications that access Zen databases only through the Btrieve API or
through other SQL access methods, such as ADO.NET. Those access methods use named
databases for the connection, which is also an option for ODBC applications.

The Zen Java utilities do not require DSNs. For example, ZenCC uses JDBC with named
databases, not ODBC.

Zen DSN Setup
This dialog is available via the ODBC Administrator and allows you to set up a DSN using any of
the following Zen ODBC interfaces.

• Pervasive ODBC Unicode Interface
With the 32-bit ODBC Administrator, creates 32-bit DSNs. With the 64-bit ODBC
Administrator, creates 64-bit DSNs.

• Pervasive ODBC Client Interface
For 32-bit DSNs

• Pervasive ODBC Interface
For 64-bit DSNs

ODBC Administrator

Windows 64-bit operating systems contain two different executable files for ODBC
Administrator, one for 32-bit DSNs and one for 64-bit DSNs. Each ODBC Administrator lists the
system DSNs that only match its bitness. That is, the 64-bit ODBC Administrator lists 64-bit
system DSNs, and vice versa. If you start ODBC Administrator from the Windows Control Panel,
the 64-bit version is run.

38

Zen Control Center (ZenCC) contains separate options in the Tools menu to start the 32-bit or the
64-bit ODBC Administrator. Note that, if an ODBC Administrator is already open, Windows
defaults to it. That is, if the 32-bit ODBC Administrator is open and you attempt to start the 64-bit
one, Windows displays the 32-bit version (and vice versa). In other words, only one version of the
ODBC Administrator runs at a time. This is a limitation of the Windows operating system rather
than Zen.

Data Source Name

The ODBC client-server architecture calls for the naming of each specific data set so that it can be
referred to by a well-known name.

Enter a name (called a data source name, or DSN) for the data source to which you wish to set up
a connection. This DSN will help you identify the data source.

For additional information about using DSNs with the database engine, see ODBC Database
Access.

Description

Enter a description of the DSN, if desired, to help identify the DSN, database, or application.

Server Name/IP

Specifies the machine on which the database engine is running. Enter a machine name or IP
address of the server machine to which you want the client to connect.

Transport Hint

Specify the transport protocol to use, or which to try first. Default is TCP.

Database Name

Click Database Name, click Get List, then select in the list the database to which you wish to
connect. The list returns the databases on the server specified for Server Name/IP.

Optionally you may create a new database by clicking Create.

39

Read-Only DSN

Selecting this check box causes the DSN connection string to include the setting OpenMode=1.
This setting is available for the following configuratins:

• Pervasive ODBC Unicode Interface (32- and 64-bit)

• Pervasive ODBC Interface (64 bit)

Database Configuration Details

See Create Database Through DSN Setup for the following database configuration details:

• Dictionary Location

• Data File Location

• Integrity Enforced

• Bound

Engine DSN

This option appears only on the 32-bit Client DSN dialog. It is not present on any of the other Zen
driver DSN dialogs.

Click Engine DSN, click Get List, then select in the list the Engine DSN to which you want the
client to connect. The list returns the Engine DSNs on the server specified for Server Name/IP.

Optionally, you may create a new Engine DSN by clicking Create, or modify an existing Engine
DSN by clicking Modify.

See also Zen Engine DSN Setup.

Note: New or revised 32-bit applications, local or remote, should connect to a named database,
not to an Engine DSN. Alternately, applications could use DSN-less connections (see DSN-less
Connections). Avoiding the use of Engine DSNs positions your application for the future when
Engine DSNs will no longer be supported in Zen.

Advanced Connection Attributes

The following connection attributes apply to 32-bit Client DSNs, 64-bit DSNs, and Unicode
DSNs.

• Enable Array Fetch

40

• TCP/IP Port Number

• Encoding Translation

(For connection attributes that apply to Engine DSNs, see Engine DSN Advanced Connection
Attributes.)

Enable Array Fetch

An array fetch is a memory cache on the client machine for result sets. When array fetch is
enabled, data from the latest result set is cached to the client machine's local memory, thereby
speeding performance on subsequent queries. We recommend you leave array fetch turned on if
you are doing multiple queries.

The default size of the buffer used to cache an array fetch is 64 KB. Its value can be set anywhere
from 1 to 64 KB.

