
Zen Direct Access
Components Guide

Zen v16

Activate Your Data™

Copyright © 2024 Actian Corporation. All Rights Reserved.

This Documentation is for the end user’s informational purposes only and may be subject to change or withdrawal by
Actian Corporation (“Actian”) at any time. This Documentation is the proprietary information of Actian and is
protected by the copyright laws of the United States and international treaties. The software is furnished under a
license agreement and may be used or copied only in accordance with the terms of that agreement. No part of this
Documentation may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, or for any purpose without the express written permission of Actian. To the extent
permitted by applicable law, ACTIAN PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY
OF ANY KIND, AND ACTIAN DISCLAIMS ALL WARRANTIES AND CONDITIONS, WHETHER EXPRESS
OR IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF
MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OR OF NON-INFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT WILL ACTIAN BE LIABLE TO THE END USER OR ANY THIRD
PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION,
GOODWILL, OR LOST DATA, EVEN IF ACTIAN IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The manufacturer of this Documentation is Actian Corporation.

For government users, the Documentation is delivered with “Restricted Rights” as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Actian, Actian DataCloud, Actian DataConnect, Actian X, Avalanche, Versant, PSQL, Actian Zen, Actian Director,
Actian Vector, DataFlow, Ingres, OpenROAD, and Vectorwise are trademarks or registered trademarks of Actian
Corporation and its subsidiaries. All other trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

iii

Contents
Using Direct Access Components 1

Overview of Zen Direct Access Components . 1
Where to Get More Information. 2

Using the Zen Direct Access Components . 2
Delphi and C++Builder . 3

Deploying an Application Based on PDAC . 3
Deciding Whether to Use Runtime Packages. 4
Redist Subdirectory . 4
Building and Deployment Instructions for Delphi or C++Builder. 4

Direct Access Components Reference 7

MicroKernel Engine Components . 7
TPvSession . 8
TPvDatabase. 8
TPvTable. 9
TPvBatchMove. 12
TwwPvTable . 12

Relational Engine Components . 12
TPvSQLSession . 13
TPvSQLDatabase . 14
TPvQuery . 15
TPvUpdateSQL . 17
TPvStoredProc . 18
TwwPvQuery . 18
TwwPvStoredProc . 18
Database Security for ODBC and SQL . 18

Differences Between PDAC and Embarcadero Components. 19
TransIsolation Property Differences. 20

PDAC Classes, Properties, Events, and Methods. 20
Exception Classes. 21
Supporting Classes . 23
General Differences from VCL . 23
Specific Class Differences from VCL . 24

Zen and Embarcadero Data Types . 33
Zen and Embarcadero Data Type Mappings . 34
Btrieve and Embarcadero Data Type Mappings. 36

iv

1

Using Direct Access Components

The following topics introduce Zen Direct Access Components (PDAC) for Delphi and
C++Builder:

• Overview of Zen Direct Access Components

• Using the Zen Direct Access Components

• Deploying an Application Based on PDAC

For details on implementing this feature, see Direct Access Components Reference.

Overview of Zen Direct Access Components
Zen Direct Access Components are a set of Visual Component Library (VCL) components that
allow direct transactional and relational access to Zen database engines from within the Borland
Delphi and C++ Builder Environments. This SDK was formerly known as Pervasive Direct
Access Components (PDAC), and the short name PDAC is still found in use in the SDK. Before
the Zen v15 release, these runtime components were integrated and installed as .bpl files in the
32- and 64-bit \bin directories of Zen databases. Beginning with Zen v15, Zen installations
removed them, but they continue to be available in the downloaded SDK, which also includes
design-time components for use in RAD Studio.

See the PDAC release notes for supported development environments.

All versions of PDAC contain the following nonvisual components:

• TPvSession

• TPvDatabase

• TPvTable

• TPvBatchMove

• TPvQuery

• TPvStoredProc

• TPvUpdateSQL

• TPvSqlDatabase

2

Supporting classes are also provided for these 32-bit components, which duplicate the properties,
methods, and binding capabilities of the Embarcadero Data Access components without requiring
the presence of the Borland Database Engine (BDE) at run time.

These components are provided in package format, and offer all the design time and runtime
functionality of the built-in controls. They bind to the Embarcadero Data Aware controls in the
same way as the BDE components, as well as to fully compatible third-party bound controls.

Special components include wwPvTable, wwPvQuery, and wwPvStoredProc and are provided for
interoperability with the Woll2Woll InfoPower components.

Engine Version Checking

When opening a query or table, PDAC confirms the database engine version to avoid engine
dependency errors. An insufficient engine version returns an exception indicating the required
version.

TPvQuery.PassThrough

Allows SQL query text to be sent directly to the engine instead of being preparsed.

TPvDatabase.OEMConversion

This property indicates that the database contains characters encoded according to the OEM
(DOS) code page, and that these characters should be converted to the ANSI (Windows) code
page before use.

Where to Get More Information

Please see the SDK download for PDAC. You can find it at the Actian Zen website.

Using the Zen Direct Access Components
You install PDAC by extracting the components from a download archive to a directory
(installdir). Be sure that any Delphi or C++Builder IDEs on your system can locate the extracted
components.

Follow these steps to set C++Builder project options to reflect the INCLUDE and LIBRARY
paths for PDAC. These can be added to the default options, so the steps are unnecessary for every
project using the Zen components.

https://www.actian.com/data-management/zen-embedded-database/

3

To add PDAC to the INCLUDE and LIBRARY paths in C++Builder

1. In C++Builder, select Project > Options, and choose the Directories/Conditionals tab.

2. Add installdir\sdk\pdac\Delphi?\include to the Include Path, where installdir represents the
directory where you installed the SDK. Replace the question mark with the version of RAD
Studio you are using.

3. Also add installdir\sdk\pdac\Delphi?\lib and installdir\sdk\pdac\Delphi?\lib\dcu to the
Library Path, separated by a semicolon. Replace the question mark with the version of RAD
Studio you are using.

After the Include and Library paths are set properly, you can use the Direct Access components in
exactly the same way as the corresponding Embarcadero components.

Delphi and C++Builder

Zen provides support for all Delphi versions starting with Delphi 6. Use the following steps to
incorporate Delphi or C++Builder into your IDE.

To add the Delphi or C++Builder packages and path information to your environment

1. In Delphi or C++Builder, select Components > Install Packages > Add.

2. Select the design packages.

3. Add the paths to the Delphi compiled units (DCUs) and interface files (INTs).

Once the components for your environment have been selected, a tab for Zen is visible on VCL
projects. Applications using PDAC can now be built by adding PvTable or PvQuery.

Deploying an Application Based on PDAC
With a few variations for Embarcadero and other runtime libraries, you can build PDAC
applications for deployment to end users in two ways: using runtime packages or statically linking
the PDAC libraries in the application executable. C++Builder also offers dynamic or static linking
of the Embarcadero library. Either a Zen Client or engine (Enterprise Server, Cloud Server, or
Workgroup) must be properly installed on the target computer for a PDAC application to run
successfully.

4

Deciding Whether to Use Runtime Packages

Using runtime packages has several advantages. It provides the smallest executable possible; this
can be important where the executable or updates must be downloaded or transferred over slow
links. This option allows sharing of the PDAC and Embarcadero runtime binaries and can save
considerable disk space and memory in environments with many Embarcadero and PDAC
applications.

A disadvantage is that more files must be distributed and kept current, and the shared files can be
vulnerable to third party installations that install incorrect versions of them in shared
subdirectories. If runtime packages are not used, only the application and drm.dll must be
deployed. The PDAC libraries are statically linked into the executable, which will be
correspondingly larger.

