
SQL Engine Reference

Zen v16

Activate Your Data™

Copyright © 5/30/24 Actian Corporation. All Rights Reserved.

This Documentation is for the end user’s informational purposes only and may be subject to change or withdrawal by
Actian Corporation (“Actian”) at any time. This Documentation is the proprietary information of Actian and is
protected by the copyright laws of the United States and international treaties. The software is furnished under a
license agreement and may be used or copied only in accordance with the terms of that agreement. No part of this
Documentation may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, or for any purpose without the express written permission of Actian. To the extent
permitted by applicable law, ACTIAN PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY
OF ANY KIND, AND ACTIAN DISCLAIMS ALL WARRANTIES AND CONDITIONS, WHETHER EXPRESS
OR IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF
MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OR OF NON-INFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT WILL ACTIAN BE LIABLE TO THE END USER OR ANY THIRD
PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION,
GOODWILL, OR LOST DATA, EVEN IF ACTIAN IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The manufacturer of this Documentation is Actian Corporation.

For government users, the Documentation is delivered with “Restricted Rights” as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Actian, Actian DataCloud, Actian DataConnect, Actian X, Avalanche, Versant, PSQL, Actian Zen, Actian Director,
Actian Vector, DataFlow, Ingres, OpenROAD, and Vectorwise are trademarks or registered trademarks of Actian
Corporation and its subsidiaries. All other trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

iii

Contents

About This Document xv

SQL Overview 1

Working with SQL in Zen . 1
Data Definition Statements. 2
Data Manipulation Statements . 5
Data Control Statements. 7

Zen Metadata . 8
Relational Engine Limits . 9

Fully Qualified Object Names . 12
Delimited Identifiers in SQL Statements . 12

SQL Syntax Reference 13

Literal Values . 13
String Values. 13
Number Values . 14
Date Values . 14
Time Values . 14
Time Stamp Values . 15

SQL Grammar in Zen . 15
ADD . 16
ALL . 17
ALTER (rename) . 18
ALTER GROUP. 21
ALTER TABLE . 23

IN DICTIONARY . 25
USING . 26
WITH REPLACE. 28
MODIFY COLUMN and ALTER COLUMN . 28
PSQL_MOVE. 30
RENAME COLUMN. 31
ON DELETE CASCADE. 31

ALTER USER . 36
ANY . 38
AS. 39
BEGIN [ATOMIC]. 41

iv

CALL. 42
CASCADE . 43
CASE (expression) . 44
CASE (string) . 48
CLOSE . 49
COALESCE . 50
COMMIT. 53
CREATE DATABASE . 54

Database Name and IF NOT EXISTS Clause. 54
Dictionary Path . 55
Data Path . 55
Referential Integrity . 55
BOUND. 55
Dictionary Files . 56
Security . 56
Metadata Version. 57
Encoding . 57

CREATE FUNCTION. 60
Supported Scalar Input Parameters and Returned Data Types . 61
Invoking a Scalar User-Defined Function. 62

CREATE GROUP . 66
CREATE INDEX . 67

Index Segments . 68
UNIQUE . 70
PARTIAL. 70
NOT MODIFIABLE . 72
USING. 72
IN DICTIONARY. 72

CREATE PROCEDURE. 75
Trusted and Non-Trusted Stored Procedures. 77
Memory Caching. 77

CREATE TABLE . 87
Limitations on Record Size . 89
Delete Rule . 90
Update Rule. 91
IN DICTIONARY. 91
USING. 91
WITH REPLACE . 93
DCOMPRESS . 93
PCOMPRESS . 94

v

PAGESIZE . 94
LINKDUP. 94

CREATE (temporary) TABLE . 100
Compatibility with Previous Releases . 104
TEMPDB Database . 104
Table Names of Local Temporary Tables . 104
Transactions . 105
SELECT INTO. 105
Restrictions on SELECT INTO . 105
Caching of Stored Procedures . 105

CREATE TRIGGER. 108
CREATE USER . 110
CREATE VIEW . 112

ORDER BY . 113
Trusted and Non-Trusted Views . 113

DECLARE . 116
DECLARE CURSOR. 117
DEFAULT. 118
DELETE (positioned). 122
DELETE. 123

FROM Clause. 124
DISTINCT . 126
DROP DATABASE . 127

Secured Databases . 127
DELETE FILES . 127

DROP FUNCTION . 129
DROP GROUP. 130
DROP INDEX . 131

Partial Indexes . 131
DROP PROCEDURE. 133
DROP TABLE . 134
DROP TRIGGER . 136
DROP USER . 137
DROP VIEW . 138
END . 139
EXECUTE . 140
EXISTS. 142
FETCH . 144
FOREIGN KEY . 145
GRANT . 147

vi

GRANT LOGIN TO . 148
Constraints on Permissions . 148
GRANT and Data Security . 150
Permissions on Views and Stored Procedures. 151

GROUP BY. 157
HAVING . 158
IF . 159
IN. 161
INSERT . 162

INSERT ON DUPLICATE KEY UPDATE . 162
Errors When Using DEFAULT . 167

JOIN . 169
LAG. 175
LEAVE . 177
LIKE, ILIKE, and Using ESCAPE . 178

ESCAPE with Unicode . 179
LOOP. 182
NOT. 183
OPEN . 184
PARTIAL. 185
PRIMARY KEY . 186
PRINT . 188
PUBLIC. 190
RELEASE SAVEPOINT. 191
RESTRICT . 193
REVOKE. 194
ROLLBACK . 197
SAVEPOINT . 198
SELECT . 200
SELECT (with INTO) . 225
SET . 227
SET ANSI_PADDING . 228
SET CACHED_PROCEDURES . 231
SET DECIMALSEPARATORCOMMA. 234
SET DEFAULTCOLLATE . 236
SET LEGACYTYPESALLOWED. 239
SET OWNER . 240
SET PASSWORD . 242
SET PROCEDURES_CACHE . 245
SET ROWCOUNT . 248

vii

SET SECURITY. 249
SET TIME ZONE. 251
SET TRUEBITCREATE . 256
SET TRUENULLCREATE . 257
SIGNAL . 259
SQLSTATE. 261
START TRANSACTION. 262
UNION . 263
UNIQUE. 265
UPDATE. 266
UPDATE (positioned) . 272
USER . 274
WHILE . 275
Grammar Element Definitions . 275
Global Variables . 282
Other Characteristics . 285

Temporary Files . 285
Working with NULL Values . 287
Working with Binary Data . 287
Creating Indexes. 288
Comma as Decimal Separator . 288

Scalar Functions 291

Bitwise Operators . 291
Truth Table . 294

Arithmetic Operators . 294
Date Arithmetic . 294
Example . 294

String Functions . 294
Examples . 297

Numeric Functions . 300
Examples . 302

Time and Date Functions . 302
Time and Date Function Examples . 311

System Functions . 314
System Function Examples . 314

Logical Functions . 314
Logical Function Examples . 315

Conversion Functions. 316
Conversion Function Examples . 318

viii

System Stored Procedures 321

Zen System Stored Procedures . 321
psp_columns . 321
psp_column_attributes . 324
psp_column_rights . 327
psp_fkeys. 330
psp_groups . 332
psp_help_sp. 334
psp_help_trigger . 336
psp_help_udf . 337
psp_help_view. 339
psp_indexes . 340
psp_pkeys . 343
psp_procedure_rights . 345
psp_rename . 347
psp_stored_procedures . 348
psp_tables . 351
psp_table_rights . 354
psp_triggers . 356
psp_udfs . 358
psp_users . 359
psp_view_rights . 361
psp_views . 364

Performance Optimization Reference 367

Restriction Analysis. 368
Modified CNF Conversion . 368
Restrictions that Cannot be Converted . 368
Conditions Under Which Conversion is Avoided . 368

Restriction Optimization . 370
Single Predicate Optimization. 370
Closed Range Optimization . 371
Modified Disjunct Optimization . 371
Conjunct Optimization . 371
Disjunctive Normal Form Optimization . 372
Modified Conjunctive Normal Form Optimization . 372
Closing Open-Ended Ranges through Modified CNF Optimization 373
Single Join Condition Optimization . 373
Conjunct with Join Conditions Optimization . 374

ix

Modified Conjunctive Normal Form with Join Conditions Optimization 375
Closing Join Condition Open-Ended Ranges through Modified CNF Optimization. . . 375
Multi-Index Modified Disjunct Optimization . 375

Push-Down Filters . 377
Efficient Use of Indexes . 378

DISTINCT in Aggregate Functions . 378
DISTINCT Preceding Selection List . 378
Relaxed Index Segment Order Sensitivity . 378
Relaxed Segment Ascending Attribute Sensitivity. 379
Search Update Optimization. 380

Temporary Table Performance . 381
Row Prefetch . 382
Terminology . 383

Aggregate Function . 383
Closed Range . 383
Conjunct . 383
Conjunctive Normal Form (CNF) . 383
Disjunct. 384
Disjunctive Normal Form (DNF) . 384
Expression . 384
Index . 384
Join Condition . 384
Leading Segments . 385
Modified Conjunctive Normal Form (Modified CNF) . 385
Modified Disjunct. 385
Open-Ended Range. 385
Predicate . 386
Restriction. 386

System Catalog Functions 387

Zen System Catalog Functions. 387
Return Status . 388
Summary. 389

dbo.fSQLColumns . 389
Syntax . 389
Arguments . 390
Returned Result Set . 390
Example . 393

dbo.fSQLForeignKeys . 393
Syntax . 393

x

Arguments . 393
Returned Result Set . 395
Example. 396

dbo.fSQLPrimaryKeys . 396
Syntax . 397
Arguments . 397
Returned Result Set . 397
Example. 397

dbo.fSQLProcedures . 398
Syntax . 398
Arguments . 398
Returned Result Set . 399
Example. 399

dbo.fSQLProcedureColumns . 401
Syntax . 401
Arguments . 401
Returned Result Set . 402
Example. 405

dbo.fSQLSpecialColumns. 405
Syntax . 405
Arguments . 406
Returned Result Set . 406
Example. 407

dbo.fSQLStatistics. 407
Syntax . 407
Arguments . 408
Returned Result Set . 408
Example. 409

dbo.fSQLTables . 410
Syntax . 410
Arguments . 410
Returned Result Set . 411
Example. 411

dbo.fSQLDBTableStat . 412
Syntax . 412
Argument . 412
Returned Result Set . 412
Example. 413

String Search Patterns . 414
Examples . 414

xi

A. Data Types 415

Zen Supported Data Types . 415
Data Type Ranges. 418
Operator Precedence. 421
Data Type Precedence . 422
Precision and Scale of Decimal Data Types. 423
Scale of Time Stamp Data Types and Returned Function Values 424
Truncation. 425

Notes on Data Types. 426
CHAR, NCHAR, VARCHAR, NVARCHAR, LONGVARCHAR, and NLONG-

VARCHAR. 426
BINARY and LONGVARBINARY . 426
Limitations on LONGVARCHAR, NLONGVARCHAR and LONGVARBINARY. . . 427
DATETIME . 428
UNIQUEIDENTIFIER. 430
Representation of Infinity. 431

Legacy Data Types . 432
Btrieve Key Data Types . 432

AUTOINCREMENT . 433
AUTOTIMESTAMP . 436
BFLOAT. 437
STRING . 438
CURRENCY . 438
DATE . 438
DECIMAL . 439
FLOAT . 440
GUID . 441
INTEGER. 441
LOGICAL. 442
LSTRING . 442
MONEY . 442
NUMERIC . 442
NUMERICSA. 444
NUMERICSLB . 445
NUMERICSLS. 445
NUMERICSTB . 446
NUMERICSTS. 446
TIME . 446
TIMESTAMP . 447
TIMESTAMP2 . 449

xii

UNSIGNED BINARY . 451
WSTRING. 451
WZSTRING . 451
ZSTRING . 451

Non-Key Data Types . 452
BLOB . 452
CLOB . 452

B. SQL Reserved Words 453

Reserved Words. 453
Words to Avoid . 459

C. System Tables 463

Overview . 463
System Tables Structure . 464

V1 Metadata System Tables . 465
V2 Metadata System Tables . 479

D. SQL Access for COBOL Applications 497

Overview of Zen Support for COBOL . 497
Restrictions . 497
SQL Statements . 498

Components. 499
Using SQL Access. 501

Step 1: Modify the Sample XML Templates. 501
Step 2: Copy the Data File Specified in the XML Template. 502
Step 3: Run the Schema Executor Utility . 502
Step 4: Optionally, Deploy the System Tables . 507

Example of How to Execute a Sample XML File. 507
Additional Notes . 507

E. Query Plan Viewer 511

Query Plan Settings. 511
Graphical User Interface . 512

Query Viewer . 512
Plan Viewer . 513

Query Plan Viewer Tasks . 516
Examining Query Plans and Evaluating Query Performance . 522

Creating Example Query Plans for Comparison . 522

xiii

Viewing the Example Query Plans. 523

xiv

xv

About This Document

This documentation covers the scope and functionality of the Zen query language.

Who Should Read This Manual
This manual provides information for creating and running SQL scripts in a Zen database.

Actian Corporation would appreciate your comments and suggestions about this manual. As a
user of our documentation, you are in a unique position to provide ideas that can have a direct
impact on future releases of this and other documentation. If you have comments or suggestions
for the product documentation, post your request at the Community Forum on the Zen website.

Note: Unless otherwise noted, all references in this book to the Zen product refer to the current
version.

For More Information
For complete information on the ODBC specification, see the Microsoft ODBC documentation.

xvi

1

SQL Overview

The following topics present an overview of SQL and provide details on Zen support for SQL.

• Working with SQL in Zen

• Zen Metadata

• Relational Engine Limits

You can also go to SQL Syntax Reference to look up specific SQL grammar supported by Zen.

Working with SQL in Zen
Structured Query Language (SQL) uses Englishlike statements to perform database operations.
Both the American National Standards Institute (ANSI) and IBM have defined SQL standards.
The IBM standard is Systems Application Architecture (SAA). Zen implements most features of
both ANSI SQL and IBM SAA SQL and provides extensions that neither standard specifies. The
following table lists the SQL statements that you can create in Zen and the tasks you can
accomplish using each type of statement.

SQL Statement Type Tasks

Data Definition Create, modify, and delete tables.
Create and delete views.
Create and delete indexes.
Create and delete stored SQL procedures.
Create and delete triggers.
Create and delete user-defined functions.

Data Manipulation Retrieve, insert, update, and delete data in tables.
Define transactions.
Define and delete views.
Execute stored SQL procedures.
Execute triggers.

Data Control Enable and disable security for a dictionary.
Create and delete users.
Add and drop users from groups.
Change user passwords.
Grant and revoke table access rights.

2

The rest of this topic gives general information about each type of SQL statement. For detailed
information about each statement, see SQL Syntax Reference.

• Data Definition Statements

• Data Manipulation Statements

• Data Control Statements

Note: Most SQL editors do not use statement delimiters to execute multiple statements, but SQL
Editor in ZenCC requires them. To execute the examples here in other environments, you may
need to remove the pound sign or semicolon separators.

Data Definition Statements

Data definition statements let you specify the characteristics of your database. When you execute
data definition statements, Zen stores the description of your database in a data dictionary. You
must define your database in the dictionary before you can store or retrieve information.

Zen allows you to construct data definition statements to do the following:

• Create, modify, and delete tables.

• Create and delete views.

• Create and delete indexes.

• Create and delete triggers.

• Create and delete stored procedures.

• Create and delete user-defined functions.

The following topics briefly describe the SQL statements associated with each of these tasks. For
general information about defining the characteristics of your database, see Zen Programmer’s
Guide.

3

Creating, Modifying, and Deleting Tables

You can create, modify, and delete tables from a database using the following SQL statements.

Creating and Deleting Views

You can create and delete views from a database using the following SQL statements.

Creating and Deleting Indexes

You can create and delete indexes from a database using the following SQL statements.

Creating and Deleting Triggers

You can create and delete triggers from a database using the following SQL statements.

CREATE TABLE Defines a table and optionally creates the corresponding data file.

ALTER TABLE Changes a table definition. With an ALTER TABLE statement, you can perform
such actions as add a column to the table definition, remove a column from the
table definition, change column data type or length (or other characteristics),
add or remove a primary key or a foreign key, and associate the table definition
with an different data file.

DROP TABLE Deletes a table from the data dictionary and optionally deletes the associated
data file.

CREATE VIEW Defines a new view.

DROP VIEW Deletes a view.

CREATE INDEX Defines a new index (a named index) for an existing table.

DROP INDEX Deletes a named index.

CREATE TRIGGER Defines a trigger for an existing table.

DROP TRIGGER Deletes a trigger.

4

Zen provides additional SQL control statements, which you can only use in the body of a trigger.
You can use the following statements in triggers.

Creating and Deleting Stored Procedures

A stored procedure consists of statements you can precompile and save in the dictionary. To
create and delete stored procedures, use the following SQL statements.

Zen provides additional SQL control statements, which you can only use in the body of a stored
procedure. You can use the following statements in stored procedures.

Creating and Deleting User-Defined Functions (UDF)

In addition to the built-in functions, Zen allows you to create your own user-defined functions
(UDFs) and use them in SQL queries.

A user-defined function is a database object that encapsulates one or more SQL statements that
can be reused. A user-defined function takes zero or more input arguments and evaluates a scalar
return value.

User-defined functions are defined within the context of a database. Successful execution of a
CREATE FUNCTION statement stores the UDF definition in the database where it was executed.
The UDF can then be modified, invoked, or deleted.

A UDF can use one or more SQL statements to output a scalar value of the data type in the
RETURNS clause of its CREATE FUNCTION statement. For a list of supported data types, see
Supported Scalar Input Parameters and Returned Data Types.

BEFORE Defines the trigger execution before the INSERT, UPDATE, or DELETE operation.

AFTER Defines the trigger execution after the INSERT, UPDATE, or DELETE operation.

CREATE PROCEDURE Stores a new procedure in the data dictionary.

DROP PROCEDURE Deletes a stored procedure from the data dictionary.

IF...THEN...ELSE Provides conditional execution based on the truth value of a condition.

LEAVE Continues execution by leaving a block or loop statement.

LOOP Repeats the execution of a block of statements.

WHILE Repeats the execution of a block of statements while a specified condition is
true.

5

To create and delete user-defined functions, use the SQL statements listed in the following table.

Data Manipulation Statements

Data manipulation statements let you access and modify the contents of your database. Zen allows
you to construct data manipulation statements to do the following:

• Retrieve data from tables.

• Modify data in tables.

• Define transactions.

• Create and delete views.

• Execute stored procedures.

• Execute triggers.

The following sections briefly describe the SQL statements associated with each of these tasks.

Retrieving Data

All statements you use to retrieve information from a database are based on SELECT.

When you create a SELECT statement, you can use various clauses to specify different options in
retrieving data. The following table lists the types of clauses used in a SELECT statement.

CREATE FUNCTION Creates a scalar user-defined function in the database.

DROP FUNCTION Deletes a scalar user-defined function from the database.

SELECT Retrieves data from one or more tables in the database.

FROM Specifies the tables or views from which to retrieve data.

WHERE Defines search criteria that qualify the data a SELECT statement retrieves.

GROUP BY Combines sets of rows according to the criteria you specify and allows you to
determine aggregate values for one or more columns in a group.

HAVING Allows you to limit a view by specifying criteria that the aggregate values of a group
must meet.

ORDER BY Determines the order in which Zen returns selected rows.

6

In addition, you can use the UNION keyword to obtain a single result table from multiple
SELECT queries.

Modifying Data

The following table gives statements to add, change, or delete data from tables and views.

When you create a DELETE or UPDATE statement, you can use a WHERE clause to define
search criteria that restrict the data upon which the statement acts.

Creating and Deleting Views

You can create and delete views using the following SQL statements.

Executing Stored Procedures

A stored procedure consists of statements that you can precompile and save in the dictionary. To
execute stored procedures, use the following SQL statements.

Executing System Stored Procedures

A system stored procedure helps you accomplish those administrative and informative tasks that
are not covered by the Data Definition Language. The system stored procedures have a psp_
prefix. To execute system stored procedures, use the following SQL statements.

For more details, see System Stored Procedures.

INSERT Adds rows to one or more tables or a view.

UPDATE Changes data in a table or a view.

DELETE Deletes rows from a table or a view.

CREATE VIEW Defines a database view and stores the definition in the dictionary.

DROP VIEW Deletes a view from the data dictionary.

CALL or EXEC[UTE] Recalls a previously compiled procedure and executes it.

CALL or EXEC[UTE] Recalls a system stored procedure and executes it.

7

Executing Triggers

A trigger consists of statements you can precompile and save in the dictionary. Triggers are
executed automatically by the engine when the specified conditions occur.

Data Control Statements

Data control statements let you define security for your database. When you create a dictionary,
no security is defined for it until you explicitly enable security for that dictionary. Zen allows you
to construct data control statements to do the following:

• Enable and disable security.

• Create and delete users and groups.

• Add and drop users from groups and change user passwords.

• Grant and revoke rights.

Note: If you have a Btrieve owner name set on a file that is a table in a secure database, the
Master user of the database must include the owner name in any GRANT statement to give
permissions on the table to any user, including the Master user.

The following sections briefly describe the SQL statements associated with each of these tasks.

Enabling and Disabling Security

You can enable or disable security for a database by issuing the following statement.

Creating and Deleting Users and Groups

You can create or delete users and user groups for the database using the following SQL
statements.

SET SECURITY Enables or disables security for the database and sets the Master password.

ALTER USER Rename a user or change a password.

CREATE USER Creates a new user with or without a password or membership in a group.

DROP USER Delete a user.

ALTER GROUP Adds users to a group. Drops users from a group.

CREATE GROUP Creates a new group of users.

8

Granting and Revoking Rights

You can assign or remove rights from users or groups by issuing the following statements.

Zen Metadata
The Zen relational interface supports two versions of metadata, referred to as version 1 or V1 and
version 2 or V2.

Metadata version is a property of the database that you specify when you create a database. V1
metadata is the default. When you create a database, you must specify V2 metadata if you want
that version.

Metadata version applies to all data dictionary files (DDFs) within that database. A single
database cannot use some DDFs with V1 metadata and others with V2 metadata. DDFs from the
two versions cannot interact.

The database engine can, however, concurrently access multiple databases and each database can
use either V1 metadata or V2 metadata.

All databases created with Zen versions before PSQL v10 use V1 metadata. A database created in
PSQL v10 or later may use either metadata version depending on the setting at the time of
database creation.

DROP GROUP Deletes a group of users.

GRANT LOGIN TO Creates users and passwords, or adds users to groups.

REVOKE LOGIN FROM Removes a user from the dictionary.

GRANT (access rights) Grants a specific type of rights to a user or a group. The rights you
can grant with a GRANT (access rights) statement are All, Insert,
Delete, Alter, Select, Update, and References.

GRANT CREATETAB TO Grants the right to create tables to a user or a group.

REVOKE (access rights) Revokes access rights from a user or a group.

REVOKE CREATETAB FROM Revokes the right to create tables from a user or a group.

9

Comparison of Metadata Versions

Version 2 metadata allows for many identifier names to be up to 128 bytes long. See Relational
Engine Limits for additional information. In addition, V2 metadata allows for permissions on
views and stored procedures. See Permissions on Views and Stored Procedures.

DDF names for V2 metadata differ from those for V1. V2 DDFs contain additional fields and
changes to V1 fields. See System Tables.

Relational Engine Limits
The following table shows the limits or conditions that apply to features of the Relational Engine.
A Zen database may contain four billion objects in any valid combination. The objects are
persisted in the data dictionary files.

See also Naming Conventions in Zen Programmer’s Guide.

Zen Feature Limit or Condition Metadata

V1 V2

Arguments in a parameter list for a
stored procedure

300 X X

CHAR column size 8,000 bytes1 X X

Character string literal See String Values. X X

Columns in a table 1,536 X X

Columns allowed in a trigger or
stored procedure

300 X X

Column name2 20 bytes X

128 bytes X

Column size 2 GB X X

Correlation name Limited by memory X X

Cursor name 18 bytes X X

Database name2 20 bytes X X

Database sessions Limited by memory X X

10

Data file path name 64 bytes (the maximum length of the
data file path name is a combination
of Xf$Loc path and the data file path)

X

250 bytes (the maximum length of the
data file path name is a combination
of Xf$Loc path and the data file path)

X

Function (user-defined) name2 30 bytes X

128 bytes X

Group name2 30 bytes X

128 bytes X

Index name2 20 bytes X

128 bytes X

Key name2 20 bytes X

128 bytes X

Label name limited by memory X X

NCHAR column size 4,000 UCS-2 units (8,000 bytes1) X X

NVARCHAR column size 4,000 UCS-2 units (8,000 bytes1) X X

Number of ANDed and ORed
predicates

3000 X X

Number of database objects 65,536 X

4 billion X

Parameter name 126 bytes X X

Password2 8 bytes X

128 bytes X

Procedure name2 30 bytes X

128 bytes X

Referential integrity (RI) constraint
name

20 bytes X

128 bytes X

Zen Feature Limit or Condition Metadata

V1 V2

11

Representation of single quote Two consecutive single quotes ('') X X

Result name Limited by memory X X

Savepoint name Limited by memory X X

SELECT list columns in a query 1,600 X X

Size of a single term (quoted literal
string) in a SQL statement

14,997, excluding null terminator and
quotations (15,000 total)

X X

SQL statement length 512 KB X X

SQL statements per session Limited by memory X X

Stored procedure size 64 KB X X

Table name2 20 bytes X

128 bytes X

Table rows 13.0 or 16.0 file format:
9,223,372,036,854,775,807 (~9.2
quintillion)

Older file formats: 2,147,483,647
(~2.1 billion)

X X

Joined tables per query Limited by memory X X

Trigger name2 20 bytes X

128 bytes X

User name2 30 bytes X

128 bytes X

VARCHAR column size 8,000 bytes1 X X

Variable name Limited by memory X X

View name2 20 bytes X

128 bytes X

1The maximum size of a CHAR, NCHAR, VARCHAR or NVARCHAR column that may be fully
indexed is 255 bytes, or 1024 bytes in a 16.0 format file.
2See also Identifier Restrictions in Advanced Operations Guide.

Zen Feature Limit or Condition Metadata

V1 V2

12

Fully Qualified Object Names

A fully qualified object name uses dot notation to combine database and object names. For
example, if the database mydbase has a view myview, then its fully qualified object name is
mydbase.myview.

Fully qualified object names must be unique within a database. For example, if database mydbase
has table acctpay and user-defined function acctpay, then Zen cannot resolve the name
mydbase.acctpay.

Delimited Identifiers in SQL Statements

Table, column, and index names must be delimited if they contain spaces or nonstandard
characters or if the identifier is a keyword. The delimiter character is the double quotation mark.

Examples

SELECT "last-name" FROM "non-standard-tbl"

The hyphen is a nonstandard character.

SELECT "password" FROM my_pword_tbl

"Password" is a keyword in the SET PASSWORD statement.

SQL Syntax Reference 13

SQL Syntax Reference

The following topics cover the SQL syntax supported by Zen:

• Literal Values

• SQL Grammar in Zen

• Grammar Element Definitions

• Global Variables

• Other Characteristics

Literal Values
Zen supports the standard literal formats. This topic provides some of the most common
examples.

• String Values

• Number Values

• Date Values

• Time Values

• Time Stamp Values

String Values

String constants may be expressed in SQL statements by surrounding the given string of
characters with single quotes. If the string itself contains a single-quote or apostrophe, the
character must be preceded by another single-quote.

String literals have type VARCHAR. Characters are encoded using the database code page. If the
literal is prefixed by the letter N, the literal has type NVARCHAR and characters are encoded
using UCS-2. A literal embedded in a SQL query string may go through additional encoding
conversions in the SQL access methods before final conversion in the SQL engine. In particular,
if the SQL text is converted to an encoding that does not support all Unicode characters,
characters in the SQL text may be lost before the engine converts the string literal to
NVARCHAR.

Literal Values

14 SQL Syntax Reference

Examples

In the first example, the apostrophe or single quotation mark contained within the string must be
escaped by another single quotation mark.

SELECT * FROM t1 WHERE c1 = 'Roberta''s Restaurant'
SELECT STREET FROM address WHERE city LIKE 'san%'

Number Values

Date Values

Date constants may be expressed in SQL statements as a character string or embedded in a vendor
string. The first case is treated as data type CHAR and the vendor string representation is treated
as a value of type DATE. This distinction becomes important when conversions are attempted.

Zen partially supports extended SQL grammar as outlined in this function.

Zen supports the date literal format 'YYYY-MM-DD'.

Dates may be in the range of year 0 to 9999.

Examples

The next two statements return all the classes whose start date is after 1995-06-05.

SELECT * FROM Class WHERE Start_Date > '1995-06-05'
SELECT * FROM Class WHERE Start_Date > {d '1995-06-05'}

Time Values

Zen supports the time literal format 'HH:MM:SS'.

Time constants may be expressed in SQL statements as a character string or embedded in a
vendor string. Character string representation is treated as a string of type CHAR and the vendor
string representation as a value of type TIME.

Zen partially supports extended SQL grammar as outlined in this function.

Examples

The following two statements retrieve records from the Class table where the class start time is
14:00:00:

SQL Grammar in Zen

SQL Syntax Reference 15

SELECT * FROM Class WHERE Start_time = '14:00:00'
SELECT * FROM Class WHERE Start_time = {t '14:00:00'}

Time Stamp Values

Time stamp constants may be expressed in SQL statements as a character string or embedded in a
vendor string. Zen treats the character string representation as a string of type CHAR and the
vendor string representation as a value of type SQL_TIMESTAMP.

Zen supports the time stamp literal format 'YYYY-MM-DD HH:MM:SS.MMM'

Examples

The next two statements retrieve records from the Billing table where the start day and time for
the log is 1996-03-28 at 17:40:49.

SELECT * FROM Billing WHERE log = '1996-03-28 17:40:49'
SELECT * FROM Billing WHERE log = {ts '1996-03-28 17:40:49'}

SQL Grammar in Zen
The following topics cover the SQL grammar supported by Zen. Statements and keywords are
listed in alphabetical order.

Note: You can use the SQL Editor in with Zen Control Center to test most of the SQL examples.
Exceptions are noted in the discussion of the grammar elements. For more information, see SQL
Editor in Zen User’s Guide.

Note: Most popular SQL editors do not use statement delimiters to execute multiple statements.
However, SQL Editor in ZenCC requires them. If you wish to execute the examples in other
environments, you may need to remove the pound sign or semicolon separators.

SQL Grammar in Zen

16 SQL Syntax Reference

ADD

Remarks

Use the ADD clause within the ALTER TABLE statement to specify one or more column
definitions, column constraints, or table constraints to be added.

See Also

ALTER TABLE

FOREIGN KEY

PRIMARY KEY

SQL Grammar in Zen

SQL Syntax Reference 17

ALL

Remarks

When you specify the ALL keyword before a subquery, Zen performs the subquery and uses the
result to evaluate the condition in the outer query. If all the rows returned by the subquery meet
the outer query condition for a particular row, then Zen includes that row in the final result table
generated by the statement.

Generally, you can use the EXISTS or NOT EXISTS keyword instead of ALL.

Examples

The following SELECT statement compares the ID column from the Person table to the ID
columns in the result table of the subquery:
SELECT p.ID, p.Last_Name
FROM Person p
WHERE p.ID <> ALL
(SELECT f.ID FROM Faculty f WHERE f.Dept_Name = 'Chemistry')

If the ID value from Person does not equal any of the ID values in the subquery result table, Zen
includes the row from Person in the final result table of the statement.

See Also

SELECT (with INTO)

SELECT

UNION

SQL Grammar in Zen

18 SQL Syntax Reference

ALTER (rename)
The ALTER (rename) statement allows you to change the name of indexes, user-defined
functions, stored procedures, tables, triggers, or views.

Syntax
ALTER object-type RENAME qualified-object-name TO new-object-name

object-type ::= INDEX
| FUNCTION
| PROCEDURE
| TABLE
| TRIGGER
| VIEW

qualified-object-name ::= database-name.table-name.object-name
| database-name.object-name
| table-name.object-name
| object-name

database-name, table-name, object-name, new-object-name ::= user-defined name

Remarks

You cannot rename the following objects if they were created with Zen versions before PSQL v9:

• Stored procedures

• Triggers

• Views

In these earlier releases, the system table index on the name of these objects was created as not
modifiable. The indexes for these objects became modifiable in PSQL v9.

You can use database-name to qualify any object-type. However, if it is used to qualify an INDEX
or TRIGGER object, you must also include table-name. You can use table-name to qualify only
the objects INDEX and TRIGGER.

The ALTER statement can rename an object in a database. You must use database-name to
qualify object-type if the object resides in a database to which your session is not currently
connected. The renamed object occurs in the same database as database-name.

If you omit database-name as a qualifier, the database to which your session is currently
connected is used to identify and rename the objects.

Note that new-object-name never uses a database name as a qualifier. The context of the new
name always matches the context of the original name.

SQL Grammar in Zen

SQL Syntax Reference 19

Note: The database engine does not check dependencies for renamed objects. Be sure that all
objects with a dependency on the previous name are revised as needed. For example, if a trigger
refers to a table named t1 and you rename table t1 to t5, the trigger now contains invalid SQL that
will fail.

You can also use the psp_rename system stored procedure to rename objects.

Examples

The following statement alters the name of index suplid to vendor_id in the database to which
your session is currently connected. The index applies to table region5.

ALTER INDEX RENAME region5.suplid TO vendor_id

The following statement alters the name of the user-defined function calbrned to caloriesburned in
database foodforlife.

ALTER FUNCTION RENAME foodforlife.calbrned TO caloriesburned

The following statement alters the name of stored procedure checkstatus to isEligible in database
international.

ALTER PROCEDURE RENAME international.checkstatus TO isEligible

The following statement alters the name of table payouts to accts_payable in the database to
which your session is currently connected.

ALTER TABLE RENAME payouts TO accts_payable

The following statement alters the name of trigger testtrig3 to new_customer in table domestic
and database electronics.

ALTER TRIGGER RENAME electronics.domestic.testtrig3 TO new_customer

The following statement alters the name of view suplrcds to vendor_codes in the database to
which your session is currently connected.

ALTER VIEW RENAME suplrcds TO vendor_codes

See Also

CREATE FUNCTION

CREATE PROCEDURE

CREATE TABLE

CREATE TRIGGER

SQL Grammar in Zen

20 SQL Syntax Reference

CREATE VIEW

psp_rename

SQL Grammar in Zen

SQL Syntax Reference 21

ALTER GROUP
The ALTER GROUP statement adds or removes a user account from a group.

Syntax
ALTER GROUP group-name

<ADD USER user-name [, user-name]...
| DROP USER user-name [, user-name]...>

Remarks

Only the Master user can execute this statement.

This statement must be used with one of the two available keywords.

A user account cannot be added to a group if the group is not already created in the database. To
create users and add them to groups simultaneously, see GRANT.

Dropping a user account from a group does not remove the group from the database.

User accounts cannot belong to multiple groups simultaneously. A user account cannot be added
to a group if it is currently a member of another group. Such a user account must first be dropped
from its current group and then added to another group.

A user name must be enclosed in double quotes if it contains spaces or other nonalphanumeric
characters.

For further general information about users and groups, see Master User and Users and Groups in
Advanced Operations Guide, and Assigning Permissions Tasks in Zen User’s Guide.

Examples

The following examples show how to add a user account to a group:

ALTER GROUP developers ADD USER pgranger

The existing user account pgranger is added to the existing group developers.

============

ALTER GROUP developers ADD USER "polly granger"

The user account polly granger (containing nonalphanumeric characters) is added to the group
developers.

SQL Grammar in Zen

22 SQL Syntax Reference

============

ALTER GROUP developers ADD USER "polly granger", bflat

The user accounts polly granger (containing nonalphanumeric characters) and bflat are added to
the group developers.

============

The following examples show how to drop a user account from a group.

ALTER GROUP developers DROP USER pgranger

The user account pgranger is removed from the group developers.

============

ALTER GROUP developers DROP USER "polly granger"

The user account polly granger (with a name containing nonalphanumeric characters) is removed
from the group developers.

============

ALTER GROUP developers DROP USER "polly granger", bflat

The user accounts polly granger (containing nonalphanumeric characters) and bflat are removed
from the group developers.

See Also

ALTER USER

CREATE GROUP

CREATE USER

DROP GROUP

GRANT

REVOKE

SET SECURITY

SQL Grammar in Zen

SQL Syntax Reference 23

ALTER TABLE
The ALTER TABLE statement modifies a table definition. Note that using ALTER TABLE to
modify a column does not add to its existing definition, but rather replaces that definition with a
new one.

Syntax
ALTER TABLE table-name [IN DICTIONARY]

[USING 'path_name'] [WITH REPLACE] alter-options
table-name ::= user-defined name

option ::= DCOMPRESS | PCOMPRESS | PAGESIZE = size | LINKDUP = number | SYSDATA_KEY_2
path_name ::= a simple file name or relative path and file name
alter-options ::= alter-option-list1 | alter-option-list2
alter-option-list1 ::= alter-option |(alter-option [, alter-option]...)
alter-option ::= ADD [COLUMN] column-definition

| ADD table-constraint-definition
| ALTER [COLUMN] column-definition
| DROP [COLUMN] column-name
| DROP CONSTRAINT constraint-name
| DROP PRIMARY KEY
| MODIFY [COLUMN] column-definition

alter-option-list2 ::= PSQL_MOVE [COLUMN] column-name TO [[PSQL_PHYSICAL] PSQL_POSITION] new-
column-position | RENAME COLUMN column-name TO new-column-name
column-definition ::= column-name data-type [DEFAULT default-value-expression] [column-constraint
[column-constraint]... [CASE (string) | COLLATE collation-name]
column-name ::= user-defined name
new-column-position ::= new ordinal position (a positive integer value). The value must be greater
than zero and less than or equal to the total number of columns in the table.
new-column-name ::= user-defined name
data-type ::= data-type-name [(precision [, scale])]
precision ::= integer
scale ::= integer
default-value-expression ::= default-value-expression + default-value-expression

| default-value-expression - default-value-expression
| default-value-expression * default-value-expression
| default-value-expression / default-value-expression
| default-value-expression & default-value-expression
| default-value-expression | default-value-expression
| default-value-expression ^ default-value-expression
| (default-value-expression)
| -default-value-expression
| +default-value-expression
| ~default-value-expression
| ?
| literal
| scalar-function
| { fn scalar-function }
| USER
| NULL

default-literal ::= 'string' | N'string'
| number
| { d 'date-literal' }
| { t 'time-literal' }
| { ts 'timestamp-literal' }

default-scalar-function ::= USER()
| NULL()
| NOW()
| CURDATE()

SQL Grammar in Zen

24 SQL Syntax Reference

| CURTIME()
| CURRENT_DATE()
| CURRENT_TIME()
| CURRENT_TIMESTAMP()
| CONVERT()

column-constraint ::= [CONSTRAINT constraint-name] col-constraint
constraint-name ::= user-defined-name
col-constraint ::= NOT NULL

| NOT MODIFIABLE
| UNIQUE
| PRIMARY KEY
| REFERENCES table-name [(column-name)] [referential-actions]

referential-actions ::= referential-update-action [referential-delete-action]
| referential-delete-action [referential-update-action]

referential-update-action ::= ON UPDATE RESTRICT
referential-delete-action ::= ON DELETE CASCADE

| ON DELETE RESTRICT
collation-name ::= 'string'
table-constraint-definition ::= [CONSTRAINT constraint-name] table-constraint
table-constraint ::= UNIQUE (column-name [, column-name]...)

| PRIMARY KEY (column-name [, column-name]...)
| FOREIGN KEY (column-name [, column-name])
REFERENCES table-name
[(column-name [, column-name]...)]
[referential-actions]

Remarks

See CREATE TABLE for information about primary and foreign keys and referential integrity.

Conversions between CHAR, VARCHAR, or LONGVARCHAR and NCHAR, NVARCHAR, or
NLONGVARCHAR assume that CHAR values are encoded using the database code page. A
column of type LONGVARCHAR cannot be altered to type NLONGVARCHAR nor
NLONGVARCHAR to LONGVARCHAR.

ALTER TABLE requires an exclusive lock on a table. If the same table is being held open with
another statement, ALTER TABLE fails and returns status code 88. Ensure that you execute all
data definition statements before executing data manipulation statements. For an example
showing this, see PSQL_MOVE.

An ALTER TABLE statement with the SYSDATA_KEY_2 keyword automatically changes the
file to version 13.0 if it is in an earlier format. It then adds system data v2, which enables the
sys$create and sys$update virtual columns for use in queries. For more information, see
Accessing System Data v2.

Use of IN DICTIONARY with the SYSDATA_KEY_2 keyword causes the ALTER TABLE
statement to ignore SYSDATA_KEY_2, and the sys$create and sys$update virtual columns are
not available for the table.

SQL Grammar in Zen

SQL Syntax Reference 25

IN DICTIONARY

The purpose of using this keyword is to notify the database engine that you wish to make
modifications to the DDFs, while leaving the underlying physical data unchanged. IN
DICTIONARY is a powerful feature for advanced users. It should only be used by system
administrators, and only when absolutely necessary. Normally, Zen keeps DDFs and data files
totally synchronized, but this feature allows users the flexibility to force table dictionary
definitions to match an existing data file. This can be useful when you want to create a definition
in the dictionary to match an existing data file, or when you want to use a USING clause to
change the data file path name for a table.

You cannot use IN DICTIONARY on a bound database.

IN DICTIONARY is allowed on CREATE and DROP TABLE, in addition to ALTER TABLE. IN
DICTIONARY affects dictionary entries only, no matter what CREATE/ALTER options are
specified. Since Zen allows multiple options (any combination of ADD, DROP, ADD
CONSTRAINT, and so on), IN DICTIONARY is honored under all circumstances to guarantee
only the DDFs are affected by the schema changes.

The error "Table not found" results if you query a detached table or a table that does not exist. If
you determine that a table exists but you receive the "Table not found" error, the error resulted
because the data file could not be opened. This indicates a detached table. (Tables that exist in the
DDFs only (the data file does not exist) are called detached entries. These tables are inaccessible
via queries or other operations that attempt to open the physical underlying file.)

You can verify whether a table really exists by using the catalog functions (see System Catalog
Functions) or by directly querying the Xf$Name column of X$File:

SELECT * FROM X$File WHERE Xf$Name = 'table_name'

The SELECT statement returns the Xf$Loc value, which is the name of the physical file for the
table. Combine the name with a data path defined for the database to get the complete path to the
file.

It is possible for a detached table to cause confusion, so the IN DICTIONARY feature must be
used with extreme care. It is crucial that it should be used to force table definitions to match
physical files, not to detach them. Consider the following examples, assuming that the file
test123.btr does not exist. (USING is explained below, in the next subtopic.)