TCP/IP Port Number

You can use this setting to change the network port number on which Zen transmits ODBC
communications. The network layer on the server engine has a similar setting. You must change
both settings at the same time, and you must change them both to the same port number, or else
your client and server cannot communicate.

Caution! Do not change the client port number unless you also change the corresponding port
number on the server. If the server and client are not using the same port number, they cannot
communicate. See TCP/IP Port in Advanced Operations Guide.

Generally, the only reason you would need to change this port number is if you have another
network service that is already using this port, and it is easier to change the port number for your
Zen applications than for the other application.

For additional information about ports, see Changing the Default Communication Ports in Getting
Started with Zen.

Encoding Translation

Encoding translation refers to the operation of converting the encoding of character data from that
present in the database to the encoding present at the client and vice versa. This allows a client to
read and write text from and to the database, under certain conditions, even if the database and
client are using different encodings. Obviously, if the two encodings are the same, no translation
is needed. The effectiveness of the translation is dependent on the amount of overlap between the
character sets on the client and server, i.e., the greater number of characters they have in common.

41

Characters that cannot be translated are replaced by question marks. For example, if the database
uses OEM code page 850 and the client uses ANSI code page 1252, the letters will translate, but
some graphics symbols will not.

The database connection string or DSN can be configured to automatically negotiate the
translation, perform OEM/ANSI translation between different code page encodings, or disable
any translation. Automatic translation is the default when using the Unicode driver; no translation
is the default for all other Zen ODBC drivers. You can specify automatic translation in the DSN
setup, or in the ODBC connection string with the PvTranslate attribute.

The following table summarizes the operation of text encoding translation for various
combinations of client and driver encodings. Your application may be either ANSI or Unicode,
indicated in column one. The Zen driver is either the Client driver (Client 32-bit or 64-bit driver)
or the Unicode driver, column two. (The client and Unicode drivers are described in ODBC
Database Access, above.) The Microsoft ODBC Driver Manager connects your application to the
Zen ODBC driver and may perform text conversions, as indicated in column three. The three
remaining columns describe the Zen driver text handling for a given encoding configuration
(column four) for SQL text or CHAR user data (columns five and six, respectively). When data is
retrieved from the database, the translation is reversed. Following the table are descriptions of
these configuration options.

Application Zen
Driver

Microsoft Driver
Manager Text
Handlling

Translation
Configuration
in DSN or
Connection
String

Zen Driver SQL
Text Handling

Zen Driver
CHAR Data
Handling

ANSI Client no translation none no translation no translation

ANSI Client no translation OEM/ANSI Client encoding
to OEM

Client encoding
to OEM

ANSI Client no translation Auto Client encoding
to database
encoding

Client encoding
to database
encoding

ANSI Unicode Client encoding to
UCS-2 for SQL
text

Auto UCS-2 to UTF-8 Client encoding
to database
encoding

Unicode Client UCS-2 to client
encoding

none no translation no translation

Unicode Client UCS-2 to client
encoding

OEM/ANSI Client encoding
to OEM

Client encoding
to OEM

42

Note: When using the Zen Client driver, Unicode SQL text is always converted to the client
encoding by the Microsoft Driver Manager. This restricts NCHAR literals in a SQL query string
to the character set of the client. To preserve NCHAR literals in SQL query text, use the Zen
Unicode driver.

DSN Encoding Translation Options

The encoding translation options specify how character data is translated between the Zen
database engine and a Zen client application that uses ODBC. This option is only available when
configuring a Client 32-bit or 64-bit DSN. The Unicode DSN defaults to automatic.

Automatic

This setting instructs the Zen ODBC client to automatically translate character data encoding
when the database encoding on the engine machine differs from the OS encoding on the client
machine. Automatic is the default for the Unicode driver.

Character data translation, if required, occurs on the client. (No character data translation is
required if the database encoding on the engine machine is the same as the OS encoding on the
client machine.)

"Automatic" requires that the client and the server be version 10.1 or greater.

See also Database Code Page and Client Encoding in Advanced Operations Guide.

None

This setting means that no character data is translated between the client and server. (The
assumption is that the client and server use the same operating system encoding.)