To use runtime packages, the developer must deploy both the application executable and the
PDAC libraries (from the redist subdirectories in the PDAC installation), as well as any
Embarcadero or other runtime libraries (borlndmm.dll, found in the compiler bin directory, is
often needed) to end users.

Redist Subdirectory

Each Embarcadero compiler has a redist directory. This directory contains the .bpl libraries that
must be distributed with an application compiled with Build with runtime packages.

Note: Each redist directory also includes .dcp or .bcp files that are not redistributable except
within the licensee's organization to allow development with derived classes. Only the .dpl and
.bpl packages may be distributed with applications.

Building and Deployment Instructions for Delphi or C++Builder

In the Delphi IDE, set the appropriate options as follows:

1. From the menu bar, select Project > Options

2. Click the Packages tab.

To have the application dynamically link with the PDAC libraries at run time, select Build
with runtime packages, and add the appropriate PDAC packages to the edit box list.

Note: If the PDAC packages were added to the Build list at installation, this step is not necessary.

3. Select the 32- or 64-bit runtime packages (.bpl files) required for the MicroKernel Engine
depending on your version of Delphi.

5

Note: If the PDAC packages are not added to the list, they are compiled into the executable and
the shared libraries are not used, even if the box is selected.

4. To statically link the PDAC libraries into your executable, clear the Build with runtime
packages check box. If you select this setting at compile time, then you must install the
libraries when you deploy the application and any other packages or DLLs required.

These files may be installed in the same subdirectory as the application executable, but we
recommend placing them in the target machine path to be shared by other applications. The Zen
installation \bin directory is a good choice on computers where it is the primary Zen executable
directory.

In addition, the Delphi PDAC application will require an installation of either a Zen engine
(server or workgroup) or a Zen Client and a remote server appropriately installed and configured.

Updated Package Names Starting with Delphi 6

Starting with Delphi 6, we have changed the package naming conventions to be more compatible
with Embarcadero standards. Also, the runtime packages have been separated from the design
time packages in order to comply with Embarcadero requirements.

The following table shows how to interpret package names if you are coming from a previous
version of Delphi and PDAC:

Note: In Delphi 6, InfoPower merges into the main packages, with Woll2Woll no longer
separate.

File name digit position Possible values Meaning

1 p PSQL (former name for Zen product)

2 c, b, or s Common, Btrieve, or SQL

3–5 depends on release Major and minor version of PDAC components

6 r, d Run time or design time

7–9 depends on release Delphi version to which these components
apply

6

7

Direct Access Components Reference

The following topics provide detailed information for Delphi and C++Builder developers:

• MicroKernel Engine Components

• Relational Engine Components

• Differences Between PDAC and Embarcadero Components

• PDAC Classes, Properties, Events, and Methods

• Zen and Embarcadero Data Types

MicroKernel Engine Components
The set of Btrieve components includes the following:

• TPvSession

• TPvDatabase

• TPvTable

• TPvBatchMove

• TwwPvTable

These components use no relational functionality and do not require the Relational Engine or
ODBC at run time.

The components replace Embarcadero ones as listed in the following table.

The components can be used standalone (that is, without the Borland Database Engine (BDE)
installed) or coincident with the BDE within a single application. Use of the components is the
same as the corresponding BDE components, with exceptions noted under specific components
where applicable and in PDAC Classes, Properties, Events, and Methods.

Zen Direct Access Component Replaces This Embarcadero Component

TPvBatchMove TBatchMove

TPvDatabase TDatabase

TPvSession TSession

TPvTable, TwwPvTable TTable

8

TPvSession

Provides thread safety and Client ID support. Its functionality is similar to the TSession VCL
component.

Related Information

See the following in this chapter pertaining to TPvSession:

• Class TPvSessionList/TPvSqlSessionList (under Supporting Classes)

• Global Variables (under General Differences from VCL)

• TPvSession and TPvSqlSession (under Specific Class Differences from VCL)

• TPvSession Specific (under Specific Class Differences from VCL)

TPvDatabase

Provides database connection-specific functionality for non-SQL databases, such as login control,
transaction support, persistent database connections. Its functionality is similar to the TDatabase
VCL component.

Functional Differences Between TPvDatabase and Embarcadero
Components

• Property DriverName, Locale, and TTraceFlags have been dropped

• Handle type is changed to DRM_DBID

• IsSQLBased always returns False

• TransIsolation has only two possible values: tiDirtyRead and tiReadCommitted (the default).

Secure Tables and Prompting for User Name and Password

If you are connecting to a secure table, PDAC prompts you for the user name and password. If
you want suppress these prompts, set up connection parameters in TPvDatabase using the
following as an example. (See also Table Security under TPvTable.)

PvSession.ServerName:='ServerName';
PvSession.SessionName:='session1';
PvSession.Active:=True;

PvDatabase.AliasName:= 'DatabaseName';
PvDatabase.DatabaseName:='DB';
PvDatabase.SessionName:='session1';
PvDatabase.Params.Clear();

9

// here you specify user name and password to
// connect to remote database.

PvDatabase.Params.Add('User Name=UserName');
PvDatabase.Params.Add('password=Password');
PvDatabase.Connected:=True;
PvTable.DatabaseName:='DB';
PvTable.SessionName:='session1';
PvTable.TableName:='person';
PvTable.Active:=True;

Related Information

See the following in this chapter pertaining to TPvDatabase:

• TransIsolation Property Differences (under Differences Between PDAC and Embarcadero
Components

• TPvDatabase and TPvSqlDatabase (under Specific Class Differences from VCL)

• TPvDatabase Specific (under Specific Class Differences from VCL)

TPvTable

Provides single-table access and manipulation. Its functionality is similar to the TTable VCL
component.

Functional Differences Between TPvTable and Embarcadero
Components

• All alias management functions perform "named database" management.

• Inherits from TPvDataSet rather than TDBDataSet.

• Properties TableLevel, UpdateObject, UnlockTable, OpenIndexFile, CloseIndexFile have
been dropped. TableType is ignored.

• The Database Name property can be provided at both design time and runtime as a DSN, a
Zen Named Database, or as a fully qualified path to the database.

Table Security

PDAC security for the MicroKernel Engine uses owner names for individual tables. Using this
security model, you provide the owner name for the table. See the operation Set Owner (29) in the
Btrieve API Guide for more information.

The TPvTable has the property Owner: string and the following method:

10

SetOwnerOnTable(AOwner: string; AccessMode: integer).

With the Owner property you can set the owner name, and with the SetOwnerOnTable method
you can set or clear the owner name on the table.

As controlled by these PDAC access modes, to access the Btrieve table, provide a valid owner
name.

Table Creation

Call the CreateTable method at run time to create a table using current definition in this dataset.

If the FieldDefs property contains values, these values are used to create field definitions.
Otherwise the Fields property is used. One or both of these properties must contain values in order
to recreate a dataset.

Use the Add method to assign field properties

procedure Add(const Name: string; DataType: TFieldType; Size: Word; Required: Boolean);

Add is provided for backward compatibility. The recommended way to add new field definitions
to the Items property array is using the AddFieldDef method. You should also use it to specify
precision and scale for the ftBCD data type.

Add uses the values passed in the Name, DataType, Size, and Required parameters and assigns
them to the respective properties of the new field definition object.

Note: Set Required to False if the field is nullable.

Note: To activate the autoincrement property for an AutoInc field, create a unique index on this
field. Also, in the current release, PDAC does not support the BIGIDENTITY data type.