CREATE TABLE t1 USING 't1.btr' (c1 INT)
ALTER TABLE t1 IN DICTIONARY USING 'test123.btr'

Or, combining both statements:

CREATE TABLE t1 IN DICTIONARY USING 'test123.btr' (c1 INT)

SQL Grammar in Zen

26 SQL Syntax Reference

If you then attempt to SELECT from t1, you receive an error that the table was not found.
Confusion can arise, because you just created the table – how can it not be found? Likewise, if
you attempt to DROP the table without specifying IN DICTIONARY, you receive the same error.
These errors are generated because there is no data file associated with the table.

Whenever you create a relational index definition for an existing Btrieve data file (for example,
by issuing an ALTER TABLE statement to add a column definition of type IDENTITY), Zen
automatically checks the Btrieve indexes defined on the file to determine whether an existing
Btrieve index offers the set of parameters requested by the relational index definition. If an
existing Btrieve index matches the new definition being created, then an association is created
between the relational index definition and the existing Btrieve index. If there is no match, then
Zen creates a new index definition and, if IN DICTIONARY is not specified, a new index in the
data file.

USING

The USING keyword allows you to associate a CREATE TABLE or ALTER TABLE action with
a particular data file.

Because Zen requires a named database to connect, the path name provided must always be a
simple file name or relative path and file name. Paths are always relative to the first data path
specified for the named database to which you are connected.

The path and file name passed are partially validated when the statement is prepared.

The following rules must be followed when specifying the path name:

• The text must be enclosed in single quotation marks, as shown in the grammar definition.

• Text must be 1 to 64 characters in length for V1 metadata and 1 to 250 characters for V2
metadata, and is stored in Xf$Loc in X$File. The entry is stored exactly as typed (trailing
spaces are truncated and ignored).

• The path must be a simple, relative path. Paths that reference a server or volume are not
allowed.

• Relative paths are allowed to contain a period ('.' - current directory), double period ('..' -
parent directory), slash '\', or any combination of the three. The path must contain a file name
representing the SQL table name (path_name cannot end in a slash '\' or a directory name).
When you create a file with CREATE or ALTER TABLE, all file names, including those
specified with relative paths, are relative to the first Data Path as defined in the Named
Database configuration. (If you use IN DICTIONARY, the file name does not have to relative
to the first data location.)

SQL Grammar in Zen

SQL Syntax Reference 27

• Root-based relative paths are allowed. For example, assuming that the first data path is
D:\mydata\demodata, Zen interprets the path name in the following statement as
D:\temp\test123.btr.

CREATE TABLE t1 USING '\temp\test123.btr' (c1 int)

• Slash ('\') characters in relative paths may be specified either Linux style ('/') or in the
customary backslash notation ('\'), depending on your preference. You may use a mixture of
the two types, if desired. This is a convenience feature since you may know the directory
structure scheme, but not necessarily know (or care) what type of server you are connected to.
The path is stored in X$File exactly as typed. Zen engine converts the slash characters to the
appropriate platform type when utilizing the path to open the file. Also, since data files share
binary compatibility between all supported platforms, this means that as long as the directory
structure is the same between platforms (and path-based file names are specified as relative
paths), the database files and DDFs can be moved from one platform to another with no
modifications. This makes for a much simpler cross-platform deployment with a standardized
database schema.

• If specifying a relative path, the directory structure in the USING clause must first exist. Zen
does not create directories to satisfy the path specified in the USING clause.

Include a USING clause to specify the physical location and name of an existing data file to
associate with an existing table. A USING clause also allows you to create a new data file at a
particular location using an existing dictionary definition. (The string supplied in the USING
clause is stored in the Xf$Loc column of the dictionary file X$File.) The original data file must be
available when you create the new file since some of the file information must be obtained from
the original.

In the Demodata sample database, the Person table is associated with the file PERSON.MKD. If
you create a new file named PERSON2.MKD, the statement in the following example changes
the dictionary definition of the Person table so that the table is associated with the new file.

ALTER TABLE Person IN DICTIONARY USING 'person2.mkd'

You must use either a simple file name or a relative path in the USING clause. If you specify a
relative path, Zen interprets it relative to the first data file path associated with the database name.

The USING clause can be specified in addition to any other standard ALTER TABLE option. This
means columns can be manipulated in the same statement that specifies the USING path.

If you specify a data file name that differs from the data file name currently used to store the table
data and you do not specify IN DICTIONARY, Zen creates the new file and copies all of the data
from the existing file into the new file. For example, suppose person.mkd is the current data file
that holds the data for table Person. You then alter table Person using data file person2.mkd, as
shown in the statement above. The contents of person.mkd are copied into person2.mkd.

SQL Grammar in Zen

28 SQL Syntax Reference

Person2.mkd then becomes the data file associated with table Person and database operations
affect person2.mkd. Person.mkd is not deleted, but it is not associated with the database any more.

The reason for copying the data is because Zen allows all other ALTER TABLE options at the
same time as USING. The new data file created needs to be fully populated with data from the
existing table. The file structure is not simply copied, but instead the entire contents are moved
over, similar to a Btrieve BUTIL -CREATE and BUTIL -COPY. This can be helpful for
rebuilding a SQL table, or compressing a file that once contained a large number of records but
now contains only a few.

Note: ALTER TABLE USING copies the contents of the existing data file into the newly
specified data file, leaving the old data file intact but unlinked.

WITH REPLACE

Whenever WITH REPLACE is specified with USING, Zen automatically overwrites any existing
file name with the specified file name. The file is always overwritten as long as the operating
system allows it.

WITH REPLACE affects only the data file and not the DDFs.

The following rules apply when using WITH REPLACE:

• WITH REPLACE can only be used with USING.

• When used with IN DICTIONARY, WITH REPLACE is ignored because IN DICTIONARY
specifies that only the DDFs are affected.

Note: No data is lost or discarded if WITH REPLACE is used with ALTER TABLE. The newly
created data file, even if overwriting an existing file, still contains all data from the previous file.
You cannot lose data by issuing an ALTER TABLE command.

Include WITH REPLACE in a USING clause to instruct Zen to replace an existing file (the file
must reside at the location you specified in the USING clause). If you include WITH REPLACE,
Zen creates a new file and copies all the data from the existing file into it. If you do not include
WITH REPLACE and a file exists at the specified location, Zen returns a status code and does not
create the new file. The status code is error -4940.

MODIFY COLUMN and ALTER COLUMN

The ability to modify the nullability or data type of a column is subject to the following
restrictions:

SQL Grammar in Zen

SQL Syntax Reference 29

• The target column cannot have a PRIMARY/FOREIGN KEY constraint defined on it.

• If converting the old type to the new type causes an overflow (arithmetic or size), the ALTER
TABLE operation is aborted.

• If a nullable column contains NULL values, the column cannot be changed to a nonnullable
column.

If you must change the data type of a primary or foreign key column, you can do so by dropping
the constraint, changing the data type of the column, and adding back the constraint. Keep in mind
that you must ensure that all associated key columns remain synchronized. For example, if you
have a primary key in table T1 that is referenced by foreign keys in tables T2 and T3, you must
first drop the foreign keys. Then you can drop the primary key. Then you need to change all three
columns to the same data type. Finally, you must add back the primary key and then the foreign
keys.

The ANSI standard includes the ALTER keyword. Zen also supports use of the keyword
MODIFY in the ALTER TABLE statement. The keyword COLUMN is optional. For example:

ALTER TABLE t1 MODIFY c1 INTEGER
ALTER TABLE t1 ALTER c1 INTEGER
ALTER TABLE t1 MODIFY COLUMN c1 INTEGER
ALTER TABLE t1 ALTER COLUMN c1 INTEGER

Zen allows altering a column to a smaller length if the actual data does not overflow the new,
smaller length of the column. This behavior is similar to that of Microsoft SQL Server.

You can add, drop, or modify multiple columns on a single ALTER TABLE statement. Although
it simplifies operations, this behavior is not considered ANSI-compliant. The following is a
sample multicolumn ALTER statement.

ALTER TABLE t1 (ALTER c2 INT, ADD D1 CHAR(20), DROP C4, ALTER C5 LONGVARCHAR, ADD D2 LONGVARCHAR NOT
NULL)

You can convert legacy data types (Pervasive.SQL v7 or earlier) to data types natively supported
by the current Zen release. If you wish to convert new data types backward to legacy data types,
contact Zen Support.

To add a LONGVARCHAR/LONGVARBINARY column to a legacy table that contains a NOTE/
LVAR column, the NOTE/LVAR column first has to be converted to a LONGVARCHAR or
LONGVARBINARY column. After converting the NOTE/LVAR column to LONGVARCHAR/
LONGVARBINARY, you can add more LONGVARCHAR/LONGVARBINARY columns to the
table. Note that the legacy engine does not work with this new table because the legacy engine can
work with only one variable length column per table.

SQL Grammar in Zen

30 SQL Syntax Reference

PSQL_MOVE

The PSQL_MOVE syntax allows you to keep the columns of a table at desired ordinal positions.
You may change the ordinal position of existing columns or for a new column after adding it. You
can move a column logically and physically.

Note: Once you move columns logically, that order becomes the default order for listing columns
in result sets. For instance, if you move columns physically after moving them logically, the
logical order is used for queries such as SELECT * FROM from table-name. Logical column
changes are stored in X$Attrib.

The PSQL_MOVE keyword must specify a column location greater than zero but less than the
total number of columns. For example, assume that table t1 has only two columns, col1 and col2.
Both of the following statement return an error:

ALTER TABLE t1 PSQL_MOVE col1 to 0
ALTER TABLE t1 PSQL_MOVE col1 to 3

The first statement attempts to move the column to position zero. The second statements attempts
to move the column to position three, which is a number greater than the total number of columns
(two).

ALTER TABLE requires an exclusive lock on a table. If the same table is being help open by
another statement, ALTER TABLE fails and returns status code 88. Ensure that you execute all
data definition statements before executing data manipulation statements.

For example, the following stored procedure fails and returns status code 88 because the INSERT
statement has table t1 open, which prevents the ALTER TABLE statement from obtaining an
exclusive lock.

Type of
Move

Result

Logical Columns are rearranged when listed in a result set, but the physical order of the columns
in the table does not change. For example, you can rearrange how the columns are listed
in a result set with a query such as SELECT * FROM table-name. A logical move affects
only queries that list the columns, such as SELECT * FROM from table-name.

Physical A column is physically relocated from its current position to a new position in the file. A
physical move affects the data file of the table. To move a column physically, you must
specify the PSQL_PHYSICAL keyword. If the PSQL_PHYSICAL keyword is omitted, a
logical move occurs by default.

Note that only column offsets in the DDFs are changed if IN DICTIONARY is used in the
ALTER TABLE statement. Columns in the data file are not physically moved because IN
DICTIONARY overrides the MOVE . . . PSQL_PHYSICAL syntax for the data file.

SQL Grammar in Zen

SQL Syntax Reference 31

CREATE PROCEDURE proc1() AS
BEGIN
CREATE TABLE t1(c1 INT,c2 INT,c3 INT);
INSERT INTO t1 VALUES (123,345,678);
ALTER TABLE t1 PSQL_MOVE c3 to 1;
END;

A way to resolve this is to execute the statements pertaining first to the table creation and data
insertion, then call the procedure:

CREATE TABLE t1(c1 INT,c2 INT,c3 INT);
INSERT INTO t1 VALUES (123,345,678);
CALL proc1;

CREATE PROCEDURE proc1() AS
BEGIN
ALTER TABLE t1 PSQL_MOVE c3 to 1;
END;

RENAME COLUMN

Rename column allows you to change the name of a column to a new name. You cannot rename a
column to the name of an existing column in the same table.

Renaming a column can invalidate objects that reference the previous name. For example, a
trigger might reference column c1 in table t1. Renaming c1 to c5 results in the trigger being
unable to execute successfully.

You can also use the psp_rename system stored procedure to rename columns.

Note: The database engine does not check dependencies for renamed columns. If you rename a
column, ensure that all objects with a dependency on the previous (changed from) name are
revised appropriately.

ON DELETE CASCADE

See Delete Rule for CREATE TABLE.

Examples

This section provides a number of examples of ALTER TABLE.

The following statement adds the Emergency_Phone column to the Person table

ALTER TABLE person ADD Emergency_Phone NUMERIC(10,0)

The following statement adds two integer columns col1 and col2 to the Class table.

ALTER TABLE class(ADD col1 INT, ADD col2 INT)

SQL Grammar in Zen

32 SQL Syntax Reference

============

To drop a column from a table definition, specify the name of the column in a DROP clause. The
following statement drops the emergency phone column from the Person table.

ALTER TABLE person DROP Emergency_Phone

The following statement drops col1 and col2 from the Class table.

ALTER TABLE class(DROP col1, DROP col2)

The following statement drops the constraint c1 in the Faculty table.

ALTER TABLE Faculty(DROP CONSTRAINT c1)

============

This example adds an integer column col3 and drops column col2 to the Class table

ALTER TABLE class(ADD col3 INT, DROP col2)

============

The following example creates a primary key named c1 on the ID field in the Faculty table. Note
that you cannot create a primary key on a nullable column. Doing so returns an error.

ALTER TABLE Faculty(ADD CONSTRAINT c1 PRIMARY KEY(ID))

The following example creates a primary key using the default key name PK_ID on the Faculty
table.

ALTER TABLE Faculty(ADD PRIMARY KEY(ID))

============

The following example adds the constraint UNIQUE to the columns col1 and col2. The combined
value of col1 and col2 in any row is unique within the table. Neither column needs to be unique
individually.

ALTER TABLE Class(ADD UNIQUE(col1,col2))

============

The following example drops the primary key in the Faculty table. Because a table can have only
one primary key, you cannot add a primary key to a table that already has a primary key defined.
To change the primary key of a table, delete the existing key then add the new primary key.

ALTER TABLE Faculty(ADD PRIMARY KEY)

Before you can drop a primary key from a parent table, you must drop any corresponding foreign
keys from dependent tables.

SQL Grammar in Zen

SQL Syntax Reference 33

============

The following example adds a new foreign key to the Class table. The Faculty_ID column is
defined as a column that does not include NULL values. You cannot create a foreign key on a
nullable column.

ALTER TABLE Class ADD CONSTRAINT Teacher FOREIGN KEY (Faculty_ID) REFERENCES Faculty (ID) ON DELETE
RESTRICT

In this example, the restrict rule for deletions prevents someone from removing a faculty member
from the database without first either changing or deleting all of that member's classes. Also note
that the column listed in the REFERENCES clause (ID) is optional. Columns listed in the
REFERENCES clause can be included, if you choose, to improve clarity of the statement. The
only columns that can be referenced in the REFERENCES clause are the primary keys of the
referenced table.

The following statement shows how to drop the foreign key added in this example. Zen drops the
foreign key from the dependent table and eliminates the referential constraints between the
dependent table and the parent table.

ALTER TABLE Class DROP CONSTRAINT Teacher

============

The following example adds a foreign key to the Class table without using the CONSTRAINT
clause. In this case, a foreign key constraint is generated internally to reference the primary key
(ID) of Faculty. The column listed in the REFERENCES clause is optional. Columns listed in the
REFERENCES clause can be included, if you choose, to improve clarity of the statement. The
only column that can be used in the REFERENCES clause is the primary key of the referenced
table.

ALTER TABLE Class ADD FOREIGN KEY (Faculty_ID) REFERENCES Faculty (ID) ON DELETE RESTRICT

This creates foreign key FK_Faculty_ID. To drop the foreign key, specify the CONSTRAINT
keyword:

ALTER TABLE Class DROP CONSTRAINT FK_Faculty_ID

============

The following example shows adding and dropping of constraints and columns in a table. This
statement drops column salary, adds a column col1 of type integer, and drops constraint c1 in the
Faculty table.

ALTER TABLE Faculty(DROP salary, ADD col1 INT, DROP CONSTRAINT c1)

============

The following examples both illustrate altering the data type of multiple columns.

SQL Grammar in Zen

34 SQL Syntax Reference

ALTER TABLE t1 (ALTER c2 INT, ADD D1 CHAR(20), DROP C4, ALTER C5 LONGVARCHAR, ADD D2 LONGVARCHAR NOT
NULL)
ALTER TABLE t2 (ALTER c1 CHAR(50), DROP CONSTRAINT MY_KEY, DROP PRIMARY KEY, ADD MYCOLUMN INT)

============

The following examples illustrate how the column default and alternate collating sequence can be
set or dropped with the ALTER or MODIFY column options.

CREATE TABLE t1 (c1 INT DEFAULT 10, c2 CHAR(10))
ALTER TABLE t1 ALTER c1 INT DEFAULT 20

 – resets column c1 default to 20

ALTER TABLE t1 ALTER c1 INT

 – drops column c1 default

ALTER TABLE t1 ALTER c2 CHAR(10)
COLLATE 'file_path\upper.alt'

 – sets alternate collating sequence on column c2

ALTER TABLE t1 ALTER c2 CHAR(10)

 – drops alternate collating sequence on column c2

Upper.alt treats upper and lower case letters the same for sorting. For example, if a database has
values abc, ABC, DEF, and Def, inserted in that ordered, the sorting with upper.alt returns as abc,
ABC, DEF, and Def. (The values abc and ABC, and the values DEF and Def are considered
duplicates and are returned in the order in which they were inserted.) Normal ASCII sorting
sequences upper case letters before lower case, such that the sorting would return as ABC, DEF,
Def, abc.

============

The following statement logically moves column Registrar_ID from its current position to the
second position when the columns are listed in a results set.

ALTER TABLE Billing PSQL_MOVE Registrar_ID TO 2

The following statement moves columns Amount_Owed and Amount_Paid from their current
positions to the second and third positions, respectively, when the columns are listed in a result
set.

ALTER TABLE Billing (PSQL_MOVE Amount_Owed TO 2, PSQL_MOVE Amount_Paid TO 3)

============

The following statement physically moves column Registrar_ID from its current position to the
second column in the data file. This causes the data file to be rebuilt to reflect the change.

ALTER TABLE Billing PSQL_MOVE Registrar_ID TO PSQL_PHYSICAL 2

SQL Grammar in Zen

SQL Syntax Reference 35

The following statement physically moves columns Amount_Owed and Amount_Paid from their
current positions to the second and third column positions, respectively, in the data file.

ALTER TABLE Billing (PSQL_MOVE Amount_Owed TO PSQL_PHYSICAL 2, PSQL_MOVE Amount_Paid TO
PSQL_PHYSICAL 3)

============

Assume that table t1 contains columns c1 and col2. The following statement renames column c1
to c2.

ALTER TABLE t1 RENAME COLUMN c1 TO c2

============

Assume that table t1 contains columns c1 and col2. The following statement returns an error
(duplicate column name) because it attempts to rename a column (col2) to the name of an existing
column (c1).

ALTER TABLE t1 (RENAME COLUMN c1 TO c2, RENAME COLUMN col2 TO c1)

Instead, you must issue two separate ALTER statements. The first renames c1 to c2. The second
renames col2 to c1.

ALTER TABLE t1 (RENAME COLUMN c1 TO c2)
ALTER TABLE t1 (RENAME COLUMN col2 TO c1)

See Also

CREATE TABLE

DROP TABLE

CREATE INDEX

DEFAULT

SET DEFAULTCOLLATE

SQL Grammar in Zen

36 SQL Syntax Reference

ALTER USER
The ALTER USER statement changes the name or password of a user account.

Syntax
ALTER USER user-name < RENAME TO new-user-name | WITH PASSWORD user-password >

Remarks

Only the Master user can rename a user. Other users can change their passwords with the WITH
PASSWORD clause or by using SET PASSWORD. See SET PASSWORD.

Security must be turned on to perform this statement.

This statement must be used with either the RENAME TO option or the WITH PASSWORD
keywords.

New-user-name must be unique in the database.

User-name and user-password must be enclosed in double quotes if they contain spaces or other
nonalphanumeric characters. See Granting Privileges to Users and Groups for more information
on created users.

Note: For information on password restrictions, see Identifier Restrictions, and the topic
Database Security in Advanced Operations Guide. For further general information about users
and groups, see Master User and Users and Groups in Advanced Operations Guide and Assigning
Permissions Tasks in Zen User’s Guide.

Examples

The following examples show how to rename a user account.

ALTER USER pgranger RENAME TO grangerp

The name of the account pgranger is changed to grangerp.

ALTER USER pgranger RENAME TO "polly granger"

The name of the account pgranger is changed to polly granger containing nonalphanumeric
characters.

============

The following examples show how to change the password for a user account.

SQL Grammar in Zen

SQL Syntax Reference 37

ALTER USER pgranger WITH PASSWORD Prvsve1

The password for user account pgranger is changed to Prvsve1 (case-sensitive).

ALTER USER pgranger WITH PASSWORD "Nonalfa$"

The password for user account pgranger is changed to Nonalfa$ (case-sensitive) containing
nonalphanumeric characters.

See Also

ALTER (rename)

CREATE GROUP

CREATE USER

DROP USER

GRANT

SET PASSWORD

SQL Grammar in Zen

38 SQL Syntax Reference

ANY

Remarks

The ANY keyword works similarly to the ALL keyword except that Zen includes the compared
row in the result table if the condition is true for any row in the subquery result table.

Examples

The following statement compares the ID column from Person to the ID columns in the result
table of the subquery. If the ID value from Person is equal to any of the ID values in the subquery
result table, Zen includes the row from Person in the result table of the SELECT statement.

SELECT p.ID, p.Last_Name
FROM Person p
WHERE p.ID = ANY
(SELECT f.ID FROM Faculty f WHERE f.Dept_Name = 'Chemistry')

See Also

SELECT

SQL Grammar in Zen

SQL Syntax Reference 39

AS

Remarks

Include an AS clause to assign a name to a select term or to a table name. You can use this name
elsewhere in the statement to reference the select term. The name is often referred to as an alias.

When you use the AS clause on a nonaggregate column, you can reference the name in WHERE,
ORDER BY, GROUP BY, and HAVING clauses. When you use the AS clause on an aggregate
column, you can reference the name only in an ORDER BY clause.

The name you define must be unique in the SELECT list.

Column aliases are returned as column names. Computed columns, including group aggregates,
with no column alias are assigned a system-generated name, such as EXPR-1, EXPR-2, and so on.

Examples

The AS clause in the following statement instructs Zen to assign the name Total to the select term
SUM (Amount_Paid) and order the results by the total for each student:

SELECT Student_ID, SUM (Amount_Paid) AS Total
FROM Billing
GROUP BY Student_ID
ORDER BY Total

The keyword AS is optional when used for table aliases as in this next example. When you use the
AS clause on a table name in a FROM clause, you can reference the name in a WHERE, ORDER
BY, GROUP BY, and HAVING clause.

SELECT DISTINCT c.Name, p.First_Name, c.Faculty_Id
FROM Person AS p, class AS c
WHERE p.Id = c.Faculty_Id
ORDER BY c.Faculty_Id

You can rewrite this query without using the AS clause in the FROM clause as follows.

SELECT DISTINCT c.Name, p.First_Name, c.Faculty_Id
FROM Person p, class c
WHERE p.Id = c.Faculty_Id
ORDER BY c.Faculty_Id

Once you establish a table alias, do not intermix the table name and its alias in a WHERE clause.
The following does not work:

SELECT DISTINCT c.Name, p.First_Name, c.Faculty_Id
FROM Person p, class c
WHERE Person.Id = c.Faculty_Id
ORDER BY c.Faculty_Id

SQL Grammar in Zen

40 SQL Syntax Reference

See Also

SELECT

SQL Grammar in Zen

SQL Syntax Reference 41

BEGIN [ATOMIC]

Remarks

The BEGIN and END keywords are used to define the body of a stored procedure, a user-defined
function, or a trigger declaration. The keywords create a compound statement within that
procedure, function, or trigger.

You can add the ATOMIC keyword to control transactional behavior of the block of statements as
if they were a single transaction. ATOMIC specifies that all statements within the block must
either succeed or be rolled back.

Example

In this example, a BEGIN and END block is set as ATOMIC. The records will be inserted only if
both inserts execute without error. If either statement returns an error (status code 5 for the second
insert in this case), then neither record is inserted.

CREATE PROCEDURE Add_Tuition();
BEGIN ATOMIC

INSERT INTO Tuition(ID, Degree, Residency, Cost_Per_Credit, Comments) VALUES (9, 'Test', 0,
100.0, 'Training');
INSERT INTO Tuition(ID, Degree, Residency, Cost_Per_Credit, Comments) VALUES (8, 'Test', 0,
100.0, 'Training');

END

See Also

END

CREATE PROCEDURE

CREATE TRIGGER

SQL Grammar in Zen

42 SQL Syntax Reference

CALL

Remarks

Use the CALL statement to invoke a stored procedure. The stored procedure may be a user-
defined one or a system stored procedure.

Examples

The following example calls a user-defined procedure without parameters:

CALL NoParms() or CALL NoParms

The following examples call a user-defined procedure with parameters:

CALL Parms(vParm1, vParm2)
CALL CheckMax(N.Class_ID)

============

The following statement lists the column information for all columns in the Dept table by calling
a system stored procedure.

CALL psp_columns('Demodata','Dept')

See Also

CREATE PROCEDURE

CREATE TRIGGER

EXECUTE

System Stored Procedures

SQL Grammar in Zen

SQL Syntax Reference 43

CASCADE

Remarks

If you specify CASCADE when creating a foreign key, Zen uses the DELETE CASCADE rule.
When a user deletes a row in the parent table, Zen deletes the corresponding rows in the
dependent table.

Use caution with delete cascade. Zen allows a circular delete cascade on a table that references
itself. See examples in Delete Cascade in Advanced Operations Guide.

See Also

ALTER TABLE

CREATE TABLE

SQL Grammar in Zen

44 SQL Syntax Reference

CASE (expression)
A CASE expression returns a value. CASE expression has two formats:

• Simple When/Then. This format compares a value expression to a set of value expressions to
determine a result. The value expressions are evaluated in their order listed. If a value
expression evaluates to TRUE, CASE returns the value expression for the THEN clause.

• Searched When/Then. This format evaluates a set of Boolean expressions to determine a
result. The Boolean expressions are evaluated in their order listed. If a Boolean expression
evaluates to TRUE, CASE returns the expression for the THEN clause.

Both formats support an optional ELSE argument. If no ELSE clause is used, then ELSE NULL is
implied.

Syntax

Simple When/Then

CASE case_value_expression
WHEN when_expression THEN then_expression [...]
[ELSE else_expression]

END

Searched When/Then

CASE
WHEN search_expression THEN then_expression [...]
[ELSE else_expression]

END

Arguments
case_value_expression ::= the expression evaluated by the simple When/Then CASE format.

when_expression ::= The expression to which case_value_expression is compared. The data types of
case_value_expression and each when_expression must be the same or must be an implicit conversion.

then_expression ::= the expression returned when case_value_expression equals when_expression
evaluates to TRUE.

else_expression ::= the expression returned if no comparison operation evaluates to TRUE. If this
argument is omitted and no comparison operation evaluates to TRUE, CASE returns NULL.

search_expression ::= the Boolean expression evaluated by the searched CASE format. Search_expression
may be any valid Boolean expression.

SQL Grammar in Zen

SQL Syntax Reference 45

Remarks

A CASE expression must be used within a SELECT statement. The SELECT statement may be
within a stored procedure or within a view.

Examples

The following statement uses the simple When/Then format to report the prerequisites for the art
courses listed in the Course table.

SELECT name 'Course ID', description 'Course Title',
CASE name
WHEN 'Art 101' THEN 'None'
WHEN 'Art 102' THEN 'Art 101 or instructor approval'
WHEN 'Art 203' THEN 'Art 102'
WHEN 'Art 204' THEN 'Art 203'
WHEN 'Art 305' THEN 'Art 101'
WHEN 'Art 406' THEN 'None'
WHEN 'Art 407' THEN 'Art 305'
END
AS 'Prerequisites' FROM Course WHERE Dept_Name = 'Art' ORDER BY name

The query returns the following:

============

The previous statement can be changed to include an ELSE clause:

SELECT name 'Course ID', description 'Course Title',
CASE name
WHEN 'Art 101' THEN 'None'
WHEN 'Art 102' THEN 'Art 101 or instructor approval'
WHEN 'Art 203' THEN 'Art 102'
WHEN 'Art 204' THEN 'Art 203'
WHEN 'Art 305' THEN 'Art 101'
ELSE 'Curriculum plan for Art History majors'
END
AS 'Prerequisites' FROM Course WHERE Dept_Name = 'Art' ORDER BY name

Course ID Course Title Prerequisites

Art 101 Drawing I None

Art 102 Drawing II Art 101 or instructor approval

Art 203 Drawing III Art 102

Art 204 Drawing IV Art 203

Art 305 Sculpture Art 101

Art 406 Modern Art None

Art 407 Baroque Art Art 305

SQL Grammar in Zen

46 SQL Syntax Reference

The query now returns the following:

============

The following statement uses the searched When/Then format to report the funding program for
which a person may be eligible.

SELECT last_name, first_name,
CASE
WHEN scholarship = 1 THEN 'Scholastic'
WHEN citizenship <> 'United States' THEN 'Foreign Study'
WHEN (date_of_birth >= '1960-01-01' AND date_of_birth <= '1970-01-01') THEN 'AJ-44 Funds'
ELSE 'NONE'
END
AS 'Funding Program' FROM Person ORDER BY last_name

Here is a partial listing of what the query returns:

============

The following example shows how a CASE expression may be used within a stored procedure.

CREATE PROCEDURE pcasetest() RETURNS (d1 CHAR(10), d2 CHAR(10));
BEGIN
SELECT c1, CASE WHEN c1 = 1 THEN c4

Course ID Course Title Prerequisites

Art 101 Drawing I None

Art 102 Drawing II Art 101 or instructor approval

Art 203 Drawing III Art 102

Art 204 Drawing IV Art 203

Art 305 Sculpture Art 101

Art 406 Modern Art Curriculum plan for Art History majors

Art 407 Baroque Art Curriculum plan for Art History majors

Last_Name First_Name Funding Program

Abad Alicia NONE

Abaecherli David Foreign Study

Abebe Marta Foreign Study

Abel James AJ-44 Funds

Abgoon Bahram Foreign Study

Abken Richard NONE

Abu Austin Foreign Study

Abuali Ibrahim AJ-44 Funds

Acabbo Joseph NONE

Acar Dennis Foreign Study

SQL Grammar in Zen

SQL Syntax Reference 47

WHEN c1 = 2 THEN c5
ELSE
CASE WHEN c2 = 100.22 THEN c4
WHEN c2 = 101.22 THEN c5 END END
FROM tcasetest;
END

CALL pcasetest

============

The following example shows how a CASE expression may be used within a view.

CREATE VIEW vcasetest (vc1, vc2) AS
SELECT c1, CASE WHEN c1 = 1 THEN c4
WHEN c1 = 2 THEN c5
ELSE
CASE WHEN c2 = 100.22 THEN c4
WHEN c2 = 101.22 THEN c5 END END
FROM TCASEWHEN

SELECT * FROM vcasetest

See Also

COALESCE, SELECT

SQL Grammar in Zen

48 SQL Syntax Reference

CASE (string)

Remarks

The CASE keyword causes Zen to ignore case when evaluating restriction clauses involving a
string column. CASE can be specified as a column attribute in a CREATE TABLE or ALTER
TABLE statement, or in an ORDER BY clause of a SELECT statement.

For example, suppose you have a column called Name that is defined with the CASE attribute. If
you insert two rows with Name = 'Smith' and Name = 'SMITH', then a query with a restriction
specifying Name = 'smith' correctly returns both rows.

Note: CASE (string) does not support multiple-byte character strings and NCHAR strings. The
keyword assumes that the string data is single-byte ASCII. This means that the CASE attribute is
not supported for NVARCHAR and NCHAR data type columns. The string functions do support
multiple-byte character strings and NCHAR strings. See String Functions.

Examples

The following example shows how you add a column to the Student table with the CASE
keyword.

ALTER TABLE Student ADD Name char(64) CASE

The following example shows how to use CASE in an ORDER BY clause of a SELECT
statement.

SELECT Id, Last_Name+', '+First_Name AS Whole_Name, Phone FROM Person ORDER BY Whole_Name CASE

See Also

ALTER TABLE

CREATE TABLE

SELECT

SQL Grammar in Zen

SQL Syntax Reference 49

CLOSE

Syntax
CLOSE cursor-name

cursor-name ::= user-defined-name

Remarks

The CLOSE statement closes an open SQL cursor.

The cursor that the cursor name specifies must be open.

This statement is allowed only inside of a stored procedure, user-defined functions, or a trigger.
Cursors and variables are only allowed inside of stored procedures, user-defined functions, and
triggers.

Examples

The following example closes the cursor BTUCursor.

CLOSE BTUCursor;

============

CREATE PROCEDURE MyProc(OUT :CourseName CHAR(7)) AS
BEGIN
DECLARE cursor1 CURSOR
FOR SELECT Degree, Residency, Cost_Per_Credit
FROM Tuition ORDER BY ID;
OPEN cursor1;
FETCH NEXT FROM cursor1 INTO :CourseName;
CLOSE cursor1;
END

See Also

OPEN

CREATE PROCEDURE

CREATE TRIGGER

SQL Grammar in Zen

50 SQL Syntax Reference

COALESCE
The COALESCE scalar function takes two or more arguments and returns the first nonnull
argument, starting from the left in the expression list.

Syntax
COALESCE (expression, expression[,...])

expression ::= any valid expression

Returned Value Types

The COALESCE function returns the value of one of the expressions in the list. For a detailed list
of returned data types, see COALESCE Supported Combination Types and Result Data Types.

Restrictions

The function takes a minimum of two arguments.

COALESCE(10, 20)

Invalid:

COALESCE()

Note: An invalid instance results in a parse-time error:
"COALESCE must have at least 2 arguments."

The expression list must contain at least one nonnull argument.

COALESCE (NULL, NULL, 20)

Invalid:

COALESCE (NULL, NULL, NULL)

Note: An invalid instance results in a parse-time error:
"All arguments of COALESCE cannot be the NULL function."

The function does not support some data type combinations in the expression list. For example,
COALESCE cannot have arguments that cannot be implicitly converted to each other, such as
BINARY and VARCHAR.

SQL Grammar in Zen

SQL Syntax Reference 51

COALESCE Supported Combination Types and Result Data Types

The following figure details the various supported combination types and also helps you identify
the resultant data type for various combinations in a COALESCE function.

Chart Element Description

Types can be used directly in COALESCE function. The result type is that of
operand 2.

Types can be used directly in COALESCE function. The result type is that of
operand 1.

SQL Grammar in Zen

52 SQL Syntax Reference

Using any of the unsupported type combinations (those left blank in the chart) in COALESCE
function results in a parse-time error:

Error in row
Error in assignment
Expression evaluation error

Examples

In the following example, 10+2 is treated as a SMALLINT and ResultType (SMALLINT,
SMALLINT) is SMALLINT. Hence, the result type is SMALLINT.

SELECT COALESCE(NULL,10 + 2,15,NULL)

The first parameter is NULL. The second expression evaluates to 12, which is not NULL and can
be converted to result type SMALLINT. Therefore, the return value of this example is 12.

============

In the following example, ten is treated as a SMALLINT and ResultType (SMALLINT,
VARCHAR) is SMALLINT. Hence, the result type is SMALLINT.

SELECT COALESCE(10, 'abc' + 'def')

The first parameter is 10, which can be converted to result type SMALLINT. Therefore, the return
value of this example is 10.

blank cell Types are not compatible. The operands cannot be used directly in COALESCE.
An explicit CONVERT is required.

D Result type is SQL_DOUBLE

B Result type is SIM_BCD

I Result type is SQL_INTEGER

S Result type is SQL_SMALLINT

Chart Element Description

SQL Grammar in Zen

SQL Syntax Reference 53

COMMIT
The COMMIT statement signals the end of a logical transaction and converts temporary data into
permanent data.

Syntax
COMMIT []

Examples

The following example, within a stored procedure, begins a transaction which updates the
Amount_Owed column in the Billing table. This work is committed. Another transaction updates
the Amount_Paid column and sets it to zero. The final COMMIT WORK statement ends the
second transaction.

START TRANSACTION;
UPDATE Billing B
SET Amount_Owed = Amount_Owed - Amount_Paid
WHERE Student_ID IN
(SELECT DISTINCT E.Student_ID
FROM Enrolls E, Billing B
WHERE E.Student_ID = B.Student_ID);
COMMIT WORK;
START TRANSACTION;
UPDATE Billing B
SET Amount_Paid = 0
WHERE Student_ID IN
(SELECT DISTINCT E.Student_ID
FROM Enrolls E, Billing B
WHERE E.Student_ID = B.Student_ID);
COMMIT WORK;

============

CREATE PROCEDURE UpdateBilling() AS
BEGIN
START TRANSACTION;
UPDATE Billing SET Amount_Owed = Amount_Owed + Amount_Owed;
UPDATE Billing set Amount_Owed = Amount_Owed + 100 WHERE Student_ID = 10;
COMMIT;
END;

See Also

CREATE PROCEDURE

ROLLBACK

START TRANSACTION

SQL Grammar in Zen

54 SQL Syntax Reference

CREATE DATABASE
The CREATE DATABASE statement creates a new database. Any user logged in to a database
can issue the statement. The user must also have permission from the operating system to create
files in the specified location.

Syntax
CREATE DATABASE [IF NOT EXISTS] database-name DICTIONARY_PATH 'dict-path-name' [DATA_PATH 'data-
path-name'] [; 'data-path-name']...] [NO_REFERENTIAL_INTEGRITY] [BOUND] [REUSE_DDF] [
DBSEC_AUTHENTICATION] [DBSEC_AUTHORIZATION] [V1_METADATA | V2_METADATA] [ENCODING < 'codepage-
name' | 'CPcodepage-number' | DEFAULT >]

database-name ::= a user-defined name for the database

dict-path-name ::= a user-defined name for the location of the data dictionary files (DDFs)

data-path-name ::= a user-defined name for the location of the data files

codepage-name ::= the name of a valid code page

CPcodepage-number ::= a number of a valid code page preceded by "CP"

Remarks

If you are using ODBC, keep in mind that CREATE DATABASE creates only a database, not an
associated data source name (DSN). You will need to create a DSN separately if you want one.
See Setting Up ODBC Database Access in Zen User’s Guide.

The CREATE DATABASE statement cannot be used to create the first database on a server. The
reason is that a user must log on to a database before issuing the CREATE DATABASE statement.
Therefore, at least one database must already exist.

The CREATE DATABASE statement cannot be used in a stored procedure or in a user-defined
function.

Database Name and IF NOT EXISTS Clause

Database-name specifies a name for the new database. The database names must be unique
within a server and conform to the rules for identifiers. See Identifier Restrictions in Advanced
Operations Guide.

An error occurs if the database exists and you omit the IF NOT EXISTS clause (status code
2303). No error returns if you include the IF NOT EXISTS clause.

SQL Grammar in Zen

SQL Syntax Reference 55

Dictionary Path

Dict-path-name specifies where the dictionary files (DDFs) reside on physical storage. The data
files are also placed in this same location when you use the CREATE TABLE statement or create
tables using Zen Control Center (ZenCC). See Dictionary Location in Zen User’s Guide.

Data Path

Data-path-name specifies a possible location of the data files for the database (see note below).
You can specify multiple path names by delimiting them with a semicolon.

Data-path-name can be any path that is valid from the database engine point of view, but not from
the calling application perspective. The location specified must already exist. The CREATE
DATABASE statement does not create directories.

Omit data-path-name if you want to use the same location for the data files as for the dictionary
files. You may also specify the same location by passing an empty string for data-path-name. For
example, specifying DATA_PATH '' indicates an empty string for the data path.

Note: If you create tables using the CREATE TABLE statement or with ZenCC, the data files
are placed in the first dict-path-name specified. If no dict-path-names are specified, data files are
created in the dict-path-name location.

Data-path-name is useful if you are creating tables through the Distributed Tuning Interface
(DTI). The DTI function PvAddTable allows you to specify where you want the data files located.
See PvAddTable() in Distributed Tuning Interface Guide.

Referential Integrity

By default, the database engine enforces referential integrity. If you specify the
NO_REFERENTIAL_INTEGRITY clause, then any triggers and referential integrity defined in
the database are not enforced.

See Setting Up Referential Integrity and Interactions Between Btrieve and Relational Constraints.

BOUND

If BOUND is specified, the DDFs are bound to the database. A bound database associates a
database name with a single set of DDFs, which refer to only one set of data files. The DDFs are
bound whether they already existed or are created through the execution of the CREATE
DATABASE statement.

SQL Grammar in Zen

56 SQL Syntax Reference

If DDFs are bound, you cannot use those DDFs for more than one database, nor can you refer to
the data files by more than one set of DDFs.

If BOUND is not specified then the DDFs are not bound to a database.

See Bound Database versus Integrity Enforced in Advanced Operations Guide.

Dictionary Files

The REUSE_DDF keyword associates any existing DDFs with the database. The existing DDFs
must in the dict-path-name location.

If REUSE_DDF is omitted, new DDFs are created unless DDFs already exists in the dict-path-
name location. If DDFs exists in the dict-path-name location, they are associated with the
database instead of new DDFs being created.

Security

The database engine supports three security models for the MicroKernel Engine:

• Classic. A user who successfully logs into the computer has access to the database contents at
whatever level of file system rights the user has been assigned to the data file. File system
rights are assigned through the operating system.

• Database. Database user accounts are unrelated to operating system user accounts. User
access rights to the data are governed by user permissions set up in the database.

• Mixed. This policy has aspects of both of the other policies. Users log in using their operating
system user names and passwords, but user access rights to the data are governed by user
permissions set up in the database.

See Zen Security in Advanced Operations Guide for a complete discussion of security.

The DBSEC_AUTHENTICATION and DBSEC_AUTHORIZATION keywords set the security
policy for the database:

Keyword Included or Omitted in Statement Security Model

DBSEC_AUTHENTICATION DBSEC_AUTHORIZATION Classic Database Mixed

omitted omitted X

included included X

omitted included X

SQL Grammar in Zen

SQL Syntax Reference 57

Metadata Version

The Relational Engine supports two versions of metadata, referred to as version 1 (V1) and
version 2 (V2). Metadata version applies to all data dictionary files (DDFs) within that database.
V1 metadata is the default.

Among other features, V2 metadata allows for many identifier names to be up to 128 bytes long
and for permissions on views and stored procedures. See Zen Metadata for a complete discussion.

You may include or omit the V1_METADATA keyword to specify V1 metadata. You must
include the V2_METADATA keyword to specify V2 metadata.

Encoding

An encoding is a standard for representing character sets. Character data must be put in a standard
format, that is, encoded, so that a computer can process it digitally. An encoding must be
established between the Zen server engine and a Zen client application. A compatible encoding
allows the server and client to interpret data correctly.

Encoding support is divided into database code page and client encoding. The two types of
encoding are separate but interrelated. For more information, see Database Code Page and Client
Encoding in Advanced Operations Guide.

Database code page and client encoding apply only to the Relational Engine. The MicroKernel
Engine is not affected.