Unicode Client UCS-2 to client
encoding

Auto Client encoding
to database
encoding

Client encoding
to database
encoding

Unicode Unicode no translation Auto UCS-2 to UTF-8 UCS-2 to
database
encoding

Application Zen
Driver

Microsoft Driver
Manager Text
Handlling

Translation
Configuration
in DSN or
Connection
String

Zen Driver SQL
Text Handling

Zen Driver
CHAR Data
Handling

43

Note that, in versions prior to Zen v10.10, OEM/ANSI Conversion was a single choice and had
two states: not selected or selected. The not selected state is now labeled None and is the default
for Zen ODBC drivers other than the Unicode driver.

OEM/ANSI Conversion

This setting allows applications to store or retrieve character data in any OEM character set in the
Zen engine, while allowing the data to be manipulated and displayed using the ANSI Windows
character set in the application.

The Zen ODBC driver translation DLL can perform all necessary translations between the two
character sets. This feature can be turned on or off for each DSN. Any character data that is passed
to and from the database is correctly translated by the ODBC driver between the OEM and ANSI
character sets.

If your application connects to the data source using SQLDriverConnect, you can also specify the
translation DLL using the connection string option TRANSLATIONDLL=path_and_DLL_name. The
translation DLL name for Zen is W32BTXLT.DLL.

Note: The OEM-to-ANSI translation option is available only for Client and 64-bit DSNs. (You
can also use this translate option with a local Engine DSN. It is not available when setting up a
remote Client connection to an Engine DSN. Keep in mind that Engine DSNs are deprecated and
should not be used for new applications.)

Interaction Between Database Code Page and Encoding Translation

The following table explains the interaction between database code page and DSN encoding
translation. See Create Database Through DSN Setup for a discussion of code page.

If Database Code
Page Is

And the Connection
Encoding Translation Is

 Then the Zen ODBC Driver

Server Default None

(The equivalent default
behavior in versions prior to
PSQL v10.10.)

Performs no translation of data or
metadata. The assumption is that the OS
encoding on the server matches the OS
encoding on the client.

For compatible data interpretation, the
encoding used by the client machine must
match the encoding of the data and
metadata in the database.

44

Zen Engine DSN Setup
Note that Engine DSNs are 32-bit only.

Windows 64-bit operating systems contain two different executable files for ODBC
Administrator, one for 32-bit DSNs and one for 64-bit DSNs. Each ODBC Administrator lists
only the system DSNs that match its bitness. That is, the 64-bit ODBC Administrator lists 64-bit
system DSNs, and vice versa. If you start ODBC Administrator from the Windows Control Panel,
the 64-bit version is run. The 64-bit version does not list Engine DSNs because they are 32-bit
only.

Zen Control Center (ZenCC) contains separate options in the Tools menu to start the 32-bit or the
64-bit ODBC Administrator. Note that, if an ODBC Administrator is already open, Windows
defaults to it. That is, if the 32-bit ODBC Administrator is open and you attempt to start the 64-bit
one, Windows displays the 32-bit version (and vice versa). In other words, only one version of the
ODBC Administrator runs at a time. This is a limitation of the Windows operating system, not
Zen.

A specific code page None

(The equivalent default
behavior in versions prior to
PSQL v10.10.)

Performs no translation of data or
metadata. The assumption is that the OS
encoding on the server matches the OS
encoding on the client.

For compatible data interpretation, the
encoding used by the client machine must
match the encoding of the data and
metadata in the database.

Server Default

or

A specific code page

OEM/ANSI Ignores database code page and translates
data and metadata from the OEM
encoding of the database to ANSI
Windows encoding for the client
application.

Server Default Automatic Translates data and metadata from the
default OS encoding on the server to the
OS encoding on the client.

A specific code page Automatic Translates data and metadata from the
database code page to the OS encoding on
the client.

If Database Code
Page Is

And the Connection
Encoding Translation Is

 Then the Zen ODBC Driver

45

Note: New or revised 32-bit applications, local or remote, should connect to a named database,
not to an Engine DSN. Alternately, applications could use DSN-less connections (see DSN-less
Connections). Avoiding the use of Engine DSNs positions your application for the future when
Engine DSNs will no longer be supported in Zen.

Data Source Name

The ODBC client-server architecture calls for the naming of each specific data set so that it can be
referred to by a well-known name.

Enter a name (called a data source name, or DSN) for the data source to which you wish to set up
a connection. This DSN will help you identify the data source.