Delphi Example

PvTable1.DatabaseName := 'TestData';
PvTable1.TableName := 'TestData1';
with PvTable1.FieldDefs do
begin

Code Description

0 Requires an owner name for any access mode (no data encryption)

1 Permits read-only access without an owner name (no data encryption)

2 Requires an owner name for any access mode (with data encryption)

3 Permits read-only access without an owner name (with data encryption)

11

Clear;
Add('F_autoinc', ftAutoInc, 0, True);
Add('F_currency', ftCurrency, 0, False);
Add('F_integer', ftInteger, 0, False);
Add('F_word', ftWord, 0, False);
Add('F_fixchar', ftFixedchar, 30, False);
Add('F_varbin', tString, 25, False);
Add('F_blob', ftBlob, 60, False);

end;
with PvTable1.FieldDefs.AddFieldDef do
begin

Name := 'F_BCD';
DataType := ftBCD;
Size:=2; //Scale
Precision := 10; //Precision
Required := false;

end;

with PvTable1.IndexDefs do
begin

Clear;
Add('Index1', 'F_autoinc', [ixPrimary, ixUnique]);
Add('Index2', 'F_integer', [ixCaseInsensitive]);

end;
PvTable1.CreateTable;

C++Builder Example

PvTable1->DatabaseName="TestData";
PvTable1->TableName="Test1";
PvTable1->FieldDefs->Clear();
PvTable1->FieldDefs->Add("F_autoinc", ftAutoInc, 0, True);
PvTable1->FieldDefs->Add("F_integer", ftInteger, 0, False);
PvTable1->FieldDefs->Add("F_Curr", ftCurrency, 0, False);
PvTable1->FieldDefs->Add("F_Word", ftWord, 0, False);
PvTable1->FieldDefs->Add("F_fixchar", ftFixedChar, 0, False);
PvTable1->FieldDefs->Add("F_String", ftString, 20, False);
PvTable1->FieldDefs->Add("F_blob", ftBlob, 60, False);

TFieldDef *FieldDef = PvTable1->FieldDefs->AddFieldDef();
FieldDef->Name="F_BCD";
FieldDef->DataType=ftBCD;
FieldDef->Size=2;
FieldDef->Precision=10;
FieldDef->Required=False;
PvTable1->IndexDefs->Clear();
PvTable1->IndexDefs-> Add("Index1","F_autoinc",TIndexOptions() <<ixPrimary << ixUnique);
PvTable1->CreateTable();

Related Information

See the following topics pertaining to TPvTable:

• TransIsolation Property Differences (under Differences Between PDAC and Embarcadero
Components

• TPvTable, TPvQuery, and TPvStoredProc (under Specific Class Differences from VCL)

• TPvTable Specific (under Specific Class Differences from VCL)

12

• Zen and Embarcadero Data Types

TPvBatchMove

Enables applications to perform database operations on groups of records or entire tables. Its
functionality is similar to the TBatchMove VCL component.

Related Information

See the following in this chapter pertaining to TPvTable:

• TPvBatchMove (under Specific Class Differences from VCL)

TwwPvTable

Included with PDAC for InfoPower compatibility. It is directly derived from TPvTable and has an
extra property, "Control Type."

Relational Engine Components
The set of Relational Engine components includes the following:

• TPvSQLSession

• TPvSQLDatabase

• TPvQuery

• TPvUpdateSQL

• TPvStoredProc

• TwwPvQuery

• TwwPvStoredProc

The components replace Embarcadero ones as listed in the following table.

Zen Direct Access Component Replaces This Embarcadero Component

TPvQuery, TwwPvQuery TQuery

TPvSqlDatabase TDatabase

TPvSqlSession TSession

13

The components can be used standalone (that is, without the Borland Database Engine (BDE)
installed) or coincident with the BDE within a single application. Use of the components is the
same as the corresponding BDE components, with exceptions noted under specific components
where applicable and in PDAC Classes, Properties, Events, and Methods.

TPvSQLSession

Provides thread safety and Client ID support for Zen. Functionality is similar to the TSession
VCL component.

Functional Differences Between TPvSQLSession and Embarcadero
Components

• All alias management functions perform DSN management.

• The type of Property 'Handle' has been changed to SQLHENV.

• Method 'AddStandardAlias' adds an Engine DSN with default settings.

• Property 'UpdateDsnType: TDsnTypes' has been added. 'TDsnTypes = (dsnSystem, dsnUser)'.
'UpdateDsnType' means:

• In case of 'DeleteAlias' function - which DSN user is going to delete: System or User
DSN?

• In case of 'AddAlias' and 'GetAliasParameters' functions - hints which DSN type is
preferred.

Related Information

See the following in this chapter pertaining to TPvSQLSession:

• Class TPvSessionList/TPvSqlSessionList (under Supporting Classes)

• Global Variables (under General Differences from VCL)

• TPvSession and TPvSqlSession (under Specific Class Differences from VCL)

• TPvSqlSession Specific (under Specific Class Differences from VCL)

TPvStoredProc, TwwPvStoredProc TStoredProc

TPvUpdateSQL TUpdateSQL

Zen Direct Access Component Replaces This Embarcadero Component

14

TPvSQLDatabase

Provides for Zen database connection-specific functionality, such as login control, transaction
support and persistent database connections. Functionality is similar to the TDatabase VCL
component.

Functional Differences Between TPvDatabase and Embarcadero
Components

• The type of Property 'Handle' has been changed to SQLHDBC.

• Property 'IsSQLBased' is always true.

• Properties 'Tables' and 'StoredProcs' have type 'TSqlTablesInfoCollection' and
'TSqlStoredProcInfoCollection' correspondingly.

Secure Databases and Prompting for User Name and Password

If you are connecting to a secure database, PDAC prompts you for the user name and password. If
you want suppress these prompts, set up connection parameters in TPvSQLDatabase using the
following as an example.

PvSession.ServerName:='ServerName';
PvSession.SessionName:='session1';
PvSession.Active:=True;

PvDatabase.AliasName:= 'DatabaseName';
PvDatabase.DatabaseName:='DB';
PvDatabase.SessionName:='session1';
PvDatabase.Params.Clear();

// here you specify user name and password to
// connect to remote database.

PvDatabase.Params.Add('User Name=UserName');
PvDatabase.Params.Add('password=Password');
PvDatabase.Connected:=True;
PvTable.DatabaseName:='DB';
PvTable.SessionName:='session1';
PvTable.TableName:='person';
PvTable.Active:=True;

DSN-Less Connections from a Client

PDAC's relational components are able to connect from a client machine without a DSN or
Named Database to a remote server database. The server must have a DSN for the database.

This feature works through the use of the property, AliasNameIsConnectionString, which is
available with the TPvSqlDatabase component. For more information, see Specific Class
Differences from VCL.

15

1. Drop a PvSQLDatabase on a Delphi form.

2. Supply a fictitious DatabaseName—it can be anything.

3. Set the property AliasNameIsConnectionString to True.

4. Set the AliasName property (or the DatabaseName, leaving AliasName blank) to the
Connection String.

The Connection String is the complete connection string for ODBC, including the DSN on the
server and the name of the server, as shown in the following example:

DRIVER={Pervasive ODBC Client Interface};ServerName=DSLINUX2; ServerDSN=DEMODATA;

UID=myuserid;PWD=mypassword

Note: There are no quotation marks or line breaks in the connection string. If your editor wraps
the preceding line, make it a single line in the property editor.

If a user name and password are required, they may be supplied as part of the Connection
String; if they are not in the Connection String, the standard database login dialog displays if
the LoginPrompt property is True.

5. Set the database to Connected and use as usual.

All these steps may be performed at design time or through code at run time.

Related Information

See the following in this chapter pertaining to TPvSQLDatabase:

• TPvDatabase and TPvSqlDatabase (under Specific Class Differences from VCL)

• TPvSqlDatabase Specific (under Specific Class Differences from VCL)

TPvQuery

Encapsulates a rowset based on a SQL statement, which provides full relational access including
joins and cached updates to multiple tables. Functionality is similar to the TQuery VCL
component.