You specify a code page by using a name or by using the letters CP followed by a code page
number. Both must be quoted with single quotation marks. For example, a valid name is UTF-8
and a valid number is CP1251.

Windows and Linux operating systems have a default encoding referred to as the OS encoding.
The default OS encoding differs among the operating systems. The keyword DEFAULT allows
you to specify the OS encoding on the server.

If the ENCODING keyword is omitted, the database defaults to the server OS encoding.

An invalid code page number or name returns the error "Invalid code page."

Note that, for SQL statement that involve the use of more than one database, you need to ensure
that the database code page is the same for all of the databases. Otherwise, string data can be
returned incorrectly.

Note: The database engine does not validate the encoding of the data and metadata that an
application inserts into a database. The engine assumes that all data was entered using the

SQL Grammar in Zen

58 SQL Syntax Reference

encoding of the server or the client, as explained in Database Code Page and Client Encoding in
Advanced Operations Guide.

For SQL statements that involve the use of more than one database (such as a multidatabase join),
ensure that the database code page is the same for all of the databases. Otherwise, string data can
be returned incorrectly.

Valid Code Page Names and Numbers

You can view the list of supported code page names and numbers with ZenCC. Start ZenCC and
access the New Database dialog (see To create a new database in Zen User’s Guide). For the
Database Code Page option, click Change code page. In the dialog that opens, click Database
code page to see a list of available code pages.

On Linux, see the dbmaint utility man page to display a list of supported code page names and
numbers. See the Examples topic for dbmaint in Zen User’s Guide.

Examples

This section provides examples of CREATE DATABASE.

The following example creates a database named inventorydb and specifies its location for DDFs
on drive D: in the folder mydbfiles\ddf_location. New DDFs are created because none exist in
D:\mydbfiles\ddf_location. The data files are placed in the same location as the DDFs. The
database uses V1 metadata.

CREATE DATABASE inventorydb DICTIONARY_PATH 'D:\mydbfiles\ddf_location'

============

The following example creates a database named HRUSBenefits if it does not already exist, and
specifies its location for DDFs on drive C: in the folder HRDatabases\US. Possible locations for
the data files include the C: drive in a directory called HRDatabases\US\DataFiles and the E:
drive in a directory called Backups\HRUSData (see note under Data Path). Existing DDFs are
used if they exist in the DICTIONARY_PATH. The database uses V1 metadata.

CREATE DATABASE IF NOT EXISTS HRUSBenefits DICTIONARY_PATH 'C:\HRDatabases\US' DATA_PATH
'C:\HRDatabases\US\DataFiles ; E:\Backups\HRUSData' REUSE_DDF

============

The following example creates a database named EastEurope, specifies its location for DDFs on
drive C: in the folder Europe\DbaseFiles, creates new DDFs and binds them to the database, sets
the security policy to mixed, and uses V2 metadata.

SQL Grammar in Zen

SQL Syntax Reference 59

CREATE DATABASE EastEurope DICTIONARY_PATH 'C:\Europe\DbaseFiles' BOUND DBSEC_AUTHORIZATION
V2_METADATA

============

The following example creates a database named Region5Acct, specifies its location for DDFs on
drive D: in the folder Canada\Region5\Accounting, and sets the database code page to the default
code page used on the server.

CREATE DATABASE Region5Acct DICTIONARY_PATH 'D:\Canada\Region5\Accounting' ENCODING DEFAULT

============

The following example creates a database named Region2Inventory, specifies its location for
DDFs on drive G: in the folder Japan\Region2, and sets the database code page to 932.

CREATE DATABASE Region2Inventory DICTIONARY_PATH 'G:\Japan\Region2' ENCODING 'CP932'

============

The following example creates a database named VendorCodes, specifies its location for DDFs on
drive C: in the folder Capitol_Equipment\Milling, creates new DDFs and binds them to the
database, sets the security policy to mixed, uses V2 metadata, and sets the database code page to
1252.

CREATE DATABASE VendorCodes DICTIONARY_PATH 'C:\Capitol_Equipment\Milling' BOUND DBSEC_AUTHORIZATION
V2_METADATA ENCODING 'CP1252'

See Also

DROP DATABASE

SQL Grammar in Zen

60 SQL Syntax Reference

CREATE FUNCTION
The CREATE FUNCTION statement creates a scalar user-defined function (UDF) in the
database. You can then invoke the user-defined function from a query.

Syntax
CREATE FUNCTION function-name ([[IN]
{ :parameter_name scalar_parameter_data_type [DEFAULT value | = value] } [...]])
RETURNS scalar_return_data_type
[AS]
BEGIN

body_of_function
RETURN scalar_expression

END;

function_name ::= name of the scalar UDF. UDF names must conform to the rules for identifiers and
must be unique within the database.

parameter_name ::= parameter in the scalar UDF. A maximum of 300 parameters are allowed. If no
default is specified, then a value must be supplied when the function is invoked.

scalar_parameter_data_type ::= data type for the specified parameter.

scalar_return_data_type ::= data type of the scalar return value of the UDF. Only scalar types are
supported.

value ::= default value to assign to parameter_name, using either the DEFAULT keyword or an equal
sign

body_of_function ::= statements that compose the scalar function.

scalar_expression ::= scalar return value of the UDF.

Remarks

Each UDF name (database-name.function-name) must be unique within a database. The UDF
name cannot be the same as any of the following in the same database:

• Built-in function names

• Other UDF names

• Stored procedure names

Restrictions

You cannot use the CREATE DATABASE or the DROP DATABASE statement in a user-defined
function. The table actions CREATE, ALTER, UPDATE, DELETE, and INSERT are not
permitted within a user-defined function.

SQL Grammar in Zen

SQL Syntax Reference 61

Only scalar input parameters are supported. No OUTPUT and INOUT parameters are allowed.
By default, all parameters are input. You need not specify the IN keyword.

Limits

Observe the following limitations when you create user-defined functions.

Supported Scalar Input Parameters and Returned Data Types

Zen supports the data types shown in the following table for input scalar parameters and returned
values. You can specify any data type except TEXT, NTEXT, IMAGE, or CURSOR.

Attribute Limit

Number of parameters 300

Size of the UDF body 64 KB

Maximum length of UDF name See Identifier Restrictions, in Advanced Operations Guide

Maximum length of UDF variable name 128 characters

AUTOTIMESTAMP BIGDENTITY BIGINT

BINARY BIT BLOB

CHAR CHARACTER CLOB

CURRENCY DATE DATETIME

DEC DECIMAL DOUBLE

FLOAT IDENTITY INT

INTEGER LONG LONGVARBINARY

LONGVARCHAR NCHAR NLONGVARCHAR

NUMERIC NVARCHAR REAL

SMALLIDENTITY SMALLINT TIME

TIMESTAMP TIMESTAMP2 TINYINT

UBIGINT UINT UINTEGER

UNIQUEIDENTIFIER USMALLINT UTINYINT

VARBINARY VARCHAR

SQL Grammar in Zen

62 SQL Syntax Reference

Examples

This topic provides a number of examples of CREATE FUNCTION.

The following example creates a function that calculates the area of a rectangular box whose details
are stored in the Box table:

CREATE FUNCTION CalculateBoxArea(:boxName CHAR(20))
RETURNS REAL
AS
BEGIN

DECLARE :len REAL;
DECLARE :breadth REAL;
SELECT len, breadth INTO :len, :breadth FROM box
WHERE name = :boxName;
RETURN(:len * :breadth);

END;

============

The following example creates a function that compares two integers and returns the smaller of
the two:

CREATE FUNCTION GetSmallest(:A INTEGER, :B INTEGER)
RETURNS INTEGER
AS
BEGIN

DECLARE :smallest INTEGER
IF (:A < :B) THEN

SET :smallest = :A;
ELSE

SET :smallest = :B;
END IF;
RETURN :smallest;

END;

============

The following example creates a function that calculates simple interest using the formula SI =
PTR/100, where P is the Principle, T is the period, and R is the rate of interest.

CREATE FUNCTION CalculateInterest(IN :principle FLOAT, IN :period REAL, IN :rate DOUBLE)
RETURNS DOUBLE
AS
BEGIN

DECLARE :interest DOUBLE;
SET :interest = ((:principle * :period * :rate) / 100);
RETURN (:interest);

END;

Invoking a Scalar User-Defined Function

You can invoke a user-defined function wherever scalar expressions are supported by specifying
the function name followed by a comma-separated list of arguments. The list of arguments is
enclosed in parentheses.

SQL Grammar in Zen

SQL Syntax Reference 63

A UDF can be invoked with or without a database qualifier prefix. When a database qualifier is
not prefixed, the UDF is executed from the current database context. If a database qualifier is
prefixed, the UDF is executed in the context of the specified database. In the examples below,
some use a database qualifier prefix and some do not.

Limits

Parameter names cannot be specified in the arguments when invoking a function.

When you invoke a function, the argument values for all parameters must be in the same sequence
in which they are defined in the CREATE FUNCTION statement.

Examples of User-Defined Functions

UDF in procedure

CREATE PROCEDURE procTestUdfInvoke() AS
BEGIN

DECLARE :a INTEGER;
SET :a = 99 + (222 + Demodata.GetSmallest(10, 9)) + 10;
PRINT :a;

END;
CALL procTestUdfInvoke()

============

The following example is similar to the previous one, except that the database qualifier is omitted.

CREATE PROCEDURE procTestUdfInvoke2() AS
BEGIN

DECLARE :a INTEGER;
SET :a = 99 + (222 + GetSmallest(10, 9)) +10;
PRINT :a;

END;
CALL procTestUdfInvoke2

============

UDF in SELECT list

SELECT GetSmallest(100,99)

============

UDF in WHERE clause

SELECT name FROM class WHERE id <= GetSmallest(10,20)

============

UDF within UDF

CREATE FUNCTION funcTestUdfInvoke() RETURNS INTEGER AS

SQL Grammar in Zen

64 SQL Syntax Reference

BEGIN
DECLARE :a INTEGER;
SET :a = 99 + (222 - Demodata.GetSmallest(10, 9));
RETURN :a;

END;

============

UDF in INSERT statement

CREATE TABLE t1(col1 INTEGER, col2 INTEGER, col3 FLOAT)
INSERT INTO t1 VALUES (GetSmallest(10,20), 20 , 2.0)
INSERT INTO t1 (SELECT * FROM t1 WHERE col1 = getSmallest(10,20))

============

UDF in UPDATE statement

UPDATE t1 SET col2 = Demodata.GetSmallest(2,10) WHERE col1 = 2
UPDATE t1 SET col1 = 3 WHERE col2 = Demodata.GetSmallest(10, 5)

============

UDF in GROUP BY statement

SELECT col2 FROM t1 GROUP BY getSmallest(10,2), col2

============

UDF in ORDER BY statement

SELECT col2 FROM t1 ORDER BY Demodata.getSmallest(10,2), col2

============

Recursive UDF

CREATE FUNCTION factorial(IN :n INTEGER) RETURNS double AS BEGIN
DECLARE :fact DOUBLE;
IF (:n <= 0) THEN

SET :fact = 1;
ELSE

SET :fact = (:n * Demodata.factorial(:n - 1));
END IF;
RETURN :fact;

END;

SELECT Demodata.factorial(20) can be used to get the factorial value of 20.

============

UDF with default value

CREATE FUNCTION testUdfDefault1(:z INTEGER DEFAULT 10) RETURNS INTEGER AS
BEGIN

RETURN :z-1;
END;

SELECT Demodata.testUdfDefault1(). This function uses the default value specified (10) if a
parameter is not provided.

SQL Grammar in Zen

SQL Syntax Reference 65

CREATE FUNCTION testUdfDefault2(:a VARCHAR(20) = 'Accounting Report') RETURNS VARCHAR(20) as
BEGIN

RETURN :a;
END;

SELECT Demodata.testUdfDefault2(). This function takes the default value specified
(Accounting Report) if a parameter is not provided

============

UDF with dynamic parameters

SELECT name FROM class WHERE id <= GetSmallest(?,?)

============

UDF as an expression

SELECT 10 + Demodata.Getsmallest(10,20) + 15

============

UDF used as parameters

SELECT demodata.calculateinterest (10+demodata.getsmallest(3000, 2000), demodata.factorial(2),
demodata.testUdfDefault(3))

See Also

DECLARE

DROP FUNCTION

SQL Grammar in Zen

66 SQL Syntax Reference

CREATE GROUP
The CREATE GROUP statement creates one or more security groups.

Syntax
CREATE GROUP group-name [, group-name]...

group-name ::= user-defined-name

Remarks

Only the Master user can perform this statement.

Security must be turned on to perform this statement.

Examples

The following example creates a group named zengroup.

CREATE GROUP zengroup

The next example uses a list to create several groups at once.

CREATE GROUP zen_dev, zen_marketing

See Also

ALTER USER

CREATE USER

DROP GROUP

GRANT

SET SECURITY

REVOKE

SQL Grammar in Zen

SQL Syntax Reference 67

CREATE INDEX
Use the CREATE INDEX statement to create a named index for a specified table.

Syntax
CREATE [UNIQUE | PARTIAL] [NOT MODIFIABLE] INDEX index-name [USING index-number][IN DICTIONARY
] ON table-name [index-definition]
index-name ::= user-defined-name
index-number ::= user-defined-value (an integer between 0 and 118)
table-name ::= user-defined-name
index-definition ::= (index-segment-definition [, index-segment-definition]...)
index-segment-definition ::= column-name [ASC | DESC]

Remarks

VARCHAR columns differ from CHAR columns in that either the length byte (Btrieve lstring) or
a zero terminating byte (Btrieve zstring) are reserved, increasing the effective storage by 1 byte.
In other words, if you create a column that is CHAR (100), it occupies 100 bytes in the records. A
VARCHAR (100) occupies 101 bytes. NVARCHAR columns differ from NCHAR columns in
that a zero terminating character is reserved, increasing the effective storage by 2 bytes. In other
words, if you create a column that is NCHAR(50), it occupies 100 bytes in the records. A
NVARCHAR(50) column occupies 102 bytes.

When Zen creates an index, its process varies depending on whether the statement includes IN
DICTIONARY, USING, or both. The following table summarizes the results.

Operation Process and Results Additional
Information

CREATE INDEX When successful, an index is added to both the data file and
X$Index.

• If the data file has no defined indexes, the index created is
index 0.

• If the data file has one or more defined indexes, the index
created is the smallest unused index number.

In both cases, a new index with the same number is inserted
into X$Index also.

See X$Index
for V1
metadata or
X$Index for V2
metadata.

SQL Grammar in Zen

68 SQL Syntax Reference

Index Segments

An index segment corresponds to a column specified in the index definition. A multiple
segmented index is one that was created as a combination of multiple columns.

CREATE INDEX
IN DICTIONARY

When successful, an index is added to X$Index only. Nothing
is inserted into the data file.

The data file is examined to determine what index numbers are
available.

• If the data file has no defined indexes, the index inserted
into X$Index is numbered 0.

• If the data file has one or more defined indexes, the
database engine checks to see if there is one that is not
already defined in X$Index with column and index
attributes that match the index to be added.

If a match is found, this index number is used when the index
is added to X$Index.

If no match is found, the index number used is <the largest
data file index-number> + 1.

An index in X$Index without a matching key in the data file is
referred to as a phantom index and is not used by the database
engine.

See IN
DICTIONARY

CREATE INDEX
USING
index-number

When successful, an index with the specified index-number is
added to both the data file and X$Index.

If the index-number is already in use in either the data file or
X$Index, an error is returned.

See USING

CREATE INDEX
USING
index-number
IN DICTIONARY

When successful, an index with the specified index-number is
added to X$Index only. Nothing is inserted into the data file.

If the specified index-number exists in the data file and not in
X$Index, and the column and index attributes match the index
to be added, the index with the specified index-number is
added to X$Index. Otherwise, an error is returned.

See IN
DICTIONARY

Operation Process and Results Additional
Information

SQL Grammar in Zen

SQL Syntax Reference 69

As shown in the following table, the total number of segments that you may use in all indexes
defined on a given file depends on the file page size.

Note that nullable columns must also be considered. For example, a data file with 4096-byte
page size is limited to 119 index segments per file. Because each indexed nullable column with
true null support requires an index consisting of 2 segments, you cannot have more than 59
indexed nullable columns in a table (or indexed nullable true null fields in a Btrieve file). This
limit is smaller for smaller page sizes.

Files version 7.x or higher support true nulls if they have TRUENULLCREATE set to on. Files
using an earlier file format version or with TRUENULLCREATE set to off do not have true null
support and do not have this limitation.

Page Size (bytes) Maximum Key Segments by File Version

8.x and earlier 9.0 9.5 13.0, 16.0

512 8 8 Rounded up2 Rounded up2

1,024 23 23 97 Rounded up2

1,536 24 24 Rounded up2 Rounded up2

2,048 54 54 97 Rounded up2

2,560 54 54 Rounded up2 Rounded up2

3,072 54 54 Rounded up2 Rounded up2

3,584 54 54 Rounded up2 Rounded up2

4,096 119 119 2043 1833

8,192 N/A1 119 4203 3783

16,384 N/A1 N/A1 4203 3783

1"N/A" stands for "not applicable"
2"Rounded up" means that the page size is rounded up to the next size supported by the file version. For
example, 512 is rounded up to 1024, 2560 is rounded up to 4096, and so forth.
3A 9.5 format or later file can have more than 119 segments, but the number of indexes is limited to 119.

SQL Grammar in Zen

70 SQL Syntax Reference

UNIQUE

A UNIQUE index key guarantees that the combination of the columns defined in the index for a
particular row are unique in the file. It does not guarantee or require that each individual column
be unique, in the case of a multisegmented index.

Note: All data types can be indexed except for the following:
BIT
BLOB
CLOB
LONGVARBINARY
LONGVARCHAR
NLONGVARCHAR

See also status code 6008: Too Many Segments in Status Codes and Messages.

PARTIAL

Use the PARTIAL keyword with a CREATE INDEX statement to create an index on a column, or
group of columns, totaling more than the maximum index width for the file format version.

Partial indexes are created using a prefix of a wide column, or by combining multiple small
columns, so that searches using a prefix of the wide column will execute faster. Therefore, queries
using WHERE clause restrictions, for example 'WHERE column_name LIKE 'prefix%' would
execute faster using the partial index as opposed to not using any index.

If you include the PARTIAL keyword with a CREATE INDEX statement, and the index column
width and overhead do not equal or exceed the maximum index width, then the PARTIAL
keyword is ignored and a normal index is created instead.

The maximum index width for 13.0 files and earlier is 255 bytes. For 16.0 files, it is 1024 bytes.

Note: Width refers to the actual size of the column, and overhead refers to NULL indicators,
string lengths, and the like.

Limitations of PARTIAL

The following limitations apply when using PARTIAL:

• Partial indexes may only be added to columns with the data type of CHAR or VARCHAR.

• Partial index columns should always be the last segment in the index definition, or should be
the only segment in the index definition.

SQL Grammar in Zen

SQL Syntax Reference 71

When the partial index column is the only segment in the index, the column size can be up to
8,000 bytes, but the user-data index segment will be equal to the maximum index width for
the file format you are using.

• Partial indexes are not used by the engine while executing queries with strict equality or
collation operations, such as ORDER BY, GROUP BY or JOINs involving the partial column.

• Partial indexes are used only while matching WHERE clause restrictions of the following
form:
WHERE col = 'literal'
WHERE col LIKE 'literal%'
WHERE col = ?
WHERE col LIKE ?

where the literal or actual parameter value can be of any length. It could be shorter or wider
than the number of bytes indexed in the partial index column. Partial indexes won't be used if
a LIKE clause is not of the form 'prefix%'.

If the WHERE clauses match the constraints listed previously, partial indexes will be used while
creating the execution plan.

Note: If a partially indexed column length is altered using ALTER TABLE such that the new
length fits in the maximum width of the index or when the new length exceeds it, the user is
responsible for dropping the index and recreating it according to what is required.

Examples

The following examples of CREATE PARTIAL INDEX are based on the 9.5 file format.

The following example creates a table named Part_tbl with columns PartID, PartName, SerialNo
and Description, using the specified data types and sizes.

CREATE TABLE part_tbl (partid INT, partname CHAR(50), serialno VARCHAR(200), description CHAR(300));

Next, the example creates a partial index named idx_01 using the Description column.

CREATE PARTIAL INDEX idx_01 on part_tbl (description);

Although the Description column used in the index is 300 bytes, using the PARTIAL keyword
enables the index to only use the first 255 bytes (including overhead) as the prefix.

============

The following example creates a partial index named idx_02 for the same table in the previous
example. Instead, this example uses the PartId, SerialNo, and Description columns collectively
for the index.

CREATE PARTIAL INDEX idx_02 on part_tbl (partid, serialno, description);

SQL Grammar in Zen

72 SQL Syntax Reference

The following table details the index columns so that you may understand how the wide column is
allocated in the index.

NOT MODIFIABLE

This attribute prevents the index from being changed. Note that for a multisegmented index, this
attribute applies to all segments. Status code 10: The key field is not modifiable results if you
attempt to edit any of the segments.

The following example creates a nonmodifiable segmented index in the Person table.

CREATE NOT MODIFIABLE INDEX X_Person on Person(ID, Last_Name)

USING

Use this keyword to control the index number when you create an index. Controlling the index
number is important in cases where the data is being accessed through the Relational Engine as
well as directly from the data files through the MicroKernel Engine.

When you create an index, the index number is inserted into both the data file and the X$Index.

If the index number you specify is already in use in either file, an error code is returned: status
code 5: The record has a key field containing a duplicate key value for the X$Index and status
code 6: The key number parameter is invalid for the data file.

CREATE INDEX "citizen-x" USING 3 On Person (citizenship)

IN DICTIONARY

This keyword notifies the database engine that you wish to make modifications to the DDFs while
leaving the underlying physical data unchanged. This feature allows you to correct any table
dictionary definitions that are not synchronized with their corresponding data files or to create a
definition in the dictionary to match an existing data file. This is most often needed when data

Column Name Data Type Size Overhead Size in Index

PartID Integer 4 4

SerialNo Varchar 200 1 201

Description Char 300 50

Total Index Size 255

SQL Grammar in Zen

SQL Syntax Reference 73

files are created and used by a Btrieve (transactional) application (which does not use DDFs), but
ad-hoc queries or reports need to access the data using the Relational Engine.

Normally, the database engine keeps DDFs and data files perfectly synchronized. When you
create an index without the IN DICTIONARY statement, the database engine assigns identical
index numbers to the X$Index and the data file. IN DICTIONARY enables you to add an index to
the X$Index only.

Caution! IN DICTIONARY is a powerful and advanced feature. It should only be used by
system administrators or when absolutely necessary. Modifying a DDF without performing
parallel modifications to the underlying data file can cause serious problems, such as incorrect
results sets, performance problems, or unexpected results.

If you have created a phantom index, one that exists only in the DDF and not in the data file, and
you attempt to drop the index without using IN DICTIONARY, you can encounter status code 6:
The key number parameter is invalid. This error occurs because the database engine attempts to
delete the index from the data file and cannot do so because no such index exists in the data file.

If you use both IN DICTIONARY and USING in the SQL statement when you create an index, a
new index using the number specified by the USING keyword is inserted into the DFF only if the
segment at the specified index number matches the SQL column. If the number specified by the
USING keyword does not match the SQL column or does not exist in the data file, the SQL
engine returns an error message that the Btrieve key definition does not match the index
definition. This ensures that no phantom indexes are created.

Note: You cannot use the keyword IN DICTIONARY on a bound database.

Examples

This section provides a number of examples of IN DICTIONARY

The following example creates a detached table, one with no associated data file, then adds and
drops an index from the table definition. This index is a detached index because there is no
underlying Btrieve index associated with it.

CREATE TABLE t1 IN DICTIONARY (c1 int, c2 int)
CREATE INDEX idx_1 IN DICTIONARY on t1(c1)
DROP INDEX t1.idx_1 IN DICTIONARY

============

The following example uses a table T1 that already exists. The data file has key1 defined and it is
not currently in X$Index.

CREATE INDEX idx_1 USING 1 IN DICTIONARY on T1 (C2)

SQL Grammar in Zen

74 SQL Syntax Reference

See Also

DROP INDEX

SQL Grammar in Zen

SQL Syntax Reference 75

CREATE PROCEDURE
The CREATE PROCEDURE statement creates a new stored procedure. Stored procedures are
SQL statements that are predefined and saved in the database dictionary.

Syntax
CREATE PROCEDURE procedure-name
([parameter [, parameter]...])

[RETURNS (result [, result]...)] see Remarks
[WITH DEFAULT HANDLER | WITH EXECUTE AS 'MASTER' | WITH DEFAULT HANDLER , EXECUTE AS 'MASTER' |
WITH EXECUTE AS 'MASTER', DEFAULT HANDLER]
as-or-semicolon
proc-stmt

procedure-name ::= user-defined-name

parameter ::= parameter-type-name data-type [DEFAULT proc-expr | = proc-expr] | SQLSTATE
parameter-type-name ::= parameter-name
| parameter-type parameter-name
| parameter-name parameter-type

parameter-type ::= IN | OUT | INOUT | IN_OUT

parameter-name ::= :user-defined-name

proc-expr ::= same as normal expression but does not allow IF expression or ODBC-style scalar
functions

result ::= user-defined-name data-type

as-or-semicolon ::= AS | ;

proc-stmt ::= [label-name :] BEGIN [ATOMIC] [proc-stmt [; proc-stmt]...] END [label-name]
| CALL procedure-name (proc-expr [, proc-expr]...)
| CLOSE cursor-name
| DECLARE cursor-name CURSOR FOR select-statement [FOR UPDATE | FOR READ ONLY]
| DECLARE variable-name data-type [DEFAULT proc-expr | = proc-expr]
| DELETE WHERE CURRENT OF cursor-name
| delete-statement
| FETCH [fetch-orientation [FROM]]cursor-name [INTO variable-name [, variable-name]]
| IF proc-search-condition THEN proc-stmt [; proc-stmt]... [ELSE proc-stmt [; proc-stmt]...
] END IF
| IF proc-search-condition proc-stmt [ELSE proc-stmt]
| insert-statement
| LEAVE label-name
| [label-name :] LOOP proc-stmt [; proc-stmt]... END LOOP [label-name]
| OPEN cursor-name
| PRINT proc-expr [, 'string'] -- applies only to Windows platforms
| RETURN [proc-expr]
| transaction-statement
| select-statement-with-into
| select-statement
| SET variable-name = proc-expr
| SIGNAL [ABORT] sqlstate-value
| START TRANSACTION
| update-statement
| UPDATE SET column-name = proc-expr [, column-name = proc-expr]... WHERE CURRENT OF cursor-
name
| [label-name :] WHILE proc-search-condition DO [proc-stmt [; proc-stmt]]... END WHILE [

SQL Grammar in Zen

76 SQL Syntax Reference

label-name]
| [label-name :] WHILE proc-search-condition proc-stmt
| alter-table-statement
| create-index-statement
| create-table-statement
| create-view-statement
| drop-index-statement
| drop-table-statement
| drop-view-statement
| grant-statement
| revoke-statement
| set-statement

transaction-statement ::= commit-statement
| rollback-statement
| release-statement

commit-statement ::= see COMMIT
rollback-statement ::= see ROLLBACK
release-statement ::= see RELEASE SAVEPOINT
create-table-statement ::= see CREATE TABLE
alter-table-statement ::= see ALTER TABLE
drop-table-statement ::= see DROP TABLE
create-index-statement ::= see CREATE INDEX
drop-index-statement ::= see DROP INDEX
create-view-statement ::= see CREATE VIEW
drop-view-statement ::= see DROP VIEW
grant-statement ::= see GRANT
revoke-statement ::= see REVOKE
set-statement ::= see SET DECIMALSEPARATORCOMMA

label-name ::= user-defined-name

cursor-name ::= user-defined-name

variable-name ::= user-defined-name

proc-search-condition ::= same as search-condition but does not allow expressions that include
subqueries

fetch-orientation ::= NEXT

sqlstate-value ::= 'string'

Remarks

To execute stored procedures, use the CALL or EXECUTE statement.

Note that, in a procedure, the name of a variable and the name of a parameter must begin with a
colon (:), both in the definition and use of the variable or parameter.

The RETURNS clause is required if the stored procedure returns a result set or a scalar value.

The RETURNS clause, when present, causes the procedure to continue execution when an error
occurs. The default behavior (without this clause) is to abort the procedure with SQLSTATE set to
the error state generated by the statement.

SQL Grammar in Zen

SQL Syntax Reference 77

The use of a StmtLabel at the beginning (and optionally at the end) of an IF statement is an
extension to ANSI SQL 3.

The PRINT statement applies only to Windows-based platforms. It is ignored on other operating
system platforms.

In SQL Editor, the only way to test a stored procedure by using variable parameters is to call the
stored procedure from another stored procedure. This technique is shown in the example for pdate
(CREATE PROCEDURE pdate();).

You may use variables as SELECT items only within stored procedures. This technique is shown
in the example for varsub1 (CREATE PROCEDURE varsub1();).

You cannot use the CREATE DATABASE or the DROP DATABASE statement in a stored
procedure.

Trusted and Non-Trusted Stored Procedures

A trusted stored procedure includes the WITH EXECUTE AS 'MASTER clause. See Trusted and
Non-Trusted Objects.

Memory Caching

By default, the database engine creates a memory cache in which to store multiple stored
procedures for the duration of the SQL session. Once a stored procedure is executed, its compiled
version is then retained in the memory cache. Typically, caching results in improved performance
for each subsequent call to a cached procedure. The cache provides no performance improvement
the first time that a stored procedure is executed since the procedure has not yet been loaded into
memory.

Two SET statements apply to the memory cache:

• SET CACHED_PROCEDURES – the number of procedures to cache. The default is 50.

• SET PROCEDURES_CACHE – the amount of memory for the cache. The default is 5 MB.

Note that excessive memory swapping, or thrashing, could occur depending on the cache settings
and the SQL being executed by your application. Thrashing can cause a decrease in performance.

Caching Exclusions

A stored procedure is not cached, regardless of the cache settings, for any of the following:

SQL Grammar in Zen

78 SQL Syntax Reference

• If it references a local or a global temporary table. A local temporary table has a name that
begins with the pound sign (#). A global temporary table has a name that begins with two
pound signs (##). See CREATE (temporary) TABLE.

• If it contains any data definition language (DDL) statements. See Data Definition Statements.

• If it contains an EXEC[UTE] statement used to execute a character string, or an expression
that returns a character string. For example: EXEC ('SELECT Student_ID FROM ' +
:myinputvar).

Data Type Restrictions

The following data types cannot be passed as parameters or declared as variables in a stored
procedure or trigger:

See Examples for how Zen data types that do not have a direct ODBC equivalent can be correctly
mapped to be used by a procedure.

Limits

The following limitations must be observed when creating stored procedures.

Examples

The following example creates stored procedure Enrollstudent, which inserts a record into the
Enrolls table, given the Student ID and the Class ID.

CREATE PROCEDURE Enrollstudent(IN :Stud_id INTEGER, IN :Class_Id INTEGER, IN :GPA REAL);
BEGIN

INSERT INTO Enrolls VALUES(:Stud_id, :Class_id, :GPA);
END;

BFLOAT4 BFLOAT8

MONEY NUMERICSA

NUMERICSLB NUMERICSLS

NUMERICSTB NUMERICSTS

Attribute Limit

Number of columns allowed in a trigger or stored procedure 300

Number of arguments in a parameter list for a stored procedure 300

Size of a stored procedure 64 KB

SQL Grammar in Zen

SQL Syntax Reference 79

Use the following statement to call the stored procedure.

CALL Enrollstudent(1023456781, 146, 3.2)

Use the following statement to retrieve the newly inserted record.

SELECT * FROM Enrolls WHERE Student_id = 1023456781

The CALL and SELECT statements, respectively, call the procedure by passing arguments, then
display the row that was added.

============

This example shows how to assign a default value to a parameter.

CREATE PROCEDURE ReportTitle1 (:rpttitle1 VARCHAR(20) = 'Finance Department') RETURNS (Title
VARCHAR(20));
BEGIN

SELECT :rpttitle1;
END;
CALL ReportTitle1;

CREATE PROCEDURE ReportTitle2 (:rpttitle2 VARCHAR(20) DEFAULT 'Finance Department', :rptdate DATE
DEFAULT CURDATE()) RETURNS (Title VARCHAR(20), Date DATE);
BEGIN

SELECT :rpttitle2, :rptdate;
END;
CALL ReportTitle2(,);

These procedures use the default value specified (Finance Department) if a parameter is not
provided with the CALL. Note that any parameter can be omitted, but the placeholder must be
provided.

============

The following procedure reads the Class table, using the classId parameter passed in by the caller
and validates that the course enrollment is not already at its limit.

CREATE PROCEDURE Checkmax(in :classid integer);
BEGIN

DECLARE :numenrolled integer;
DECLARE :maxenrolled integer;
SELECT COUNT(*) INTO :numenrolled FROM Enrolls WHERE class_ID = :classid;
SELECT Max_size INTO :maxenrolled FROM Class WHERE id = :classid;
IF (:numenrolled >= :maxenrolled) THEN

PRINT 'Enrollment Failed. Number of students enrolled reached maximum allowed for this class'
;

ELSE
PRINT 'Enrollment Possible. Number of students enrolled has not reached maximum allowed for
this class';

END IF;
END;
CALL Checkmax(101)

Note that COUNT(expression) counts all nonnull values for an expression across a predicate.
COUNT(*) counts all values, including null values.

SQL Grammar in Zen

80 SQL Syntax Reference

============

The following is an example of using the OUT parameter when creating stored procedures.
Calling this procedure returns the number of students into the variable :outval that satisfies the
WHERE clause.

CREATE PROCEDURE ProcOUT (out :outval INTEGER)
AS BEGIN

SELECT COUNT(*) INTO :outval FROM Enrolls WHERE Class_Id = 101;
END;

============

The following is an example of using the INOUT parameter when creating stored procedures.
Calling this procedure requires an INPUT parameter :IOVAL and returns the value of the output
in the variable :IOVAL. The procedure sets the value of this variable based on the input and the IF
condition.

CREATE PROCEDURE ProcIODATE (INOUT :IOVAL DATE)
AS BEGIN

IF :IOVAL = '1982-03-03' THEN
SET :IOVAL ='1982-05-05';

ELSE
SET :IOVAL = '1982-03-03';

END IF;
END;

You cannot call the above procedure using a literal value (as in call prociodate('1982-03-03')),
because it requires an output parameter. You must first bind the parameter using ODBC calls, or
you can test the procedure by creating another procedure to call it, as shown here:

CREATE PROCEDURE pdate();
BEGIN

DECLARE :a DATE;
CALL prociodate(:a);
PRINT :a;

END
CALL pdate

============

The following example illustrates using the RETURNS clause in a procedure. This sample returns
all of the data from the Class table where the Start Date is equal to the date passed in on the CALL
statement.

CREATE PROCEDURE DateReturnProc(IN :PDATE DATE)
RETURNS(
DateProc_ID INTEGER,
DateProc_Name CHAR(7),
DateProc_Section CHAR(3),
DateProc_Max_Size USMALLINT,
DateProc_Start_Date DATE,
DateProc_Start_Time TIME,
DateProc_Finish_Time TIME,
DateProc_Building_Name CHAR(25),
DateProc_Room_Number UINTEGER,
DateProc_Faculty_ID UBIGINT

SQL Grammar in Zen

SQL Syntax Reference 81

);
BEGIN

SELECT ID, Name, Section, Max_Size, Start_Date, Start_Time, Finish_Time, Building_Name,
Room_Number, Faculty_ID FROM Class WHERE Start_Date = :PDATE;

END;
CALL DateReturnProc('1995-06-05')

Note that the user-defined names in the RETURNS clause do not have to be named identically to
the column names that appear in the selection list, as this example shows.

============

The following example shows the use of the WHERE CURRENT OF clause, which applies to
positioned deletes.

CREATE PROCEDURE MyProc(IN :CourseName CHAR(7)) AS
BEGIN

DECLARE c1 CURSOR FOR SELECT name FROM course WHERE name = :CourseName FOR UPDATE;
OPEN c1;
FETCH NEXT FROM c1 INTO :CourseName;
DELETE WHERE CURRENT OF c1;
CLOSE c1;

END;
CALL MyProc('HIS 305')

(Note that if you use a SELECT inside of a WHERE clause of a DELETE, it is a searched
DELETE not a positioned DELETE.)

============

The following example shows the use of a variable (:i) as a SELECT item. The example assumes
that table1 does not already exist. All records in the person table with an ID greater than
950000000 are selected, then inserted into col2 of table1. Col1 contains the value 0, 1, 2, 3, or 4 as
defined by the WHILE loop.

CREATE TABLE table1 (col1 CHAR(10), col2 BIGINT);

CREATE PROCEDURE varsub1();
BEGIN

DECLARE :i INT;
SET :i = 0;
WHILE :i < 5 DO

INSERT INTO table1 (col1, col2) SELECT :i , A.ID FROM PERSON A WHERE A.ID > 950000000;
SET :i = :i + 1;
END WHILE;

END
CALL varsub1
SELECT * FROM table1
-- returns 110 rows

============

The following is an example of the use of ATOMIC, which groups a set of statements so that
either all succeed or all fail. ATOMIC can be used only within the body of a stored procedure,
user-defined function, or trigger.

The first procedure does not specify ATOMIC, while the second does.

SQL Grammar in Zen

82 SQL Syntax Reference

CREATE TABLE t1 (c1 INTEGER)
CREATE UNIQUE INDEX t1i1 ON t1 (c1)
CREATE PROCEDURE p1();
BEGIN

INSERT INTO t1 VALUES (1);
INSERT INTO t1 VALUES (1);

END;
CREATE PROCEDURE p2();
BEGIN ATOMIC

INSERT INTO t1 VALUES (2);
INSERT INTO t1 VALUES (2);

END;
CALL p1()
CALL p2()
SELECT * FROM t1

Both procedures return an error because they attempt to insert duplicate values into a unique
index.

The result is that t1 contains only one record because the first INSERT statement in procedure p1
succeeds even though the second fails. Likewise, the first INSERT statement in procedure p2
succeeds but the second fails. However, since ATOMIC is used in procedure p2, all of the
execution in procedure p2 is rolled back when the error is encountered.

============

This example uses a stored procedure to create two tables and insert one row of default values into
each. It then turns on security and grants privileges to user1.

CREATE PROCEDURE p1();
BEGIN

CREATE TABLE t1 (c1 INT DEFAULT 10, c2 INT DEFAULT 100);
CREATE TABLE t2 (c1 INT DEFAULT 1 , c2 INT DEFAULT 2);
INSERT INTO t1 DEFAULT VALUES;
INSERT INTO t2 DEFAULT VALUES;
SET SECURITY = larry;
GRANT LOGIN TO user1 u1pword;
GRANT ALL ON * TO user1;

END;
CALL p1
SELECT * FROM t1

-- returns 10, 100
SELECT * FROM t2

-- returns 1, 2

Note: When you use the GRANT LOGIN statement in a stored procedure, you must separate the
user name and password with a space character rather than a colon character. The colon character
is reserved to identify local variables in a stored procedure.

============

This example uses a stored procedure to revoke privileges from user1, drop the two tables created
in Example A, and turn off database security.

CREATE PROCEDURE p3();
BEGIN

REVOKE ALL ON t1 FROM user1;

SQL Grammar in Zen

SQL Syntax Reference 83

REVOKE ALL ON t2 FROM user1;
DROP TABLE t1;
DROP TABLE t2;
SET SECURITY = NULL;

END;
CALL p3
SELECT * FROM t1 -- returns an error, table not found
SELECT * FROM t2 -- returns an error, table not found

============

The following example shows how to loop through a cursor.

CREATE TABLE atable (c1 INT, c2 INT)
 INSERT INTO atable VALUES (1,1)
 INSERT INTO atable VALUES (1,2)
 INSERT INTO atable VALUES (2,2)
 INSERT INTO atable VALUES (2,3)
 INSERT INTO atable VALUES (3,3)
 INSERT INTO atable VALUES (3,4)

CREATE PROCEDURE pp();
BEGIN

DECLARE :i INTEGER;
DECLARE c1Bulk CURSOR FOR SELECT c1 FROM atable ORDER BY c1 FOR UPDATE;
OPEN c1Bulk;
BulkLinesLoop:
LOOP

FETCH NEXT FROM c1Bulk INTO :i;
IF SQLSTATE = '02000' THEN
LEAVE BulkLinesLoop;
END IF;
UPDATE SET c1 = 10 WHERE CURRENT OF c1Bulk;

END LOOP;
CLOSE c1Bulk;

END

CALL pp
-- Succeeds

SELECT * FROM atable
-- Returns 6 rows

============

This example creates a trusted stored procedure named InParam. User Master then grants User1
EXECUTE and ALTER permissions on InParam. This example assumes that table t99 exists and
contains two columns of type INTEGER.

CREATE PROCEDURE InParam(IN :inparam1 INTEGER, IN :inparam2 INTEGER) WITH DEFAULT HANDLER, EXECUTE AS
'Master' AS
BEGIN

INSERT INTO t99 VALUES(:inparam1 , :inparam2);
END;
GRANT ALL ON PROCEDURE InParam TO User1

Master and User1 can now call this procedure (for example, CALL InParam(2,4)).

SQL Grammar in Zen

84 SQL Syntax Reference

============

This example shows how Zen data types that do not have a direct ODBC equivalent can be
correctly mapped to be used by a procedure. The data types NUMERICSA and NUMERICSTS
are the ones without direct equivalents so they are mapped to NUMERIC instead.

CREATE TABLE test1 (id identity, amount1 numeric(5,2), amount2 numericsa(5,2), amount3
numericsts(5,2))
CREATE PROCEDURE ptest2 (IN :numval1 numeric(5,2), IN :numval2 numeric(5,2), IN :numval3
numeric(5,2))
AS
BEGIN
Insert into test1 values(0, :numval1, :numval2, :numval3);
END;

CALL ptest2(100.10, 200.20, 300.30)
SELECT * FROM test1

The procedure correctly formats all the amount values according to the Zen data types defined in
the CREATE TABLE statement, despite the fact that they are all passed to the procedure as
NUMERIC. See also Zen Supported Data Types for the mappings of data types.

Using Stored Procedures

As an example, CALL foo(a, b, c) executes the stored procedure foo with parameters a, b, and c.
Any of the parameters may be a dynamic parameter ('?'), which is necessary for retrieving the
values of output and inout parameters. For example: {CALL foo (?, ?, 'TX')}. The curly braces
are optional in your source code.

This is how stored procedures work in the current version of Zen.

• Triggers (CREATE TRIGGER, DROP TRIGGER) are supported as a form of stored
procedure. This support includes tracking dependencies that the trigger has on tables, and
procedures, in the database. You cannot use CREATE PROCEDURE or CREATE TRIGGER
in the body of a stored procedure or a trigger.

• CONTAINS, NOT CONTAINS, BEGINS WITH are not supported.