For additional information about using DSNs with the database engine, see ODBC Database
Access.

Description

Enter a description of the DSN, if desired, to help identify the DSN, database, or application.

Database Name

Select a database with which you want to associate the DSN. Optionally, you may create a new
database by clicking Create.

Database Configuration Details

See Create Database Through DSN Setup for the following database configuration details:

• Dictionary Location

• Data File Location

• Integrity Enforced

• Bound

Engine DSN Advanced Connection Attributes

The connection attributes for Engine DSNs include the following:

• DSN Open Mode

46

• Encoding Translation

Note: Engine DSNs are deprecated. New or updated applications should use Client DSNs in
local or remote connection mode.

DSN Open Mode

The DSN Open Mode options for Engine DSNs allow you to specify one of several characteristics
that go into effect when tables are opened through the specified DSN. These options are mutually
exclusive—you are not permitted to select more than one.

These options correspond directly to the Btrieve open modes allowed in the Open (0) operation.
By setting an Open Mode for a DSN, you are setting the default behavior for tables
(corresponding to Btrieve files) opened through that DSN.

Normal

Normal mode is the default. Opening a table in Normal mode allows read/write access according
to the permissions defined in the database.

If this mode is selected, the ODBC connection string includes OPENMODE=0, and the following
ODBC function call is executed when you connect to the database:

SQLSetConnectOption(pSubDbc, SQL_ACCESS_MODE, SQL_MODE_READ_WRITE);

Accelerated

Opening a table in Accelerated mode provides increased insert/update performance by disabling
database engine logging functions for the current user. The changes to logging in Accelerated
mode do not affect other users accessing the same table.

Open Mode ODBC Connection String
Generated

SQLSetConnectOption Call

Normal OPENMODE=0 SQLSetConnectOption(pSubDbc,
SQL_ACCESS_MODE,
SQL_MODE_READ_WRITE);

Accelerated OPENMODE=-1 SQLSetConnectOption is ignored

Read-only OPENMODE=1 SQLSetConnectOption(pSubDbc,
SQL_ACCESS_MODE,
SQL_MODE_READ_ONLY);

Exclusive OPENMODE=-4 SQLSetConnectOption is ignored

47

Caution! The database engine cannot guarantee transaction atomicity, transaction durability, or
archival log safety for any client during use of Accelerated mode by any client. The reason for this
restriction is that in the event a restore from log is needed, the log may not contain adequate
information to complete the restore, because it is only a partial record of operations on a data file.

For example, if a system failure occurs while the same file is being accessed by a client
performing inserts using Accelerated mode and a client performing updates using Normal mode,
it is possible for the transaction log to contain updates to records that do not yet exist in the data
files, because the Accelerated insert operation in memory was never flushed to disk, while the
transactional update operation was written to the transaction log.

An attempt to roll forward an archival log containing this combination of operations will fail.

When this mode is selected, the ODBC connection string includes OPENMODE=-1, and the
SQLSetConnectOption call is ignored by the ODBC driver. You cannot use
SQLSetConnectOption to specify this mode.

Read-Only

When a table is opened in read-only mode, operations that modify the database structure or the
data in the database are not permitted.

If this mode is selected, the ODBC connection string includes OPENMODE=1, and the following
ODBC function call is executed when you connect to the database:

SQLSetConnectOption(pSubDbc, SQL_ACCESS_MODE, SQL_MODE_READ_ONLY);

Exclusive

When a table is opened in exclusive mode, no other connections to the table are permitted. If other
users are currently accessing the given table, it cannot be opened in Exclusive mode. You must try
again later.

When this mode is selected, the ODBC connection string includes OPENMODE=-4, and the
SQLSetConnectOption call is ignored by the ODBC driver. You cannot use
SQLSetConnectOption to specify this mode.

Encoding Translation

The encoding translation options are the same as for Client and 64-bit DSNs. See Encoding
Translation.

48

Create Database Through DSN Setup
The following table explains the controls on the Create Database dialog.

Element Description

Database Name The name for the database that you want to appear in the database listings. For
example, the database name you see in Zen Control Center.

Note: The database name cannot be the same as an existing database name.

Integrity
Enforced

Specifies whether integrity constraints (security, RI, and triggers) are enforced on
the database. These constraints apply to Btrieve access to the data files as well as
ODBC/SQL access.