Functional Differences Between TPvQuery and Embarcadero
Components

• Inherited from TQuery

• The type of Property 'Handle' has been changed to SQLHSTMT.

16

• The type of Property 'DBHandle' has been changed to SQLHDBC.

• Property 'StmtHandle' has been dropped.

• Property 'Text' always returns text from property 'SQL'.

• Method 'CheckOpen' has been dropped.

• All index and key related properties and methods (like 'GetIndexInfo') have been dropped.

• If 'LoadBlobOnOpen' property is true, then all BLOBs will be cached in memory on query
open. If 'LoadBlobOnOpen' is false, then BLOBs will be read as required.

BookMarksEnabled Property

TPvQuery contains a Boolean property BookmarksEnabled. If you do not use Bookmarks in your
application, set this property to False to increase TPvQuery performance. The default value is
True.

PvQuery.BookmarksEnabled :=False

Cursor Management

TPvQuery has a property, CursorType, that can be set to ctCached or ctDynamic. The following
table describes the behavior of this property in more detail.

Note: Dynamic cursors can see the Inserts/Updates/Deletes of their own or other clients.

You can change CursorType on a PvQuery by changing the Property, but only at run time if
Active is False. If you change it in Design mode, and the query is Active, it will deactivate the
query and change the cursor type but not reactivate. At run time, changing CursorType on an
Active PvQuery results in the exception "Cannot perform this operation on an open dataset."

Cursor type Behavior

ctCached This setting corresponds to the previously available fully cached, fully static Cursor
Manager. It reads every record in the ResultSet object before returning, which can be
very slow for large tables, yet fast after it has opened for operations such as look-ups.

ctDynamic This setting is the default. It uses the database engine’s dynamic cursors and offers
improved performance for most operations when compared with ctCached, especially
with regard to large tables.

17

Case Where Dynamic Cursors Change to Static

If you request a dynamic cursor (ctDynamic), but your SQL statement contains a construct that a
dynamic cursor cannot process, the engine will connect and return data, but with a static cursor.
For example, such a construct could be:

• A view

• A join

• An ORDER BY on a column with no index defined

In the event the cursor is transformed into a static one, this static cursor will be engine-based one
that cannot see inserts, updates, or deletes made by other clients. It will perform better than the
static cursors on previous releases (that is, ones using ctCached as the cursor type.).

When the dynamic to static transformation occurs, the database engine notifies the PDAC
component, and sets a read-only public property named EngineCursor.

This EngineCursor property is not published, so it is not visible in the Object Inspector during
design. It can have two values:

• ecDynamic

• ecStatic

You cannot modify this property, but you can check its value after opening a query. You might
want to check this property for example if it is important that your application know whether your
cursor includes updates made by other clients.

Related Information

See the following items pertaining to TPvQuery:

• TPvTable, TPvQuery, and TPvStoredProc (under Specific Class Differences from VCL)

• TPvQuery and TPvStoredProc Specific (under Specific Class Differences from VCL)

• TPvQuery Specific (under Specific Class Differences from VCL)

TPvUpdateSQL

Allows transparent updating (including cached updates) of SQL row sets not otherwise updatable
(multiple-table joins, and so forth). Functionality is similar to TUpdateSQL VCL component.

18

Related Information

See the following item pertaining to TPvTable:

• TPvUpdateSQL (under Specific Class Differences from VCL)

TPvStoredProc

Provides access to Zen stored procedures; it allows parameterized use and can return rowsets the
same as the TPvQuery component. Functionality is similar to TStoredProc VCL component.

Related Information

See the following items pertaining to TPvQuery:

• TPvTable, TPvQuery, and TPvStoredProc (under Specific Class Differences from VCL)

• TPvQuery and TPvStoredProc Specific (under Specific Class Differences from VCL)

• TPvStoredProc Specific (under Specific Class Differences from VCL)

TwwPvQuery

Included with PDAC for InfoPower compatibility. It is directly derived from TPvQuery and has
an extra property, "Control Type."

TwwPvStoredProc

Included with PDAC for InfoPower compatibility. It is directly derived from TPvStoredProc and
has an extra property, "Control Type."

Database Security for ODBC and SQL

ODBC and SQL security is database security on the DDF level. There are no special methods in
PDAC to set up SQL security. You should use external programs such as Zen Control Center or
any ODBC tool.

If the database has security, a dialog displays in which you enter the user name and password each
time you open a table or connect to a TPvDatabase component. To verify if security is set up on
the database, you can check the public property TPvDatabase.IsSecured. See also Secure Tables
and Prompting for User Name and Password.

19

Note: The MicroKernel Engine security uses owner names (see Table Security). If the database
has SQL security enabled, owner name security is ignored.

Differences Between PDAC and Embarcadero
Components
The following table summarizes the functional differences between Zen and Embarcadero
components.

TPvTable All alias management functions perform "named database" management.

Inherits from TPvDataSet rather than TDBDataSet;

Properties TableLevel, UpdateObject, UnlockTable, OpenIndexFile,
CloseIndexFile have been dropped, TableType is ignored.

The Database Name property can be provided at both design time and runtime
as a DSN, a Zen Named Database, or as a fully qualified path to the database.

TPvDatabase Property DriverName, Locale, and TTraceFlags have been dropped;

Handle's type is changed to DRM_DBID

IsSQLBased always returns False;

TransIsolation has only two possible values, 'tiDirtyRead' and
'tiReadCommitted' (the default).

EPvDBEngineError
(see Class
EPvDBEngineError)

Replaces EDBEngineError

TPvDBError (see
Class TPvDBError)

Replaces TDBError

TPvSQLSession All alias management functions perform DSN management.

The type of Property 'Handle' has been changed to SQLHENV.

Method 'AddStandardAlias' adds an Engine DSN with default settings.

Property 'UpdateDsnType: TDsnTypes' has been added. 'TDsnTypes =
(dsnSystem, dsnUser)'. 'UpdateDsnType' means:

• In case of 'DeleteAlias' function - which DSN user is going to delete:
System or User DSN?

• In case of 'AddAlias' and 'GetAliasParameters' functions - hints which
DSN type is preferred.

20

TransIsolation Property Differences

The TransIsolation property behavior of PDAC is different from that of their Embarcadero
equivalents.

Transaction isolation level determines how a transaction interacts with other simultaneous
transactions when they work with the same tables, and how much a transaction sees of operations
performed by other transactions.

Use the property TPvDatabase.TransIsolation to specify the transaction isolation level for the
database.

PDAC supports only the tiReadCommitted mode. This means that other users cannot see the
changes made to a file until the transaction ends. This is the only setting supported by the database
engine.

PDAC Classes, Properties, Events, and Methods
This topic lists all classes, properties, events, and methods in PDAC. All are described in Pascal
notation and show differences with their Embarcadero counterpart components.

• Exception Classes

• Supporting Classes

TPvSQLDatabase The type of Property 'Handle' has been changed to SQLHDBC.

Property 'IsSQLBased' is always true.

Properties 'Tables' and 'StoredProcs' have type 'TSqlTablesInfoCollection' and
'TSqlStoredProcInfoCollection' correspondingly.

TPvQuery Inherited from TQuery

The type of Property 'Handle' has been changed to SQLHSTMT.

The type of Property 'DBHandle' has been changed to SQLHDBC.

Property 'StmtHandle' has been dropped.

Property 'Text' always returns text from property 'SQL'.

Method 'CheckOpen' has been dropped.

All index and key related properties and methods (like 'GetIndexInfo') have
been dropped.

If 'LoadBlobOnOpen' property is true, then all BLOBs will be cached in
memory on query open. If 'LoadBlobOnOpen' is false, then BLOBs will be
read as required.