• LOOP: post conditional loops are not supported (REPEAT...UNTIL).

• ELSEIF: The conditional format uses IF ... THEN ... ELSE. There is no ELSEIF support.

General Stored Procedure Engine Limitations

You should be aware of the following limitations before using stored procedures.

• There is no qualifier support in CREATE PROCEDURE or CREATE TRIGGER.

• Maximum length of a stored procedure variable name is 128 characters.

SQL Grammar in Zen

SQL Syntax Reference 85

• See Identifier Restrictions in Advanced Operations Guide for the maximum length of a stored
procedure name.

• Only partial syntactical validation occurs at CREATE PROCEDURE or CREATE TRIGGER
time. Column names are not validated until run time.

• There is currently no support for using subqueries everywhere expressions are used. For
example an UPDATE statement with set :arg = SELECT MIN(sal) FROM emp is not supported.
However, you could rewrite the subquery as SELECT min(sal) INTO :arg FROM emp.

• Only the default error handler is supported.

Limits to SQL Variables and Parameters
• Variable names must be preceded with a colon (:) or at sign (@). This allows the stored

procedure parser to differentiate between variables and column names.

• Variable names are case insensitive.

• No session variables are supported. Variables are local to the procedure.

Limits to Cursors
• Positioned UPDATE does not accept a table name.

• Global cursors are not supported.

Limits when using Long Data
• When you pass long data as arguments to an embedded procedure, (that is, a procedure calling

another procedure), the data is truncated to 65500 bytes.

• Long data arguments to and from procedures are limited to a total of 2 MB.

Internally long data may be copied between cursors with no limit on data length. If a long data
column is fetched from one statement and inserted into another, no limit is imposed. If, however,
more than one destination is required for a single long data variable, only the first destination
table receives multiple calls to PutData. The remaining columns are truncated to the first 65500
bytes. This is a limitation of the ODBC GetData mechanism.

See Also

DROP PROCEDURE

SET CACHED_PROCEDURES

SQL Grammar in Zen

86 SQL Syntax Reference

SET PROCEDURES_CACHE

Trusted and Non-Trusted Objects

SQL Grammar in Zen

SQL Syntax Reference 87

CREATE TABLE
The CREATE TABLE statement creates a new table in a database.

CREATE TABLE contains functionality that goes beyond minimal or core SQL conformance.
CREATE TABLE supports Referential Integrity features. Zen conforms closely to SQL 92 with
the exception of ColIDList support.

You can also create temporary tables with the CREATE TABLE statement. See CREATE
(temporary) TABLE.

Caution! In the same directory, no two files should share the same file name and differ only in
their file name extension. For example, do not create a table (data file) Invoice.btr and another one
Invoice.mkd in the same directory. This restriction applies because the database engine uses the
file name for various areas of functionality while ignoring the file name extension. Since only the
file name is used to differentiate files, files that differ only in their file name extension look
identical to the database engine.

Syntax
CREATE TABLE table-name [option] [IN DICTIONARY]

[USING 'path_name'] [WITH REPLACE]
(table-element [, table-element]...)

table-name ::= user-defined-name

option ::= DCOMPRESS | PCOMPRESS | PAGESIZE = size | LINKDUP = number | SYSDATA_KEY_2

number ::= user-defined value (sets the number of pointers to reserve for the addition of linked
duplicates index keys)

table-element ::= column-definition | table-constraint-definition

column-definition ::= column-name data-type [DEFAULT default-value-expression] [column-constraint
[column-constraint]... [CASE (string) | COLLATE collation-name]

column-name ::= user-defined-name

data-type ::= data-type-name [(precision [, scale])]

precision ::= integer

scale ::= integer

default-value-expression ::= default-value-expression + default-value-expression
| default-value-expression - default-value-expression
| default-value-expression * default-value-expression
| default-value-expression / default-value-expression
| default-value-expression & default-value-expression
| default-value-expression | default-value-expression
| default-value-expression ^ default-value-expression
| (default-value-expression)
| -default-value-expression
| +default-value-expression

SQL Grammar in Zen

88 SQL Syntax Reference

| ~default-value-expression
| ?
| literal
| scalar-function
| { fn scalar-function }
| USER
| NULL

literal ::= 'string' | N'string'
| number
| { d 'date-literal' }
| { t 'time-literal' }
| { ts 'timestamp-literal' }

scalar-function ::= see Scalar Functions

column-constraint ::= [CONSTRAINT constraint-name] col-constraint

constraint-name ::= user-defined-name

col-constraint ::= NOT NULL
| NOT MODIFIABLE
| UNIQUE
| PRIMARY KEY
| REFERENCES table-name [(column-name)] [referential-actions]

table-constraint-definition ::= [CONSTRAINT constraint-name] table-constraint

table-constraint ::= UNIQUE (column-name [, column-name]...)
| PRIMARY KEY (column-name [, column-name]...)
| FOREIGN KEY (column-name [, column-name])
 REFERENCES table-name [(column-name [, column-name]...)] [referential-actions]

referential-actions ::= referential-update-action [referential-delete-action]

| referential-delete-action [referential-update-action]

referential-update-action ::= ON UPDATE RESTRICT

referential-delete-action ::= ON DELETE CASCADE
| ON DELETE RESTRICT

collation-name ::= 'string'

Remarks

The only indexes that can be created with the CREATE TABLE statement are IDENTITY,
SMALLIDENTITY, or BIGIDENTITY, primary keys, and foreign keys. All other indexes must
be created with the CREATE INDEX statement.

Foreign key constraint names must be unique in the dictionary. All other constraint names must be
unique within the table in which they reside and must not have the same name as a column.

If the primary key name is omitted, the name of the first column in the key prefixed by "PK_" is
used as the name of the constraint.

SQL Grammar in Zen

SQL Syntax Reference 89

If a reference column is not listed, the reference becomes, by default, the primary key of the table
referenced. If a primary key is unavailable, a "Key not found" error returns. You can avoid this
situation by enumerating the target column.

If the foreign key name is omitted, the name of the first column in the key prefixed by "FK_" is
used as the name of the constraint.

If the UNIQUE constraint is omitted, the name of the first column in the key prefixed by "UK_" is
used as the name of the constraint.

If the NOT MODIFIABLE constraint is omitted, the name of the first column in the key prefixed
by "NM_" is used as the name of the constraint. (If NOT MODIFIABLE is used, a not-unique,
not-modifiable index is created on the column. The index is named NM_column_name.)

If the NOT NULL constraint is omitted, the name of the first column in the key prefixed by
"NN_" is used as the name of the constraint.

A foreign key may reference the primary key of the same table. This key is called as a self-
referencing key.

If CREATE TABLE succeeds and a USING clause was not specified, the data file name for the
created table is xxx.mkd, where xxx is the specified table name. If the physical file, xxx.mkd,
already exists, a new file names xxxnnn.mkd is created, where nnn is a unique number. If the table
already exists, it is not replaced, and error -1303, "Table already exists" is returned. You must
drop the table before replacing it.

A CREATE TABLE statement with the SYSDATA_KEY_2 keyword automatically creates the
file in the 13.0 file format. The new file uses system data v2, which enables the sys$create and
sys$update virtual columns for use in queries. If the file format is 16.0, then the version is
unchanged. For more information, see Accessing System Data v2.

Use of IN DICTIONARY with the SYSDATA_KEY_2 keyword causes the CREATE TABLE
statement to ignore SYSDATA_KEY_2, and the sys$create and sys$update virtual columns are
not available for the new table.

Limitations on Record Size

The total size of the fixed-length portion of any data record may not exceed 65535 bytes. The
fixed-length portion of any data record is made up of the following:

• All the columns that have a fixed sized (all columns except for LONGVARCHAR,
LONGVARBINARY and NLONGVARCHAR)

• One byte for each column that allows null values

SQL Grammar in Zen

90 SQL Syntax Reference

• 8 bytes for each variable-length column (column of type LONGVARCHAR,
LONGVARBINARY or NLONGVARCHAR)

If you attempt to create a table that exceeds this limit, or if you attempt modifications that would
cause a table to exceed the limit, Zen returns status code -3016, "The maximum fixed-length
rowsize for the table has been exceeded."

To determine the size in bytes of the fixed-length portion of a record before you attempt to create
a new table, you can use the following calculation:

(sum of the storage sizes in bytes for the fixed-length column) + (number of nullable columns) +
(8 * number of variable-length columns) = record size in bytes

If you want to determine the size of the fixed-length portion of the record for an existing data file,
you can use the BUTIL -STAT command to display a report that includes this information.

Example of Limitation on Record Size

Assume you have a table with the following columns defined:

Each VARCHAR has two extra bytes reserved for it. One bite for the preceding NULL indicator
and one trailing byte because VARCHAR is implemented as a ZSTRING. Each CHAR has a
preceding byte reserved for the NULL indicator.

Therefore, the record size is 1 x 218 + 5 x 215 + 1494 x 43 = 65535 bytes.

In this example, you could not add another column of any length without exceeding the fixed-
length limit.

Delete Rule

You can include an ON DELETE clause with a foreign key constraint to define the delete rule Zen
enforces for an attempt to delete the parent row to which a foreign key value refers. The delete
rules you can choose are as follows:

Type Number of Columns of This Type Nullable?

VARCHAR(216) 1 Yes

VARCHAR(213) 5 All columns

CHAR(42) 1494 All columns

SQL Grammar in Zen

SQL Syntax Reference 91

• If you specify CASCADE, Zen uses the delete cascade rule. When a user deletes a row in the
parent table, the database engine deletes the corresponding rows in the dependent table.

• If you specify RESTRICT, Zen enforces the delete restrict rule. A user cannot delete a row in
the parent table if a foreign key value refers to it.

If you do not specify a delete rule, Zen applies the restrict rule by default.

Use caution with delete cascade. Zen allows a circular delete cascade on a table that references
itself. See examples in Delete Cascade in Advanced Operations Guide.

Update Rule

Zen enforces the update restrict rule. This rule prevents the addition of a row containing a foreign
key value if the parent table does not contain the corresponding primary key value. This rule is
enforced whether or not you use the optional ON UPDATE clause, which allows you to specify
the update rule explicitly.

IN DICTIONARY

See the discussion of IN DICTIONARY for ALTER TABLE.

USING

The USING keyword allows you to associate a CREATE TABLE or ALTER TABLE action with
a particular data file.

Because Zen requires a Named Database to connect, the path_name provided must always be a
simple file name or relative path and file name. Paths are always relative to the first Data Path
specified for the Named Database to which you are connected.

The path/file name passed is partially validated when the statement is prepared.

You must follow these rules when specifying the path name:

• The text must be enclosed in single quotes, as shown in the grammar definition.

• Text must not exceed the length limit for the version of metadata being used. The entry is
stored in Xf$Loc in exactly as typed (trailing spaces are truncated and ignored). See Xf$Loc
(for V1 metadata) and Xf$Loc (for V2 metadata).

• The path must be a simple relative path. Paths that reference a server or volume are not
allowed.

SQL Grammar in Zen

92 SQL Syntax Reference

• Relative paths are allowed to include a period for current directory, a double-period for parent
directory, a slash, or any combination of the three. However, the path must contain a file name
representing the SQL table name, meaning path_name cannot end in a slash or a directory
name. All file names, including those specified with relative paths, are relative to the first
Data Path as defined in the Named Database configuration.

The following features provide convenience and ease of use:

• Root-based relative paths are allowed. For example, assuming that the first data path is
D:\mydata\demodata, Zen interprets the path name in the following statement as
D:\temp\test123.btr.

CREATE TABLE t1 USING '\temp\test123.btr' (c1 int)

• Slash characters in relative paths may be either Unix style (/) or Windows backslash (\). You
may use a mixture of the two types, if desired. This is a convenience feature, since you may
know the directory structure scheme but not necessarily know (or care) what type of server
you are connected to. The path is stored in X$File exactly as typed. The Zen engine converts
the slash characters to the appropriate platform type when utilizing the path to open the file.
Also, since data files share binary compatibility between all supported platforms, this means
that as long as the directory structure is the same between platforms (and path-based file
names are specified as relative paths), then database files and DDFs can be moved from one
platform to another without modification. This enables cross-platform deployment using a
standardized database schema.

• When you specify a relative path, the directory structure in the USING clause does not need to
already exist. When needed, Zen creates directories for the path in the USING clause.

Include a USING clause to specify the physical location of the data file associated with the table.
This is necessary when you are creating a table definition for an existing data file, or when you
want to specify explicitly the name or physical location of a new data file.

If you do not include a USING clause, Zen generates a unique file name from the table name with
an .mkd extension and creates the file in the first directory specified in the data file path for the
database.

If the USING clause points to an existing data file, Zen creates the table in the DDFs and returns
SQL_SUCCESS_WITH_INFO. The informational message returned indicates that the dictionary
entry now points to an existing data file. If you want CREATE TABLE to return only
SQL_SUCCESS, specify IN DICTIONARY on the CREATE statement. If WITH REPLACE is
specified (see below), then any existing data file with the same name is destroyed and overwritten
with a newly created file.

Note: Zen returns a successful status code if you specify an existing data file.

SQL Grammar in Zen

SQL Syntax Reference 93

Whenever you create a relational index definition for an existing data file (for example, CREATE
TABLE USING with a column definition of type IDENTITY), Zen automatically checks the
Btrieve indexes defined on the file to determine whether an existing Btrieve index offers the set of
parameters in the relational index definition. If an existing Btrieve index matches the new
definition, then an association is created between the relational index definition and the existing
Btrieve index. If there is no match, then Zen creates a new index definition and, if IN
DICTIONARY is not used, a new index in the file.

WITH REPLACE

Whenever WITH REPLACE is specified with the USING keyword, Zen automatically overwrites
any existing file name with the specified file name. The file is always overwritten if the operating
system allows it. WITH REPLACE affects only the data file. It does not affect the DDFs.

The following rules apply when using WITH REPLACE:

• WITH REPLACE can only be used with USING.

• When used with IN DICTIONARY, WITH REPLACE is ignored because IN DICTIONARY
specifies that only the DDFs are affected.

If you include WITH REPLACE in your CREATE TABLE statement, Zen creates a new data file
to replace the existing file (if the file exists at the location you specified in the USING clause).
Zen discards any data stored in the original file with the same name. If you do not include WITH
REPLACE and a file exists at the specified location, Zen returns a status code and does not create
a new file. The table definition is added to the DDFs, however.

WITH REPLACE affects only the data file. It does not affect the table definition in the dictionary.

DCOMPRESS

The DCOMPRESS option specifies that the data file for a table use record compression to reduce
the file size on disk. The following example creates a table with record compression and page size
1024 bytes:

CREATE TABLE t1 DCOMPRESS PAGESIZE=1024 (c1 INT DEFAULT 10, c2 CHAR(10) DEFAULT 'abc')

For details, see Record and Page Compression in Advanced Operations Guide.

SQL Grammar in Zen

94 SQL Syntax Reference

PCOMPRESS

The PCOMPRESS option specifies that the data file for the specified table should use page
compression. The following example creates a table with page compression and page size 1024
bytes:

CREATE TABLE t1 PCOMPRESS PAGESIZE=1024 (c1 INT DEFAULT 10, c2 CHAR(10) DEFAULT 'abc')

For details, see Record and Page Compression in Advanced Operations Guide.

PAGESIZE

The PAGESIZE option specifies that the data file for the specified table should use pages of size
bytes. The value of size can be any of the following depending on file version:

• 512–4096 for file versions prior to 9.0 (a multiple of 512 bytes up to 4096)

• 512, 1024, 1536, 2048, 2560, 3072, 3584, 4096, or 8192 for file version 9.0

• 1024, 2048, 4096, 8192, or 16384 for file version 9.5

• 4096, 8192, or 16384 for file versions 13.0 and 16.0

The following example creates a table with file compression and page size 8192 bytes, specifying
creation of the particular data file identified by the relative path, ..\data1.mkd:

CREATE TABLE t1 DCOMPRESS PAGESIZE=8192 USING '..\data1.mkd' (c1 INT DEFAULT 10, c2 CHAR(10) DEFAULT
'abc')

LINKDUP

Multiple records may carry the same duplicated value for index keys. The two methods to keep
track of the records with duplicate key values are called linked duplicates (linkdup) and repeating
duplicates. For a detailed discussion of linked duplicates and repeating duplicates, see Methods
for Handling Duplicate Keys in Advanced Operations Guide.

If the LINKDUP keyword is not specified, a CREATE INDEX statement uses the repeating
duplicates method.

Each linked duplicate index requires 8 extra bytes in the physical record. The LINKDUP keyword
allows you to reserve these extra bytes for use in linked duplicated indexes that are subsequently
created.

Thus, if the LINKDUP keyword is specified, the following applies:

• A CREATE INDEX statement uses the linked duplicates method up to the value specified for
the number of pointers

SQL Grammar in Zen

SQL Syntax Reference 95

• Once the value specified for the number of pointers is reached, a CREATE INDEX statement
uses the repeating duplicates method

• If the value specified for the number of pointers has been reached and a linked-duplicate index
is dropped, a CREATE INDEX statement uses the linked duplicates method for the next key

• A CREATE INDEX statement cannot create a repeating-duplicate key if pointers are still
reserved for linked-duplicate keys.

Examples

The following examples demonstrate various uses of CREATE TABLE.

Syntax like the following creates a table named Billing with columns Student_ID,
Transaction_Number, Log, Amount_Owed, Amount_Paid, Registrar_ID and Comments, using
the specified data types.

CREATE TABLE Billing
(Student_ID UBIGINT,
Transaction_Number USMALLINT,
Log TIMESTAMP,
Amount_Owed DECIMAL(6,2),
Amount_Paid DECIMAL(6,2),
Registrar_ID DECIMAL(10,0),
Comments LONGVARCHAR)

============

This example creates a table named Faculty in the database with columns ID, Dept_Name,
Designation, Salary, Building_Name, Room_Number, Rsch_Grant_Amount, and a primary key
based on column ID.

CREATE TABLE Faculty
(ID UBIGINT,
Dept_Name CHAR(20) CASE,
Designation CHAR(10) CASE,
Salary CURRENCY,
Building_Name CHAR(25) CASE,
Room_Number UINTEGER,
Rsch_Grant_Amount DOUBLE,
PRIMARY KEY (ID))

The following example creates an index on the Name column and designates that index as not
modifiable. Data in the Name column cannot be changed.

CREATE TABLE organizations
(Name LONGVARCHAR NOT MODIFIABLE,
Advisor CHAR(30),
Number_of_people INTEGER,
Date_started DATE,
Time_started TIME,
Date_modified TIMESTAMP,
Total_funds DOUBLE,
Budget DECIMAL(2,2),

SQL Grammar in Zen

96 SQL Syntax Reference

Avg_funds REAL,
President VARCHAR(20) CASE,
Number_of_executives SMALLINT,
Number_of_meetings TINYINT,
Office UTINYINT,
Active BIT,)

============

In the next example, assume that you need a table called StudentAddress to contain student
addresses. You need to alter the Student table id column to be a primary key and then create a
StudentAddress table that references Student as the primary table. (The Student table is part of the
Demodata sample database.) Four ways are shown to create the StudentAddress table.

First, make the id column of table Student a primary key.

ALTER TABLE Student ADD PRIMARY KEY (id)

This next statement creates a StudentAddress table to have a foreign key referencing the id
column of table Student with the DELETE CASCADE rule. This means that whenever a row is
deleted from the Student table (Student is the parent table in this case), all rows in the
StudentAddress table with that same id are also deleted.

CREATE TABLE StudentAddress (id UBIGINT REFERENCES Student (id) ON DELETE CASCADE, addr CHAR(128))

This next statement creates a StudentAddress table to have a foreign key referencing the id
column of table Student with the DELETE RESTRICT rule. This means that whenever a row is
deleted from the Student table and there are rows in the StudentAddress table with that same id,
an error occurs. You need to explicitly delete all the rows in StudentAddress with that id before
the row in the Student table, the parent table, can be deleted.

CREATE TABLE StudentAddress (id UBIGINT REFERENCES Student (id) ON DELETE RESTRICT, addr CHAR(128))

This next statement creates a StudentAddress table to have a foreign key referencing the id
column of table Student with the UPDATE RESTRICT rule. This means that an error occurs if a
row is added to the StudentAddress table with an ID that does not occur in the Student table. In
other words, you must have a parent row before you can have foreign keys refer to that row. This
is the default behavior of Zen.

Moreover, Zen does not support any other UPDATE rules. Thus, whether this rule is stated
explicitly makes no difference. Also, since a DELETE rule is not explicitly stated, DELETE
RESTRICT is assumed.

CREATE TABLE StudentAddress (id UBIGINT REFERENCES Student (id) ON UPDATE RESTRICT, addr CHAR(128))

============

This example shows how to use an alternate collating sequence (ACS) when you create a table.
The ACS file used is the sample one provided with Zen.

SQL Grammar in Zen

SQL Syntax Reference 97

CREATE TABLE t5 (c1 CHAR(20) COLLATE 'file_path\upper.alt')

Upper.alt treats upper and lower case letters the same for sorting. For example, if a database has
values abc, ABC, DEF, and Def, inserted in that order, then the sorting with upper.alt returns as abc,
ABC, DEF, and Def.

The values abc and ABC, and the values DEF and Def are considered duplicates and are returned in
the order in which they were inserted. Normal ASCII sorting sequences upper case letters before
lower case, such that the sorting would return as ABC, DEF, Def, abc. Also, the statement SELECT
c1 FROM t5 WHERE c1 = 'Abc' returns both abc and ABC.

============

The following example creates a table, t1, and reserves the number of pointers to use for linked
duplicate keys to four. The CREATE INDEX statements create index keys for the table.

DROP table t1
CREATE table t1 LINKDUP=4 (c1 int, c2 int, c3 int)
CREATE INDEX link_1 on t1(c1,c2)
CREATE INDEX link_2 on t1(c1,c3)
CREATE UNIQUE INDEX link_3 on t1(c3)
CREATE INDEX link_4 on t1(c1)
CREATE INDEX link_5 on t1(c2)
CREATE INDEX link_6 on t1(c2,c3)

The results of the CREATE INDEX statements are the following:

• Linked duplicate keys: link_1, link_2, link_4, link_5

• Repeating duplicate keys: link_6 (because the number of pointers to use for linked duplicate
keys reached the specified value, four)

DROP INDEX link_2
CREATE INDEX link_7 on t1(c3,c1)

These two statements result in the following:

• Linked duplicate keys: link_1, link_4, link_5, link_7 (because the DROP INDEX statement
reduced the number of pointers to use for linked duplicate keys to three, which allowed link_7
to become the fourth linked duplicates index key)

• Repeating duplicate keys: link_6

============

The following statement creates a table and specifies that the columns should not allow NULL
values (that is, null indicator bytes are not added).

CREATE TABLE NoNulls
(ID UBIGINT NOT NULL,
Name CHAR(20) NOT NULL CASE,
Amount DOUBLE NOT NULL)

SQL Grammar in Zen

98 SQL Syntax Reference

============

If you need to create all columns as NOT NULL, you can first use the SET TRUENULLCREATE
statement to disable the creation of true nulls, then create the table. This allows you to avoid
specifying the NOT NULL attribute on each column. (See SET TRUENULLCREATE.) Note,
however, that the resulting legacy table does not enforce a NOT NULL attribute on any columns.
NULL is allowed even if NOT NULL is explicitly specified for the column. The following
statements create the same table as in the previous example.

SET TRUENULLCREATE=OFF
CREATE TABLE NoNulls2
(ID BIGINT,
Name CHAR(20) CASE,
Amount DOUBLE)
SET TRUENULLCREATE=ON

============

CREATE TABLE supports the specification of a DEFAULT value for columns. This is used when
rows are inserted without an explicitly specified value for that column. The next statement creates
a table with defaults matching the column data types. Note that IDENTITY columns have an
implied default of zero, which automatically generates the next highest value.

CREATE TABLE Defaults
(ID IDENTITY,
Name CHAR(20) DEFAULT 'none',
Amount DOUBLE DEFAULT 0.00,
EntryDay DATE DEFAULT CURDATE(),
EntryTime TIME DEFAULT CURTIME())

The next statements insert two rows using the defaults.

INSERT INTO Defaults (ID) VALUES (0)
INSERT INTO Defaults (ID, Name, Amount) VALUES (0, 'Joquin', '100')

A SELECT statement returns the results, containing default values.

SELECT * FROM Defaults
ID Name Amount EntryDay EntryTime
=== ======== ======== ========= ===========

1 none 0.0 curdate curtime
2 Joquin 100.0 curdate curtime

============

The following example assumes that you have a table Legacydata that contains columns with
legacy data types in data file olddata.dat. New databases cannot create tables with the legacy data
types. You could, however, create a DDF definition in a new database for Legacydata with the IN
DICTIONARY clause.

CREATE TABLE "Legacydata" IN DICTIONARY USING 'olddata.dat' (
"col1" LSTRING(10) NOT NULL,
"col2" VARCHAR(9) NOT NULL,
"col3" LOGICAL NOT NULL,
"col4" LOGICAL2 NOT NULL,

SQL Grammar in Zen

SQL Syntax Reference 99

"col5" NOTE(100) NOT NULL);

============

This example demonstrates the default creation of a Btrieve data file if a table is created without
specifying either a USING clause or REPLACE. The default name of the file is the table name
with the extension .mkd. If that file name already exists, a different name is generated using the
table name followed by a number and then the .mkd extension.

To create the table xyz, which generates the data file xyz.mkd:

CREATE TABLE xyz (c1 int, c2 char(5))

Now, delete the table using IN DICTIONARY, so the data file is not deleted:

DROP TABLE xyz in dictionary

Finally, if you create table xyz again:

CREATE TABLE xyz (c1 int, c2 char(5))

It creates the table xyz and the data file xyz000.mkd.

See Also

ALTER TABLE

DROP TABLE

CREATE INDEX

DEFAULT

SET DEFAULTCOLLATE

SQL Grammar in Zen

100 SQL Syntax Reference

CREATE (temporary) TABLE
You can also use the CREATE TABLE statement to create a temporary table. The CREATE
TABLE syntax for temporary tables is more restrictive than for permanent tables. For this reason,
and because of other characteristics, temporary tables are discussed separately. See Other
Characteristics.

Syntax
CREATE TABLE <# | ##>table-name (table-element [, table-element]...)

table-name ::= user-defined-name

table-element ::= column-definition | table-constraint-definition

column-definition ::= column-name data-type [DEFAULT default-value-expression] [column-constraint
[column-constraint]... [CASE (string) | COLLATE collation-name]

column-name ::= user-defined-name

data-type ::= data-type-name [(precision [, scale])]

precision ::= integer

scale ::= integer

default-value-expression ::= default-value-expression + default-value-expression
| default-value-expression - default-value-expression
| default-value-expression * default-value-expression
| default-value-expression / default-value-expression
| default-value-expression & default-value-expression
| default-value-expression | default-value-expression
| default-value-expression ^ default-value-expression
| (default-value-expression)
| -default-value-expression
| +default-value-expression
| ~default-value-expression
| ?
| literal
| scalar-function
| { fn scalar-function }
| USER
| NULL

literal ::= 'string' | N'string'
| number
| { d 'date-literal' }
| { t 'time-literal' }
| { ts 'timestamp-literal' }

column-constraint ::= [CONSTRAINT constraint-name] col-constraint

constraint-name ::= user-defined-name

col-constraint ::= NOT NULL
| NOT MODIFIABLE
| UNIQUE
| PRIMARY KEY
| REFERENCES table-name [(column-name)] [referential-actions]

SQL Grammar in Zen

SQL Syntax Reference 101

table-constraint-definition ::= [CONSTRAINT constraint-name] table-constraint

table-constraint ::= UNIQUE (column-name [, column-name]...)
| PRIMARY KEY (column-name [, column-name]...)
REFERENCES table-name [(column-name [, column-name]...)] [referential-actions]

referential-actions ::= referential-update-action [referential-delete-action]
| referential-delete-action [referential-update-action]

referential-update-action ::= ON UPDATE RESTRICT

referential-delete-action ::= ON DELETE CASCADE
| ON DELETE RESTRICT

collation-name ::= 'string'

Remarks

A temporary table is used for intermediate results or working storage. Unlike in permanent tables,
data in a temporary table is destroyed at some point during the SQL session or at the end of the
SQL session. The data is not saved in the database.

Temporary tables are useful to narrow down intermediate results by continuing to operate on
intermediate tables. Complex data operations are often easier if split into a sequence of simpler
steps, which each step operating on the table result of a previous step. A temporary table is a base
table. That is, the data it contains is its own. Contrast this with a view, which is an indirect
representation of data in other tables.

Zen supports two types of temporary tables:

• Local

• Global

Both types can be used within a stored procedure.

The following table summarizes characteristics of temporary tables contrasted with where the
table is created or used. Characteristics can vary depending on whether the table is created or used
within or outside of a stored procedure. Additional remarks are discussed as footnotes at the end
of the table.

SQL Grammar in Zen

102 SQL Syntax Reference

Except for permissible length of the temporary table name, the characteristics are the same for
both V1 and V2 metadata.

Table Characteristic Local Temporary
Table

Global Temporary
Table

Outside

of SP1
Within

SP
Outside

of SP
Within

SP

First character of table name must be # (see also
Compatibility with Previous Releases below)

yes yes no no

First character of table name must be ## (see also
Compatibility with Previous Releases below)

no no yes yes

Context of table same as database in which table is
created

yes yes yes yes

Two or more sessions can create table with same name2 yes yes no no

For V1 metadata, see Identifier Restrictions in Advanced
Operations Guide for the maximum length of a table
name (the length includes #, ##, underscores, and ID).

yes3 yes4 yes3 yes4

For V2 metadata, see Identifier Restrictions in Advanced
Operations Guide for the maximum length of a table
name (the length includes #, ##, underscores, and ID).

yes3 yes4 yes3 yes4

Table in another database can be accessed by qualifying
table name with other database name

no no yes yes

SELECT, INSERT, UPDATE, and DELETE statements
permitted on table

yes yes yes yes

ALTER TABLE and DROP TABLE statements
permitted on table

yes yes yes yes

Can create view on table no no no no

Can create user-defined function on table no no no no

Can create trigger on table no no no no

Can grant or revoke permissions on table no no no no

FOREIGN KEY constraint allowed with CREATE

TABLE statement5
no no no no

SELECT INTO statement can populate table with data yes yes yes yes

SELECT INTO statement can create table6 yes yes yes yes

SQL Grammar in Zen

SQL Syntax Reference 103

Table created in one SQL session can be accessed by
other SQL sessions

no no yes yes

Table created in procedure can be accessed outside of
that procedure

N/A9 no N/A9 yes

Table created in topmost procedure can be accessed by
nested procedures

N/A9 no N/A9 no

CREATE TABLE statement in a recursive stored
procedure returns table name error on recursive call

N/A9 yes7 N/A9 yes9

Table dropped when explicitly dropped yes yes yes yes

Table dropped at end of session in which table created yes yes8 yes yes

Table dropped at end of procedure in which table created N/A9 yes N/A9 no

Table dropped at end of transaction in another session N/A9 N/A9 yes yes

1SP stands for stored procedure
2The database engine automatically appends the name of the stored procedure and a session-specific ID
to the user-defined name to ensure a unique table name. This functionality is transparent to the user.
3The total length of the table name includes # or ##, plus an underscore, plus a session ID. The session
ID can be 8, 9, or 10 bytes depending on the operating system. See Identifier Restrictions in Advanced
Operations Guide.
4The total length of the table name includes # or ##, plus an underscore, plus the name of the stored
procedure, plus an underscore, plus a session ID. The session ID can be 8, 9, or 10 bytes depending on
the operating system. See Identifier Restrictions in Advanced Operations Guide.
5Constraint returns a warning but table is created.
6A table can be created and populated with data with a single SELECT INTO statement.
7The table name already exists from the first execution of the stored procedure.
8If end of session occurs before the execution of the procedure ends.
9N/A means “not applicable.”

Table Characteristic Local Temporary
Table

Global Temporary
Table

Outside

of SP1
Within

SP
Outside

of SP
Within

SP

SQL Grammar in Zen

104 SQL Syntax Reference

Compatibility with Previous Releases

Releases of Zen before PSQL v9 Service Pack 2 permitted the naming of permanent tables
starting with # or ##. Permanent tables starting with # or ## cannot be used with PSQL v9 Service
Pack 2 or later releases. Tables starting with # or ## are temporary tables and are created in the
TEMPDB database.

A "table not found" error is returned if you attempt to access a permanent table starting with # or
that was created with a version of Zen earlier than the version you are using.

See also Statement Separators in Zen User’s Guide.

TEMPDB Database

The installation of Zen creates a system database named TEMPDB. TEMPDB holds all
temporary tables. Never delete the TEMPDB database. If you remove it, you will be unable to
create temporary tables.

TEMPDB is created in the install directory of the Zen product. See Where are the files installed?
in Getting Started with Zen.

If you prefer, after installation, you may change the location of the dictionary files and data files
for TEMPDB. See Database Properties in Zen User’s Guide.

Caution! TEMPDB is a system database for exclusive use by the database engine. Do not use
TEMPDB as a repository of your permanent tables, views, stored procedures, and so forth.

Table Names of Local Temporary Tables

The database engine automatically appends information to the names of local temporary tables to
differentiate between temporary tables created across multiple sessions. The length of the
appended information varies depending on the operating system.

The name of a local temporary table can be at least 10 bytes provided the number of stored
procedures that create local temporary tables does not exceed 1296. The 10 bytes include the #
character. The 1296 limit applies to stored procedures within the same session.

The maximum name length is 20 bytes, including the # character, the table name, and the
appended information.

SQL Grammar in Zen

SQL Syntax Reference 105

Transactions

A global temporary table can be explicitly dropped or is automatically dropped when the session
in which the table was created ends. If a session other than the one that created the table uses the
table in a transaction, the table is dropped when the transaction completes.

SELECT INTO

You can create a temporary table and populate it with data by using a single SELECT INTO
statement. For example, SELECT * INTO #mytmptbl FROM Billing creates a local temporary
table named #mytmptbl (provided #mytmptbl does not already exist). The temporary table
contains the same data as the Billing table in the Demodata sample database.

If the SELECT INTO statement is executed a second time with the same temporary table name,
an error returns because the temporary table already exists.

The SELECT INTO statement can create a temporary table from two or more tables. However,
the column names must be unique in each of the tables from which the temporary table is created
or an error returns.

The error can be avoided if you qualify the column names with the table names and provide an
alias for each column. For example, suppose that table t1 and t2 both contain columns col1 and
col2. The following statement returns an error: SELECT t1.co1, t1.col2, t2.col1, t2.col2
INTO #mytmptbl FROM t1, t2. Instead, use a statement such as this: SELECT t1.co1 c1, t1.col2
c2, t2.col1 c3, t2.col2 c4 INTO #mytmptbl FROM t1, t2.

Restrictions on SELECT INTO
• A local temporary table created within a stored procedure is inside the scope of the stored

procedure. The local temporary table is destroyed after the stored procedure executes.

• The UNION and UNION ALL keywords are not permitted with a SELECT INTO statement.

• Only one temporary table can receive the results of the SELECT INTO statement. You cannot
SELECT data into multiple temporary table with a single SELECT INTO statement.

Caching of Stored Procedures

Any stored procedure that references a local or a global temporary table is not cached, regardless
of the cache settings. See SET CACHED_PROCEDURES and SET PROCEDURES_CACHE.

SQL Grammar in Zen

106 SQL Syntax Reference

Examples of Temporary Tables

The following example creates a local temporary table named #b_temp and populates it with the
data from the Billing table in the Demodata sample database.

SELECT * INTO "#b_temp" FROM Billing

============

The following example creates a global temporary table named ##tenurefac with columns ID,
Dept_Name, Building_Name, Room_Number, and a primary key based on column ID.

CREATE TABLE ##tenurefac
(ID UBIGINT,
Dept_Name CHAR(20) CASE,
Building_Name CHAR(25) CASE,
Room_Number UINTEGER,
PRIMARY KEY (ID))

============

The following example alters temporary table ##tenurefac and adds the column
Research_Grant_Amt.

ALTER TABLE ##tenurefac ADD Research_Grant_Amt DOUBLE

============

The following example drops temporary table ##tenurefac.

DROP TABLE ##tenurefac

============

The following example creates two temporary tables within a stored procedure, populates them
with data, then assigns values to variables. The values are selected from the temporary tables.

Note: SELECT INTO is permitted within a stored procedure if used to assigned values to
variables.

CREATE PROCEDURE "p11"()
AS BEGIN

DECLARE :val1_int INTEGER;
DECLARE :val2_char VARCHAR(20);
CREATE TABLE #t11 (col1 INT, col2 VARCHAR(20));
CREATE TABLE #t12 (col1 INT, col2 VARCHAR(20));
INSERT INTO #t11 VALUES (1,'t1 col2 text');
INSERT INTO #t12 VALUES (2,'t2 col2 text');
SELECT col1 INTO :val1_int FROM #t11 WHERE col1 = 1;
SELECT col2 INTO :val2_char FROM #t12 WHERE col1 = 2;
PRINT :val1_int;
PRINT :val2_char;
COMMIT;

END;
CALL P1()

SQL Grammar in Zen

SQL Syntax Reference 107

============

The following example creates global temporary table ##enroll_student_global_temp_tbl and
then creates stored procedure Enrollstudent. When called, the procedure inserts a record into
##enroll_student_global_temp_tbl, given the Student ID, Class ID, and a grade point average
(GPA). A SELECT selects all records in the temporary table and displays the result. The length of
the name for the global temporary table is permissible only for V2 metadata.

CREATE TABLE ##enroll_student_global_temp_tbl (student_id INTEGER, class_id INTEGER, GPA REAL);
CREATE PROCEDURE Enrollstudent(in :Stud_id integer, in :Class_Id integer, IN :GPA REAL);
BEGIN

INSERT INTO ##enroll_student_global_temp_tbl VALUES(:Stud_id, :Class_id, :GPA);
END;
CALL Enrollstudent(1023456781, 146, 3.2)
SELECT * FROM ##enroll_student_global_temp_tbl

============

The following example creates two temporary tables within a stored procedure, populates them
with data, then assigns values to variables. The values are selected from the temporary tables.

CREATE PROCEDURE "p11"()
AS BEGIN

DECLARE :val1_int INTEGER;
DECLARE :val2_char VARCHAR(20);
CREATE TABLE #t11 (col1 INT, col2 VARCHAR(20));
CREATE TABLE #t12 (col1 INT, col2 VARCHAR(20));
INSERT INTO #t11 VALUES (1,'t1 col2 text');
INSERT INTO #t12 VALUES (2,'t2 col2 text');
SELECT col1 INTO :val1_int FROM #t11 WHERE col1 = 1;
SELECT col2 INTO :val2_char FROM #t12 WHERE col1 = 2;
PRINT :val1_int;
PRINT :val2_char;
COMMIT;

END;
CALL P11()

See Also

ALTER TABLE

DROP TABLE

SELECT (with INTO)

SQL Grammar in Zen

108 SQL Syntax Reference

CREATE TRIGGER
The CREATE TRIGGER statement creates a new trigger in a database. Triggers are a type of
stored procedure that is automatically executed when table data is modified with an INSERT,
UPDATE, or DELETE.

Unlike a regular stored procedure, a trigger cannot be executed directly, nor can it have
parameters. Triggers do not return a result set, nor can they be defined on views.

Syntax
CREATE TRIGGER trigger-name before-or-after ins-upd-del ON table-name

[ORDER number]
[REFERENCING referencing-alias] FOR EACH ROW
[WHEN proc-search-condition] proc-stmt

trigger-name ::= user-defined-name

before-or-after ::= BEFORE | AFTER

ins-upd-del ::= INSERT | UPDATE | DELETE

referencing-alias ::= OLD [AS] correlation-name [NEW [AS] correlation-name]
| NEW [AS] correlation-name [OLD [AS] correlation-name]

correlation-name ::= user-defined-name

Remarks

Note: In a trigger, the name of a variable must begin with a colon (:).

OLD (OLD correlation-name) and NEW (NEW correlation-name) can be used inside triggers, not in
a regular stored procedure.

In a DELETE or UPDATE trigger, the letters "OLD" or an OLD correlation-name must be
prepended to a column name to reference a column in the row of data prior to the update or delete
operation.

In an INSERT or UPDATE trigger, the letters "NEW" or a NEW correlation-name must be
prepended to a column name to reference a column in the row about to be inserted or updated.

Trigger names must be unique in the dictionary.

Triggers are executed either before or after an UPDATE, INSERT, or DELETE statement is
executed, depending on the type of trigger.

SQL Grammar in Zen

SQL Syntax Reference 109

Note: CREATE TRIGGER statements are subject to the same length and other limitations as
CREATE PROCEDURE. For more information, see Limits and Data Type Restrictions.

Examples

The following example creates a trigger that records any new values inserted into the Tuition table
into TuitionIDTable.

CREATE TABLE Tuitionidtable (PRIMARY KEY(id), id UBIGINT);
CREATE TRIGGER InsTrig
BEFORE INSERT ON Tuition
REFERENCING NEW AS Indata
FOR EACH ROW
INSERT INTO Tuitionidtable VALUES(Indata.ID);

An INSERT on Tuition calls the trigger.

============

The following example shows how to keep two tables, A and B, synchronized with triggers. Both
tables have the same structure.

CREATE TABLE A (col1 INTEGER, col2 CHAR(10));
CREATE TABLE B (col1 INTEGER, col2 CHAR(10));
CREATE TRIGGER MyInsert
AFTER INSERT ON A FOR EACH ROW
INSERT INTO B VALUES (NEW.col1, NEW.col2);
CREATE TRIGGER MyDelete
AFTER DELETE ON A FOR EACH ROW
DELETE FROM B WHERE B.col1 = OLD.col1 AND B.col2 = OLD.col2;
CREATE TRIGGER MyUpdate
AFTER UPDATE ON A FOR EACH ROW
UPDATE B SET col1 = NEW.col1, col2 = NEW.col2 WHERE B.col1 = OLD.col1 AND B.col2 = OLD.col2;

Note that OLD and NEW in the example keep the tables synchronized only if table A is altered
with nonpositional SQL statements. If the SQLSetPOS API or a positioned update or delete is
used, then the tables stay synchronized only if table A does not contain any duplicate records. A
SQL statement cannot be constructed to alter one record but leave another duplicate record
unaltered.

See Also

DROP TRIGGER

SQL Grammar in Zen

110 SQL Syntax Reference

CREATE USER
The CREATE USER statement creates a new user account in a database.

This function can be used to create a user account in a database with a password, without a
password, or as member of a group.

Syntax
CREATE USER user-name [WITH PASSWORD user-password][IN GROUP referencing-alias]

Remarks

This statement creates a user with the same rights as those of a user created using the Zen Control
Center (ZenCC). For example, the created user is not restricted by default from creating a
database even if the user is not logged in as Master.

Only the Master user can execute this statement.

Security must be turned on to perform this statement.