For additional information, see Interactions Between Btrieve and Relational
Constraints in Advanced Operations Guide.

Bound Indicates whether or not the database is bound. Binding a database prevents the
DDFs or data files from being used in another database and prevents a data file from
having two or more different table definitions within the same database.

For more information about bound databases, refer to Bound Database versus
Integrity Enforced in Advanced Operations Guide.

Long Metadata
(V2 metadata)

Specifies whether you want the database to use version 1 (V1) or version 2 (V2)
metadata.

The database engine supports two versions of metadata, referred to as version 1
(V1) and version 2 (V2). Metadata version is a property of the database, which
means that it applies to all tables within that database and is recorded in the
dbnames.cfg file. A database cannot use some tables with V1 metadata and others
with V2 metadata. Metadata from the two versions cannot interact.

For additional information, see Zen Metadata in SQL Engine Reference.

Code Page Specifies the code page that applies to the database data and metadata.This property
is stored in DBNAMES.CFG.

The default code page is "server default," meaning the operating system code page
on the server where the database engine is running.

Note that database code page and client encoding are separate but interrelated. See
Database Code Page and Client Encoding in Advanced Operations Guide.

Btrieve security
policy

Specifies the security model to use for the transactional interface.See Security
Models for the MicroKernel Engine in Advanced Operations Guide.

Dictionary
Location

This location specifies where the dictionary files (DDFs) reside on physical storage.
This location must be on the same server to which you are connected (and where the
database engine is running). The location must be formatted as though you are
working directly at the server machine.

Enter a path in the form drive:\path, where drive is a drive letter on the server.

49

ODBC Connection Strings
This section describes the ODBC connection strings supported by Zen. This information is
provided for advanced users using a database access tool that allows connection strings to be
specified and for developers writing ODBC applications to access Zen.

ODBC Driver Parameter

You must specify the Zen ODBC driver to use to connect to the Zen database engine. See Zen
ODBC Driver Names for a description of the available drivers.

Use the ODBC Driver parameter to specify the appropriate driver. For example:

Driver={Pervasive ODBC Unicode Interface}
Driver={Pervasive ODBC Interface}
Driver={Pervasive ODBC Client Interface}
Driver={Pervasive ODBC Engine Interface}

Driver Parameters

The specific driver specified by the Driver parameter has additional attribute parameters for
naming the server, port, database, etc. In addition to these common parameters, each driver has
parameters specific to it. The tables below show, for the different drivers, the driver parameters

Data File
Location

This location specifies where the data files reside on physical storage. The Add
button lets you add locations to the list. The Delete button lets you remove locations
from the list. The locations must be on the same server where the database engine is
running.

Specify the location in the same manner as for the dictionary locations.

Element Description

50

that may be used. The attributes can be included with the ODBC function SQLDriverConnect or
with SQLConnect.

Unicode Connection String Parameters Description

ServerName=server[.port] Specify the machine name or IP address of the
computer to which you wish to connect. Required.
Port is provided from backwards compatibility and
allows you to specify the port number to use if you are
not using the default port. When using IPv6 addresses
and appending a port number in ODBC connections,
use an IPv6-literal.net name or UNC-safe name. See
Drive-based Formats in Getting Started with Zen.

TransportHint=TCP Specify the transport protocol to use, or which to try
first. Default is TCP. Optional.

DBQ=[@]db_name Specify the internal database name (not DSN) to which
you wish to connect. Required.

The @ character is optional. It has no particular effect
and is supported only for backward compatibility.

TCPPort=port Specify the TCP/IP port on which to find the server.
Optional. See also Changing the Default
Communication Ports in Getting Started with Zen.

ArrayFetchOn=1 | 0 Specify whether to cache result sets on the client.
Default is 1, "On." Optional.

ArrayBufferSize=size Specify the size of the client cache, in KB. Default is 8
KB. Optional.

PvTranslate=auto Specify how to handle the data encoding when the
client connects to the database engine. (See Encoding
Translation for more information.)

PvTranslate defaults to "auto" for the Unicode driver.
This allows you to use NCHAR columns and NCHAR
literals with wide character data without having to
explicitly set PvTranslate to "auto."

With the attribute is set to "auto," the client and server
automatically establish compatible encoding. Data
translation, if required, occurs on the client.