21

• General Differences from VCL

• Specific Class Differences from VCL

• Zen and Embarcadero Data Type Mappings

• Btrieve and Embarcadero Data Type Mappings

Exception Classes

Class EPvDatabaseError

This class is an ancestor for all exception classes in PDAC. It has the property Owner that contains
a reference to the class that generated the exception.

Class EPvDBEngineError

This is an abstract base class for all DB engine error related classes. Property Errors lists the
errors (in classes, derived from the TPvDBError class) and property ErrorCount indicates the total
number of errors contained in the Errors property.

Class TPvDBError

TPvDBError is an abstract base class for all classes that represent database engine errors for the
EPvDBEngineError exception class. It contains follow properties:

• Property Message specifies the text of the error message.

• Property NativeError indicates the status code returned from the engine (the Btrieve
status code).

Class EPvDrmEngineError

Exceptions of this class are raised by the Btrieve subset of PDAC. Property ErrorCode is a DRM
error code. The Errors array of EPvDrmEngineError contains objects with type TPvDrmError.

Class TPvDrmError

Class TPvDrmError describes a DRM error. In ErrorCode it contains a DRM error code, and in
NativeError it contains a Btrieve status code.

22

Class EPvSqlEngineError

Exceptions of this class are raised by the SQL (relational) subset of PDAC. Property ErrorCode is
the return value of the last ODBC call. The Errors array of EPvSqlEngineError contains objects
with type TPvSqlError.

Class TPvSqlError

Class TPvSqlError describes ODBC errors.

Class EPvDbAdminEngineError

Exceptions of this class are raised during execution of DBNames and DSN management
functions, such as TPvSqlSession.AddAlias, on local and remote servers. It has an additional
property ErrorType: TPvDbAdminEngineErrorTypes. If ErrorType = dbmeDTI then NativeError
contains a DTI (Distributed Tuning Interface) error code, otherwise NativeError contains local
error codes of DBNames and DSN related function (see EPvSqlInstallerEngineError and
EPvOwnSqlInstallerEngineError).

Class EPvSqlInstallerEngineError

Exceptions of this class are raised during execution of DNSs management functions, such as
TPvSqlSession.AddAlias, on local servers, i.e. if TPvSqlSession.ServerName property is empty
or has name of the local server. Errors contains the value, returned by SQLInstallerError()
function.

Class EPvOwnSqlInstallerEngineError

Because DSN management functions in some cases lack meaningful errors, exceptions of this
class are provided to raised in order to introduce new types of errors. In the NativeError the
following values are possible:

• cPvOwnSqlInstallerEngineErrorDsnAlreadyExist – user tried to create a preexisting DSN.

• cPvOwnSqlInstallerEngineErrorDsnNotFound – user tried to delete non-existent DSN.

• cPvOwnSqlInstallerEngineErrorInvalidOpenMode – value of prmOPEN_MODE
('OPEN_MODE') parameter is invalid. See prmOPEN_MODE description below for
details.

• cPvOwnSqlInstallerEngineErrorClientDSNsAreNotSupported – client DSNs are not
supported in remote server mode (TPvSqlSession.ServerName is not empty).

23

Supporting Classes

Supporting classes are required by the higher-level components and encapsulate BDE-specific
functionality. These classes are "cloned" in PDAC with as few changes as possible.

Class TPvSessionList/TPvSqlSessionList

Classes TPvSessionList and TPvSqlSessionList manage session components in applications that
provide multiple sessions. In this class only the types of contained objects (TSession to
TPvSession or TPvSqlSession) have been changed.

Class TPvBlobStream/TPvSQLBlobStream

Classes TPvBlobStream and TPvSQLBlobStream are stream objects that let applications read
from or write to field objects that represent Binary large object (BLOB) fields. They function in
the same way as the TBlobStream VCL class.

Classes TParam/TParams

Class TParam represents a field parameter. Properties of a TParam are used to set the value of a
parameter that represents the value of a field. TParams is list of the TParam objects. TParam and
TParams in PDAC have no changes in their interface sections; they are only moved to the new
file.

Class TMasterDataLink

Note: For Delphi/C++Builder 3 and 4 only

TMasterDataLink allows a dataset to establish a master/detail relationship. It has no changes in its
interface section, and is only moved to a new file.

General Differences from VCL

Interfaces exposed by PDAC components correspond almost exactly to the appropriate VCL
components, which work via the BDE. More detailed info about related VCL components is
contained in the Delphi/C++Builder help system (file del?vcl.hlp or bcbvcl?.hlp, where ? is 3 or 4
or 5). However, since some BDE features do not exist in Zen and some Zen features do not exist
in the BDE, Zen has corrected these interfaces (dropped or added properties/methods/events). The
listing below enumerates only those interfaces that have been changed. All other interfaces are
cloned as-is.

24

Global Variables

Instead of the BDE Session and Sessions global variables, PDAC has its own global variables
BtvSession: TPvSession and BtvSessions: TPvSessionList for the Btrieve subset and
PvSqlSession: TPvSqlSession and PvSqlSessions: TPvSqlSessionList for the relational subset.
They behave the same as the Session and Sessions variables and are created automatically on
application startup and destroyed automatically on application shutdown.

Btrieve Subset

In the Transactional subset, PDAC uses Zen Named Databases as aliases.

SQL Subset

In the Relational subset, PDAC uses Data Source Names (DSNs) as aliases.

Specific Class Differences from VCL

The following sections contain specific differences from the Embarcadero VCL.

• TPvSession and TPvSqlSession

• TPvSession Specific

• TPvSqlSession Specific

• TPvDatabase and TPvSqlDatabase

• TPvDatabase Specific

• TPvSqlDatabase Specific

• TPvTable, TPvQuery, and TPvStoredProc

• TPvTable Specific

• TPvQuery and TPvStoredProc Specific

• TPvQuery Specific

• TPvStoredProc Specific

• TPvUpdateSQL

• TPvBatchMove

25

TPvSession and TPvSqlSession

• TraceFlags property was dropped, since tracing of Zen API calls is carried out via an external
utility or the Distributed Tuning Interface.

• Zen does not use the following properties (for compatibility purposes they are present only as
storage for strings):

• NetFileDir

• PrivateDir

• Locale property was dropped, as there is no analog in Zen for this BDE-specific feature.

• Zen has no driver. All interfaces items relating to drivers were dropped (methods AddDriver,
DeleteDriver, GetAliasDriverName, GetDriverNames, GetDriverParams and ModifyDriver).

• Password-related interfaces only store and retrieve strings (AddPassword, RemovePassword
and RemoveAllPasswords). Event OnPassword never fires, except in GetPassword method.

• GetConfigParams method does nothing.

• New published properties have been added: ServerName, ServerAdminUser,
ServerAdminPassword and ServerAdminLoginPrompt. They provide the way to connect to
remote servers. ServerAdminUser and ServerAdminPassword are DTI (Distributed Tuning
Interface) user name and password.

Tip... For more information see DTI documentation.

• Property ServerAdminLoginPrompt is analog to TPv(Sql)Database.LoginPrompt, except that
in design time if ServerAdminLoginPrompt=false and there are problems to get list of
DBNames from server, you will be prompted for user name/password after unsuccessful
attempt to login.

Tip... DTI is supported only by Pervasive.SQL 2000 and above.

• LocalSystem public property.
For remote servers LocalSystem=false, for local – true.

TPvSession Specific

• All alias management functions perform Named Database management in PDAC. TPvSession
allows creating local and remote DBNames and getting parameters for local and remote
DBNames. To establish a connection with a database on the server, the user should create a
DBName using the path to the database on the server. The developer can use the following
values on entrance:

• prmDDF_PATH ('DDF_PATH') – path to data dictionary files.