User-name and user-password here only refer to Zen databases and are not related to user names
and passwords set at the operating system level. Zen user names, groups, and passwords can also
be configured through the Zen Control Center (ZenCC).

User-name must be unique in the dictionary.

The user name and password must be enclosed in double quotes if they contain spaces or other
nonalphanumeric characters.

If you create a user as the member of a group, you must set up the group before creating the user.

For further general information about users and groups, see Master User and Users and Groups in
Advanced Operations Guide, and Assigning Permissions Tasks in Zen User’s Guide.

Examples

The following examples show how to create a new user account without any login privileges and
without a membership in any group.

CREATE USER pgranger

The new user name is pgranger. The user password is NULL and the user account is not a
member of any group.

SQL Grammar in Zen

SQL Syntax Reference 111

CREATE USER "polly granger"

The new user name is polly granger with nonalphanumeric characters. The user password is
NULL and the user account is not a member of any group.

============

The following examples show how to create a new user account with login privileges that is not a
member of any group.

CREATE USER pgranger WITH PASSWORD Prvsve1

The new user name is pgranger. The user password is Prsve1 (case-sensitive).

CREATE USER pgranger WITH PASSWORD "Nonalfa$"

The new user name is pgranger. The user password is Nonalfa$ (case-sensitive) with
nonalphanumeric characters.

============

The following example shows how create a new user as a member of a group without login
privileges.

CREATE USER pgranger IN GROUP developers

The new user name is pgranger. The new user account is a assigned to the group developers.

============

The following example shows how create a new user as a member of a group with login
privileges.

CREATE USER pgranger WITH PASSWORD Prvsve1 IN GROUP developers

The new user name is pgranger. The new user account is assigned to the group developers and has
the case-sensitive password Prvsve1. The order of this syntax (CREATE USER..WITH
PASSWORD...IN GROUP) is absolutely necessary.

See Also

ALTER USER, DROP USER, GRANT

SQL Grammar in Zen

112 SQL Syntax Reference

CREATE VIEW
The CREATE VIEW statement defines a stored view or virtual table.

Syntax
CREATE VIEW view-name [(column-name [, column-name]...)]
[WITH EXECUTE AS 'MASTER'] AS query-specification
[ORDER BY order-by-expression [, order-by-expression]...]

view-name ::= user-defined-name

column-name ::= user-defined-name

order-by-expression ::= expression [CASE (string) | COLLATE collation-name] [ASC | DESC] (see
SELECT syntax)

Remarks

A view is a database object that stores a query and behaves like a table. Data returned by a view is
stored in one or more tables, referenced by SELECT statements. Rows and columns in the view
are refreshed each time it is referenced.

See Identifier Restrictions in Advanced Operations Guide for the maximum length of a view
name. The maximum number of columns in a view is 256. View definitions have a 64 KB limit.

Zen supports grouped views, defined as views using any of the following in the SELECT
statement:

• DISTINCT

• GROUP BY

• ORDER BY

• Scalar Functions

• Scalar Subqueries

• TOP or LIMIT

• UNION

Grouped views may be used in a subquery provided that the subquery is an expression. A
subquery is not considered an expression if it is connected with the operators IN, EXISTS, ALL,
or ANY.

View definitions cannot contain procedures.

SQL Grammar in Zen

SQL Syntax Reference 113

ORDER BY

ORDER BY in a view works the same way as in a SELECT statement. Note especially the
following:

• You may use aliases in an ORDER BY clause.

• You may use scalar subqueries in an ORDER BY clause.

• The use of TOP or LIMIT is recommended in views that use ORDER BY.

• If the engine uses a temporary table to return the ordered result of ORDER BY and the query
uses a dynamic cursor, then the cursor is converted to static. For example, temporary tables
are always required when ORDER BY is used on an unindexed column. Forward-only and
static cursors are not affected.

Trusted and Non-Trusted Views

A trusted view includes WITH EXECUTE AS 'MASTER'. See Trusted and Non-Trusted Objects.

Examples of Trusted and Non-Trusted Views

The following statement creates a non-trusted view named vw_Person, which creates a phone list
of all the people enrolled in a university. This view lists the last names, first names and telephone
numbers with a heading for each column. The Person table is part of the Demodata sample
database.

CREATE VIEW vw_Person (lastn,firstn,phone) AS SELECT Last_Name, First_Name,Phone FROM Person

In a subsequent query on the view, you may use the column headings in your SELECT statement:

SELECT lastn, firstn FROM vw_Person

The user executing the view must have SELECT permissions on the Person table.

============

The following example creates a similar view, but a trusted one.

CREATE VIEW vw_trusted_Person (lastn,firstn,phone) WITH EXECUTE AS 'MASTER' AS SELECT Last_Name,
First_Name,Phone FROM Person

Now assume that to user1 you grant SELECT permissions on vw_Person. User1 can use the
column headings in a SELECT statement:

SELECT lastn, firstn FROM vw_trusted_Person

SQL Grammar in Zen

114 SQL Syntax Reference

User1 is not required to have SELECT permissions on the Person table because the permissions
were granted to the trusted view.

============

The following statement creates a view named vw_Person, which creates a phone list of all the
people enrolled in a university. This view lists the last names, first names and telephone numbers
with a heading for each column. The Person table is part of the Demodata sample database.

CREATE VIEW vw_Person (lastn, firstn, telphone) AS SELECT Last_Name, First_Name, Phone FROM Person

In a subsequent query on the view, you may use the column headings in your SELECT statement,
as shown in the next example.

SELECT lastn, firstn FROM vw_Person

============

The example above can be changed to include an ORDER BY clause.

CREATE VIEW vw_Person_ordby (lastn, firstn, telphone) AS SELECT Last_Name, First_Name, Phone FROM
Person ORDER BY phone

The view returns the following (for brevity, not all records are shown).

Last_Name First_Name Phone
========= ========== ==========
Vqyles Rex 2105551871
Qulizada Ahmad 2105552233
Ragadio Ernest 2105554654
Luckey Anthony 2105557628

============

The following example creates a view that returns the grade point average (GPA) of students in
descending order, and, for each GPA ordering, lists the students by last name descending.

CREATE VIEW vw_gpa AS SELECT Last_Name,Left(First_Name,1) AS First_Initial,Cumulative_GPA AS GPA FROM
Person LEFT OUTER JOIN Student ON Person.ID=Student.ID ORDER BY Cumulative_GPA DESC, Last_Name

The view returns the following (for brevity, not all records are shown).

Last_Name First_Initial GPA
========================= =============== ======
Abuali I 4.000
Adachi K 4.000
Badia S 4.000
Rowan A 4.000
Ujazdowski T 4.000
Wotanowski H 4.000
Gnat M 3.998
Titus A 3.998
Mugaas M 3.995

============

This example creates a view that returns the top 10 records from the Person table, ordered by ID.

SQL Grammar in Zen

SQL Syntax Reference 115

CREATE VIEW vw_top10 AS SELECT TOP 10 * FROM person ORDER BY id;

The view returns the following (for brevity, not all columns are shown).

ID First_Name Last_Name
========= ========== ==========
100062607 Janis Nipart
100285859 Lisa Tumbleson
100371731 Robert Mazza
100592056 Andrew Sugar
100647633 Robert Reagen
100822381 Roosevelt Bora
101042707 Avram Japadjief

10 rows were affected.

============

The following example creates a view to demonstrate that ORDER BY can be used with UNION.

CREATE VIEW vw_union_ordby_desc AS SELECT first_name FROM person UNION SELECT last_name FROM PERSON
ORDER BY first_name DESC

The view returns the following (for brevity, not all records are shown).

First_Name
===========
Zyrowski
Zynda
Zydanowicz
Yzaguirre
Yyounce
Xystros
Xyois
Xu
Wyont
Wynalda
Wykes

See Also

DROP VIEW

SELECT

SET ROWCOUNT

Trusted and Non-Trusted Objects

SQL Grammar in Zen

116 SQL Syntax Reference

DECLARE

Remarks

Use the DECLARE statement to define a SQL variable.

This statement is allowed only inside of a stored procedure, a user-defined function, or a trigger.

The name of a variable must begin with a colon (:) or an at sign (@), both in the definition and use
of the variable or parameter. A variable must be declared before it can be set to a value with SET.

Use a separate DECLARE statement for each variable (you cannot declare multiple variables with
a single statement). Specify a value or values for data types that require a size, precision, or scale,
such as CHAR, DECIMAL, NUMERIC, and VARCHAR.

Examples

The following examples show how to declare variables, including ones that require a value for
size, precision, or scale.

DECLARE :SaleItem CHAR(15);
DECLARE :CruiseLine CHAR(25) DEFAULT 'Open Seas Tours'
DECLARE :UnitWeight DECIMAL(10,3);
DECLARE :Titration NUMERIC(12,3);
DECLARE :ReasonForReturn VARCHAR(200);
DECLARE :Counter INTEGER = 0;
DECLARE :CurrentCapacity INTEGER = 9;
DECLARE :Cust_ID UNIQUEIDENTIFIER = NEWID()
DECLARE :ISO_ID UNIQUEIDENTIFIER = '1129619D-772C-AAAB-B221-00FF00FF0099'

See Also

CREATE FUNCTION

CREATE PROCEDURE

CREATE TRIGGER

SET

SQL Grammar in Zen

SQL Syntax Reference 117

DECLARE CURSOR
The DECLARE CURSOR statement defines a SQL cursor.

Syntax
DECLARE cursor-name CURSOR FOR select-statement [FOR UPDATE | FOR READ ONLY]

cursor-name ::= user-defined-name

Remarks

The DECLARE statement is only allowed inside of a stored procedure or a trigger, since cursors
and variables are only allowed inside of stored procedures and triggers.

The default behavior for cursors is read-only. Therefore, you must use FOR UPDATE to
explicitly designate an update (write or delete).

Examples

The following example creates a cursor that selects values from the Degree, Residency, and
Cost_Per_Credit columns in the Tuition table and orders them by ID number.
DECLARE BTUCursor CURSOR
FOR SELECT Degree, Residency, Cost_Per_Credit
FROM Tuition
ORDER BY ID;

============

The following examples use FOR UPDATE to ensure a delete.

CREATE PROCEDURE MyProc(IN :CourseName CHAR(7)) AS
BEGIN
DECLARE c1 CURSOR FOR SELECT name FROM course WHERE name = :CourseName FOR UPDATE;
OPEN c1;
FETCH NEXT FROM c1 INTO :CourseName;
DELETE WHERE CURRENT OF c1;
CLOSE c1;
END;
CALL MyProc('HIS 305')

DECLARE cursor1 CURSOR
FOR SELECT Degree, Residency, Cost_Per_Credit
FROM Tuition ORDER BY ID
FOR UPDATE;

See Also

CREATE PROCEDURE, CREATE TRIGGER

SQL Grammar in Zen

118 SQL Syntax Reference

DEFAULT
A table may have columns that do not allow a null value. To avoid errors, you can define the
default contents for those columns so that in new records they always have valid values. To do
this, use the DEFAULT keyword in CREATE or ALTER column definitions to set the column
value to be used with INSERT and UPDATE statements when one or both of the following apply:

• No explicit column value is provided.

• A column does not allow a binary zero and requires a valid value other than a null.

Once a default column value is defined, then when you insert or update a row, you can use the
DEFAULT keyword to provide its value in a VALUES clause.

To summarize, the DEFAULT keyword can be used in the following instances:

• Column definition of CREATE TABLE

• Column definition of ALTER TABLE

• VALUES clause of INSERT

• VALUES clause of UPDATE

The default value is a literal or an expression. In a CREATE TABLE or ALTER TABLE statement
it must:

• Match the data type of the column

• Conform to any other constraint imposed on the column, such as range or length

In INSERT and UPDATE statements, for columns with a DEFAULT expression defined, Zen
evaluates the expression and writes the result while inserting or updating. Note that for INSERT,
the columns in existing records are unchanged.

Syntax

See the syntax for the following statements for use of the DEFAULT keyword:

• ALTER TABLE

• CREATE TABLE

• CREATE FUNCTION

• CREATE PROCEDURE

• INSERT

• UPDATE

SQL Grammar in Zen

SQL Syntax Reference 119

Remarks

These topics cover literal values or expressions as DEFAULT:

• Restrictions on Identity Data Types

• Scalar Functions and Simple Expressions as Default Column Values

• Using DEFAULT with ALTER TABLE

Restrictions on Identity Data Types

For an IDENTITY, SMALLIDENTITY, or BIGIDENTITY data type column in a CREATE
TABLE or ALTER TABLE statement, you may set a default value of zero (DEFAULT 0 or
DEFAULT '0'). No other default value is permissible for these data types.

Scalar Functions and Simple Expressions as Default Column Values

In addition to literals and NULL values, Zen also allows you to define DEFAULT values using
scalar functions and simple expressions so long as they return a value with the same data type as
the column. For example, USER() can be used for string columns CHAR and VARCHAR. The
returned value is evaluated at the time of its use in new INSERT and UPDATE statements.

The following example shows the use of DEFAULT with a simple expression and a variety of
scalar functions:

CREATE TABLE DEFAULTSAMPLE (
 a INT DEFAULT 100,
 b DOUBLE DEFAULT PI(),
 c DATETIME DEFAULT NOW(),
 d CHAR(20) DEFAULT USER(),
 e VARCHAR(10) DEFAULT UPPER(DAYNAME(CURDATE())),
 f VARCHAR(40) DEFAULT '{'+CONVERT(NEWID(),SQL_VARCHAR)+'}',
 g INTEGER DEFAULT DAYOFYEAR(NOW())
);
INSERT INTO DEFAULTSAMPLE DEFAULT VALUES;
SELECT * FROM TX;
 a b c d
=========== ======================= ============================== ===================
 100 3.141592653589793 2021-11-12 17:25:59.288 Master

e f g
========= ======================================= ==========
FRIDAY {EF66F711-36D2-40FA-B928-BAFCC486DA6B} 316

Using DEFAULT with ALTER TABLE

If you are using ALTER TABLE to modify a column definition to add a DEFAULT attribute, you
must include any column attributes already defined, since ALTER TABLE does not add to an
existing column definition but instead replaces it. Also, as shown in the following example,
altering a column to change its DEFAULT value has no effect on any existing value:

SQL Grammar in Zen

120 SQL Syntax Reference

CREATE TABLE Tab10 (a INT, b CHAR(20) CASE); --column b is case-insensitive
ALTER TABLE Tab10 ALTER COLUMN b CHAR(20) DEFAULT 'xyz'; --column b has a default but is no longer
case-insensitive
INSERT INTO Tab10 DEFAULT VALUES;
SELECT * FROM Tab10;
 a b
=========== ====================
 (Null) xyz
1 row was affected.
SELECT * FROM Tab10 WHERE b = 'XYZ'; --case doesn't match so no row returned
 a b
=========== ====================
0 rows were affected.
ALTER TABLE Tab10 ALTER COLUMN b CHAR(20) CASE DEFAULT 'xyz'; --column b is now case-insensitive
and has a default
SELECT * FROM Tab10 WHERE b = 'XYZ'; --case doesn't need to match
 a b
=========== ====================
 (Null) xyz
1 row was affected.

Examples

The following statement creates table Tab5. The default value of the col5 column is 200.

CREATE TABLE Tab5
(col5 INT DEFAULT 200)

============

This statement creates table Tab1 where column col1 is the DATE part of the result returned by
NOW().

CREATE TABLE Tab1
(col1 DATE DEFAULT NOW())

============

This statement creates table Tab8 where column col8 is the time of the INSERT or UPDATE.

CREATE TABLE Tab8
(col8 TIMESTAMP DEFAULT CURRENT_TIMESTAMP())

============

The following statement creates table Tab6 where column col6 is the user name after an INSERT
or UPDATE. DEFAULT USER is practical only with security enabled. Otherwise USER is
always NULL. The keyword USER gives the same result as the USER() function.

CREATE TABLE Tab6
(col6 VARCHAR(20) DEFAULT USER)

============

The following statement shows an invalid example. It results in a parse-time error because TIME
is not an allowed data type for a DATE column.

SQL Grammar in Zen

SQL Syntax Reference 121

CREATE TABLE Tab
(col DATE DEFAULT CURTIME())

============

The following statement shows an invalid example. It results in a parse-time error because
although '3.1' is convertible to a number, it is not a valid integer.

CREATE TABLE Tab
(col SMALLINT DEFAULT '3.1')

============

The following statement shows an invalid example. The CREATE TABLE statement succeeds,
but the INSERT statement fails because -60000 is outside of the range supported by SMALLINT.

CREATE TABLE Tab
(col SMALLINT DEFAULT 3 * -20000)
INSERT INTO Tab values(DEFAULT)

============

The following statements show valid examples of setting a default value of zero for an
IDENTITY and a SMALLIDENTITY data type.

CREATE TABLE t1 (c1 IDENTITY DEFAULT '0')
ALTER TABLE t1 ALTER c1 SMALLIDENTITY DEFAULT 0

============

The following statements show invalid examples of setting a default value for an IDENTITY and
a SMALLIDENTITY data type.

CREATE TABLE t1 (c1 IDENTITY DEFAULT 3)
ALTER TABLE t1 ALTER c1 SMALLIDENTITY DEFAULT 1

See Also

ALTER TABLE

CREATE TABLE

CREATE FUNCTION

CREATE PROCEDURE

INSERT

UPDATE

SQL Grammar in Zen

122 SQL Syntax Reference

DELETE (positioned)
Use the positioned DELETE statement to remove the current row of a view associated with a SQL
cursor.

Syntax
DELETE WHERE CURRENT OF cursor-name

cursor-name ::= user-defined-name

Remarks

This statement is allowed in stored procedures, triggers, and at the session level.

Note: Even though positioned DELETE is allowed at the session level, the DECLARE CURSOR
statement is not. The method to obtain the cursor name of the active result set depends on the Zen
access method your application uses. See the Zen documentation for that access method.

Examples

The following sequence of statements provide the setting for the positioned DELETE statement.
The required statements for the positioned DELETE statement are DECLARE CURSOR, OPEN
CURSOR, and FETCH FROM cursorname.

The Modern European History class has been dropped from the schedule, so this example deletes
the row for Modern European History (HIS 305) from the Course table in the sample database:

CREATE PROCEDURE DropClass();
DECLARE :CourseName CHAR(7);
DECLARE c1 CURSOR
FOR SELECT name FROM COURSE WHERE name = :CourseName;
BEGIN
SET :CourseName = 'HIS 305';
OPEN c1;
FETCH NEXT FROM c1 INTO :CourseName;
DELETE WHERE CURRENT OF c1;
END;

See Also

CREATE PROCEDURE

CREATE TRIGGER

SQL Grammar in Zen

SQL Syntax Reference 123

DELETE
This statement deletes specified rows from a database table or view.

Syntax
DELETE [FROM] < table-name | view-name > [alias-name]
[FROM table-reference [, table-reference] ...
[WHERE search-condition]

table-name ::= user-defined-name

view-name ::= user-defined-name

alias-name ::= user-defined-name (Alias-name is not allowed if a second FROM clause is used. See
FROM Clause.)

table-reference ::= { OJ outer-join-definition }
| [db-name.]table-name [[AS] alias-name]
| [db-name.]view-name [[AS] alias-name]
| join-definition
| (join-definition)
| (table-subquery)[AS] alias-name [(column-name [, column-name]...)]

outer-join-definition ::= table-reference outer-join-type JOIN table-reference ON search-condition

outer-join-type ::= LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]

search-condition ::= search-condition AND search-condition
| search-condition OR search-condition
| NOT search-condition
| (search-condition)
| predicate

db-name ::= user-defined-name

view-name ::= user-defined-name

join-definition ::= table-reference [join-type] JOIN table-reference ON search-condition
| table-reference CROSS JOIN table-reference
| outer-join-definition

join-type ::= INNER | LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]

table-subquery ::= query-specification [[UNION [ALL]
query-specification]...]

Remarks

DELETE statements, as with INSERT and UPDATE, behave in an atomic manner. That is, if a
deletion of more than one row fails, then all deletions of previous rows by the same statement are
rolled back.

SQL Grammar in Zen

124 SQL Syntax Reference

FROM Clause

Some confusion may arise pertaining to the second optional FROM clause and references to the
table whose rows are being deleted (referred to as the "delete table"). If the delete table occurs in
the second FROM clause, then one of the occurrences is the same instance of the table whose
rows are being deleted.

For example, in the statement DELETE t1 FROM t1, t2 WHERE t1.c1 = t2.c1, the t1 immediately
after DELETE is the same instance of table t1 as the t1 after FROM. Therefore, the statement is
identical to DELETE t1 FROM t2 WHERE t1.c1 = t2.c1.

If the delete table occurs in the second FROM clause multiple times, one occurrence must be
identified as the same instance as the delete table. The second FROM clause reference that is
identified as the same instance as the delete table is the one that does not have a specified alias.

 Therefore, the statement DELETE t1 FROM t1 a, t1 b WHERE a.c1 = b.c1 is invalid because both
instances of t1 in the second FROM clause contain an alias. The following version is valid:
DELETE t1 FROM t1, t1 b WHERE t1.c1 = b.c1.

The following conditions apply to the second FROM clause:

• If the DELETE statement contains an optional second FROM clause, the table reference prior
to the FROM clause cannot have an alias specified. For example, DELETE t1 a FROM t2 WHERE
a.c1 = t2.c1 returns the following error:

SQL_ERROR (-1)
SQLSTATE of "37000"
"Table alias not allowed in UPDATE/DELETE statement with optional FROM."

A valid version of the statement is DELETE t1 FROM t2 WHERE t1.c1 = t2.c1 or DELETE t1
FROM t1 a, t2 WHERE a.c1 = t2.c1.

• If more than one reference to the delete table appears in the second FROM clause, then only
one of the references can have a specified alias. For example, DELETE t1 FROM t1 a, t1 b
WHERE a.c1 = b.c1 returns the following error:

SQL_ERROR (-1)
SQLSTATE of "37000"
"The table t1 is ambiguous."

In the erroneous statement, assume that you want table t1 with alias "a" to be the same
instance of the delete table. A valid version of the statement is DELETE t1 FROM t1, t1 b
WHERE t1.c1 = b.c1.

• The second FROM clause is supported in a DELETE statement only at the session level. The
FROM clause is not supported if the DELETE statement occurs within a stored procedure.

SQL Grammar in Zen

SQL Syntax Reference 125

Examples

The following statement deletes the row for first name Ellen from the person table in the sample
database.

DELETE FROM person WHERE First_Name = 'Ellen'

The following statement deletes the row for Modern European History (HIS 305) from the course
table in the sample database:

DELETE FROM Course WHERE Name = 'HIS 305'

SQL Grammar in Zen

126 SQL Syntax Reference

DISTINCT
Include the DISTINCT keyword in your SELECT statement to remove duplicate values from the
result. By using DISTINCT, you can retrieve all unique rows that match the selection.

The following rules apply:

• Zen supports DISTINCT in subqueries.

• DISTINCT is ignored if the selection list contains an aggregate. Aggregation already
guarantees no duplicate result rows.

Examples

The following statements retrieve all courses taught by faculty ID 111191115. The second
statement uses DISTINCT to eliminate rows with duplicate column values.

SELECT c.Name, c.Description
FROM Course c, class cl
WHERE c.name = cl.name AND cl.faculty_id = '111191115';

Name Description
======= ==
CHE 203 Chemical Concepts and Properties I
CHE 203 Chemical Concepts and Properties I
CHE 205 Chemical Concepts and Properties II
CHE 205 Chemical Concepts and Properties II

SELECT DISTINCT c.Name, c.Description
FROM Course c, class cl
WHERE c.name = cl.name AND cl.faculty_id = '111191115';

Name Description
======= ==
CHE 203 Chemical Concepts and Properties I
CHE 205 Chemical Concepts and Properties II

Note: The following use of DISTINCT is not allowed:
SELECT DISTINCT column1, DISTINCT column2

See Also

SELECT

For other uses of DISTINCT, see DISTINCT in Aggregate Functions.

SQL Grammar in Zen

SQL Syntax Reference 127

DROP DATABASE
The DROP DATABASE statement deletes a database. Only the Master user can issue this
statement.

Syntax
DROP DATABASE [IF EXISTS] database-name [DELETE FILES]

database-name ::= user-defined-name

Remarks

As Master user, you must be logged on to a database to issue the statement. The DROP
DATABASE statement can be used to drop any database, including the one to which you are
currently logged on, provided the security setting permits deletion. See Secured Databases below.

DROP DATABASE cannot be used to delete system databases such as defaultdb and tempdb. The
statement can be used to delete the last remaining user-defined database if you choose, security
permitting.

The DROP DATABASE statement cannot be used in a stored procedure or in a user-defined
function.

The expression IF EXISTS causes the statement to return success instead of an error if a database
does not exist. IF EXISTS does not suppress other errors.

Secured Databases

You cannot delete a database secured with the Database security model. You can delete a database
secured with any of the following ways:

• Classic security

• Mixed security

• Relational security (Master password) in combination with Classic or Mixed security

For more information, see Zen Security in Advanced Operations Guide.

DELETE FILES

The DELETE FILES clause is for deleting data dictionary files (DDFs). Data files are not deleted.

SQL Grammar in Zen

128 SQL Syntax Reference

If DELETE FILES is omitted, the DDFs remain on physical storage, but the database name is
deleted from dbnames.cfg. Once the name is removed from dbnames.cfg, the database no longer
exists to the database engine. Retaining the DDFs allows you to recreate the database should you
so choose.

Note that the DDFs must not be in use to delete them. If you have Zen Control Center open, for
example, a "file is locked" error returns if you use the DELETE FILES clause. While ZenCC is
open, the DDFs are considered to be in use, which prevents their deletion.

Examples

The following example deletes a database named inventorydb from dbnames.cfg, but it retains the
database DDFs (and data files) in physical storage.

DROP DATABASE inventorydb

============

The following example deletes a database named HRUSBenefits and its DDFs. Data files are
retained for HRUSBenefits.

DROP DATABASE HRUSBenefits DELETE FILES

See Also

CREATE DATABASE

SQL Grammar in Zen

SQL Syntax Reference 129

DROP FUNCTION
The DROP FUNCTION statement removes an existing user-defined function (UDF) from the
database.

Note: An error message appears if you attempt to delete a UDF that does not exist.

Syntax
DROP FUNCTION [IF EXISTS] { function_name }

function_name ::= Name of the user-defined function to be removed.

Remarks

The expression IF EXISTS causes the statement to return success instead of an error if a function
does not exist. IF EXISTS does not suppress other errors.

Examples

The following statement drops UDF fn_MyFunc from the database.

DROP FUNCTION fn_MyFunc

See Also

CREATE FUNCTION

SQL Grammar in Zen

130 SQL Syntax Reference

DROP GROUP
This statement removes one or more groups in a secured database.

Syntax
DROP GROUP [IF EXISTS] group-name [, group-name]...

Remarks

Only the Master user can perform this statement. Separate multiple group names with a comma. A
group must be empty to be dropped.

Security must be turned on to perform this statement.

The expression IF EXISTS causes the statement to return success instead of an error if a group
does not exist. IF EXISTS does not suppress other errors.

Examples

The following example drops the group zengroup.

DROP GROUP zengroup

The following example uses a list to drop groups.

DROP GROUP zen_dev, zen_marketing

See Also

ALTER GROUP

CREATE GROUP

SQL Grammar in Zen

SQL Syntax Reference 131

DROP INDEX
This statement drops a specific index from a designated table.

Syntax
DROP INDEX [IF EXISTS] [table-name.]index-name [IN DICTIONARY]

table-name ::= user-defined-name

index-name ::= user-defined-name

Remarks

IN DICTIONARY is an advanced feature that should be used only by system administrators and
when absolutely necessary. The IN DICTIONARY keyword allows you to drop an index from a
DDF without removing the index from the underlying data file. Normally, Zen keeps DDFs and
data files tightly synchronized, but this feature allows users the flexibility to force out-of-sync
table dictionary definitions to match an existing data file. This can be useful when you want to
create a new definition in the dictionary to match an existing data file.

Caution! Modifying a DDF without performing corresponding modifications to the underlying
data file can cause serious problems.

The expression IF EXISTS causes the statement to return success instead of an error if an index
does not exist. IF EXISTS does not suppress other errors.

For more information on this feature, see the discussion under IN DICTIONARY.

Partial Indexes

When dropping partial indexes, the PARTIAL modifier is not required.

Examples

The following statement drops the named index from the Faculty table.

DROP INDEX Faculty.Dept

============

The following examples create a detached table, one with no associated data file, then add and
drop an index from the table definition. The index is a detached index because there is no
underlying Btrieve index associated with it.

SQL Grammar in Zen

132 SQL Syntax Reference

CREATE TABLE t1 IN DICTIONARY (c1 int, c2 int)
CREATE INDEX idx_1 IN DICTIONARY on t1(c1)
DROP INDEX t1.idx_1 IN DICTIONARY

See Also

CREATE INDEX

SQL Grammar in Zen

SQL Syntax Reference 133

DROP PROCEDURE
This statement removes one or more stored procedures from the current database.

Syntax
DROP PROCEDURE [IF EXISTS] procedure-name

Remarks

The expression IF EXISTS causes the statement to return success instead of an error if a
procedure does not exist. IF EXISTS does not suppress other errors.

Examples

The following statement drops the stored procedure myproc from the dictionary:

DROP PROCEDURE myproc

See Also

CREATE PROCEDURE

SQL Grammar in Zen

134 SQL Syntax Reference

DROP TABLE
This statement removes a table from a designated database.

Syntax
DROP TABLE [IF EXISTS] table-name [IN DICTIONARY]

table-name ::= user-defined-name for the table to be removed

IN DICTIONARY

See the discussion of IN DICTIONARY for ALTER TABLE.

Remarks

CASCADE and RESTRICT are not supported.

If any triggers depend on the table, the table is not dropped.

If a transaction is in progress and refers to the table, then an error is signaled and the table is not
dropped.

The drop of table fails if other tables depend on the table to be dropped.

If a primary key exists, it is dropped. The user need not drop the primary key before dropping the
table. If the primary key of the table is referenced by a constraint belonging to another table, then
the table is not dropped and an error is signaled.

If the table has any foreign keys, then those foreign keys are dropped.

If the table has any other constraints (for example, NOT NULL, CHECK, UNIQUE, or NOT
MODIFIABLE), then those constraints are dropped when the table is dropped.

The expression IF EXISTS causes the statement to return success instead of an error if a table
does not exist. IF EXISTS does not suppress other errors.

Examples

The following statement drops the class table definition from the dictionary.

DROP TABLE Class

SQL Grammar in Zen

SQL Syntax Reference 135

See Also

ALTER TABLE

CREATE TABLE

SQL Grammar in Zen

136 SQL Syntax Reference

DROP TRIGGER
This statement removes a trigger from the current database.

Syntax
DROP TRIGGER [IF EXISTS] trigger-name

Remarks

The expression IF EXISTS causes the statement to return success instead of an error if a trigger
does not exist. IF EXISTS does not suppress other errors.

Examples

The following example drops the trigger named InsTrig.

DROP TRIGGER InsTrig

See Also

CREATE TRIGGER

SQL Grammar in Zen

SQL Syntax Reference 137

DROP USER
The DROP USER statement removes user accounts from a database.

Syntax
DROP USER [IF EXISTS] user-name [, user-name]...

Remarks

Only the Master user can execute this statement.

Security must be turned on to perform this statement.

Separate multiple user names with a comma.

If the user name contains spaces or other nonalphanumeric characters, it must be enclosed in
double quotation marks.

Dropping a user account does not delete the tables, views, or other database objects created by the
user.

The expression IF EXISTS causes the statement to return success instead of an error if a user does
not exist. IF EXISTS does not suppress other errors.

For further general information about users and groups, see Master User and Users and Groups in
Advanced Operations Guide, and Assigning Permissions Tasks in Zen User’s Guide.

Examples

The following example removes the user account pgranger.

DROP USER pgranger

============

The following example removes multiple user accounts.

DROP USER pgranger, "lester pelling"

See Also

ALTER USER

CREATE USER

SQL Grammar in Zen

138 SQL Syntax Reference

DROP VIEW
This statement removes a specified view from the database.

Syntax
DROP VIEW [IF EXISTS] view-name

view-name ::= user-defined name

Remarks

[CASCADE | RESTRICT] is not supported.

The expression IF EXISTS causes the statement to return success instead of an error if a view
does not exist. IF EXISTS does not suppress other errors.

Examples

The following statement drops the vw_person view definition from the dictionary.

DROP VIEW vw_person

See Also

CREATE VIEW

SQL Grammar in Zen

SQL Syntax Reference 139

END

Remarks

See the discussion for BEGIN [ATOMIC].

SQL Grammar in Zen

140 SQL Syntax Reference

EXECUTE
The EXECUTE statement has two uses:

• To invoke a user-defined procedure or a system stored procedure. You may use EXECUTE in
place of the CALL statement

• To execute a character string, or an expression that returns a character string, within a stored
procedure.

Syntax

To invoke a stored procedure:

EXEC[UTE] stored-procedure [([procedure-parameter [, procedure-parameter]...])]
stored-procedure ::= the name of a stored procedure
procedure-parameter ::= the input parameters required by the stored procedure

Within a user-defined stored procedure:

EXEC[UTE] (string [+ string]...)
string ::= a string, string variable, or an expression that returns a character string

Remarks

The stored procedure syntax EXEC[UTE] (string...) does not support NCHAR values for literals
and variables. Values used in constructing the string are converted to CHAR values before
execution.

Examples

The following example executes a procedure without parameters:

EXEC NoParms() or CALL NoParms

The following examples execute a procedure with parameters:

EXEC Parms(vParm1, vParm2)
EXECUTE CheckMax(N.Class_ID)

============

The following procedure selects the student ID from the Billing table.

CREATE PROCEDURE tmpProc(IN :vTable CHAR(25)) RETURNS (sID INTEGER) AS
BEGIN
EXEC ('SELECT Student_ID FROM ' + :vtable);
END;
EXECUTE tmpProc('Billing')

SQL Grammar in Zen

SQL Syntax Reference 141

See Also

CALL

CREATE PROCEDURE

System Stored Procedures

SQL Grammar in Zen

142 SQL Syntax Reference

EXISTS
The EXISTS keyword tests whether rows exist in the result of a subquery. True is returned if the
subquery contains any rows.

Syntax
EXISTS (subquery)

Remarks

For every row the outer query evaluates, Zen tests for the existence of a related row from the
subquery. Zen includes in the statement's result table each row from the outer query that
corresponds to a related row from the subquery.

You may use EXISTS for a subquery within a stored procedure. However, the subquery SELECT
statement within the stored procedure may not contain a COMPUTE clause or the INTO
keyword.

In most cases, a subquery with EXISTS can be rewritten to use IN. Zen can process the query
more efficiently if the query uses IN.

Examples

The following statement returns a list containing only persons who have a 4.0 grade point
average:

SELECT * FROM Person p WHERE EXISTS
(SELECT * FROM Enrolls e WHERE e.Student_ID = p.id
AND Grade = 4.0)

This statement can be rewritten to use IN:

SELECT * FROM Person p WHERE p.id IN
(SELECT e.Student_ID FROM Enrolls WHERE Grade = 4.0)

============

The following procedure selects the ID from the Person table using a value as an input parameter.
The first EXEC of the procedure returns "Exists returned true." The second EXEC returns "Exists
returned false."

CREATE PROCEDURE ex1(IN :vID INTEGER) RETURNS (d1 VARCHAR(30)) AS
BEGIN

IF EXISTS (SELECT id FROM person WHERE id < :vID)
 THEN PRINT 'Exists returned true';
 ELSE PRINT 'Exists returned false';

SQL Grammar in Zen

SQL Syntax Reference 143

END IF;
END;
EXEC ex1(222222222);
EXEC ex1(1);

See Also

SELECT

SQL Grammar in Zen

144 SQL Syntax Reference

FETCH

Syntax
FETCH [[NEXT] FROM] cursor-name INTO variable-name

cursor-name ::= user-defined-name

Remarks

A FETCH statement positions a SQL cursor on a specified row of a table and retrieves values
from that row by placing them into the variables in a target list.

You may choose to omit the NEXT and FROM keywords while fetching data from any cursor.

Note: Zen supports only the forward-only cursor. So, you will not be able to control the flow of
the cursor records even by omitting NEXT FROM.

Examples

The FETCH statement in this example retrieves values from cursor c1 into the CourseName
variable. The Positioned UPDATE statement in this example updates the row for Modern
European History (HIS 305) in the Course table in the Demodata sample database:

CREATE PROCEDURE UpdateClass();
BEGIN
DECLARE :CourseName CHAR(7);
DECLARE :OldName CHAR(7);
DECLARE c1 CURSOR FOR SELECT name FROM course WHERE name = :CourseName;
OPEN c1;
SET :CourseName = 'HIS 305';
FETCH NEXT FROM c1 INTO :OldName;
UPDATE SET name = 'HIS 306' WHERE CURRENT OF c1;
END;

============

CREATE PROCEDURE MyProc(OUT :CourseName CHAR(7)) AS
BEGIN
DECLARE cursor1 CURSOR
FOR SELECT Degree, Residency, Cost_Per_Credit FROM Tuition ORDER BY ID;
OPEN cursor1;
FETCH NEXT FROM cursor1 INTO :CourseName;
CLOSE cursor1;
END

See Also

CREATE PROCEDURE

SQL Grammar in Zen

SQL Syntax Reference 145

FOREIGN KEY

Remarks

Include the FOREIGN KEY keywords in the ADD clause to add a foreign key to a table
definition.

Note: You must be logged in to the database using a database name before you can add a foreign
key or conduct any other referential integrity (RI) operation. Also, when security is enabled, you
must have the Reference right on the table to which the foreign key refers before you can add the
key.

Include a FOREIGN KEY clause in your CREATE TABLE statement to define a foreign key on a
dependent table. In addition to specifying a list of columns for the key, you can define a name for
the key.

The columns in the foreign key column may be nullable. However, ensure that pseudo-null
columns do not exist in an index that does not index pseudo-null values.

The foreign key name must be unique in the dictionary. If you omit the foreign key name, Zen
uses the name of the first column in the key as the foreign key name. This can cause a duplicate
foreign key name error if your dictionary already contains a foreign key with that name.

When you specify a foreign key, Zen creates an index on the columns that make up the key. This
index has the same attributes as the index on the corresponding primary key except that it allows
duplicate values. To assign other attributes to the index, create it explicitly using a CREATE
INDEX statement. Then, define the foreign key with an ALTER TABLE statement. When you
create the index, ensure that it does not allow null values and that its case and collating sequence
attributes match those of the index on the corresponding primary key column.

The columns in a foreign key must be the same data types and lengths and in the same order as the
referenced columns in the primary key. The only exception is that you can use an integer column
in the foreign key to refer to an IDENTITY, SMALLIDENTITY, or BIGIDENTITY column in
the primary key. In this case, the two columns must be the same length.

Zen checks for anomalies in the foreign keys before it creates the table. If it finds conditions that
violate previously defined referential integrity (RI) constraints, it generates a status code and does
not create the table.

Note: When you create a foreign key on a table that already contains data, Zen does not validate
the data values already present in the foreign and primary key columns. This constraint applies to
an INSERT, UPDATE, or DELETE action made after the foreign key is created.

SQL Grammar in Zen

146 SQL Syntax Reference

When you define a foreign key, you must include a REFERENCES clause indicating the name of
the table that contains the corresponding primary key. The primary key in the parent table must
already be defined. In addition, if security is enabled on the database, you must have the
Reference right on the table that contains the primary key.

You cannot create a self-referencing foreign key with the CREATE TABLE statement. Use an
ALTER TABLE statement to create a foreign key that references the primary key in the same
table.

Also, you cannot create a primary key and a foreign key on the same set of columns in a single
statement. Therefore, if the primary key of the table you are creating is also a foreign key on
another table, you must use an ALTER TABLE statement to create the foreign key.

Examples

The following statement adds a new foreign key to the Class table. (The Faculty column is
defined as an index that does not include null values.)

ALTER TABLE Class ADD CONSTRAINT Teacher FOREIGN KEY (Faculty_ID) REFERENCES Faculty (ID) ON DELETE
RESTRICT

In this example, the restrict rule for deletions prevents someone from removing a faculty member
from the database without first either changing or deleting all of that faculty's classes.

See Also

ALTER TABLE

CREATE TABLE

SQL Grammar in Zen

SQL Syntax Reference 147

GRANT
In a secured database, use the GRANT statement to manage access permissions for tables, views,
and stored procedures. GRANT can give users rights to these permissions, can create new users,
and can assign the users to existing user groups. If needed, use CREATE GROUP to create a new
group before using GRANT.

The following topics cover use of GRANT statements:

• GRANT LOGIN TO

• Constraints on Permissions

• GRANT and Data Security

Syntax
GRANT CREATETAB | CREATEVIEW | CREATESP TO public-or-user-or-group-name [, user-or-group-name]...

GRANT LOGIN TO user_and_password [, user_and_password]... [IN GROUP group-name]

GRANT permission ON < * | [TABLE] table-name [owner-name] | VIEW view-name | PROCEDURE
stored_procedure-name >
TO user-or-group-name [, user-or-group-name]...

* ::= all of the objects (that is, all tables, views, and stored procedures)

permission ::= ALL
| ALTER
| DELETE
| INSERT [(table-column-name [, table-column-name]...)]
| REFERENCES
| SELECT [(table-column-name [, table-column-name]...)]
| UPDATE [(table-column-name [, table-column-name]...)]
| EXECUTE

table-name ::= user-defined table-name

owner-name ::= user-defined owner name

view-name ::= user-defined view-name

stored-procedure-name ::= user-defined stored_procedure-name

user_and_password ::= user-name [:] password

public-or-user-or-group-name ::= PUBLIC | user-or-group-name

user-or-group-name ::= user-name | group-name

user-name ::= user-defined user name

table-column-name ::= user-defined column name (tables only)

SQL Grammar in Zen

148 SQL Syntax Reference

Remarks

CREATETAB, CREATESP, CREATEVIEW, and LOGIN TO keywords are extensions to the
SQL grammar. You can use the GRANT statement to grant privileges for CREATE TABLE,
CREATE VIEW, and CREATE PROCEDURE. The following table lists the syntax for a given
action.

CREATETAB, CREATEVIEW, and CREATESP must be explicitly granted. These privileges are
not included as part of a GRANT ALL statement.

GRANT LOGIN TO

GRANT LOGIN TO creates a user and allows that user to access the secured database. You must
specify a user name and password to create a user. Optionally, you can use an existing group for
the user, or use CREATE GROUP to create a new group, before using GRANT LOGIN TO.

Constraints on Permissions

The following constraints apply to permissions on objects:

• By Object Type

• ALL Keyword

By Object Type

The following table shows permissions applicable to object type.

To GRANT Privileges for This Action Use This Keyword with GRANT

CREATE TABLE CREATETAB

CREATE VIEW CREATEVIEW

CREATE PROCEDURE CREATESP

LOGIN AS GROUP MEMBER LOGIN TO

Permission Table1 View1 Stored Procedure

CREATETAB X

CREATEVIEW X

SQL Grammar in Zen

SQL Syntax Reference 149

ALL Keyword

The following table presents permissions granted by ALL with Object Type.