UID=user_name If security is enabled for the given database, specify
the user name. Optional, depending on security. See
Zen Security in Advanced Operations Guide.

51

• Example A

Connect to a database named SOMEDATA that contains wide character data on a remote
server named ServerMain using TCP/IP port 1590:

Driver={Pervasive ODBC Unicode Interface}; ServerName=ServerMain.1590;DBQ=SOMEDATA;
TransportHint=TCP;

• Example B

Connect to a database named EuropeRegion4 that contains wide character data on a local
server named with database security turned on:

Driver={Pervasive ODBC Unicode Interface}; DBQ=EuropeRegion4;UID=tonyawu7;PWD=HR19lb8w;

PWD=password If security is enabled for the given database, specify
the password. Optional, depending on security. See
Zen Security in Advanced Operations Guide.

64-Bit Connection String Parameters Description

ServerName=server[.port] Specify the machine name or IP address of the
computer to which you wish to connect. Required.
Port is provided from backwards compatibility and
allows you to specify the port number to use if you are
not using the default port. When using IPv6 addresses
and appending a port number in ODBC connections,
use an IPv6-literal.net name or UNC-safe name. See
Drive-based Formats in Getting Started with Zen.

TransportHint=TCP Specify the transport protocol to use, or which to try
first. Default is TCP. Optional.

DBQ=[@]db_name Specify the internal database name (not DSN) to which
you wish to connect. Required.

The @ character is optional. It has no particular effect
and is supported only for backward compatibility.

TCPPort=port Specify the TCP/IP port on which to find the server.
Optional. See also Changing the Default
Communication Ports in Getting Started with Zen.

ArrayFetchOn=1 | 0 Specify whether to cache result sets on the client.
Default is 1, "On." Optional.

Unicode Connection String Parameters Description

52

Example

Connect to a local named database acctdomestic with a 64-bit application:

Driver={Pervasive ODBC Interface};DBQ=acctdomestic;

ArrayBufferSize=size Specify the size of the client cache, in KB. Default is 8
KB. Optional.

PvTranslate=auto Specify how to handle the data encoding when the
client connects to the database engine. The attribute
can either be absent, or have a value set to "auto" to
indicate automatic translation. (See Encoding
Translation for more information.)

With the attribute is set to "auto," the client and server
automatically establish compatible encoding. Data
translation, if required, occurs on the client. Note that
"auto" overrides the "OEM/ANSI" setting for a DSN.

If the attribute is absent, ODBC does not translate any
character data. This is the default behavior. The
"OEM/ANSI" setting may still apply. See OEM/ANSI
Conversion.

UID=user_name If security is enabled for the given database, specify
the user name. Optional, depending on security. See
Zen Security in Advanced Operations Guide.

PWD=password If security is enabled for the given database, specify
the password. Optional, depending on security. See
Zen Security in Advanced Operations Guide.

32-Bit Connection String Parameters Description

ServerName=server[.port] Specify the machine name or IP address of the
computer to which you wish to connect. Required.
Port is provided from backwards compatibility and
allows you to specify the port number to use if you are
not using the default port. When using IPv6 addresses
and appending a port number in ODBC connections,
use an IPv6-literal.net name or UNC-safe name. See
Drive-based Formats in Getting Started with Zen.

ServerDSN=dsn_name Specify the Engine DSN to which you wish to connect.
Required, unless DBQ is specified.

64-Bit Connection String Parameters Description

53

• Example A

Connect to a database named Atlantis on a remote server named AncientLore using TCP/IP
port 1585:

TransportHint=TCP Specify the transport protocol to use, or which to try
first. Default is TCP. Optional.

DBQ=[@]db_name Specify the internal database name (not DSN) to which
you wish to connect. Required.

The @ character is optional. It has no particular effect
and is supported only for backward compatibility.

TCPPort=port Specify the TCP/IP port on which to find the server.
Optional. See also Changing the Default
Communication Ports in Getting Started with Zen.

ArrayFetchOn=1 | 0 Specify whether to cache result sets on the client.
Default is 1, "On." Optional.

ArrayBufferSize=size Specify the size of the client cache, in KB. Default is 8
KB. Optional.

PvTranslate=auto Specify how to handle the data encoding when the
client connects to the database engine. The attribute
can either be absent, or have a value set to "auto" to
indicate automatic translation. (See Encoding
Translation for more information.)