26

• prmPATH ('PATH') – path to data files.

• prmBOUND ('BOUND') – is database bound? Default is false.

• prmINTEGRITY ('INTEGRITY') – is database has integrity constraints? Default is true.

• prmCREATE_DDF ('CREATE_DDF') – if this parameter is true, then empty database will
be created.

• AddStandardAlias method adds DB name with standard settings: INTEGRITY – True,
BOUND – False.

• Handle property type was changed to DRM_SESID.

• Example: Create DBName.

var MyList: TStringList;

begin

 MyList := TStringList.Create;

try

 with MyList do

 begin

 Add('DDF_PATH=D:\MyDemoData');

 Add('PATH=D:\MyDemodata');

 Add('BOUND=False');

 Add('INTEGRITY=False');

 Add('Create_DDF=False');

 end;

 PvSession1.AddAlias('TestAlias', MyList);

finally

 MyList.Free;

 end;

TPvSqlSession Specific

• All alias management functions do DSN management. User can use follow values on entrance

• prmDB_NAME (DB) – DB name for database. Engine DSN specific.

• prmDSN_DESCRIPTION (DESCRIPTION) – description for DSN.

• prmIS_ENGINE_DSN ('IS_ENGINE_DSN') – determines, is the given DSN Engine DSN
(True) or Client DSN (False).

27

• prmIS_SYSTEM_DSN ('IS_SYSTEM_DSN') – determines, if the given DSN is System
DSN (True) or User DSN (False).

• prmOPEN_MODE (OPEN_MODE) – determines open mode for DSN. Possible values
are: prmOPEN_MODE_normal (Normal), prmOPEN_MODE_accelerated (Accelerated),
prmOPEN_MODE_readonly (ReadOnly) and prmOPEN_MODE_exclusive (Exclusive).
Engine DSN specific.

• prmSERVER_NAME ('SERVER_NAME') – the address of the server or host name and
the port number where the data resides. Client DSN specific.

• prmTCP_PORT ('TCP_PORT') – TCP port on server. Client DSN specific.

• prmSERVER_DSN ('SERVER_DSN') – the name of an Engine DSN on server. Client
DSN specific.

• prmTRANSPORT_HINT ('TRANSPORT_HINT') – contains transport hint. Client DSN
specific. Possible values: TCP.

• prmARRAY_FETCH_ON ('ARRAY_FETCH_ON') – enables array fetching (True/False).
Client DSN specific.

• prmARRAY_BUFFER_SIZE ('ARRAY_BUFFER_SIZE') – size of the array buffer.
Values between 1 and 64KB are acceptable. Client DSN specific.

• Handle property type was changed to SQLHENV.

• Remote DSNs management is supported only by Pervasive.SQL 2000 SP2a or above. Remote
client and user DSNs are not supported.

• AddStandardAlias method adds a Engine DSN with default settings. Second parameter is DB
name.

• UpdateDsnType: TDsnTypes property has been added. TDsnTypes = (dsnSystem, dsnUser).
UpdateDsnType means:

• In case of DeleteAlias function – which DSN user is going to delete: System or User DSN.

• In case of AddAlias and GetAliasParameters functions – hints which DSN type we prefer.

• Sample program how to create system client DSN:

var MyStringList: TStringList;

begin

 MyStringList := TStringList.Create;

 try

 MyStringList.Clear();

 MyStringList.Add('IS_ENGINE_DSN=False');

28

 MyStringList.Add('IS_SYSTEM_DSN=True');

 MyStringList.Add('SERVER_NAME=ServerName');

 MyStringList.Add('SERVER_DSN=DEMO1');

 // DSN on the Server

 PvSqlSession1.AddAlias('ATest', MyStringList);

 finally

 MyStringList.Free;

 end;

TPvDatabase and TPvSqlDatabase

• ODBCPacketSize property is an SQLUINTEGER value that specifies the network packet size
in bytes. It is used in SQLSetConnectAttr() to set the SQL_ATTR_PACKET_SIZE attribute
that governs aspects of connections.

Tip... For more information on SQLSetConnectAttr(), please refer to Microsoft ODBC
Programmer's Reference.

• The following properties were dropped:

• DriverName

• Locale

• TraceFlags

• TransIsolation property has only 1 value (tiReadCommitted), because Zen does not support
other isolation levels.

• Tables property was added. It contains list of tables in database.

• StoredProcs property was added. It contains list of stored procedures in database.

• LoginPromptOnlyIfNecessary was added. Following situations are possible:

• If LoginPrompt=true, LoginPromptIfNecessary=true. Login dialog is displayed only for
secured database (after unsuccessful login attempt). This is the default behavior.

• If LoginPrompt=true, LoginPromptIfNecessary=false. Login dialog is displayed always
before login attempt. This is VCL's TDatabase behavior. The most suitable for secured
databases. Provides fastest way to login.

• If LoginPrompt=false, LoginPromptIfNecessary=true/false (not matter). Login dialog is
never displayed. User can implement own login dialog.

29

TPvDatabase Specific

• Handle property has been changed to DRM_DBID.

• IsSQLBased property is always false.

• Directory property on local servers (that is, if TPvSession.ServerName property is empty or
has name of the local server) contains path to database's data dictionary files. For remote
servers it is always empty. In both cases attempt to set it will cause exception. You could know
if you work with local or remote server by examining property TPvSession.LocalSystem.

• The following properties have type TDRMTableCollection:

• Tables

• StoredProcs

• IsSecured property added boolean. It is read-only property. IsSecured = True if database has
security turned on. In this case the MicroKernel Engine owner name in property
TPvTable.Owner is ignored, and user must authorize in order to login in the DB.

• OEMConversion property are added.

This property indicates that the database contains characters encoded according to the OEM
(DOS) code page, and that these characters should be converted to the ANSI (Windows) code
page before use. The database remains in the OEM code page, but all reads and writes of
character data are translated by PDAC.

This conversion uses the mapping provided by the Windows OemToCharBuff and
CharToOemBuff functions. It is important to note that not all characters are round-trip
convertible. Only the characters present in both the OEM and ANSI code pages will be
preserved in an update. As a rule of thumb, most of the alphabetic characters are preserved,
but other types of characters, such as the box-drawing characters, may not be. For characters
that cannot be preserved exactly, the closest look-alike character is chosen. For example, the
box-drawing characters are replaced by plus (+), minus (-), and pipe (|).

Currently, only characters stored in user tables are converted. Metadata (stored in DDF files)
such as table, column, and file names are not.

TPvSqlDatabase Specific

• Handle property type was changed to SQLHDBC.

• IsSQLBased property is always true.

• Directory property is always empty. Attempt to set it will cause an exception.

• The following properties have type TSqlTablesInfoCollection and
TSqlStoredProcInfoCollection correspondingly.

30

• Tables

• StoredProcs

• Exclusive property means nothing. It is provided for VCL compatibility only.

• AliasNameIsConnectionString property was added. This property provides possibility for
DSN-less connections. If AliasNameIsConnectionString=true, then AliasName (or
DatabaseName, if AliasName is empty) is connection string.

TPvTable, TPvQuery, and TPvStoredProc

• TDBDataSet properties/methods/events types have changed to TPvDataSet or derived.

• TSession properties/methods/events type have changed to TPvAbsSession or derived.

• TDatabase properties/methods/events type have changed to TPvAbsDatabase or derived.

• ExpIndex property is always false.

• The following properties were dropped.

• Locale

• DBLocale

• ObjectView

• Database property with type TPvDatabase or TPvSqlDatabase was added.

• ConstraintCallBack was dropped.

• CheckOpen method parameter type was changed to DRM_ERR.