CREATESP X

ALTER2 X X X

DELETE X X

INSERT X X

REFERENCES X

SELECT X X

UPDATE X X

EXECUTE3 X

1 Columns can be specified only for tables. Permissions for a view can be granted only to the entire
view, not to single columns.
2 To drop a table, view, or stored procedure, a user must have ALTER permission on that object. Trusted
views and stored procedures can be dropped only by the Master user.
3 EXECUTE applies only to stored procedures. A stored procedure can be executed with either a CALL
or an EXECUTE statement. The procedure can be trusted or non-trusted. See Trusted and Non-Trusted
Objects.

Permission Included by ALL Table View Stored Procedure

ALTER1 X X X

DELETE X X

INSERT X X

REFERENCES X

SELECT X X

UPDATE X X

EXECUTE X

1To drop a table, view, or stored procedure, a user must have ALTER permission on that object.
Trusted views and stored procedures can be dropped only by the Master user.

Permission Table1 View1 Stored Procedure

SQL Grammar in Zen

150 SQL Syntax Reference

For example, if you issue GRANT ALL ON * to User1, then User1 has all permissions listed in
the table.

If you issue GRANT ALL ON VIEW myview1 TO User2, then User2 has ALTER, DELETE,
INSERT, UPDATE, and SELECT permissions on myview1.

GRANT and Data Security

The following topics provide cover particular uses of GRANT to manage data security:

• Granting Privileges to Users and Groups

• Granting Access Using Owner Names

Granting Privileges to Users and Groups

Relational security is based on the existence of a default user named Master who has full access to
the database when security is turned on. When you turn security on, you will be required to
specify a password for the Master user.

Security must be turned on to perform this statement.

The Master user can create groups and other users using the GRANT LOGIN TO, CREATE
USER, or CREATE GROUP commands and manage data access for these groups and users.

If you want to grant the same privileges to all users, you can grant them to the PUBLIC group. All
users inherit the default privileges assigned to the PUBLIC group.

Note: If you wish to use groups, you must set up the groups before creating users.

User name and password must be enclosed in double quotes if they contain spaces or other
nonalphanumeric characters.

For further general information about users and groups, see Master User and Users and Groups in
Advanced Operations Guide, and Assigning Permissions Tasks in Zen User’s Guide.

Granting Access Using Owner Names

An owner name is a string of bytes that unlocks access to a Btrieve file. Btrieve owner names
have no connection with any operating system or database user name but rather serve as a file
access password. For more information, see Owner Names.

SQL Grammar in Zen

SQL Syntax Reference 151

If a Btrieve file that serves as a table in a secure SQL database has an owner name, the database
Master user must provide that owner name in a GRANT statement to authorize access to the table,
including for the Master user itself.

After the Master user has executed a GRANT statement for a user, that user can access the table,
without having to give the owner name, simply by logging into the database. This authorization
lasts for the duration of the current database connection. Also note that the SET OWNER
statement allows you to specify one or more owner names for the connection session. See SET
OWNER.

If a user tries to run SQL commands on a table that has an owner name, access is refused unless
the Master user has granted rights to the table for that user by using the owner name in a GRANT
statement.

If a table has an owner name with the read-only setting chosen, all users have SELECT rights on
the table.

Permissions on Views and Stored Procedures

Views and stored procedures can be trusted or non-trusted, depending on how you want to handle
the permissions for the objects referenced by the view or stored procedure.

Trusted and Non-Trusted Objects

Views and stored procedures reference objects, such as tables, other views or other stored
procedures. Granting permissions on every referenced object could become highly time
consuming depending on the number of objects and users. A simpler approach for many situations
is the concept of a trusted view or stored procedure.

A trusted view or stored procedure is one that can be executed without having to explicitly set
permissions for each referenced object. For example, if trusted view myview1 references tables t1
and t2, the Master user can grant permissions for myview1 without having to grant them for t1
and t2.

A non-trusted view or stored procedure is one that cannot be executed without having to
explicitly set permissions for each referenced object.

SQL Grammar in Zen

152 SQL Syntax Reference

The following table compares characteristics of trusted and non-trusted objects.

Object Characteristic Notes

Trusted view or
trusted stored
procedure

Requires V2 metadata See Zen Metadata.

Requires WITH EXECUTE
AS 'MASTER' clause in
CREATE statement

See CREATE VIEW and CREATE
PROCEDURE.

Only Master user can create
the object

See Master User in Advanced Operations
Guide.

Only Master user can delete
the object

See DROP VIEW and DROP PROCEDURE

Master user must grant object
permissions to other users

By default, only the Master user can access
trusted views or stored procedures and must
grant permissions to them.

GRANT and REVOKE
statements applicable to object

See also REVOKE.

Object can exist in a secured or
in an unsecured database

See Zen Security in Advanced Operations
Guide.

Changing a trusted object to a
non-trusted one (or vice versa)
requires deletion then
recreation of object

The ALTER statement for a view or stored
procedure cannot be used to add or remove
the trusted characteristic of the object. If you
need to change a trusted object to a non-
trusted one, you must first delete the object
then recreate it without the WITH
EXECUTE AS 'MASTER' clause. Similarly,
if you need to change a non-trusted object to
a trusted one, you must first delete the object
then recreate it with the WITH EXECUTE
AS 'MASTER' clause.

SQL Grammar in Zen

SQL Syntax Reference 153

Examples

This section provides a number of examples of GRANT.

A GRANT ALL statement grants the INSERT, UPDATE, ALTER, SELECT, DELETE and
REFERENCES privileges to the specified user or group. In addition, the user or group is granted
the CREATE TABLE right for the dictionary. The following statement grants all of these
permissions to user dannyd for table Class.

Non-trusted
view or non-
trusted stored
procedures

Any user can create the object User must be granted CREATEVIEW or
CREATESP privilege. See Remarks.

Any user can delete the object User must be granted ALTER permission on
the view or stored procedure. See GRANT.

ALTER permission required to
delete the object

ALTER permission is also required to delete
a table. Note that, by default, only the Master
user can delete trusted objects. Users (other
than Master) who did not create the view or
stored procedure must be granted ALTER
permissions to delete the view or stored
procedure.

All users, by default, have all
permissions for the object

For V2 metadata, if an unsecured database
contains non-trusted objects, all permissions
for the non-trusted objects are automatically
granted to PUBLIC if security is enabled on
the database.

User executing the view or
stored procedure needs
permissions for the objects
referenced by the view or
stored procedure

The user must also have permissions on the
top-most object. That is, on the view or
stored procedure that references the other
objects.

GRANT and REVOKE
statements applicable to object

See GRANT and REVOKE.

Object can exist in a secured or
in an unsecured database

See Zen Security in Advanced Operations
Guide.

Changing a trusted object to a
non-trusted one (or vice versa)
requires deletion then
recreation of object

Same as above for trusted view or trusted
stored procedure.

Object Characteristic Notes

SQL Grammar in Zen

154 SQL Syntax Reference

GRANT ALL ON Class TO dannyd

============

The following statement grants ALTER permission to user debieq for table Class.

GRANT ALTER ON Class TO debieq

============

The following statement gives INSERT permission to keithv and miked for table Class. The table
has an owner name of winsvr644AdminGrp.

GRANT INSERT ON Class winsvr644AdminGrp TO keithv, miked

============

The following statement gives INSERT permission to keithv and miked for table Class.

GRANT INSERT ON Class TO keithv, miked

============

The following statement grants INSERT permission on two columns, First_name and Last_name,
in the Person table to users keithv and brendanb

GRANT INSERT(First_name,last_name) ON Person to keithv,brendanb

============

The following statement grants CREATE TABLE rights to users aideenw and punitas

GRANT CREATETAB TO aideenw, punitas

============

The following GRANT LOGIN TO statement grants login rights to a user named ravi and
specifies his password as password.

GRANT LOGIN TO ravi:password

Note: If the a user account that is granted login rights using the GRANT LOGIN TO statement
does not currently exist, then it is created.

If GRANT LOGIN is used in a stored procedure, you must separate the user name and password
with a space character and not with the colon character. The colon character is used to identify
local variables in a stored procedure.

The user name and password here refer only to Zen databases and are not related to user names
and passwords used for operating system or network authentication. Zen user names, groups, and
passwords can also be set through Zen Control Center (ZenCC).

SQL Grammar in Zen

SQL Syntax Reference 155

The following example grants login rights to users named dannyd and rgarcia and specifies their
passwords as password and 1234567 respectively.

GRANT LOGIN TO dannyd:password,rgarcia:1234567

If there are spaces in a name you may use double quotes as in the following example. This
statement grants login rights to user named Jerry Gentry and Punita and specifies their password
as sun and moon respectively

GRANT LOGIN TO "Jerry Gentry":sun, Punita:moon

The following example grants the login rights to a user named Jerry Gentry with password
123456 and a user named rgarcia with password abcdef. It also adds them to the group zen_dev

GRANT LOGIN TO "Jerry Gentry":123456, rgarcia:abcdef IN GROUP zen_dev

============

The Master user has all rights on a table that does not have an owner name. To grant permissions
on a table that has a Btrieve owner name, the Master user must supply the correct owner name in
the GRANT statement.

The following example grants the SELECT right to the user Master on table t1 that has a Btrieve
owner name of abcd.

GRANT SELECT ON t1 'abcd' TO Master

You can set an owner name on a table using Function Executor or the Maintenance utility under
the Tools menu in ZenCC. For more information, see Owner Names in Advanced Operations
Guide.

============

After the Master user performs the following set of SQL statements, the user jsmith has SELECT
access to all tables in the current database. The user also has DELETE access to tab1 and
UPDATE access to tab2.

GRANT DELETE ON tab1 TO jsmith
GRANT SELECT ON * TO jsmith
GRANT UPDATE ON tab2 TO jsmith

If the following statement is performed later by any user with CREATE TABLE privileges, the
user jsmith will have SELECT access to the newly created table.

CREATE TABLE tab3 (col1 INT)

============

GRANT CREATETAB TO user1

============

GRANT CREATESP TO user1

SQL Grammar in Zen

156 SQL Syntax Reference

============

The following example grants EXECUTE permissions on stored procedure cal_rtrn_rate to all
users.

GRANT EXECUTE ON PROCEDURE cal_rtrn_rate TO PUBLIC

============

The following example shows how members of the group Accounting can update only the salary
column in the employee table (employee is part of the Demodata sample database).

Assume that the following stored procedure exists:

CREATE PROCEDURE employee_proc_upd(in :EmpID integer, in :Salary money) WITH EXECUTE AS 'Master';
BEGIN
UPDATE employee SET Salary = :Salary WHERE EmployeeID = :Empid;
END
GRANT EXECUTE ON PROCEDURE employee_proc_upd TO Accounting

Note that users belonging to group Accounting cannot update other columns in the Employee
table because permissions were granted only for the stored procedure and the stored procedure
updates only the salary column.

============

The following example assumes that you have enabled security on the Demodata sample database
and added a user named USAcctsMgr. You now want to grant SELECT rights to the ID column in
table Person to that user. Use the following statement.

GRANT SELECT (ID) ON Person TO 'USAcctsMgr'

See Also

CREATE GROUP

CREATE PROCEDURE

CREATE VIEW

DROP GROUP

REVOKE

SET OWNER

SET SECURITY

System Stored Procedures

SQL Grammar in Zen

SQL Syntax Reference 157

GROUP BY
In addition to the GROUP BY syntax in a SELECT statement, Zen supports an extended GROUP
BY syntax that can include vendor strings.

A GROUP BY query returns a result set which contains one row of the select list for every group
encountered. (See SELECT for the syntax of a select list.)

The following example shows an extended GROUP BY that includes vendor strings in an escape
sequence.

create table at1 (col1 integer, col2 char(10));
insert into at1 values (1, 'abc');
insert into at1 values (2, 'def');
insert into at1 values (3, 'aaa');

SELECT (--(*vendor(Microsoft), product(ODBC) fn left(at1.col2, 1) *)--) atv, count(*) Total FROM at1
GROUP BY atv
ORDER BY atv DESC

Returns:
atv Total
====== ===========
d 1
a 2

See Also

SELECT

SQL Grammar in Zen

158 SQL Syntax Reference

HAVING
Use a HAVING clause in conjunction with a GROUP BY keyword within SELECT statements to
limit a view to groups whose aggregate values meet specific criteria.

The expressions in a HAVING clause may contain constants, set functions, or an exact replica of
one of the expressions in the GROUP BY expression list.

The Zen database engine does not support the HAVING keyword without GROUP BY.

The HAVING keyword supports the use of aliases. The aliases must differ from any column
names within the table.

Examples

This example returns department names where the count of course names is greater than 5.

SELECT Dept_Name, COUNT(*) FROM Course GROUP BY Dept_Name HAVING COUNT(*) > 5

This same example could use aliases, in this case dn and ct, to produce the same result:

SELECT Dept_Name dn, COUNT(*) ct FROM Course GROUP BY dn HAVING ct > 5

Note that COUNT(expression) counts all nonnull values for an expression across a predicate.
COUNT(*) counts all values, including NULL values.

============

The next example returns department name that matches Accounting and has a number of courses
greater than 5.

SELECT Dept_Name, COUNT(*) FROM Course GROUP BY Dept_Name HAVING COUNT(*) > 5 AND Dept_Name =
'Accounting'

See Also

SELECT

SQL Grammar in Zen

SQL Syntax Reference 159

IF

Syntax
IF (Boolean_condition)
BEGIN
Sql-statements
END
ELSE
BEGIN
Sql-statements
END

Remarks

IF statements provide conditional execution based on the value of a condition. The IF . . . THEN .
. . ELSE . . . END IF construct controls flow based on which of two statement blocks will be
executed. You may also use the IF . . . ELSE syntax.

You may use IF statements in the body of both stored procedures and triggers.

There is no limit to the number of nested IF statements allowed, although the query remains
subject to the usual total length limitation and other applicable limitations.

Note: You cannot use a mixed syntax containing Zen and T.SQL. You may use either the
IF...THEN...ELSE...END IF syntax or the IF…ELSE syntax. If you are using multiple statements
with IF or ELSE conditions, you must use BEGIN and END to indicate the beginning and ending
of the statement blocks.

Examples

The following example uses the IF statement to set the variable Negative to either 1 or 0,
depending on whether the value of vInteger is positive or negative.

IF (:vInteger < 0) THEN
SET :Negative = '1';
ELSE
SET :Negative = '0';
END IF;

============

The following example uses the IF statement to test the loop for a defined condition (SQLSTATE
= '02000'). If it meets this condition, then the WHILE loop is terminated.

FETCH_LOOP:
WHILE (:counter < :NumRooms) DO
FETCH NEXT FROM cRooms INTO :CurrentCapacity;

SQL Grammar in Zen

160 SQL Syntax Reference

IF (SQLSTATE = '02000') THEN
LEAVE FETCH_LOOP;
END IF;
SET :counter = :counter + 1;
SET :TotalCapacity = :TotalCapacity +
:CurrentCapacity;
END WHILE;

IF(:vInteger >50)
BEGIN
SET :vInteger = :vInteger + 1;
INSERT INTO test VALUES('Test');
END;
ELSE
SET :vInteger = :vInteger - 1;

See Also

CREATE PROCEDURE

CREATE TRIGGER

SQL Grammar in Zen

SQL Syntax Reference 161

IN

Remarks

Use the IN operator to test whether the result of the outer query is included in the result of the
subquery. The result table for the statement includes only rows the outer query returns that have a
related row from the subquery.

Examples

The following example lists the names of all students who have taken Chemistry 408:

SELECT p.First_Name + ' ' + p.Last_Name FROM Person p, Enrolls e WHERE (p.id = e.student_id) AND
(e.class_id IN
(SELECT c.ID FROM Class c WHERE c.Name = 'CHE 408'))

Zen first evaluates the subquery to retrieve the ID for Chemistry 408 from the Class table. It then
performs the outer query, restricting the results to only those students who have an entry in the
Enrolls table for that course.

Often, you can perform IN queries more efficiently using either the EXISTS keyword or a simple
join condition with a restriction clause. Unless the purpose of the query is to determine the
existence of a value in a subset of the database, it is more efficient to use the simple join condition
because Zen optimizes joins more efficiently than it does subqueries.

See Also

SELECT

SQL Grammar in Zen

162 SQL Syntax Reference

INSERT
This statement inserts column values into one table.

Syntax
INSERT INTO table-name
[(column-name [, column-name]...)] insert-values
[ON DUPLICATE KEY UPDATE column-name = < NULL | DEFAULT | expression | subquery-expression [,
column-name = ...] >
[[UNION [ALL] query-specification]...
[ORDER BY order-by-expression [, order-by-expression]...]

table-name ::= user-defined name

column-name ::= user-defined name

insert-values ::= values-clause | query-specification

values-clause ::= VALUES (expression [, expression]...) | DEFAULT VALUES

expression ::= expression - expression | expression + expression
subquery-expression ::= (query-specification) [ORDER BY order-by-expression
[, order-by-expression]...] [limit-clause]

query-specification ::= (query-specification)
| SELECT [ALL | DISTINCT] [top-clause] select-list
 FROM table-reference [, table-reference]...
 [WHERE search-condition]
 [GROUP BY expression [, expression]...
[HAVING search-condition]]

order-by-expression ::= expression [CASE (string) | COLLATE collation-name] [ASC | DESC]

Remarks

INSERT statements, as with DELETE and UPDATE, behave in an atomic manner. That is, if an
insert of more than one row fails, then all insertions of previous rows by the same statement are
rolled back.

INSERT ON DUPLICATE KEY UPDATE

Zen v13 R2 extends INSERT with INSERT ON DUPLICATE KEY UPDATE. This insert
capability automatically compares unique keys for values to be inserted or updated with those in
the target table. If either a duplicate primary or an index key is found, then for those rows the
values are updated. If no duplicate primary or index key is found, then new rows are inserted. In
popular jargon, this behavior is called an "upsert."

The INSERT can use either a values list or a SELECT query. As with all INSERT commands, the
behavior is atomic.

SQL Grammar in Zen

SQL Syntax Reference 163

For illustrations of this feature, see Examples for INSERT ON DUPLICATE KEY UPDATE.

Inserting Data Longer Than the Maximum Literal String

The maximum literal string supported by Zen is 15,000 bytes. You can handle data longer than
this using direct SQL statements, breaking the insert into multiple calls. Start with a statement like
this:

INSERT INTO table1 SET longfield = '15000 bytes of text' WHERE restriction

Then issue the following statement to add more data:

INSERT INTO table1 SET longfield = notefield + '15000 more bytes of text' WHERE restriction

Examples
• Examples for INSERT

• Examples for INSERT ON DUPLICATE KEY UPDATE

• Errors When Using DEFAULT

Examples for INSERT

This topic illustrates simple INSERT. For the use of duplicate unique keys to update instead of
insert, see Examples for INSERT ON DUPLICATE KEY UPDATE.

The following statement uses expressions in the VALUES clause to add data to a table:

CREATE TABLE t1 (c1 INT, c2 CHAR(20))
INSERT INTO t1 VALUES ((78 + 12)/3, 'This is' + CHAR(32) + 'a string')
SELECT * FROM t1

c1 c2
---------- ----------------
30 This is a string

============

The following statement directly adds data to the Course table using three VALUES clauses:

INSERT INTO Course(Name, Description, Credit_Hours, Dept_Name)
VALUES ('CHE 308', 'Organic Chemistry II', 4, 'Chemistry')
INSERT INTO Course(Name, Description, Credit_Hours, Dept_Name)
VALUES ('ENG 409', 'Creative Writing II', 3, 'English')
INSERT INTO Course(Name, Description, Credit_Hours, Dept_Name)
VALUES ('MAT 307', 'Probability II', 4, 'Mathematics')

SQL Grammar in Zen

164 SQL Syntax Reference

============

The following INSERT statement uses a SELECT clause to retrieve from the Student table the ID
numbers of students who have taken classes.

The statement then inserts the ID numbers into the Billing table.

INSERT INTO Billing (Student_ID)
SELECT ID FROM Student WHERE Cumulative_Hours > 0

============

The following example illustrates the use of the CURTIME(), CURDATE() and NOW() variables
to insert the current local time, date, and time stamp values inside an INSERT statement.

CREATE TABLE Timetbl (c1 TIME, c2 DATE, c3 TIMESTAMP)
INSERT INTO Timetbl(c1, c2, c3) VALUES(CURTIME(), CURDATE(), NOW())

============

The following example demonstrates basic usage of default values with INSERT and UPDATE
statements.

CREATE TABLE t1 (c1 INT DEFAULT 10, c2 CHAR(10) DEFAULT 'abc')
INSERT INTO t1 DEFAULT VALUES
INSERT INTO t1 (c2) VALUES (DEFAULT)
INSERT INTO t1 VALUES (100, DEFAULT)
INSERT INTO t1 VALUES (DEFAULT, 'bcd')
INSERT INTO t1 VALUES (DEFAULT, DEFAULT)
SELECT * FROM t1

c1 c2
---------- ----------
10 abc
10 abc
100 abc
10 bcd
10 abc

UPDATE t1 SET c1 = DEFAULT WHERE c1 = 100
UPDATE t1 SET c2 = DEFAULT WHERE c2 = 'bcd'
UPDATE t1 SET c1 = DEFAULT, c2 = DEFAULT
SELECT * FROM t1

c1 c2
---------- ----------
10 abc
10 abc
10 abc
10 abc
10 abc

============

Based on the CREATE TABLE statement immediately above, the following two INSERT
statements are equivalent.

INSERT INTO t1 (c1,c2) VALUES (20,DEFAULT)

SQL Grammar in Zen

SQL Syntax Reference 165

INSERT INTO t1 (c1) VALUES (20)

============

The following SQL code shows the use of DEFAULT with multiple UPDATE values.

CREATE TABLE t2 (c1 INT DEFAULT 10,
c2 INT DEFAULT 20 NOT NULL,
c3 INT DEFAULT 100 NOT NULL)
INSERT INTO t2 VALUES (1, 1, 1)
INSERT INTO t2 VALUES (2, 2, 2)
SELECT * FROM t2

c1 c2 c3
---------- ---------- ----------
1 1 1
2 2 2

UPDATE t2 SET c1 = DEFAULT, c2 = DEFAULT, c3 = DEFAULT
WHERE c2 = 2
SELECT * FROM t2

c1 c2 c3
---------- ---------- ----------
1 1 1
10 20 100

Examples for INSERT ON DUPLICATE KEY UPDATE

This topic illustrates INSERT ON DUPLICATE KEY UPDATE. For simple INSERT, see
Examples for INSERT.

For clarity, the following query results show inserted values in black and updated values in red.
Each example builds on the previous one, so you can execute them in series to see the behavior.

============

INSERT INTO with VALUES clause and without a column list. Unique index segment column
values are available.

CREATE TABLE t1 (
 a INT NOT NULL DEFAULT 10,
 b INT,
 c INT NOT NULL,
 d INT DEFAULT 20,
 e INT NOT NULL DEFAULT 1,
 f INT NOT NULL DEFAULT 2,
 g INT,
 h INT,
 PRIMARY KEY(e, f));
CREATE UNIQUE INDEX t1_ab ON t1 (a, b, c, d);
INSERT INTO t1 VALUES (1, 2, 3, 4, 5, 6, 7, 8)
ON DUPLICATE KEY UPDATE t1.a = 10, t1.b = 20, t1.c = 30, t1.d = 40;
SELECT * FROM t1;

 a b c d e f g h
======== ======== ======== ======== ======== ======== ======== ========
 1 2 3 4 5 6 7 8

SQL Grammar in Zen

166 SQL Syntax Reference

============

INSERT INTO with VALUES clause and a complete column list. The row is updated.

INSERT INTO t1 (a, b, c, d, e, f, g , h) VALUES (1, 2, 3, 4, 5, 6, 7, 8)
ON DUPLICATE KEY UPDATE t1.a = 10, t1.b = 20, t1.c = 30, t1.d = 40;
SELECT * FROM t1;

 a b c d e f g h
======== ======== ======== ======== ======== ======== ======== ========
 10 20 30 40 5 6 7 8

============

INSERT INTO with VALUES clause and a partial column list. A new row is inserted, and then
the row is updated.

INSERT INTO t1 (a, b, c, d) VALUES (1, 2, 3, 4)
ON DUPLICATE KEY UPDATE t1.a = 11, t1.b = 12, t1.c = 13, t1.d = 14;
SELECT * FROM t1;

 a b c d e f g h
======== ======== ======== ======== ======== ======== ======== ========
 10 20 30 40 5 6 7 8
 1 2 3 4 1 2 (Null) (Null)

INSERT INTO t1 (a, b, c) VALUES (-1, -2, -3)
ON DUPLICATE KEY UPDATE t1.a = 11, t1.b = 12, t1.c = 13, t1.d = 14;
SELECT * FROM t1;

 a b c d e f g h
======== ======== ======== ======== ======== ======== ======== ========
 10 20 30 40 5 6 7 8
 11 12 13 14 1 2 (Null) (Null)

============

INSERT INTO with VALUES clause and DEFAULT. A row is updated to return it to an earlier
state, and then it is updated based on duplicate keys.

UPDATE t1 SET a = 1, b = 2, c = 3, d = 4, e = 11, f = 12 WHERE a = 11;
SELECT * FROM t1;

 a b c d e f g h
======== ======== ======== ======== ======== ======== ======== ========
 10 20 30 40 5 6 7 8
 1 2 3 4 11 12 (Null) (Null)

INSERT INTO t1 (a, b, c, d, e, f) VALUES (1, 2, 3, 4, DEFAULT, DEFAULT)
ON DUPLICATE KEY UPDATE g = VALUES (a) + VALUES (b) + VALUES (c), h = VALUES (e) + VALUES (
f);
SELECT * FROM t1;

 a b c d e f g h
======== ======== ======== ======== ======== ======== ======== ========
 10 20 30 40 5 6 7 8
 1 2 3 4 11 12 6 3

SQL Grammar in Zen

SQL Syntax Reference 167

============

Subquery expression in UPDATE SET clause to update using values from the Person table in the
Demodata sample database.

INSERT INTO t1 VALUES (1, 2, 3, 4, 5, 6, 7, 8)
ON DUPLICATE KEY UPDATE t1.a = 10, t1.b = 20, t1.c = (SELECT TOP 1 id FROM demodata.person ORDER BY
id), t1.d = (SELECT TOP 1 id FROM demodata.person ORDER BY id DESC, last_name);
SELECT * FROM t1;

 a b c d e f g h
======== ======== ======== ======== ======== ======== ======== ========
 10 20 100062607 998332124 5 6 7 8
 1 2 3 4 11 12 6 3

Errors When Using DEFAULT

The following example shows possible error conditions because a column is defined as NOT
NULL with no default value defined:

CREATE TABLE t1 (c1 INT DEFAULT 10, c2 INT NOT NULL, c3 INT DEFAULT 100 NOT NULL)
INSERT INTO t1 DEFAULT VALUES -- Error: No default value assigned for column <c2>.
INSERT INTO t1 VALUES (DEFAULT, DEFAULT, 10) -- Error: No default value assigned for column <c2>.
INSERT INTO t1 (c1,c2,c3) VALUES (1, DEFAULT, DEFAULT) -- Error: No default value assigned for column
<c2>.
INSERT INTO t1 (c1,c3) VALUES (1, 10) -- Error: Column <c2> not nullable.

============

The following example shows what occurs when you use INSERT for IDENTITY columns and
columns with default values.

CREATE TABLE t (id IDENTITY, c1 INTEGER DEFAULT 100)
INSERT INTO t (id) VALUES (0)
INSERT INTO t VALUES (0,1)
INSERT INTO t VALUES (10,10)
INSERT INTO t VALUES (0,2)
INSERT INTO t (c1) VALUES (3)
SELECT * FROM t

The SELECT shows the table contains the following rows:

1, 100
2, 1
10, 10
11, 2
12, 3

The first row illustrates that if zero is specified in the VALUES clause for an IDENTITY column,
then the value inserted is 1 if the table is empty.

The first row also illustrates that if no value is specified in the VALUES clause for a column with
a default value, then the specified default value is inserted.

SQL Grammar in Zen

168 SQL Syntax Reference

The second row illustrates that if zero is specified in the VALUES clause for an IDENTITY
column, then the value inserted is one greater than the largest value in the IDENTITY column.

The second row also illustrates that if a value is specified in the VALUES clause for a column
with a default value, then the specified value overrides the default value.

The third row illustrates that if a value other than zero is specified in the VALUES clause for an
IDENTITY column, then that value is inserted. If a row already exists that contains the specified
value for the IDENTITY column, then the message "The record has a key field containing a
duplicate value(Btrieve Error 5)" is returned and the INSERT fails.

The fourth rows shows again that if zero is specified in the VALUES clause for an IDENTITY
column, then the value inserted is one greater than the largest value in the IDENTITY column.
This is true even if gaps exist between the values (that is, the absence of one or more rows with
IDENTITY column values less than the largest value).

The fifth row illustrates that if no value is specified in the VALUES clause for an IDENTITY
column, then the value inserted is one greater than the largest value in the IDENTITY column.

See Also

CREATE TABLE

DEFAULT

SELECT

SET ANSI_PADDING

SQL Grammar in Zen

SQL Syntax Reference 169

JOIN
You can specify a single table or view, multiple tables, or a single view and multiple tables. When
you specify more than one table, the tables are said to be joined.

Syntax
join-definition ::= table-reference [join-type] JOIN table-reference ON search-condition

| table-reference CROSS JOIN table-reference
| outer-join-definition

join-type ::= INNER | LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]

outer-join-definition ::= table-reference outer-join-type JOIN table-reference
ON search-condition

outer-join-type ::= LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]

The following example illustrates a two-table outer join:

SELECT * FROM Person LEFT OUTER JOIN Faculty ON Person.ID = Faculty.ID

The following example shows an outer join embedded in a vendor string. The letters "OJ" can be
either upper or lower case.

SELECT t1.deptno, ename FROM {OJ emp t2 LEFT OUTER JOIN dept t1 ON t2.deptno=t1.deptno}

Zen supports two-table outer joins as specified in the Microsoft ODBC documentation. In
addition to simple two-table outer joins, Zen supports n-way nested outer joins.

The outer join may or may not be embedded in a vendor string. If a vendor string is used, Zen
strips it off and parses the actual outer join text.

LEFT OUTER

Zen databases use the SQL92 (SQL2) model for LEFT OUTER JOIN. The syntax is a subset of
the entire SQL92 syntax which includes cross joins, right outer joins, full outer joins, and inner
joins. The TableRefList below occurs after the FROM keyword in a SELECT statement and
before any subsequent WHERE, HAVING, and other clauses. Note the recursive nature of
TableRef and LeftOuterJoin – a TableRef can be a left outer join that can include TableRefs
which, in turn, can be left outer joins and so forth.

TableRefList :
TableRef [, TableRefList]
| TableRef
| OuterJoinVendorString [, TableRefList]
TableRef :
TableName [CorrelationName]
| LeftOuterJoin
| (LeftOuterJoin)
LeftOuterJoin :

SQL Grammar in Zen

170 SQL Syntax Reference

TableRef LEFT OUTER JOIN TableRef ON SearchCond

The search condition (SearchCond) contains join conditions which in their usual form are
LT.ColumnName = RT.ColumnName, where LT is left table, RT is right table, and ColumnName
represents some column within a given domain. Each predicate in the search condition must
contain some nonliteral expression.

The implementation of left outer join goes beyond the syntax in the Microsoft ODBC
documentation.

Vendor Strings

The syntax in the previous section includes but goes beyond the ODBC syntax in the Microsoft
ODBC documenation. Furthermore, the vendor string escape sequence at the beginning and end
of the left outer join does not change the core syntax of the outer join.

Zen databases accept outer join syntax without the vendor strings. However, for applications that
want to comply with ODBC across multiple databases, the vendor string construction should be
used. Because ODBC vendor string outer joins do not support more than two tables, it may be
necessary to use the syntax shown in the examples.

Examples

The following four tables are used in these examples.

SQL Grammar in Zen

SQL Syntax Reference 171

Emp Table

Dept Table

Addr Table

Loc Table

The following example shows a simple two-way Left Outer Join:

SELECT * FROM Emp LEFT OUTER JOIN Dept ON Emp.DeptID = Dept.DeptID

This two-way outer join produces the following result set:

FirstName LastName DeptID EmpID

Franky Avalon D103 E1

Gordon Lightfoot D102 E2

Lawrence Welk D101 E3

Bruce Cockburn D102 E4

DeptID LocID Name

D101 L1 TV

D102 L2 Folk

EmpID Street

E1 101 Mem Lane

E2 14 Young St.

LocID Name

L1 PlanetX

L2 PlanetY

Emp Dept

FirstName LastName DeptID EmpID DeptID LocID Name

SQL Grammar in Zen

172 SQL Syntax Reference

Notice the NULL entry for Franky Avalon in the table. That is because no DeptID of D103 was
found in the Dept table. In a standard (INNER) join, Franky Avalon would have been dropped
from the result set altogether.

Algorithm

The Zen database engine uses the following algorithm for the previous example: Take the left
table, traverse the right table, and for every case where the ON condition is TRUE for the current
right table row, return a result set row composed of the appropriate right table row appended to the
current left-table row.

If there is no right table row where the ON condition is TRUE, (it is FALSE for all right table
rows given the current left table row), create a row instance of the right table with all column
values NULL.

That result set, combined with the current left-table row for each row, is indexed in the returned
result set. The algorithm is repeated for every left table row to build the complete result set. In the
simple two-way left outer join shown previously, Emp is the left table and Dept is the right table.

Note: Although irrelevant to the algorithm, the appending of the left table to the right table
assumes proper projection as specified in the select list of the query. This projection ranges from
all columns (for example, SELECT * FROM . . .) to only one column in the result set (for
example, SELECT FirstName FROM . . .).

============

With radiating left outer joins, all other tables are joined onto one central table. In the following
example of a three-way radiating left outer join, Emp is the central table and all joins radiate from
that table.

Franky Avalon D103 E1 NULL NULL NULL

Gordon Lightfoot D102 E2 D102 L2 Folk

Lawrence Welk D101 E3 D101 L1 TV

Bruce Cockburn D102 E4 D102 L2 Folk

Emp Dept

SQL Grammar in Zen

SQL Syntax Reference 173

SELECT * FROM (Emp LEFT OUTER JOIN Dept ON Emp.DeptID = Dept.DeptID) LEFT OUTER JOIN Addr ON
Emp.EmpID = Addr.EmpID

============

In a chaining left outer join, one table is joined to another, and that table, in turn, is joined to
another. The following example illustrates a three-way chaining left outer join:

SELECT * FROM (Emp LEFT OUTER JOIN Dept ON Emp.DeptID = Dept.DeptID) LEFT OUTER JOIN Loc ON
Dept.LocID = Loc.LocID

This join could also be expressed as:

SELECT * FROM Emp LEFT OUTER JOIN (Dept LEFT OUTER JOIN Loc ON Dept.LocID = Loc.LocID) ON Emp.DeptID
= Dept.DeptID

We recommend the first syntax because it lends itself to both the radiating and chaining joins.
This second syntax cannot be used for radiating joins because nested left outer join ON conditions
cannot reference columns in tables outside their nesting. In other words, in the following query,
the reference to Emp.EmpID is illegal:

SELECT * FROM Emp LEFT OUTER JOIN (Dept LEFT OUTER JOIN Addr ON Emp.EmpID = Addr.EmpID) ON Emp.DeptID
= Dept.DeptID

Emp Dept Addr

First
Name

Last Name Dept
ID

Emp
ID

Dept
ID

Loc ID Name Emp
ID

Street

Franky Avalon D103 E1 NULL NULL NULL E1 101 Mem
Lane

Gordon Lightfoot D102 E2 D102 L2 Folk E2 14 Young St

Lawrence Welk D101 E3 D101 L1 TV NULL NULL

Bruce Cockburn D102 E4 D101 L1 TV NULL NULL

Emp Dept Loc

First Name Last Name Dept ID Emp ID Dept ID Loc ID Name Loc ID Name

Franky Avalon D103 E1 NULL NULL NULL NULL NULL

Gordon Lightfoot D102 E2 D102 L2 Folk L2 PlanetY

Lawrence Welk D101 E3 D101 L1 TV L1 PlanetX

Bruce Cockburn D102 E4 D101 L1 TV L1 PlanetX

SQL Grammar in Zen

174 SQL Syntax Reference

============

The following example shows a three-way radiating left outer join, less optimized:

SELECT * FROM Emp E1 LEFT OUTER JOIN Dept ON E1.DeptID = Dept.DeptID, Emp E2 LEFT OUTER JOIN Addr ON
E2.EmpID = Addr.EmpID WHERE E1.EmpID = E2.EmpID

This query returns the same results as shown in the Loc Table, assuming there are no NULL
values for EmpID in Emp and EmpID is a unique valued column. This query, however, is not
optimized as well as the one shown for the Loc Table and can be much slower.

See Also

SELECT

Emp Dept Addr

First Name Last Name Dept ID Emp ID Dept
ID

Loc
ID

Name Emp ID Street

Franky Avalon D103 E1 NULL NULL NULL E1 101 Mem
Lane

Gordon Lightfoot D102 E2 D102 L2 Folk E2 14 Young
St

Lawrence Welk D101 E3 D101 L1 TV NULL NULL

Bruce Cockburn D102 E4 D101 L1 TV NULL NULL

SQL Grammar in Zen

SQL Syntax Reference 175

LAG
LAG is a set function that can be used only as a windowing function. LAG is used to retrieve
values from previous rows in the current partition of the result set. It cannot be used as a GROUP
BY aggregate.

Syntax
LAG (expression[, lag-offset-expression[, lag-default-expression]] over-clause)

where:

• expression is a column or expression from a row in the result set.

• lag-offset-expression is an integer expression indicating the number of previous rows before
the current row in the result set from which to draw values.

• lag-default-expression is the value to return if lag-offset-expression rows in the current partition
have not yet accumulated in the result set.

Examples

To exercise the following LAG examples, first do these steps:

1. In ZenCC in Zen Explorer, right-click Databases and select New > Database to create a
temporary database, in this case named SAMPLEDB.

2. Right-click SAMPLEDB and select SQL Document.

3. In SQL Editor, run the following SQL script to create a table in SAMPLEDB called
checkout0:

create table checkout0 (StartTime TIMESTAMP, LaneNo INTEGER, Items INTEGER, Total MONEY(6,2),
Duration INTEGER);
insert into checkout0 values('2021-01-07 22:20:37.852', 1, 7, 18.72, 87);
insert into checkout0 values('2021-01-07 22:22:47.852', 1, 9, 23.45, 107);
insert into checkout0 values('2021-01-07 22:24:57.852', 1, 17, 68.22, 183);
insert into checkout0 values('2021-01-07 22:31:07.852', 1, 12, 48.17, 99);
insert into checkout0 values('2021-01-07 22:33:27.852', 1, 11, 37.77, 77);
insert into checkout0 values('2021-01-07 22:34:39.852', 1, 7, 23.32, 94);
insert into checkout0 values('2021-01-07 22:36:41.852', 1, 14, 56.61, 112);
insert into checkout0 values('2021-01-07 22:19:37.852', 2, 6, 16.72, 80);
insert into checkout0 values('2021-01-07 22:23:47.852', 2, 10, 25.45, 117);
insert into checkout0 values('2021-01-07 22:26:57.852', 2, 18, 72.22, 196);
insert into checkout0 values('2021-01-07 22:31:07.852', 2, 11, 58.17, 109);
insert into checkout0 values('2021-01-07 22:33:47.852', 2, 14, 47.77, 87);
insert into checkout0 values('2021-01-07 22:35:49.852', 2, 9, 27.32, 84);
insert into checkout0 values('2021-01-07 22:37:41.852', 2, 15, 46.16, 122);
insert into checkout0 values('2021-01-07 22:20:07.852', 3, 8, 18.82, 64);
insert into checkout0 values('2021-01-07 22:24:17.852', 3, 8, 19.54, 74);
insert into checkout0 values('2021-01-07 22:27:37.852', 3, 16, 62.44, 131);

SQL Grammar in Zen

176 SQL Syntax Reference

insert into checkout0 values('2021-01-07 22:31:37.852', 3, 13, 51.87, 119);
insert into checkout0 values('2021-01-07 22:34:17.852', 3, 12, 37.65, 89);
insert into checkout0 values('2021-01-07 22:36:19.852', 3, 11, 28.23, 86);
insert into checkout0 values('2021-01-07 22:38:11.852', 3, 18, 65.26, 128);

4. You are now ready to run the following examples, which use data from a cashier checkout
system.

Note that as in all windowing functions, the default order for the result is <partition columns>,
<order columns> as specified by the OVER clause. This order can be modified by using an
outer ORDER BY.

The following query shows that each LaneNo has 7 rows, which can be numbered 1 to 7 using
COUNT(*):

SELECT LaneNo, StartTime, RowNumInPart FROM (select LaneNo, StartTime, COUNT(*) OVER (PARTITION BY
LaneNo ORDER BY StartTime) FROM checkout0) AS T(LaneNo, StartTime, RowNumInPart);

============

The following query shows how the LAG function can be used to retrieve the third row before the
current row, as indicated by the RowNumInPart column. Note how 0 is returned until each
partition has at least 3 rows:

SELECT LaneNo, StartTime, RowNumInPart, LAG(RowNumInPart, 3, 0) OVER (PARTITION BY LaneNo ORDER BY
StartTime) FROM (select LaneNo, StartTime, COUNT(*) OVER (PARTITION BY LaneNo ORDER BY StartTime)
FROM checkout0) AS T(LaneNo, StartTime, RowNumInPart);

============

The following query shows the time difference in seconds between each two consecutive rows in
each partition, using the default LAG offset of 1 row:

SELECT LaneNo, StartTime, DATEDIFF (SECOND, LAG(StartTime) OVER (PARTITION BY LaneNo ORDER BY
StartTime), StartTime) AS Diff_in_secs FROM checkout0;

============

The following query shows how the number of items for each checkout in Lane 1 vary over time,
compared to the previous checkout:

SELECT StartTime, LaneNo, Items, Items-LAG(Items) OVER (PARTITION BY LaneNo ORDER BY StartTime) AS
delta_items FROM checkout0 WHERE LaneNo = 1;

SQL Grammar in Zen

SQL Syntax Reference 177

LEAVE

Remarks

A LEAVE statement continues execution by leaving a block or loop statement. You can use
LEAVE statements in the body of a stored procedure or a trigger.

Examples

The following example increments the variable vInteger by 1 until it reaches a value of 11, when
the loop is ended with a LEAVE statement.

TestLoop:
LOOP
IF (:vInteger > 10) THEN
LEAVE TestLoop;
END IF;
SET :vInteger = :vInteger + 1;
END LOOP;

See Also

IF

LOOP

SQL Grammar in Zen

178 SQL Syntax Reference

LIKE, ILIKE, and Using ESCAPE
LIKE and ILIKE both enable pattern matching within character-based column data. They differ in
that LIKE is case-sensitive and ILIKE is case-insensitive. Both can use the ESCAPE clause to
specify escape characters.