With the attribute is set to "auto," the client and server
automatically establish compatible encoding. Data
translation, if required, occurs on the client. Note that
"auto" overrides the "OEM/ANSI" setting for a DSN.

If the attribute is absent, ODBC does not translate any
character data. This is the default behavior. The
"OEM/ANSI" setting may still apply. See OEM/ANSI
Conversion.

UID=user_name If security is enabled for the given database, specify
the user name. Optional, depending on security. See
Zen Security in Advanced Operations Guide.

PWD=password If security is enabled for the given database, specify
the password. Optional, depending on security. See
Zen Security in Advanced Operations Guide.

32-Bit Connection String Parameters Description

54

Driver={Pervasive ODBC Client Interface};
ServerName=AncientLore.1585;DBQ=Atlantis;

• Example B

Connect to a database named DomSales on a remote server named SalesSvr with database
security turned on:

Driver={Pervasive ODBC Client Interface};
ServerName=SalesSvr;DBQ=DomSales;UID=alexjame;PWD=k7Jb9xRR;

• Example C

Connect to an Engine DSN named mydata on a remote server named MyServer and establish
automatic encoding support:

Driver={Pervasive ODBC Client Interface};
ServerName=MyServer;ServerDSN=mydata;PvTranslate=auto;

• Example

Connection String Description

DBQ=[@]db_name Specify the internal database name (not DSN) to which you
wish to connect. Required.

The @ character is optional. It has no particular effect and is
supported only for backward compatibility.

UID=user_name If security is enabled for the given database, specify the user
name. Optional, depending on security. See Zen Security in
Advanced Operations Guide.

PWD=password If security is enabled for the given database, specify the
password. Optional, depending on security. See Zen Security
in Advanced Operations Guide.

OPENMODE=-4 | -1 | 0 | 1 Specify the default file open mode for files opened with the
current connection. Default is 0, "Normal." Can be used only
with local connections, not remote client connections.
Optional.

For more information on file open modes, see DSN Open
Mode.

TRANSLATIONDLL=path_and_D
LL_name

Specify the full path name of the DLL to use for OEM/ANSI
translation. For more information, see OEM/ANSI
Conversion.

55

Connect to a local database named DATA5:

Driver={Pervasive ODBC Engine Interface};DBQ=DATA5;

Note: Engine DSNs are deprecated. New or updated applications should use Client DSNs in
local or remote connection mode.

56

	Contents
	About This Document
	Who Should Read this Manual
	For More Information

	ODBC Specification Support
	ODBC Specification Supported
	Exceptions to ODBC Interface Support
	Core Level
	Level 2

	ODBC API Support
	Exceptions to ODBC API Support
	SQLGetData
	SQLGetTypeInfo
	SQLGetInfo
	SQLSpecialColumns

	ODBC Attribute Support
	Connection Attribute Support
	Statement Attribute Support

	ODBC Descriptor Field Support
	Descriptor Fields and Bitness Values
	SQLSetStmtOption Options

	Zen ODBC Reference
	Data Source Name Connection String Keywords
	Closing an Open Table

	SQL Grammar Support
	Delimited Identifiers in SQL Statements
	Examples

	Supported Data Types
	Representation of Infinity
	Transactions

	DSN Setup and Connection Strings
	ODBC Database Access
	Zen ODBC Driver Names
	DSN Connections
	DSN-less Connections

	Zen DSN Setup
	ODBC Administrator
	Data Source Name
	Description
	Server Name/IP
	Transport Hint
	Database Name
	Read-Only DSN
	Database Configuration Details
	Engine DSN
	Advanced Connection Attributes
	Enable Array Fetch
	TCP/IP Port Number
	Encoding Translation
	DSN Encoding Translation Options
	Automatic
	None
	OEM/ANSI Conversion
	Interaction Between Database Code Page and Encoding Translation

	Zen Engine DSN Setup
	Data Source Name
	Description
	Database Name
	Database Configuration Details
	Engine DSN Advanced Connection Attributes
	DSN Open Mode
	Normal
	Accelerated
	Read-Only
	Exclusive
	Encoding Translation

	Create Database Through DSN Setup
	ODBC Connection Strings
	ODBC Driver Parameter
	Driver Parameters