TPvTable Specific

• Handle property type was changed to DRM_TABLEID.

• TDBHandle property type was changed to DRM_DBID.

• Owner property was added, representing the Btrieve Owner Name for the table.

• BtrHandle property: TBtrieveInfo has been added. This is helper property for function
DirectBtrCall. TBtrieveInfo contains the following fields:

• pKeyBuf – pointer to key buffer;

• KeyLen – key length;

• KeyNum – key number;

• CurFilter – pointer to formed input data buffer structure for extended operations (see
GetNextExtended in the Btrieve API Guide). This buffer also contains the current filter.

31

• CurFilterLen – length of CurFilter buffer. CurFilterLen is useful when developer want to
copy CurFilter data from the buffer to another location in memory.

• DirectBtrCall (Op: Smallint function; pDataBuf: Pointer; var DataLen: Word; pKeyBuf:
Pointer; KeyLen: Byte; KeyNum: Shortint): integer has been added. It allows developers to
call Btrieve directly, using the TpvTable Position Block. It has the following parameters:

• Op – Btrieve operation. See Btrieve API Guide;

• pDataBuf – analog for the data buffer parameter of BTRCALL;

• DataLen – analog for the data buffer length parameter of BTRCALL;

• pKeyBuf – analog for the key buffer parameter of BTRCALL;

• KeyLen –length of the key buffer;

• KeyNum – analog for the key number parameter of BTRCALL.

DirectBtrCall returns the Btrieve status code. pKeyBuf, KeyLen and KeyNum parameters
should be taken from PvTable.BtrHandle property.

Small samples below demonstrate how to lock and unlock the current record via direct calls to
Btrieve:

procedure TForm1.Lock(Sender: TObject);
var b: TBookmark;
DataLen: word;
Res: integer;
begin
b := PvTable1.GetBookmark();
try

 DataLen := 4;
 Res := PvTable1.DirectBtrCall(B_GET_DIRECT + 300, b, DataLen, PvTable1.BtrHandle.pKeyBuf,

PvTable1.BtrHandle.KeyLen, PvTable1.BtrHandle.KeyNum);
finally
PvTable1.FreeBookmark(b);
end;
end

procedure TForm1.Unlock(Sender: TObject);
var Res: integer;
vr: Word;

begin
vr := 0;
Res := PvTable1.DirectBtrCall(B_UNLOCK, @vr, vr, @vr, vr, -2);

end

• IndexFiles property has been dropped.

• TableType property has been dropped.

• TableLevel property is ignored.

• UpdateObject property has been dropped.

• The following methods have been dropped.

32

• CloseIndexFile

• OpenIndexFile

• LockTable

• UnlockTable

• PvCreateTable(PvFieldDefs: TPvFieldDefs) method has been added. It allows the developer
to tune the table creation process somewhat. See the appropriate section for additional details.

• SetOwnerOnTable(AOwner: string; AccessMode: integer) method has been added. It allows
the developer to set the Btrieve owner name on a table. AccessMode can be:

• B_ACCESS_RWOWNER – requires an owner name for any access mode (no data
encryption).

• B_ACCESS_WOWNER – permits read-only access without an owner name (no data
encryption).

• B_ACCESS_RWOWNERENCRYPT – requires an owner name for any access mode
(with data encryption).

• B_ACCESS_WOWNERENCRYPT – permits read-only access without an owner name
(with data encryption).

TPvQuery and TPvStoredProc Specific

• Handle property type was changed to SQLHSTMT.

• DBHandle property type was changed to SQLHDBC.

• StmtHandle was dropped.

• Text property always returns text from property SQL.

• CheckOpen method was dropped.

• All index and key related properties and methods (like GetIndexInfo) were dropped.

TPvQuery Specific

The following properties were added:

• LoadBlobOnOpen

If LoadBlobOnOpen is true, then all BLOBs will be cached in memory on query open. If
LoadBlobOnOpen is false, then BLOBs will be read as required.

• PassThrough

33

Setting this property true will force PDAC to pass the SQL Text directly to the engine, without
the pre-parsing that is ordinarily done to bind parameters. This is necessary when, for
instance, creating Stored Procedures with parameters. Use the property as follows:

procedure TForm1.Button1Click(Sender: TObject);

begin

 PvQuery1.SQL.Clear;

 PvQuery1.SQL.Add('CREATE PROCEDURE TestPr(IN :A INTEGER) AS');

 PvQuery1.SQL.Add('BEGIN');

 PvQuery1.SQL.Add('PRINT :A;');

 PvQuery1.SQL.Add('END');

 PvQuery1.PassThrough := True;

 PvQuery1.ExecSQL;

 PvQuery1.PassThrough := False;

end;

The PassThrough Property is available at Design Time in the IDE, as well.

TPvStoredProc Specific

• Overload property was dropped.

TPvUpdateSQL

• TQuery property type (for all properties) has been changed on TPvQuery.

TPvBatchMove

• Transliterate property was dropped.

• Destination property type was changed to TPvTable.

Zen and Embarcadero Data Types
The following topics detail data type mappings:

• Zen and Embarcadero Data Type Mappings

• Btrieve and Embarcadero Data Type Mappings

34

Zen and Embarcadero Data Type Mappings

The following table shows data type mappings from Zen column types to Delphi data types.
Types on the left stored in Zen databases are exposed by PDAC components as those listed on the
right.

Zen Data Type Delphi Data Type

BigInt ftBCD

Binary ftBytes

Bit ftBoolean

Char ftString

Currency ftCurrency

Date ftDate

Decimal ftBCD

Double ftFloat

Float ftFloat

Identity ftAutoInc

Integer ftInteger

Longvarbinary ftBlob

Longvarchar ftMemo

Numeric ftBCD

Real ftFloat

Smallidentity ftAutoInc

Smallint ftSmallInteger

Time ftTime

TimeStamp ftDateTime

Tinyint ftSmallInteger

Ubigint ftBCD

Uint ftInteger

Usmallint ftWord

35

Note: In the current release, PDAC does not support the BIGIDENTITY data type.

The following table shows data type mappings from Delphi to Zen data types. When new
database tables are created using PDAC, columns defined as the field types listed in the left hand
column will be stored by Zen using the types listed on the right.

Utinyint ftWord

Varbinary ftVarBytes

Varchar ftString

Delphi Data Type Zen Data Type

ftAutoInc Identity

ftBCD Numeric

ftBlob, Longvarbinary

ftBoolean Bit

ftBytes Binary

ftCurrency Currency

ftDate Date

ftDateTime DateTime

ftFixedChar Char

ftFloat Double

ftFmtMemo LongVarChar

ftGraphic Blob

ftInteger Integer

ftLargeInt BigInt

ftMemo Longvarchar

ftSmallInteger Smallint

ftString Varchar

ftTime Time

ftTypedBinary Binary

Zen Data Type Delphi Data Type

36

Btrieve and Embarcadero Data Type Mappings

The following table shows data type mappings from Btrieve to VCL.

Note: Binary flags refer to a flag in X$Fields.Xe$Flags.

ftVarBytes VarChar

ftWord Smallint

Btrieve Data Types Binary flag Length in bytes VCL Data Types

AUTOINCREMENT (15) ftAutoInc

BFLOAT (9) ftFloat

BIT (16) ftBoolean

BLOB (21) + ftBlob

BLOB (21) - ftMemo

CURRENCY (19) ftBCD

DATE (3) ftDate

DECIMAL (5) ftBCD

FLOAT (2) ftFloat

INTEGER (1) 1 ftSmallint

INTEGER (1) 2 ftSmallint

INTEGER (1) 4 ftInteger

INTEGER (1) 8 ftBCD

LOGICAL (7) 1 ftBoolean

LOGICAL (7) 2 ftSmallint

LSTRING (10) + ftVarBytes

LSTRING (10) - ftString

LVAR (13) + ftBCD

LVAR (13) - ftMemo

MONEY (6) ftBCD

Delphi Data Type Zen Data Type

37

The following table shows data type mappings from VCL to Btrieve.