Syntax
WHERE expr [NOT] < LIKE | ILIKE > [N] value | ? [escape-clause]
escape-clause := ESCAPE [N] escape-character
escape-character := 'character' | '' | ?

Remarks

The pattern value to the right of a LIKE or ILIKE operator must be one of the following:

• A simple string constant to be matched.

• A dynamic parameter supplied at run time, indicated by a question mark, for a string to be
matched. The parameter cannot be within a stored procedure. SQL Editor does not support
dynamic parameters, but application code does.

• The USER keyword.

In the pattern value, you can use the percent sign wildcard to match zero or more characters in the
column values. Use the underscore wildcard to match a single character. Both wildcards can be
used more than once in the pattern.

The following table gives more details on using wildcards and other special characters.

Character Purpose

Percent sign "%" Wildcard to match zero or more characters. For example, Dan% matches
Dan, Daniel, and Danny.

Underscore "_" Wildcard to match a single character.

Backslash "\" The default escape character which, when followed by a wildcard character
or another escape character, treats that character as a literal to match the
character itself. For example, to match the "%" character in a column value,
use a backslash before the percent sign, "\%". However, if an escape character
in the value pattern is followed by any character other than a wildcard
character or another escape character, the escape character has no effect.

SQL Grammar in Zen

SQL Syntax Reference 179

The ESCAPE character is one of the following:

• A single character, which can be from any code page used by the database.

• Two single quotation marks '' to specify a null escape character.

• A question mark to indicate a dynamic parameter provided by the application code.

ESCAPE with Unicode

An optional N prefix before the pattern value and the escape character indicates use of Unicode
characters for data types that begin with an N, such as NCHAR, NLONGVARCHAR, or
NVARCHAR. If the N prefixes are missing, then the results of LIKE and ILIKE with ESCAPE
may be incomplete or incorrect when comparing pattern values to Unicode columns.

Examples of LIKE

This topic demonstrates use of LIKE. For comparison with ILIKE, see Examples of ILIKE.

This example matches all column values of five characters with abc as the middle three:

SELECT Building_Name FROM Room WHERE Building_Name LIKE '_abc_'

============

This example matches all column values that contain a backslash:

SELECT Building_Name FROM Room where Building_Name LIKE '%\\%'

============

This example matches all column values except those that begin with a percent sign:

SELECT Building_Name FROM Room where Building_Name NOT LIKE '\%%'

Two single
quotation marks
"''"

Two single quotation marks with no space between them have two uses:

• To match a single quotation mark in the result string. For example, if a
row in the database contains the value Jim's house, you can match this
pattern by specifying LIKE 'Jim''s house' in the WHERE clause.

• Used after the ESCAPE keyword to specify a null value, which disables
the backslash as an escape character so that it can be used in the pattern
value the same as any other character.

Note: A double-quotation mark in the pattern string is not a special character
and can be used like any letter or digit.

Character Purpose

SQL Grammar in Zen

180 SQL Syntax Reference

============

This example matches all column values that contain one or more single quotation marks:

SELECT Building_Name FROM Room where Building_Name LIKE '%''%'

============

This example matches all column values where the second character is a double-quote:

SELECT Building_Name FROM Room WHERE Building_Name LIKE '_"%'

============

This example creates a stored procedure that returns any rows where the Building_Name column
contains the characters stored in the input variable :rname and where the Type column contains the
characters stored in the input variable :rtype.

CREATE PROCEDURE room_test(IN :rname CHAR(20), IN :rtype CHAR(20))
RETURNS(Building_Name CHAR(25), "Type" CHAR(20));
BEGIN
DECLARE :like1 CHAR(25);
DECLARE :like2 CHAR(25);
SET :like1 = '%' + :rname + '%';
SET :like2 = '%' + :rtype + '%';
SELECT Building_Name, "Type" FROM Room WHERE Building_Name LIKE :like1 AND "Type" LIKE :like2;
END;

Note that the following statement, if placed in the stored procedure above, generates a syntax
error because the expression on the right side of the LIKE operator is not a simple constant.

The following syntax is incorrect and will fail:

SELECT Building_Name, "Type" from Room WHERE Building_Name LIKE '%' + :rname + '%';

Examples of ILIKE

The following two examples of LIKE and ILIKE return the same results from the Demodata
sample database. The ILIKE statement does not need to use the UPPER string function.

SELECT First_Name, Last_Name, Email_Address from Person
WHERE UPPER(Email_Address) LIKE '%@BTU.EDU%';

SELECT First_Name, Last_Name, Email_Address from Person
WHERE Email_Address ILIKE '%@btu.edu%';

Note: ILIKE cannot use the index created on a case-sensitive column for optimization.

SQL Grammar in Zen

SQL Syntax Reference 181

Example of LIKE or ILIKE with ESCAPE

This example of LIKE with ESCAPE specifies an exclamation point "!" as the escape character to
escape the backslash within path names in the column value so that it is not treated as the default
escape character.

CREATE TABLE backup_log (path VARCHAR(50), backup_file VARCHAR(50));
INSERT INTO backup_log VALUES ('C:\Data\', 'Backup240420');
INSERT INTO backup_log VALUES ('D:\Data\', 'Backup240421');
SELECT path + backup_file as C_Files FROM backup_log WHERE path LIKE 'C:!\%' ESCAPE '!';

Result:
C_Files
====================
C:\Data\Backup240420

See Also

SELECT

SQL Grammar in Zen

182 SQL Syntax Reference

LOOP

Remarks

A LOOP statement repeats the execution of a block of statements.

It is allowed only in stored procedures and triggers.

Zen does not support the postconditional loop REPEAT... UNTIL.

Examples

The following example increments the variable vInteger by 1 until it reaches a value of 11 and the
loop ends.

TestLoop:
LOOP
IF (:vInteger > 10) THEN
LEAVE TestLoop;
END IF;
SET :vInteger = :vInteger + 1;
END LOOP;

See Also

CREATE PROCEDURE

CREATE TRIGGER

IF

SQL Grammar in Zen

SQL Syntax Reference 183

NOT

Remarks

Using the NOT keyword with the EXISTS keyword allows you to test whether rows do not exist
in the result of the subquery. For every row the outer query evaluates, Zen tests for the existence
of a related row from the subquery. Zen excludes from the statement result table each row from
the outer query that corresponds to a related row from the subquery.

By combining NOT with the IN operator, you can test whether the result of the outer query is not
included in the result of the subquery. The result table includes only rows the outer query returns
that do not have a related row from the subquery.

Examples

The following statement returns a list of students who are not enrolled in any classes:

SELECT * FROM Person p WHERE NOT EXISTS
(SELECT * FROM Student s WHERE s.id = p.id
AND Cumulative_Hours = 0)

This statement can be rewritten to use IN:

SELECT * FROM Person p WHERE p.id NOT IN
(SELECT s.id FROM Student s WHERE Cumulative_Hours = 0)

See Also

SELECT

EXISTS

IN

SQL Grammar in Zen

184 SQL Syntax Reference

OPEN

Syntax
OPEN cursor-name

cursor-name ::= user-defined-name

Remarks

The OPEN statement opens a cursor. A cursor must be defined before it can be opened.

This statement is allowed only inside of a stored procedure or a trigger, since cursors and
variables are only allowed inside of stored procedures and triggers.

Examples

The following example opens the declared cursor BTUCursor.

DECLARE BTUCursor CURSOR
FOR SELECT Degree, Residency, Cost_Per_Credit FROM Tuition ORDER BY ID;
OPEN BTUCursor;

============

CREATE PROCEDURE MyProc(IN :CourseName CHAR(7)) AS
BEGIN
DECLARE cursor1 CURSOR
FOR SELECT Degree, Residency, Cost_Per_Credit FROM Tuition ORDER BY ID;
(additional code would go here)
OPEN cursor1;
FETCH cursor1 INTO :CourseName;
(additional code would go here)
CLOSE cursor1;
(additional code would go here)
END

See Also

CREATE PROCEDURE

CREATE TRIGGER

DECLARE CURSOR

SQL Grammar in Zen

SQL Syntax Reference 185

PARTIAL

Remarks

To allow indexing on CHAR and VARCHAR columns wider than 255 bytes, include the
PARTIAL keyword in the CREATE INDEX statement. If the columns that make up the partial
index, including overhead, contain less than 255 bytes, PARTIAL is ignored.

Note: The DROP INDEX statement does not require PARTIAL to remove a partial index.

UNIQUE and PARTIAL are mutually exclusive and cannot be used in the same CREATE INDEX
statement.

See Also

CREATE INDEX

DROP INDEX

UNIQUE

SQL Grammar in Zen

186 SQL Syntax Reference

PRIMARY KEY

Remarks

Include PRIMARY KEY in the ADD clause to add a primary key to a table definition. The
primary key is a unique index that does not include null values. When you specify a primary key,
Zen creates a unique index with the specified attributes on the defined group of columns.

Because a table can have only one primary key, you cannot add a primary key to a table that
already has a primary key defined. To change the primary key of a table, delete the existing key
using a DROP clause in an ALTER TABLE statement and add the new primary key.

Note: You must be logged in to the database using a database name before you can add a primary
key or conduct any other referential integrity (RI) operation.

Include PRIMARY KEY in the ADD clause with the ALTER TABLE statement to add a primary
key to a table definition.

Before adding the primary key, you must ensure that the columns in the primary key column list
are defined as NOT NULL. A primary key is a unique index and can be created only on not
nullable columns.

If a unique index on not nullable columns already exists, the ADD PRIMARY KEY does not
create another unique index. Instead, the existing unique index is promoted to a primary key. For
example, the following statements would promote the named index T1_C1C2 to be a primary key.

CREATE TABLE t1 (c1 INT NOT NULL, c2 CHAR(10) NOT NULL)
CREATE UNIQUE INDEX t1_c1c2 ON t1(c1,c2)
ALTER TABLE t1 ADD PRIMARY KEY(c1, c2)

If such a primary key is dropped, the primary key would be switched to a unique index.

ALTER TABLE t1 DROP PRIMARY KEY

If no unique index on not nullable columns exists in the table, ADD PRIMARY KEY creates a
unique index on not nullable columns. DROP PRIMARY KEY completely deletes the unique
index.

Include a PRIMARY KEY clause with the CREATE TABLE statement to add a primary key to a
table definition.

To define referential constraints on your database, you must include a PRIMARY KEY clause to
specify the primary key on the parent table. The primary key can consist of one column or
multiple columns but can only be defined on columns that are not null. The columns you specify
must also appear in the column Definitions list of the CREATE TABLE statement.

SQL Grammar in Zen

SQL Syntax Reference 187

When you specify a primary key, Zen creates an index with the specified attributes on the defined
group of columns. If the columns are not specifically defined as NOT NULL in the CREATE
TABLE statement, Zen forces the columns to be not nullable. Zen also creates a unique index on
the columns.

For example, the following two statements yield the same results:

CREATE TABLE t1 (c1 INT, c2 CHAR(10), PRIMARY KEY(c1,c2))
CREATE TABLE t1 (c1 INT NOT NULL, c2 CHAR(10) NOT NULL, PRIMARY KEY(c1,c2))

Examples

The following statement defines a primary key on a table called Faculty.

ALTER TABLE Faculty ADD PRIMARY KEY (ID)

The ID column is defined as a unique index that does not include null values.

See Also

ALTER TABLE

CREATE TABLE

SQL Grammar in Zen

188 SQL Syntax Reference

PRINT

Remarks

Use PRINT to print variable values or constants. The PRINT statement applies only to Windows-
based platforms. It is ignored on other operating system platforms.

You can use PRINT only within stored procedures.

Examples

The following example prints the value of the variable :myvar.

PRINT(:myvar);

PRINT 'MYVAR = ' + :myvar;

============

The following example prints a text string followed by a numeric value. You must convert a
number value to a text string to print the value.

PRINT 'Students enrolled in History 101: ' + convert(:int_val, SQL_CHAR);

============

Before the Windows Vista release, it was possible to use PRINT in a stored procedure to send
output to a dialog box if Zen was running as a service using the local system account with the
setting Allow service to interact with desktop. In Windows Vista and later releases, the operating
system no longer allows this output. As shown in the following workaround, you can convert the
value to a character string and return it in a SELECT statement.

DROP PROCEDURE varsub2;
CREATE PROCEDURE varsub2 ()
RETURNS (TestString CHAR(25));
DECLARE :vInteger INT;
DECLARE :tstring CHAR(25);
SET :vInteger = 0;
BEGIN
WHILE (:vInteger < 10) DO
SET :vInteger = :vInteger + 1;
END WHILE;
SET :tstring = 'The counter value is = ' + convert(:vInteger, SQL_CHAR);
SELECT :tstring;
END;
Call varsub2;

SQL Grammar in Zen

SQL Syntax Reference 189

See Also

CREATE PROCEDURE

SQL Grammar in Zen

190 SQL Syntax Reference

PUBLIC

Remarks

You can include the PUBLIC keyword in the FROM clause to revoke the Create Table right from
all the users to whom the right was not explicitly assigned.

Include a FROM clause to specify the group or user from whom you are revoking rights. You can
specify a single name or a list of names, or you can include the PUBLIC keyword to revoke
access rights from all users whose rights are not explicitly assigned.

Examples

To assign access rights to all users in the dictionary, include the PUBLIC keyword to grant the
rights to the PUBLIC group, as in the following example:

GRANT SELECT ON Course TO PUBLIC

This statement assigns the Select right on the Course table to all users defined in the dictionary. If
you later revoke the Select right from the PUBLIC group, only users who are granted the Select
right explicitly can access the table.

The following statement includes the PUBLIC keyword to grant the Create Table right to all the
users defined in the dictionary:

GRANT CREATETAB TO PUBLIC

See Also

GRANT

REVOKE

SQL Grammar in Zen

SQL Syntax Reference 191

RELEASE SAVEPOINT
Use the RELEASE SAVEPOINT statement to delete a savepoint.

Syntax
RELEASE SAVEPOINT savepoint-name

savepoint-name ::= user-defined-name

Remarks

RELEASE, ROLLBACK, and SAVEPOINT and are supported at the session level (outside of
stored procedures) only if AUTOCOMMIT is off. Otherwise, RELEASE, ROLLBACK, and
SAVEPOINT must be used within a stored procedure.

Any committed statements within a stored procedure are controlled by the outermost transaction
of the calling SQL application.

Examples

The following example sets a SAVEPOINT then checks a condition to determine whether to
ROLLBACK or to RELEASE the SAVEPOINT.

CREATE PROCEDURE Enroll_student(IN :student ubigint, IN :classnum INTEGER);

BEGIN
DECLARE :CurrentEnrollment INTEGER;
DECLARE :MaxEnrollment INTEGER;
SAVEPOINT SP1;
INSERT INTO Enrolls VALUES (:student,:classnum, 0.0);
SELECT COUNT(*) INTO :CurrentEnrollment FROM Enrolls WHERE class_id = :classnum;
SELECT Max_size INTO :MaxEnrollment FROM Class WHERE ID = :classnum;
IF :CurrentEnrollment >= :MaxEnrollment THEN

ROLLBACK TO SAVEPOINT SP1;
ELSE

RELEASE SAVEPOINT SP1;
END IF;

END;

Note that COUNT(expression) counts all nonnull values for an expression across a predicate.
COUNT(*) counts all values, including null values.

See Also

CREATE PROCEDURE

SQL Grammar in Zen

192 SQL Syntax Reference

ROLLBACK

SAVEPOINT

SQL Grammar in Zen

SQL Syntax Reference 193

RESTRICT

Remarks

If you specify RESTRICT, Zen enforces the DELETE RESTRICT rule. A user cannot delete a
row in the parent table if a foreign key value refers to it.

If you do not specify a delete rule, Zen applies the RESTRICT rule by default.

See Also

ALTER TABLE

SQL Grammar in Zen

194 SQL Syntax Reference

REVOKE
REVOKE deletes user IDs and removes privileges for specific users in a secured database. You
can use the REVOKE statement to revoke CREATE TABLE, CREATE VIEW, and CREATE
PROCEDURE privileges.

Syntax
REVOKE CREATETAB | CREATEVIEW | CREATESP FROM public-or-user-group-name [, public-or-user-group-name
]...

REVOKE LOGIN FROM user-name [, user-name]...

REVOKE permission ON < * | [TABLE] table-name [owner-name]> | VIEW view-name | PROCEDURE
stored_procedure-name > FROM user-or-group-name [, user-or-group-name]...

* ::= all of the objects (that is, all tables, views and stored procedures)

permission ::= ALL
| SELECT [(column-name [, column-name]...)]
| UPDATE [(column-name [, column-name]...)]
| INSERT [(column-name [, column-name]...)]
| DELETE
| ALTER
| REFERENCES
| EXECUTE

table-name ::= user-defined table-name

view-name ::= user-defined view-name

stored-procedure-name ::= user-defined stored_procedure-name

public-or-user-group-name ::= PUBLIC | user-group-name

user-group-name ::= user-name | group-name

user-name ::= user-defined user-name

group-name ::= user-defined group-name

The following table shows the syntax for a given action.

To REVOKE Permissions For This Action Use This Keyword with REVOKE

CREATE TABLE CREATETAB

CREATE VIEW CREATEVIEW

CREATE PROCEDURE CREATESP

SQL Grammar in Zen

SQL Syntax Reference 195

The following table shows which permissions are removed if you use the ALL keyword.

Examples

The following statement revokes all of these permissions from dannyd for table Class.

REVOKE ALL ON Class FROM 'dannyd'

The following statement revokes all permissions from dannyd and rgarcia for table Class.

REVOKE ALL ON Class FROM dannyd, rgarcia

============

The following statement revokes DELETE permission from dannyd and rgarcia for table Class.

REVOKE DELETE ON Class FROM dannyd, rgarcia

============

The following example revokes INSERT rights from keithv and miked for table Class.

REVOKE INSERT ON Class FROM keithv, miked

The following example revokes INSERT rights from keithv and brendanb for table Person and
columns First_name and Last_name.

REVOKE INSERT(First_name,Last_name) ON Person FROM keithv, brendanb

============

The following statement revokes ALTER rights from dannyd from table Class.

REVOKE ALTER ON Class FROM dannyd

============

The following example revokes SELECT rights from dannyd and rgarcia on table Class.

Permission Removed by ALL Table View Stored Procedure

ALTER X X X

DELETE X X

INSERT X X

REFERENCES X

SELECT X X

UPDATE X X

EXECUTE X

SQL Grammar in Zen

196 SQL Syntax Reference

REVOKE SELECT ON Class FROM dannyd, rgarcia

The following statement revokes SELECT rights from dannyd and rgarcia in table Person for
columns First_name and Last_name.

REVOKE SELECT(First_name, Last_name) ON Person FROM dannyd, rgarcia

============

The following example revokes UPDATE rights from dannyd and rgarcia for table Person.

REVOKE UPDATE ON Person ON dannyd, rgarcia

============

The following example revokes CREATE VIEW privilege from user1.

REVOKE CREATEVIEW FROM user1;

============

The following example revokes EXECUTE privilege for user1 for stored procedure MyProc1.

REVOKE EXECUTE ON PROCEDURE MyProc1 FROM user1;

============

The following example assumes that security was enabled on the Demodata sample database and
a user named USAcctsMgr was granted SELECT rights to the ID column in table Person. You
now want to revoke selection rights to that column for that user. Use the following statement.

REVOKE SELECT (ID) ON Person FROM 'USAcctsMgr'

See Also

GRANT

SQL Grammar in Zen

SQL Syntax Reference 197

ROLLBACK
ROLLBACK returns the database to the state it was in before the current transaction began. This
statement releases the locks acquired since the last SAVEPOINT or START TRANSACTION.

ROLLBACK TO SAVEPOINT rolls back the transaction to the specified savepoint.

Syntax
ROLLBACK [WORK] [TO SAVEPOINT savepoint-name]

savepoint-name ::= user-defined-name

Remarks

ROLLBACK, SAVEPOINT, and RELEASE are supported at the session level (outside of stored
procedures) only if AUTOCOMMIT is off. Otherwise, ROLLBACK, SAVEPOINT, and
RELEASE must be used within a stored procedure.

Any committed statements within a stored procedure are controlled by the outermost transaction
of the calling SQL application.

In the case of nested transactions, ROLLBACK rolls back to the nearest START
TRANSACTION. For example, if transactions are nested five levels, then five ROLLBACK
statements are needed to undo all of the transactions. A transaction is either committed or rolled
back, but not both. That is, you cannot roll back a committed transaction.

Examples

The following statement undoes database changes since the beginning of a transaction.

ROLLBACK WORK;

The following statement undoes database changes since the last savepoint, named Svpt1.

ROLLBACK TO SAVEPOINT Svpt1;

See Also

COMMIT

RELEASE SAVEPOINT

SAVEPOINT

SQL Grammar in Zen

198 SQL Syntax Reference

SAVEPOINT
SAVEPOINT defines a point in a transaction to which you can roll back.

Syntax
SAVEPOINT savepoint-name

savepoint-name ::= user-defined-name

Remarks

ROLLBACK, SAVEPOINT, and RELEASE are supported at the session level (outside of stored
procedures) only if AUTOCOMMIT is off. Otherwise, ROLLBACK, SAVEPOINT, and
RELEASE must be used within a stored procedure.

Any committed statements within a stored procedure are controlled by the outermost transaction
of the calling SQL application.

A SAVEPOINT applies only to the procedure in which it is defined. That is, you cannot reference
a SAVEPOINT defined in another procedure.

Examples

The following example sets a SAVEPOINT then checks a condition to determine whether to
ROLLBACK or to RELEASE the SAVEPOINT.

CREATE PROCEDURE Enroll_student(IN :student ubigint, IN :classnum INTEGER);
BEGIN

DECLARE :CurrentEnrollment INTEGER;
DECLARE :MaxEnrollment INTEGER;
SAVEPOINT SP1;
INSERT INTO Enrolls VALUES (:student, :classnum, 0.0);
SELECT COUNT(*) INTO :CurrentEnrollment FROM Enrolls WHERE class_id = :classnum;
SELECT Max_size INTO :MaxEnrollment FROM Class WHERE ID = :classnum;
IF :CurrentEnrollment >= :MaxEnrollment THEN

ROLLBACK TO SAVEPOINT SP1;
ELSE

RELEASE SAVEPOINT SP1;
END IF;

END;

Note that COUNT(expression) counts all nonnull values for an expression across a predicate.
COUNT(*) counts all values, including null values.

SQL Grammar in Zen

SQL Syntax Reference 199

See Also

COMMIT

CREATE PROCEDURE

RELEASE SAVEPOINT

ROLLBACK

SQL Grammar in Zen

200 SQL Syntax Reference

SELECT
Retrieves specified information from a database. A SELECT statement creates a temporary view.

Syntax
query-specification [[UNION [ALL] query-specification]...

[ORDER BY order-by-expression [, order-by-expression]...] [limit-clause] [FOR UPDATE]

query-specification ::= (query-specification)
| SELECT [ALL | DISTINCT] [top-clause] select-list

FROM table-reference [, table-reference]...
[WHERE search-condition]
[GROUP BY expression [, expression]...
[HAVING search-condition]]

expression-or-subquery ::= expression | (query-specification) [ORDER BY order-by-expression
[, order-by-expression]...] [limit-clause]

subquery-expression ::= (query-specification) [ORDER BY order-by-expression
[, order-by-expression]...] [limit-clause]

order-by-expression ::= expression [CASE (string) | COLLATE collation-name] [ASC | DESC]

limit-clause ::= [LIMIT [offset,] row_count | row_count OFFSET offset | ALL [OFFSET offset]]

offset ::= number | ?

row_count ::= number | ?

top-clause ::= TOP or LIMIT number

select-list ::= * | select-item [, select-item]...

select-item ::= expression [[AS] alias-name] | table-name.*

table-reference ::= { OJ outer-join-definition }
| [db-name.]table-name [[AS] alias-name] [WITH (table-hint)]
| [db-name.]view-name [[AS] alias-name]
| dbo.fsystem-catalog-function-name [[AS] alias-name]
| join-definition
| (join-definition)
| (table-subquery)[AS] alias-name [(column-name [, column-name]...)]

outer-join-definition ::= table-reference outer-join-type JOIN table-reference

ON search-condition

outer-join-type ::= LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]

table-hint ::= INDEX (index-value [, index-value]...)

index-value ::= 0 | index-name

index-name ::= user-defined-name

join-definition ::= table-reference [join-type] JOIN table-reference ON search-condition
| table-reference CROSS JOIN table-reference
| outer-join-definition

join-type ::= INNER | LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]

SQL Grammar in Zen

SQL Syntax Reference 201

table-subquery ::= query-specification [[UNION [ALL]
query-specification]...][ORDER BY order-by-expression [, order-by-expression]...]

search-condition ::= search-condition AND search-condition
| search-condition OR search-condition
| NOT search-condition
| (search-condition)
| predicate

predicate ::= expression [NOT] BETWEEN expression AND expression
| expression-or-subquery comparison-operator expression-or-subquery
| expression [NOT] IN (query-specification)
| expression [NOT] IN (value [, value]...)
| expression [NOT] LIKE, ILIKE, and Using ESCAPE value
| expression IS [NOT] NULL
| expression comparison-operator ANY (query-specification)
| expression comparison-operator ALL (query-specification)
| [NOT] EXISTS (query-specification)

comparison-operator ::= < | > | <= | >= | = | <> | !=

expression-or-subquery ::= expression | (query-specification)

value ::= literal | USER | ?

expression ::= expression - expression
| expression + expression
| expression * expression
| expression / expression
| expression & expression
| expression | expression
| expression ^ expression
| (expression)
| -expression
| +expression
| column-name
| ?
| literal
| set-function
| scalar-function
| { fn scalar-function }
| window-function
| CASE case_value_expression WHEN when_expression THEN then_expression [...] [ELSE

else_expression] END
| COALESCE (expression, expression [,...])
| IF (search-condition , expression , expression)
| SQLSTATE
| subquery-expression
| NULL
| : user-defined-name
| USER
| global-variable
| virtual-column

case_value_expression when_expression, then_expression else_expression ::= see CASE (expression)

subquery-expression ::= (query-specification)

set-function ::= AVG ([DISTINCT | ALL] expression)
| COUNT (< * | [DISTINCT | ALL] expression >)
| COUNT_BIG (< * | [DISTINCT | ALL] expression >)
| LAG (expression[, expression[, expression]] over-clause)
| MAX ([DISTINCT | ALL] expression)
| MIN ([DISTINCT | ALL] expression)
| STDEV ([DISTINCT | ALL] expression)

SQL Grammar in Zen

202 SQL Syntax Reference

| STDEVP ([DISTINCT | ALL] expression)
| SUM ([DISTINCT | ALL] expression)
| VAR ([DISTINCT | ALL] expression)
| VARP ([DISTINCT | ALL] expression)

scalar-function ::= see Scalar Functions

global-variable ::= @:IDENTITY
| @:ROWCOUNT
| @@BIGIDENTITY
| @@IDENTITY
| @@ROWCOUNT
| @@SPID
| @@VERSION

virtual-column ::= SYS$CREATE
| SYS$UPDATE

window-function ::= set-function over-clause

over-clause ::= OVER ([partition-by-clause] order-by-in-over-clause [row-clause])

partition-by-clause ::= PARTITION BY expression [, expression] ...

order-by-in-over-clause ::= ORDER BY expression [ASC | DESC] [, expression [ASC | DESC]] ...

row-clause ::= ROWS window-frame-extent

window-frame-extent ::= { UNBOUNDED PRECEDING
| unsigned-integer-literal PRECEDING
| CURRENT ROW }

Note: Usage of ORDER BY in OVER clauses differs from ORDER BY elsewhere in Zen SQL.
For details and related information applicable to the current release, see SQL Windowing
Functions.

Remarks

These remarks cover the following topics related to use of SELECT:

FOR UPDATE

SELECT FOR UPDATE locks the row or rows within the table that is selected by the query. The
record locks are released when the next COMMIT or ROLLBACK statement is issued.

• FOR UPDATE

• GROUP BY

• SQL Windowing Functions

• Dynamic Parameters

• Aliases

• SUM and DECIMAL Precision

• Subqueries

• Using Table Hints

• DISTINCT in Aggregate Functions

• TOP or LIMIT

• Table Hint Examples

• Accessing System Data v2

SQL Grammar in Zen

SQL Syntax Reference 203

To avoid contention, SELECT FOR UPDATE locks the rows as they are retrieved.

SELECT FOR UPDATE takes precedence within a transactions if statement level
SQL_ATTR_CONCURRENCY is set to SQL_CONCUR_LOCK. If
SQL_ATTR_CONCURRENCY is set to SQL_CONCUR_READ_ONLY, the database engine
does not return an error.

SELECT FOR UPDATE does not support a WAIT or NOWAIT keyword. SELECT FOR
UPDATE returns status code 84: The record or page is locked if it cannot lock the rows within a
brief period (20 retries).

Constraints

The SELECT FOR UPDATE statement has the following constraints:

• Is valid only within a transaction. The statement is ignored if used outside of a transaction.

• Is supported only for a single table. You cannot use SELECT FOR UPDATE with JOIN,
nonsimple views, or the GROUP BY, DISTINCT, or UNION keywords.

• Is not supported within a CREATE VIEW statement.

GROUP BY

In addition to supporting a GROUP BY on a column list, Zen supports a GROUP BY on an
expression list or on any expression in a GROUP BY expression list. See GROUP BY for more
information on GROUP BY extensions. HAVING is not supported without GROUP BY.

Result sets and stored views generated by executing SELECT statements with any of the
following characteristics are read-only (they cannot be updated). That is, using a positioned
UPDATE or a positioned DELETE and a SQLSetPos call to add, alter or delete data is not
allowed on the result set or stored view if:

• The selection list contains an aggregate:
SELECT SUM(c1) FROM t1

• The selection list specifies DISTINCT:
SELECT DISTINCT c1 FROM t1

• The view uses GROUP BY:
SELECT SUM(c1), c2 FROM t1 GROUP BY c2

• The view is a join (references multiple tables):
SELECT * FROM t1, t2

• The view uses the UNION operator and UNION ALL is not specified or all SELECT
statements do not reference the same table:

SQL Grammar in Zen

204 SQL Syntax Reference

SELECT c1 FROM t1 UNION SELECT c1 FROM t1

SELECT c1 FROM t1 UNION ALL SELECT c1 FROM t2

Note that stored views do not allow the UNION operator.

• The view contains a subquery that references a table other than the table in the outer query:
SELECT c1 FROM t1 WHERE c1 IN (SELECT c1 FROM t2)

SQL Windowing Functions

Zen provides a subset of ANSI standard SQL windowing usage. In the current release, this initial
introduction has certain limitations and considerations.

Limitations

OVER clauses have the following limitations:

• All OVER clauses in a SELECT statement must match in their PARTITION BY, ORDER BY,
and ROWS clauses. PARTITION BY expressions must be the same and in the same order,
ORDER BY expressions must be the same and in the same order, and ROWS clauses must be
identical. If any of these clauses is absent from an OVER clause, it must be absent from the
others.

• An OVER clause must include an ORDER BY clause. A PARTITION BY clause is optional.
If PARTITION BY is present, it must not use any of the same columns as the ORDER BY
clause. If PARTITION BY is absent, the entire result set is treated as a single partition.

• In a PARTITION BY clause, the use of ROWS supports the following keywords:

• UNBOUNDED

• n PRECEDING

• CURRENT ROW

• In a PARTITION BY clause, the use of ROWS does not support the following keywords:

• BETWEEN

• FOLLOWING

• The RANGE keyword is not supported.

• The DISTINCT keyword is not supported in set functions.

• In an OVER clause the ORDER BY clause does not support a COLLATE specification.

• Window functions can be used only with a forward-only cursor.

SQL Grammar in Zen

SQL Syntax Reference 205

Considerations

Under the ANSI SQL standard, certain syntax combinations imply default RANGE semantics,
which are not supported in the current Zen release. Accordingly, in the current Zen release, in
cases where the default RANGE specification is RANGE UNBOUNDED PRECEDING, this
default is implemented as ROWS UNBOUNDED PRECEDING.

In general, the difference between these two defaults affects a result set only if the combination of
column values returned by the PARTITION BY and ORDER BY clauses is not unique for each
row. Therefore, in the current Zen release, if the combination of those column values is not unique
for each row, we recommend explicitly specifying ROWS UNBOUNDED PRECEDING, since
that will return the expected result.

Dynamic Parameters

Dynamic parameters, represented by a question mark (?), are not supported as SELECT items.
You may use dynamic parameters in any SELECT statement if the dynamic parameter is part of
the predicate. For example, SELECT * FROM faculty WHERE id = ? is valid because the
dynamic parameter is part of the predicate.

Note that you cannot use SQL Editor in Zen Control Center to execute a SQL statement with a
dynamic parameter in the predicate.

You may use variables as SELECT items only within stored procedures. See CREATE
PROCEDURE.

Aliases

Aliases may appear in a WHERE, HAVING, ORDER BY, or GROUP BY clause. Alias names
must differ from any column names within the table. The following statement shows the use of
aliases, a and b, in a WHERE clause and in a GROUP BY clause.

SELECT Student_ID a, Transaction_Number b, SUM (Amount_Owed) FROM Billing WHERE a < 120492810 GROUP
BY a, b UNION SELECT Student_ID a, Transaction_Number b, SUM (Amount_Paid) FROM Billing WHERE a >
888888888 GROUP BY a, b

SUM and DECIMAL Precision

When using the SUM aggregate function on a field that is of type DECIMAL, the following rules
apply:

• The precision of the result is 74, while the scale is dependent on the column definition.

SQL Grammar in Zen

206 SQL Syntax Reference

• The result may cause an overflow error if a number with precision greater than 74 is
calculated (a very large number indeed). If an overflow occurs, no value is returned, and
SQLSTATE is set to 22003, indicating a numeric value is out of range.

Subqueries

A subquery is a SELECT statement with one or more SELECT statements within it. A subquery
produces values for further processing within the statement. The maximum number of nested
subqueries allowed within the topmost SELECT statement is 16.

The following types of subqueries are supported:

• comparison

• quantified

• in

• exists

• correlated

• expression

• table

Correlated subquery predicates are not supported in a HAVING clause that references grouped
columns.

Expression subqueries allow the subquery within the SELECT list. For example, SELECT
(SELECT SUM(c1) FROM t1 WHERE t1.c2 = t1.(c2) FROM t2. Only one item is allowed in the
subquery SELECT list. For example, the following statement returns an error because the
subquery SELECT list contains more than one item: SELECT p.id, (SELECT
SUM(b.amount_owed), SUM(b.amount_paid) FROM billing b) FROM person p.

A subquery as an expression may be correlated or noncorrelated. A correlated subquery
references one or more columns in any of the tables in the topmost statement. A noncorrelated
subquery references no columns in any of the tables in the topmost statement. The following
example illustrates a correlated subquery in a WHERE clause:

SELECT * FROM student s WHERE s.Tuition_id IN

(SELECT t.ID FROM tuition t WHERE t.ID = s.Tuition_ID);

Note: Table subqueries support noncorrelated subqueries but not correlated subqueries.

A subquery connected with the operators IN, EXISTS, ALL, or ANY is not considered an
expression.

SQL Grammar in Zen

SQL Syntax Reference 207

Both correlated and noncorrelated subqueries can return only a single value. For this reason, both
correlated and noncorrelated subqueries are also referred to as scalar subqueries.

Scalar subqueries may appear in the DISTINCT, GROUP BY, and ORDER BY clause.

You may use a subquery on the left-hand side of an expression:

Expr-or-SubQuery CompareOp Expr-or-SubQuery

where Expr is an expression, and CompareOp is one of:

The rest of this section covers the following topics:

• Subquery Optimization

• UNION in Subquery

• Table Subqueries

Subquery Optimization

Left-hand subquery behavior has been optimized for IN, NOT IN, and =ANY in cases where the
subquery is not correlated and any join condition is an outer join. Other conditions may not be
optimized. Here is an example of a query that meets these conditions:

SELECT count(*) FROM person WHERE id IN (SELECT faculty_id FROM class)

Performance improves if you use an index in the subquery because Zen optimizes a subquery
based on the index. For example, the subquery in the following statement is optimized on
student_id because it is an index in the Billing table:

SELECT (SELECT SUM(b.amount_owed) FROM billing b WHERE b.student_id = p.id) FROM person p

UNION in Subquery

Parentheses on different UNION groups within a subquery are not allowed. Parentheses are
allowed within each SELECT statement.

For example, the parenthesis following IN and the last parenthesis are not allowed the following
statement:

SELECT c1 FROM t5 WHERE c1 IN ((SELECT c1 FROM t1 UNION SELECT c1 FROM t2) UNION ALL (SELECT c1 FROM
t3 UNION SELECT c1 from t4))

<
(less than)

>
(greater than)

<=
(less than or
equal to)

>=
(greater than or
equal to)

=
(equals)

<>
(not equal)

!=
(not equal)

LIKE IN NOT IN

SQL Grammar in Zen

208 SQL Syntax Reference

Table Subqueries

Table subqueries can be used to combine multiple queries into one detailed query. A table
subquery is a dynamic view, which is not persisted in the database. When the topmost SELECT
query finishes, all resources associated with table subqueries are released.

Note: Only noncorrelated subqueries are allowed in table subqueries. Correlated subqueries are
not allowed.

The following examples of pagination (1500 rows with 100 rows per page) show the use of table
subqueries with the ORDER BY keyword:

The first 100 rows

SELECT * FROM (SELECT TOP 100 * FROM (SELECT TOP 100 * FROM person ORDER BY last_name asc) AS foo
ORDER BY last_name desc) AS bar ORDER BY last_name ASC

The second 100 rows

SELECT * FROM (SELECT TOP 100 * FROM (SELECT TOP 200 * FROM person ORDER BY last_name asc) AS foo
ORDER BY last_name DESC) AS bar ORDER BY last_name ASC

…

The fifteenth 100 rows

SELECT * FROM (SELECT TOP 100 * FROM (SELECT TOP 1500 * FROM person ORDER BY last_name ASC) AS foo
ORDER BY last_name DESC) AS bar ORDER BY last_name ASC

Using Table Hints

The table hint functionality allows you to specify which index, or indexes, to use for query
optimization. A table hint overrides the default query optimizer used by the database engine.

If the table hint specifies INDEX(0), the engine performs a table scan of the associated table. (A
table scan reads each row in the table rather than using an index to locate a specific data element.)

If the table hint specifies INDEX(index-name), the engine uses index-name to optimize the table
based on restrictions of any JOIN conditions, or based on the use of DISTINCT, GROUP BY, or
ORDER BY. If the table cannot be optimized on the specified index, the engine attempts to
optimize the table based on any existing index.

If you specify multiple index names, the engine chooses the index that provides optimal
performance or uses the multiple indexes for OR optimization. An example helps clarify this.
Suppose that you have the following:

CREATE INDEX ndx1 on t1(c1)
CREATE INDEX ndx2 on t1(c2)
CREATE INDEX ndx3 on t1(c3)

SQL Grammar in Zen

SQL Syntax Reference 209

SELECT * FROM t1 WITH (INDEX (ndx1, ndx2)) WHERE c1 = 1 AND c2 > 1 AND c3 = 1

The database engine uses ndx1 to optimize on c1 = 1 rather than using ndx2 for optimization.
Ndx3 is not considered because the table hint does not include ndx3.

Now consider the following:

SELECT * FROM t1 WITH (INDEX (ndx1, ndx2)) WHERE (c1 = 1 OR c2 > 1) AND c3 = 1

The engine uses both ndx1 and ndx2 to optimize on (c1 = 1 OR c2 > 1).

The order in which the multiple index names appear in the table hint does not matter. The
database engine chooses from the specified indexes the one(s) that provides for the best
optimization.

Duplicate index names within the table hint are ignored.

For a joined view, specify the table hint after the appropriate table name, not at the end of the
FROM clause. For example, the following statement is correct:

SELECT * FROM person WITH (INDEX(Names)), student WHERE student.id = person.id AND last_name LIKE
'S%'

Contrast this with the following statement, which is incorrect:

SELECT * FROM person, student WITH (INDEX(Names)) WHERE student.id = person.id AND last_name LIKE
'S%'

Note: The table hint functionality is intended for advanced users. Typically, table hints are not
required because the database query optimizer usually picks the best optimization method.

Table Hint Restrictions

• The maximum number of index names that can be used in a table hint is limited only by the
maximum length of a SQL statement (64 KB).

• The index name within a table hint must not be fully qualified with the table name.

Incorrect SQL: SELECT * FROM t1 WITH (INDEX(t1.ndx1)) WHERE t1.c1 = 1

Returns: SQL_ERROR

szSqlState: 37000

Message: Syntax Error: SELECT * FROM t1 WITH (INDEX(t1.<< ??? >>ndx1))
WHERE t1.c1 = 1

SQL Grammar in Zen

210 SQL Syntax Reference

• Table hints are ignored if they are used in a SELECT statement with a view.

• Zero is the only valid hint that is not an index name.

• The index name in a table hint must specify an existing index.

• A table hint cannot be specified on a subquery AS table.

Incorrect SQL: SELECT * FROM myt1view WITH (INDEX(ndx1))

Returns: SQL_SUCCESS_WITH_INFO

szSqlState: 01000

Message: Index hints supplied with views will be ignored

Incorrect SQL: SELECT * FROM t1 WITH (INDEX(85))

Returns: SQL_ERROR

szSqlState: S1000

Message: Invalid index hint

Incorrect SQL: SELECT * FROM t1 WITH (INDEX(ndx4))

Returns: SQL_ERROR

szSqlState: S0012

Message: Invalid index name; index not found

Incorrect SQL: SELECT * FROM (SELECT c1, c2 FROM t1 WHERE c1 = 1) AS a
WITH (INDEX(ndx2)) WHERE a.c2 = 10

Returns: SQL_ERROR

szSqlState: 37000

Message: syntax Error: SELECT * FROM (SELECT c1, c2 FROM t1 WHERE c1
= 1) AS a WITH<< ??? >>(INDEX(ndx2)) WHERE a.c2 = 10

SQL Grammar in Zen

SQL Syntax Reference 211

Accessing System Data v2

In data files using the 13.0 and 16.0 formats, system data v2 enables Btrieve keys based on time
stamps for record creation and record update. These create and update keys have the following
properties:

• The creation key replaces the existing Btrieve system key 125 for use in transactional logging.

• The update key allows identifying of rows that have changed since a specific point in time,
such as the creation time stamp in key 125. The update key is Btrieve system key 124.

• Both keys have a TIMESTAMP(7) format, YYYY-MM-DD HH:MM:SS.sssssss, with
septasecond precision.

• In SQL queries, you can access the time stamps using the column names sys$create and
sys$update. For a working example, see Queries with Sys$create and Sys$update.

Examples

This simple SELECT statement retrieves all the data from the Faculty table.