NOTE (12) + ftBlob

NOTE (12) - ftMemo

NUMERIC (8) ftBCD

NUMERICSA (18) ftBCD

NUMERICSTS (17) ftBCD

STRING (0) + ftBytes

STRING (0) - ftString

TIME (4) ftTime

TIMESTAMP (20) ftDateTime

UNSIGNED BINARY (14) 1 ftWord

UNSIGNED BINARY (14) 2 ftWord

UNSIGNED BINARY (14) 4 ftInteger

UNSIGNED BINARY (14) 8 ftBCD

ZSTRING (11) ftString

VCL Data Types Btrieve Type Binary flag Length, bytes

ftAutoInc AUTOINCREMENT (15) 4

ftBCD NUMERIC (8)

ftBlob BLOB (21) + FieldDefs[].Size

ftBoolean LOGICAL (7) 1

ftBytes STRING (0) + FieldDefs[].Size

ftCurrency CURRENCY (19)

ftDate DATE (3)

ftDateTime TIMESTAMP (20)

ftFixedChar STRING (0) - FieldDefs[].Size

ftFloat FLOAT (2) 8

Btrieve Data Types Binary flag Length in bytes VCL Data Types

38

Note: Binary flags refer to a flag in X$Fields.Xe$Flags

Additional Field Type Information

Zen (TPvTable.PvCreateTable) has a specific table create method that allows you to tune
additional parameters related to field types. It has the following definition:

Procedure PvCreateTable(PvFieldDefs: TPvFieldDefs)

In PvFieldDefs you can adjust several parameters:

TPvFieldDef = class(TCollectionItem)

public

 FieldNum: integer;

 BtrType: integer;

 DrmType: word;

 ColumnSize: integer;

 DefaultValue: string;

 IsColumnCaseInsensitive: boolean;

 ACS_FileName: string;

 ACS_Name: string;

 ACS_ID: string;

ftFmtMemo BLOB (21) - FieldDefs[].Size

ftGraphic BLOB (21) + FieldDefs[].Size

ftInteger INTEGER (1) 4

ftLargeint INTEGER (1) 8

ftMemo BLOB (21) - FieldDefs[].Size

ftSmallint INTEGER (1) 2

ftString ZSTRING (11) - FieldDefs[].Size

ftTime TIME (4)

ftTypedBynary STRING (0) + FieldDefs[].Size

ftVarBytes LSTRING (10) + FieldDefs[].Size

ftWord UNSIGNED BINARY (14) 2

VCL Data Types Btrieve Type Binary flag Length, bytes

39

end;

Where:

• FieldNum – field number in primary FieldDefs.

• BtrType – Btrieve type.

• DrmType – data record manager type. Developer does not need to use this field. It was added
for use in TPvBatchMove only.

• ColumnSize – Column size in bytes.

• DefaultValue – Default value for column in string format.

• IsColumnCaseInsensitive – Set it in true if indexes for field are case insensitive.

• ACS_FileName – Set file name with ACS data without .alt extension.

• ACS_Name – Set name of ACS data.

• ACS_ID – Set ID of ACS data.

If you do not want to set a particular field, it can be set to 0 (DrmType, ColumnSize), -1
(BtrType), false (IsColumnCaseInsensitive) or (all string fields). In this case, default values will
be used. Field FieldNum is required.

Fields IsColumnCaseInsensitive, ACS_FileName, ACS_Name, ACS_ID are mutually exclusive.
That is, you can set only one of them.

To match Btrieve behavior, index option ixCaseInsensitive is ignored.

The following is an example of using the PvCreateTable method:

with PvTable1.FieldDefs do

begin

 Clear;

 Add('F_AutoInc', ftAutoInc, 0, true);

 Add('F_Bytes', ftBytes, 10, False);

end;

PvFieldDefs := TPvFieldDefs.Create(TPvFieldDef);

try

 PvFieldDef := PvFieldDefs.Add();

 PvFieldDef.FieldNum := 1; // F_Bytes

 PvFieldDef.BtrType := 10;

40

 PvFieldDef.DrmType := DRM_coltypVarText;

 PvFieldDef.ColumnSize := 20;

 PvFieldDef.IsColumnCaseInsensitive := true;

 PvTable1.PvCreateTable(PvFieldDefs);

finally

 PvFieldDefs.Free();

end;

	Using Direct Access Components
	Overview of Zen Direct Access Components
	Engine Version Checking
	TPvQuery.PassThrough
	TPvDatabase.OEMConversion
	Where to Get More Information

	Using the Zen Direct Access Components
	Delphi and C++Builder

	Deploying an Application Based on PDAC
	Deciding Whether to Use Runtime Packages
	Redist Subdirectory
	Building and Deployment Instructions for Delphi or C++Builder
	Updated Package Names Starting with Delphi 6

	Direct Access Components Reference
	MicroKernel Engine Components
	TPvSession
	Related Information

	TPvDatabase
	Functional Differences Between TPvDatabase and Embarcadero Components
	Secure Tables and Prompting for User Name and Password
	Related Information

	TPvTable
	Functional Differences Between TPvTable and Embarcadero Components
	Table Security
	Table Creation
	Delphi Example
	C++Builder Example
	Related Information

	TPvBatchMove
	Related Information

	TwwPvTable

	Relational Engine Components
	TPvSQLSession
	Functional Differences Between TPvSQLSession and Embarcadero Components
	Related Information

	TPvSQLDatabase
	Functional Differences Between TPvDatabase and Embarcadero Components
	Secure Databases and Prompting for User Name and Password
	DSN-Less Connections from a Client
	Related Information

	TPvQuery
	Functional Differences Between TPvQuery and Embarcadero Components
	BookMarksEnabled Property
	Cursor Management
	Case Where Dynamic Cursors Change to Static
	Related Information

	TPvUpdateSQL
	Related Information

	TPvStoredProc
	Related Information

	TwwPvQuery
	TwwPvStoredProc
	Database Security for ODBC and SQL

	Differences Between PDAC and Embarcadero Components
	TransIsolation Property Differences

	PDAC Classes, Properties, Events, and Methods
	Exception Classes
	Class EPvDatabaseError
	Class EPvDBEngineError
	Class TPvDBError
	Class EPvDrmEngineError
	Class TPvDrmError
	Class EPvSqlEngineError
	Class TPvSqlError
	Class EPvDbAdminEngineError
	Class EPvSqlInstallerEngineError
	Class EPvOwnSqlInstallerEngineError

	Supporting Classes
	Class TPvSessionList/TPvSqlSessionList
	Class TPvBlobStream/TPvSQLBlobStream
	Classes TParam/TParams
	Class TMasterDataLink

	General Differences from VCL
	Global Variables
	Btrieve Subset
	SQL Subset

	Specific Class Differences from VCL
	TPvSession and TPvSqlSession
	TPvSession Specific
	TPvSqlSession Specific
	TPvDatabase and TPvSqlDatabase
	TPvDatabase Specific
	TPvSqlDatabase Specific
	TPvTable, TPvQuery, and TPvStoredProc
	TPvTable Specific
	TPvQuery and TPvStoredProc Specific
	TPvQuery Specific
	TPvStoredProc Specific
	TPvUpdateSQL
	TPvBatchMove

	Zen and Embarcadero Data Types
	Zen and Embarcadero Data Type Mappings
	Btrieve and Embarcadero Data Type Mappings
	Additional Field Type Information