SELECT * FROM Faculty

This statement retrieves the data from the person and the faculty table where the id column in the
person table is the same as the id column in the faculty table.

SELECT Person.id, Faculty.salary FROM Person, Faculty WHERE Person.id = Faculty.id

The rest of this section provides examples of variations on SELECT statements. Some of these
headings are based on the variable given in the syntax definition for SELECT.

• FOR UPDATE

• Approximate Numeric Literal

• Between Predicate

• Correlation Name

• Exact Numeric Literal

• In Predicate

• Set Functions

• Date Literal

• Time Literal

• Time Stamp Literal

• String Literal

• Date Arithmetic

• IF

• Multidatabase Join

• Left Outer Join

• Right Outer Join

• Cartesian Join

• Queries with Sys$create and
Sys$update

SQL Grammar in Zen

212 SQL Syntax Reference

FOR UPDATE

The following example uses table t1 to demonstrate the use of FOR UPDATE. Assume that t1 is
part of the Demodata sample database. The stored procedure creates a cursor for the SELECT
FOR UPDATE statement. A loop fetches each record from t1 and, for those rows where c1=2, sets
the value of c1 to four.

The procedure is called by passing the value 2 as the IN parameter.

The example assumes two users, A and B, logged in to Demodata. User A performs the following:

DROP TABLE t1
CREATE TABLE t1 (c1 INTEGER, c2 INTEGER)
INSERT INTO t1 VALUES (1,1)
INSERT INTO t1 VALUES (2,1)
INSERT INTO t1 VALUES (1,1)
INSERT INTO t1 VALUES (2,1)
CREATE PROCEDURE p1 (IN :a INTEGER)
AS
BEGIN

DECLARE :b INTEGER;
DECLARE :i INTEGER;
DECLARE c1Bulk CURSOR FOR SELECT * FROM t1 WHERE c1 = :a FOR UPDATE;
START TRANSACTION;
OPEN c1Bulk;
BulkLinesLoop:
LOOP

FETCH NEXT FROM c1Bulk INTO :i;
IF SQLSTATE = '02000' THEN
LEAVE BulkLinesLoop;
END IF;
UPDATE SET c1 = 4 WHERE CURRENT OF c1Bulk;

END LOOP;
CLOSE c1Bulk;
SET :b = 0;
WHILE (:b < 100000) DO
BEGIN

SET :b = :b + 1;
END;
END WHILE;
COMMIT WORK;
END;

CALL p1(2)

Notice that a WHILE loop delays the COMMIT of the transaction. During that delay, assume that
User B attempts to update t1. Status code 84 is returned to User B because those rows are locked
by the SELECT FOR UPDATE statement from User A.

============

The following example uses table t1 to demonstrate how SELECT FOR UPDATE locks records
when the statement is used outside of a stored procedure. Assume that t1 is part of the Demodata
sample database.

The example assumes that two users, A and B, are logged in to Demodata. User A performs the
following:

SQL Grammar in Zen

SQL Syntax Reference 213

DROP TABLE t1
CREATE TABLE t1 (c1 INTEGER, c2 INTEGER)
INSERT INTO t1 VALUES (1,1)
INSERT INTO t1 VALUES (2,1)
INSERT INTO t1 VALUES (1,1)
INSERT INTO t1 VALUES (2,1)

(turn off AUTOCOMMIT)

(execute and fetch): "SELECT * FROM t1 WHERE c1 = 2 FOR UPDATE"

The two records where c1 = 2 are locked until User A issues a COMMIT WORK or ROLLBACK
WORK statement.

(User B attempts to update t1): "UPDATE t1 SET c1=3 WHERE c1=2" A status code 84 is returned to
User B because those rows are locked by the SELECT FOR UPDATE statement from User A.

(Now assume that User A commits the transaction.) The two records where c1 = 2 are unlocked.

User B could now execute "UPDATE t1 SET c1=3 WHERE c1=2" and change the values for c1.

Approximate Numeric Literal

SELECT * FROM results WHERE quotient =-4.5E-2
INSERT INTO results (quotient) VALUES (+5E7)

Between Predicate

The syntax expression1 BETWEEN expression2 and expression3 returns TRUE if expression1
>= expression2 and expression1<= expression3. FALSE is returned if expression1 >=
expression3, or is expression1 <= expression2.

Expression2 and expression3 may be dynamic parameters (for example, SELECT * FROM emp
WHERE emp_id BETWEEN ? AND ?).

The next example retrieves the first names from the Person table whose ID falls between 10000
and 20000.

SELECT First_name FROM Person WHERE ID BETWEEN 10000 AND 20000

Correlation Name

Both table and column correlation names are supported.

The following example selects data from both the person table and the faculty table using the
aliases T1 and T2 to differentiate between the two tables.

SELECT * FROM Person t1, Faculty t2 WHERE t1.id = t2.id

SQL Grammar in Zen

214 SQL Syntax Reference

The correlation name for a table name can also be specified in using the FROM clause, as seen in
the following example:

SELECT a.Name, b.Capacity FROM Class a, Room b
WHERE a.Room_Number = b.Number

Exact Numeric Literal

SELECT car_num, price FROM cars WHERE car_num =49042 AND price=49999.99

In Predicate

This selects the records from table Person table where the first names are Bill and Roosevelt.

SELECT * FROM Person WHERE First_name IN ('Roosevelt', 'Bill')

Set Functions

Zen supports the set functions AVG, COUNT, COUNT_BIG, LAG, MAX, MIN, STDEV,
STDEVP, SUM, VAR, and VARP, which are illustrated in the following examples.

LAG is valid only as a windowing function. For details and examples, see the LAG keyword.

AVG, MAX, MIN, and SUM

The aggregate functions for AVG, MAX, MIN, and SUM operate as commonly expected. The
following examples use these functions with the Salary field in the Faculty sample table.

SELECT AVG(Salary) FROM Faculty
SELECT MAX(Salary) FROM Faculty
SELECT MIN(Salary) FROM Faculty
SELECT SUM(Salary) FROM Faculty

Most often, these functions are used with GROUP BY to apply them to sets of rows with a
common column, as shown in this example:

SELECT AVG(Salary) FROM Faculty GROUP BY Dept_Name

The following example retrieves student_id and sum of the amount_paid where it is greater than
or equal to 100 from the billing table. It then groups the records by student_id.
SELECT Student_ID, SUM(Amount_Paid)
FROM Billing
GROUP BY Student_ID
HAVING SUM(Amount_Paid) >=100.00

If the expression is a positive integer literal, then that literal is interpreted as the number of the
column in the result set and ordering is done on that column. No ordering is allowed on set
functions or an expression that contains a set function.

COUNT and COUNT_BIG

SQL Grammar in Zen

SQL Syntax Reference 215

COUNT(expression) and COUNT_BIG(expression) count all nonnull values for an expression
across a predicate. COUNT(*) and COUNT_BIG(*) count all values, including NULL values.
COUNT() returns an INTEGER data type with a maximum value of 2,147,483,647.
COUNT_BIG() returns a BIGINT data type with a maximum value of
9,223,372,036,854,775,807.

The following example returns a count of chemistry majors who have a grade point average of 3.5
or greater (and the result does not equal null).

SELECT COUNT(*) FROM student WHERE (CUMULATIVE_GPA > 3.4 and MAJOR='Chemistry')

STDEV and STDEVP

The STDEV function returns the standard deviation of all values based on a sample of the data.
The STDEVP function returns the standard deviation for the population for all values in the
specified expression. Here are the equations for each function:

The following returns the standard deviation of the grade point average by major from the Student
sample table.

SELECT STDEV(Cumulative_GPA), Major FROM Student GROUP BY Major

The following returns the standard deviation for the population of the grade point average by
major from the Student sample table.

SELECT STDEVP(Cumulative_GPA), Major FROM Student GROUP BY Major

VAR and VARP

The VAR function returns the statistical variance for all values on a sample of the data. The VARP
function returns the statistical variance for the population for all values in the specified
expression. Here are the equations for each function:

The following returns the statistical variance of the grade point average by major from the Student
sample table.

SELECT VAR(Cumulative_GPA), Major FROM Student GROUP BY Major

The following returns the statistical variance for the population of the grade point average by
major from the Student sample table.

SQL Grammar in Zen

216 SQL Syntax Reference

SELECT VARP(Cumulative_GPA), Major FROM Student GROUP BY Major

Note that for STDEV, STDEVP, VAR, and VARP, the expression must be a numeric data type and
an eight-byte DOUBLE is returned. A floating-point overflow error results if the difference
between the minimum and maximum values of the expression is out of range. Expression cannot
contain aggregate functions. There must be at least two rows with a value in the expression field
or a result is not calculated and returns a NULL.

Date Literal

See Date Values.

Time Literal

See Time Values.

Time Stamp Literal

See Time Stamp Values.

String Literal

See String Values.

Date Arithmetic

See Date Arithmetic.

IF

The IF system scalar function provides conditional execution based on the truth value of a
condition

This expression prints the column header as Prime1 and amount owed as 2000 where the value of
the column amount_owed is 2000 or it prints a 0 if the value of the amount_owed column is not
equal to 2000.

SELECT Student_ID, Amount_Owed,
IF (Amount_Owed = 2000, Amount_Owed, Convert(0, SQL_DECIMAL)) "Prime1"
FROM Billing

From table Class, the following example prints the value in the Section column if the section is
equal to 001, else it prints "xxx" under column header Prime1.

Under column header Prime2, it prints the value in the Section column if the value of the section
column is equal to 002, or else it prints "yyy."

SQL Grammar in Zen

SQL Syntax Reference 217

SELECT ID, Name, Section,
IF (Section = '001', Section, 'xxx') "Prime1",
IF (Section = '002', Section, 'yyy') "Prime2"
FROM Class

You can combine header Prime1 and header Prime2 by using nested IF functions. Under column
header Prime, the following query prints the value of the Section column if the value of the
Section column is equal to 001 or 002. Otherwise, it print "xxx."

SELECT ID, Name, Section,
IF (Section = '001', Section, IF(Section = '002', Section, 'xxx')) Prime
FROM Class

Multidatabase Join

When needed, a database name may be prepended to an aliased table name in the FROM clause,
to distinguish among tables from two or more different databases that are used in a join.

All of the specified databases must be serviced by the same database engine and have the same
database code page settings. The databases do not need to reside on the same physical volume.
The current database may be secure or unsecure, but all other databases in the join must be
unsecure. With regard to Referential Integrity, all RI keys must exist within the same database.
(See also Encoding.)

Literal database names are not permitted in the select-list or in the WHERE clause. If you wish to
refer to specific columns in the select-list or in the WHERE clause, you must use an alias for each
specified table. See examples.

Assume two separate databases, named accounting and customers, exist on the same server. You
can join tables from the two databases using table aliases and SQL syntax similar to the following
example:

SELECT ord.account, inf.account, ord.balance, inf.address
FROM accounting.orders ord, customers.info inf
WHERE ord.account = inf.account

============

In this example, the two separate databases are acctdb and loandb. The table aliases are a and b,
respectively.

SELECT a.loan_number_a, b.account_no, a.current_bal, b.balance
FROM acctdb.ds500_acct_master b LEFT OUTER JOIN loandb.ml502_loan_master a ON (a.loan_number_a =
b.loan_number)
WHERE a.current_bal <> (b.balance * -1)
ORDER BY a.loan_number_a

Left Outer Join

The following example shows how to access the Person and Student tables from the Demodata
database to obtain the Last Name, First Initial of the First Name and GPA of students. With the

SQL Grammar in Zen

218 SQL Syntax Reference

LEFT OUTER JOIN, all rows in the Person table are fetched (the table to the left of LEFT
OUTER JOIN). Since not all people have GPAs, some of the columns have NULL values for the
results. This is how outer join works, returning nonmatching rows from either table.

SELECT Last_Name,Left(First_Name,1) AS First_Initial,Cumulative_GPA AS GPA FROM "Person"
LEFT OUTER JOIN "Student" ON Person.ID=Student.ID
ORDER BY Cumulative_GPA DESC, Last_Name

Assume that you want to know everyone with perfectly rounded GPAs and have them all ordered
by the length of their last name. Using the MOD statement and the LENGTH scalar function, you
can achieve this by adding the following to the query:

WHERE MOD(Cumulative_GPA,1)=0 ORDER BY LENGTH(Last_Name)

Right Outer Join

The difference between LEFT and RIGHT OUTER JOIN is that all non matching rows show up
for the table defined to the right of RIGHT OUTER JOIN. Change the query for LEFT OUTER
JOIN to include a RIGHT OUTER JOIN instead. The difference is that the all nonmatching rows
from the right table, in this case Student, show up even if no GPA is present. However, since all
rows in the Student table have GPAs, all rows are fetched.

SELECT Last_Name,Left(First_Name,1) AS First_Initial,Cumulative_GPA AS GPA FROM "Person"
RIGHT OUTER JOIN "Student" ON Person.ID=Student.ID
ORDER BY Cumulative_GPA DESC, Last_Name

Cartesian Join

A Cartesian join is the matrix of all possible combinations of the rows from each of the tables.
The number of rows in the Cartesian product equals the number of rows in the first table times the
number of rows in the second table.

Assume you have the following tables in your database.

SQL Grammar in Zen

SQL Syntax Reference 219

Addr Table

Loc Table

The following performs a Cartesian JOIN on these tables:

SELECT * FROM Addr,Loc

This results in the following data set:

Queries with Sys$create and Sys$update

The following example provides a simple instance of finding a record that has been updated since
it was created.

create table sensorData SYSDATA_KEY_2 (location varchar(20), temp real);

insert into sensorData values('Machine1', 77.3);
insert into sensorData values('Machine2', 79.8);
insert into sensorData values('Machine3', 65.4);
insert into sensorData values('Machine4', 90.0);

select "sys$create", "sys$update", sensorData.* from sensorData;

--update a row:
update sensorData set temp = 90.1 where location = 'Machine1';

--find the row that has been updated:
select "sys$create", "sys$update", sensorData.* from sensorData where sys$update > sys$create;

EmpID Street

E1 101 Mem Lane

E2 14 Young St.

LocID Name

L1 PlanetX

L2 PlanetY

EmpID Street LocID Name

E1 101 Mem Lane L1 PlanetX

E1 101 Mem Lane L2 PlanetY

E2 14 Young St L1 PlanetX

E2 14 Young St L2 PlanetY

SQL Grammar in Zen

220 SQL Syntax Reference

DISTINCT in Aggregate Functions

DISTINCT is useful in aggregate functions. When used with SUM, AVG, and COUNT, it
eliminates duplicate values before calculating the sum, average or count. With MIN, and MAX,
however, it is allowed but does not change the result of the returned minimum or maximum.

For example, assume you want to know the salaries for different departments, including the
minimum, maximum and salary, and you want to remove duplicate salaries. The following
statement does this, excluding the computer science department:

SELECT dept_name, MIN(salary), MAX(salary), AVG(DISTINCT salary) FROM faculty WHERE
dept_name<>'computer science' GROUP BY dept_name

On the other hand, to include duplicate salaries, drop DISTINCT:

SELECT dept_name, MIN(salary), MAX(salary), AVG(salary) FROM faculty WHERE dept_name<>'computer
science' GROUP BY dept_name

For the use of DISTINCT in SELECT statements, see DISTINCT.

TOP or LIMIT

You can set the maximum number of rows returned by a SELECT statement by using the
keywords TOP or LIMIT. The number must be a literal positive value. It is defined as a 32-bit
unsigned integer. For example:

SELECT TOP 10 * FROM Person

returns the first 10 rows of the Person table in Demodata.

LIMIT is identical to TOP except that it provides the OFFSET keyword to enable you to "scroll"
through the result set by choosing the first row in the returned records. For example, if the offset
is 5, then the first row returned is row 6. LIMIT has two ways to specify the offset, both with and
without the OFFSET keyword, as shown in the following examples, which return identical
results:

SELECT * FROM Person LIMIT 10 OFFSET 5
SELECT * FROM Person LIMIT 5,10

Note that when you do not use the OFFSET keyword, you must put the offset value before the
row count, separated by a comma.

You can use TOP or LIMIT with ORDER BY. If so, then the database engine generates a
temporary table and populates it with the entire query result set if no index can be used for
ORDER BY. The rows in the temporary table are arranged as specified by ORDER BY in the
result set, but only the number of rows determined by TOP or LIMIT are returned by the query.

Views that use TOP or LIMIT may be joined with other tables or views.

SQL Grammar in Zen

SQL Syntax Reference 221

The main difference between TOP or LIMIT and SET ROWCOUNT is that TOP or LIMIT affect
only the current statement, while SET ROWCOUNT affects all subsequent statements issued
during the current database session.

If SET ROWCOUNT and TOP or LIMIT are both used in a query, the query returns a number of
rows equal to the lowest of the two values.

Either TOP or LIMIT is allowed within a single query or subquery, but not both.

Cursor Types and TOP or LIMIT

A SELECT query with a TOP or LIMIT clause that uses a dynamic cursor converts the cursor
type to static. Forward-only and static cursors are not affected.

TOP or LIMIT Examples

The following examples use both TOP and LIMIT clauses, which are interchangeable as
keywords and give the same results, although LIMIT offers more control of which rows are
returned.

SELECT TOP 10 * FROM person; -- returns 10 rows
SELECT * FROM person LIMIT 10; -- returns 10 rows
SELECT * FROM person LIMIT 10 OFFSET 5; -- returns 10 rows starting with row 6
SELECT * FROM person LIMIT 5,10; -- returns 10 rows starting with row 6
SET ROWCOUNT = 5;
SELECT TOP 10 * FROM person; -- returns 5 rows
SELECT * FROM person LIMIT 10; -- returns 5 rows
SET ROWCOUNT = 12;
SELECT TOP 10 * FROM person ORDER BY id; -- returns the first 10 rows of the full list ordered by
column id
SELECT * FROM person LIMIT 20 ORDER BY id; -- returns the first 12 rows of the full list ordered by
column id

============

The following examples show a variety of behaviors when TOP or LIMIT is used in views,
unions, or subqueries.

CREATE VIEW v1 (c1) AS SELECT TOP 10 id FROM person;
CREATE VIEW v2 (d1) AS SELECT TOP 5 c1 FROM v1;
SELECT * FROM v2 -- returns 5 rows
SELECT TOP 10 * FROM v2 -- returns 5 rows
SELECT TOP 2 * FROM v2 -- returns 2 rows
SELECT * FROM v2 LIMIT 10 -- returns 5 rows
SELECT * FROM v2 LIMIT 10 OFFSET 3 -- returns 2 rows starting with row 4
SELECT * FROM v2 LIMIT 3,10 -- returns 2 rows starting with row 4

SELECT TOP 10 id FROM person UNION SELECT TOP 13 faculty_id FROM class -- returns 17 rows
SELECT TOP 10 id FROM person UNION ALL SELECT TOP 13 faculty_id FROM class -- returns 23 rows
SELECT id FROM person WHERE id IN (SELECT TOP 10 faculty_id from class) -- returns 5 rows
SELECT id FROM person WHERE id >= any (SELECT TOP 10 faculty_id from class) -- returns 1040 rows

SQL Grammar in Zen

222 SQL Syntax Reference

============

The following example returns last name and amount owed for students above a certain ID
number.

SELECT p_last_name, b_owed FROM
(SELECT TOP 10 id, last_name FROM person ORDER BY id DESC) p (p_id, p_last_name),
(SELECT TOP 10 student_id, SUM (amount_owed) FROM billing GROUP BY student_id ORDER BY student_id
DESC) b (b_id, b_owed)

WHERE p.p_id = b.b_id AND p.p_id > 714662900
ORDER BY p_last_name ASC

Table Hint Examples

This topic provides working examples for table hints. Use the SQL statements to create them in
Zen.

DROP TABLE t1
CREATE TABLE t1 (c1 INTEGER, c2 INTEGER)
INSERT INTO t1 VALUES (1,10)
INSERT INTO t1 VALUES (1,10)
INSERT INTO t1 VALUES (2,20)
INSERT INTO t1 VALUES (2,20)
INSERT INTO t1 VALUES (3,30)
INSERT INTO t1 VALUES (3,30)
CREATE INDEX it1c1 ON t1 (c1)
CREATE INDEX it1c1c2 ON t1 (c1, c2)
CREATE INDEX it1c2 ON t1 (c2)
CREATE INDEX it1c2c1 ON t1 (c2, c1)
DROP TABLE t2
CREATE TABLE t2 (c1 INTEGER, c2 INTEGER)
INSERT INTO t2 VALUES (1,10)
INSERT INTO t2 VALUES (1,10)
INSERT INTO t2 VALUES (2,20)
INSERT INTO t2 VALUES (2,20)
INSERT INTO t2 VALUES (3,30)
INSERT INTO t2 VALUES (3,30)

Certain restrictions apply to the use of table hints. See Table Hint Restrictions for examples.

============

The following example optimizes on index it1c1c2.

SELECT * FROM t1 WITH (INDEX(it1c1c2)) WHERE c1 = 1

Contrast this with the following example, which optimizes on index it1c1 instead of on it1c2
because the restriction consists of only c1 = 1. If a query specifies an index that cannot be used to
optimize the query, the hint is ignored.

SELECT * FROM t1 WITH (INDEX(it1c2)) WHERE c1 = 1

============

The following example performs a table scan of table t1.

SELECT * FROM t1 WITH (INDEX(0)) WHERE c1 = 1

SQL Grammar in Zen

SQL Syntax Reference 223

============

The following example optimizes on indexes it1c1c2 and it1c2c1.

SELECT * FROM t1 WITH (INDEX(it1c1c2, it1c2c1)) WHERE c1 = 1 OR c2 = 10

============

The following example using a table hint in the creation of a view. When all records are selected
from the view, the SELECT statement optimizes on index it1c1c2.

DROP VIEW v2
CREATE VIEW v2 as SELECT * FROM t1 WITH (INDEX(it1c1c2)) WHERE c1 = 1
SELECT * FROM v2

============

The following example uses a table hint in a subquery and optimizes on index it1c1c2.

SELECT * FROM (SELECT c1, c2 FROM t1 WITH (INDEX(it1c1c2)) WHERE c1 = 1) AS a WHERE a.c2 = 10

============

The following example uses a table hint in a subquery and an alias name "a." The alias name is
required.

SELECT * FROM (SELECT Last_Name FROM Person AS P with (Index(Names))) a

============

The following example optimizes the query based on the c1 = 1 restriction and optimizes the
GROUP BY clause based on index it1c1c2.

SELECT c1, c2, count(*) FROM t1 WHERE c1 = 1 GROUP BY c1, c2

============

The following example optimizes on index it1c1 and, unlike the previous example, optimizes
only on the restriction and not on the GROUP BY clause.

SELECT c1, c2, count(*) FROM t1 WITH (INDEX(it1c1)) WHERE c1 = 1 GROUP BY c1, c2

Since the GROUP BY clause cannot be optimized using the specified index, it1c1, the database
engine uses a temporary table to process the GROUP BY.

============

The following example uses a table hint in a JOIN clause and optimizes on index it1c1c2.

SELECT * FROM t2 INNER JOIN t1 WITH (INDEX(it1c1c2)) ON t1.c1 = t2.c1

Contrast this with the following statement, which does not use a table hint and optimizes on index
it1c1.

SELECT * FROM t2 INNER JOIN t1 ON t1.c1 = t2.c1

SQL Grammar in Zen

224 SQL Syntax Reference

============

The following example uses a table hint in a JOIN clause to perform a table scan of table t1.

SELECT * FROM t2 INNER JOIN t1 WITH (INDEX(0)) ON t1.c1 = t2.c1

Contrast this with the following example which also performs a table scan of table t1. However,
because no JOIN clause is used, the statement uses a temporary table join.

SELECT * FROM t2, t1 WITH (INDEX(0)) WHERE t1.c1 = t2.c1

See Also

Global Variables

SQL Grammar in Zen

SQL Syntax Reference 225

SELECT (with INTO)
The SELECT (with INTO) statement allows you to select column values from a specified table to
insert into variables or to populate a table with data.

Syntax
SELECT [ALL | DISTINCT] [top-clause] select-list INTO variable | table-name | temp-table-name [,
variable]...
 FROM table-reference [, table-reference]... [WHERE search-condition]
 [GROUP BY expression [, expression]...[HAVING search-condition]] [UNION [ALL] query-
specification] [ORDER BY order-by-expression [, order-by-expression]...]

query-specification ::= (query-specification)
| SELECT [ALL | DISTINCT] [top-clause] select-list

FROM table-reference [, table-reference]...
[WHERE search-condition]
[GROUP BY expression [, expression]...
[HAVING search-condition]]

variable ::= user-defined-name

table-name ::= user-defined-name of a table

temp-table-name ::= user-defined-name of a temporary table

For the remaining syntax definitions, see SELECT.

Remarks

The variables must occur within a stored procedure, a trigger, or a user-defined function.

You can populate a table by using SELECT INTO only if the SELECT INTO statement occurs
outside of a user-defined function or trigger. Populating or creating a table with SELECT INTO is
not permitted within a user-defined function or trigger.

SELECT INTO is permitted within a stored procedure.

Only a single table can be created and populated with a SELECT INTO statement. A single
SELECT INTO statement cannot create and populate multiple tables.

New tables created by SELECT INTO only maintain CASE and NOT NULL constraints from the
source tables. Other constraints such as DEFAULT and COLLATE are not maintained. In
addition, no indexes are created on the new table.

SQL Grammar in Zen

226 SQL Syntax Reference

Examples

See the examples for CREATE (temporary) TABLE for how to use SELECT INTO to populate
temporary tables.

The following example assigns into variables :x, :y the values of first_name and last_name in the
Person table where first name is Bill.

SELECT first_name, last_name INTO :x, :y FROM person WHERE first_name = 'Bill'

See Also

CREATE FUNCTION

CREATE PROCEDURE

CREATE (temporary) TABLE

CREATE TABLE

SQL Grammar in Zen

SQL Syntax Reference 227

SET
The SET statement assigns a value to a declared variable.

Syntax
SET variable-name = proc-expr

Remarks

You must declare variables before you can set them. SET is allowed only in stored procedures and
triggers.

Examples

The following examples assigns a value of 10 to var1.

SET :var1 = 10;

See Also

CREATE PROCEDURE

DECLARE

SQL Grammar in Zen

228 SQL Syntax Reference

SET ANSI_PADDING
The SET ANSI_PADDING statement allows the Relational Engine to handle CHAR data types
padded with NULLs (binary zeros). CHAR is defined as a character data type of fixed length.

Zen supports two interfaces: transactional and relational. The MicroKernel Engine allows a
CHAR to be padded with NULLs. The Relational Engine conforms to the ANSI standard for
padding, which specifies that a CHAR be padded with spaces. For example, by default, a CHAR
column created with a CREATE TABLE statement is always padded with spaces.

An application that uses both interfaces may need to process strings padded with NULLs.

Syntax
SET ANSI_PADDING=< ON | OFF >

Remarks

The default value is ON, meaning that strings padded with spaces are inserted into CHARs.
Trailing spaces are considered as insignificant in logical expression comparisons. Trailing NULLs
are considered as significant in comparisons.

If set to OFF, the statement means that strings padded with NULLs are inserted into CHARs. Both
trailing NULLs and trailing spaces are considered as insignificant in logical expression
comparisons.

On Windows, ANSI padding can be set to on or off for a DSN through a registry setting. See the
Zen Knowledge Base on the Actian website and search for "ansipadding."

The following string functions support NULL padding:

For information on how ANSI_PADDING affects each function, see its scalar function
documentation.

CHAR_LENGTH CONCAT LCASE or LOWER

LEFT LENGTH LOCATE

LTRIM POSITION REPLACE

REPLICATE RIGHT RTRIM

STUFF SUBSTRING UCASE or UPPER

SQL Grammar in Zen

SQL Syntax Reference 229

Restrictions

The following restrictions apply to SET ANSI_PADDING:

• The statement applies only to the fixed length character data type CHAR, not to NCHAR,
VARCHAR, NVARCHAR, LONGVARCHAR or NLONGVARCHAR.

• The statement applies to the session level.

Examples

The following example shows the results of string padding using the INSERT statement with SET
ANSI_PADDING set to ON and to OFF.

DROP TABLE t1
CREATE TABLE t1 (c1 CHAR(4))
SET ANSI_PADDING = ON
INSERT INTO t1 VALUES ('a') -- string a = a\0x20\0x20\0x20
INSERT INTO t1 VALUES ('a' + CHAR(0) + CHAR(0) + CHAR(0)) -- string a = a\0x00\0x00\0x00
DROP TABLE t1
CREATE TABLE t1 (c1 CHAR(4))
SET ANSI_PADDING = OFF
INSERT INTO t1 VALUES ('a') -- string a = a\0x00\0x00\0x00
INSERT INTO t1 VALUES ('a' + CHAR(32) + CHAR(32) + CHAR(32)) -- string a = a\0x20\0x20\0x20

============

The following example shows the results of string padding using the UPDATE statement with
SET ANSI_PADDING set to ON and to OFF.

DROP TABLE t1
CREATE TABLE t1 (c1 CHAR(4))
SET ANSI_PADDING = ON
UPDATE t1 SET c1 = 'a' -- all rows for c1 = a\0x20\0x20\0x20
UPDATE t1 SET c1 = 'a' + CHAR(0) + CHAR(0) + CHAR(0) -- all rows for c1 = a\0x00\0x00\0x00
DROP TABLE t1
CREATE TABLE t1 (c1 CHAR(4))
SET ANSI_PADDING = OFF
UPDATE t1 SET c1 = 'a' -- all rows for c1 = a\0x00\0x00\0x00
UPDATE t1 SET c1 = 'a' + CHAR(32) + CHAR(32) + CHAR(32) -- all rows for c1 = a\0x20\0x20\0x20

============

The following example shows how a character column, c1, can be cast to a BINARY data type so
that you can display the contents of c1 in BINARY format. Assume that table t1 has the following
six rows of data:

a\x00\x00\x00\x00
a\x00\x00\x00\x00
a\x00\x20\x00\x00
a\x00\x20\x00\x00
a\x20\x20\x20\x20
a\x20\x20\x20\x20

The following statement casts c1 as a BINARY data type:

SQL Grammar in Zen

230 SQL Syntax Reference

SELECT CAST(c1 AS BINARY(4)) FROM t1

The SELECT statement returns the following:

0x61000000
0x61000000
0x61002000
0x61002000
0x61202020
0x61202020

See Also

INSERT

UPDATE

String Functions

Conversion Functions

SQL Grammar in Zen

SQL Syntax Reference 231

SET CACHED_PROCEDURES
The SET CACHED_PROCEDURES statement specifies the number of stored procedures that the
database engine caches in memory for a SQL session.

Syntax
SET CACHED_PROCEDURES = number

Remarks

The value of number can be any whole number in the range zero through approximately two
billion. The database engine automatically defaults to 50. Each session can change its number of
cached procedures by issuing the SET statement.

The companion statement to SET CACHED_PROCEDURES is SET PROCEDURES_CACHE.

• If you set both SET statements to zero, the database engine does not cache stored procedures.
In addition, the engine removes any existing cache used for stored procedures. That is, the
engine flushes from cache all stored procedures that were cached before you set both
statements to zero.

• If you set only one of the statements to a value, either zero or a nonzero value, the other
statement is implicitly set to zero. The statement implicitly set to zero is ignored. For example,
if you are only interested in caching 70 procedures and are not concerned with the amount of
memory, set CACHED_PROCEDURES to 70. The database engine implicitly sets
PROCEDURES_CACHE to zero, which ignores the setting.

The following condition applies if you set CACHED_PROCEDURES to a nonzero value. The
database engine removes the least-recently-used procedures from the cache if the execution of a
procedure causes the number of cached procedures to exceed the CACHED_PROCEDURES
value.

If a memory cache is used, it retains a compiled version of a stored procedure after the procedure
executes. Typically, caching results in improved performance for each subsequent call to a cached
procedure. Note that excessive memory swapping, or thrashing, could occur depending on the
cache settings and the SQL being executed by your application. Thrashing can cause a decrease in
performance.

SQL Grammar in Zen

232 SQL Syntax Reference

Registry Setting

In addition to the SET statement, the number of cached procedures can be specified with a
registry setting. The registry settings apply to all sessions and provides a convenient way to set an
initial value. Each session can override the registry setting for that particular session by using the
SET statement.

The registry setting applies to all server platforms where Zen Enterprise Server or Cloud Server is
supported. You must manually modify the registry setting. On Windows, use the registry editor
provided with the operating system. On Linux, you can use the psregedit utility.

If the registry setting is not specified, the database engine automatically defaults to 50.

To specify cached procedures registry setting on Windows

1. Locate the following key:

HKEY_LOCAL_MACHINE\SOFTWARE\Actian\Zen\SQL Relational Engine

Note that in most Windows operating systems, the key is under
HKEY_LOCAL_MACHINE\SOFTWARE\Actian\Zen. However, its location below
HKEY_LOCAL_MACHINE\SOFTWARE can vary depending on the operating system.

2. For this key, create a new string valued named CachedProcedures.

3. Set CachedProcedures to the desired number of procedures that you want to cache.

To set the cached procedures registry key in the Zen Registry on Linux

1. Locate the following key:

PS_HKEY_CONFIG\SOFTWARE\Actian\Zen\SQL Relational Engine

2. For this key, create a new string valued named CachedProcedures.

3. Set CachedProcedures to the desired number of procedures that you want to cache.

Caching Exclusions

A stored procedure is not cached, regardless of the cache settings, for any of the following:

• The stored procedure references a local or a global temporary table. A local temporary table
has a name that begins with the pound sign (#). A global temporary table has a name that
begins with two pound signs (##). See CREATE (temporary) TABLE.

• The stored procedure contains any data definition language (DDL) statements. See Data
Definition Statements.

SQL Grammar in Zen

SQL Syntax Reference 233

• The stored procedure contains an EXEC[UTE] statement used to execute a character string, or
an expression that returns a character string. For example: EXEC ('SELECT Student_ID FROM '
+ :myinputvar).

Examples

The following example sets a cache memory of 2 MB that stores up to 20 stored procedures.

SET CACHED_PROCEDURES = 20
SET PROCEDURES_CACHE = 2

============

The following example sets a cache memory of 1,000 MB that stores up to 500 stored procedures.

SET CACHED_PROCEDURES = 500
SET PROCEDURES_CACHE = 1000

============

The following example specifies that you do not want to cache stored procedures and that any
existing procedures cache will be removed.

SET CACHED_PROCEDURES = 0
SET PROCEDURES_CACHE = 0

============

The following example specifies that you want to cache 120 stored procedures and ignore the
amount of memory used for the cache.

SET CACHED_PROCEDURES = 120

(The database engine implicitly sets PROCEDURES_CACHE to zero.)

See Also

CREATE PROCEDURE

SET PROCEDURES_CACHE

SQL Grammar in Zen

234 SQL Syntax Reference

SET DECIMALSEPARATORCOMMA
The Zen database engine by default displays decimal data using a period (.) as the separator
between ones and tenths (for example, 100.95). The SET DECIMALSEPARATORCOMMA
statement allows you to specify that results should be displayed using a comma to separate ones
and tenths (for example, 100,95).

As with all SET statements, the effects of this statement apply to the remainder of the current
database session, or until another SET DECIMALSEPARATORCOMMA statement is issued.

Syntax
SET DECIMALSEPARATORCOMMA=<ON|OFF>

Remarks

The default value is OFF, meaning that the period is used as the default decimal separator.

In locales where the comma is used as the decimal separator, decimal data can be entered using a
comma or a period as the separator (literal values that use the comma as the separator must be
enclosed in single quotes, for example: '123,43'). When the data is returned, however (as in the
results of a SELECT statement), it is always displayed using a period unless SET
DECIMALSEPARATORCOMMA=ON has been specified.

Likewise, if your database contains data entered using the period as the decimal separator, you
can choose to specify the comma as the separator for output and display by using this statement.

This command affects output and display only. It has no effect on values being inserted, updated,
or used in a comparison.

Examples

The following example shows how to insert period-delimited data and the effects of the SET
DECIMALSEPARATORCOMMA statement on the SELECT results.

CREATE TABLE t1 (c1 real, c2 real)
INSERT INTO t1 VALUES (102.34, 95.234)
SELECT * FROM t1

Results:

c1 c2
------- -------
102.34 95.234

SQL Grammar in Zen

SQL Syntax Reference 235

SET DECIMALSEPARATORCOMMA=ON
SELECT * FROM t1

Results:

c1 c2
------- -------
102,34 95,234

============

The following example shows how to insert comma-delimited data, and the effects of the SET
DECIMALSEPARATORCOMMA statement on the SELECT results.

Note: The comma can only be used as the separator character if the client and/or server operating
system locale settings are set to a locale that uses the comma as the separator. For example, if you
have U.S. locale settings on both your client and server, you will receive an error if you attempt to
run this example.

CREATE TABLE t1 (c1 real, c2 real)
INSERT INTO t1 VALUES ('102,34', '95,234')
SELECT * FROM t1

Results:

c1 c2
------- -------
102.34 95.234

SET DECIMALSEPARATORCOMMA=ON
SELECT * FROM t1

Results:

c1 c2
------- -------
102,34 95,234

See Also

Comma as Decimal Separator

SQL Grammar in Zen

236 SQL Syntax Reference

SET DEFAULTCOLLATE
The SET DEFAULTCOLLATE statement specifies the collating sequence to use for all columns
of data type CHAR, VARCHAR, LONGVARCHAR, NCHAR, NVARCHAR, or
NLONGVARCHAR. The statement offers the following options:

• A null value to default to the numerical order of the current code page

• A path to a file containing alternate collating sequence (ACS) rules

• An International Sorting Rules (ISR) table name

• An International Components for Unicode (ICU) collation name

Syntax
SET DEFAULTCOLLATE = < NULL | 'sort-order' >

sort-order ::= path name to an ACS file or the name of an ISR table or a supported ICU collation name

Remarks

The SET DEFAULTCOLLATE statement offers the convenience of a global session setting.
However, an individual column definition can use the COLLATE keyword to set its particular
collating sequence. If so, then SET DEFAULTCOLLATE has no effect on that column.

The default setting for DEFAULTCOLLATE is null.

Using ACS Files

When you provide an ACS file for the sort-order parameter, the following statements apply:

• You must specify a path accessible to the database engine rather than to the calling
application.

• The path must be enclosed in single quotation marks.

• The path must be at least 1 character but no more than 255 characters long.

• The path must already exist and must include the name of an ACS file. An ACS file is a 265-
byte image of the format used by the MicroKernel Engine. By default, Zen installs the
commonly used ACS file upper.alt in C:\ProgramData\Actian\Zen\samples. You can also use
a custom file. For information on custom files, see User-Defined ACS in Zen Programmer’s
Guide.

• Relative paths are allowed and are relative to the DDF directory. Relative paths can contain a
period (current directory), double period (parent directory), slash, or any combination of the

SQL Grammar in Zen

SQL Syntax Reference 237

three. Slash characters in relative paths may be either forward (/) or backslash (\). You may
mix the types of slash characters in the same path.

• Universal naming convention (UNC) path names are permitted.

Using ISR Table Names

When you provide an ISR table name for the sort-order parameter, the following statements
apply:

• Zen supports the table names listed in this documentation under International Sort Rules.

• The ISR table name is not the name of a file, but rather a string recognized by Zen as one of
the ISRs that it supports.

• Zen supports selected Unicode collations based on International Components for Unicode
(ICU). Simply use the ICU collation name in place of the ISR table name. The available
collations are described under Collation Support Using an ICU Unicode Collation.

ACS, ISR, and ICU Examples

This ACS example sets a collating sequence using the upper.alt file supplied with Zen. The table
t1 is created with three text columns and three columns not text. A SELECT statement executes
against Zen system tables to return the ID, type, size, and attributes of the columns in t1. The
result shows that the three text columns have an attribute of UPPER.

SET DEFAULTCOLLATE = 'C:\ProgramData\Actian\Zen\samples\upper.alt'
DROP TABLE t1
CREATE TABLE t1 (c1 INT, c2 CHAR(10), c3 BINARY(10), c4 VARCHAR(10), c5 LONGVARBINARY, c6
LONGVARCHAR)
SELECT * FROM x$attrib WHERE xa$id in (SELECT xe$id FROM x$field WHERE xe$file = (SELECT xf$id FROM
x$file WHERE xf$name = 't1'))

Xa$Id Xa$Type Xa$ASize Xa$Attrs
===== ======= ======== ========

327 O 265 UPPER
329 O 265 UPPER
331 O 265 UPPER

3 rows were affected.

============

The following ACS example continues with the use of table t1. An ALTER TABLE statement
changes the text column c2 from a CHAR to an INTEGER. The result of the SELECT statement
shows that now only two columns are affected by the default collating.

ALTER TABLE t1 ALTER c2 INT

SELECT * FROM x$attrib WHERE xa$id in (SELECT xe$id FROM x$field WHERE xe$file = (SELECT xf$id FROM
x$file WHERE xf$name = 't1'))

SQL Grammar in Zen

238 SQL Syntax Reference

Xa$Id Xa$Type Xa$ASize Xa$Attrs
===== ======= ======== ========

329 O 265 UPPER
331 O 265 UPPER

2 rows were affected.

============

The following ACS example uses an ALTER TABLE statement to change column c1 in table t1
from an INTEGER to a CHAR. The result of the SELECT statement shows that three columns are
affected by the default collating.

ALTER TABLE t1 ALTER c1 CHAR(10)

SELECT * FROM x$attrib WHERE xa$id in (SELECT xe$id FROM x$field WHERE xe$file = (SELECT xf$id FROM
x$file WHERE xf$name = 't1'))

Xa$Id Xa$Type Xa$ASize Xa$Attrs
===== ======= ======== ========

326 O 265 UPPER
329 O 265 UPPER
331 O 265 UPPER

3 rows were affected.

============

The following ISR example creates a table with a VARCHAR column, assumes the default
Windows encoding CP1252, and uses the ISR collation MSFT_ENUS01252_0.

CREATE TABLE isrtest (ord INT, value VARCHAR(19) COLLATE 'MSFT_ENUS01252_0' NOT NULL, PRIMARY
KEY(value));

The following ICU example creates a table with a VARCHAR column, assumes the default Linux
encoding UTF-8, and uses the ICU collation u54-msft_enus_0.

CREATE TABLE isrtest (ord INT, value VARCHAR(19) COLLATE 'u54-msft_enus_0' NOT NULL, PRIMARY
KEY(value));

The following ICU example creates a table with an NVARCHAR column using the ICU collation
u54-msft_enus_0.

CREATE TABLE isrtest (ord INT, value NVARCHAR(19) COLLATE 'u54-msft_enus_0' NOT NULL, PRIMARY
KEY(value));

See Also

ALTER TABLE

CREATE TABLE

Support for Collation and Sorting in Advanced Operations Guide

SQL Grammar in Zen

SQL Syntax Reference 239

SET LEGACYTYPESALLOWED
The SET LEGACYTYPESALLOWED statement enables backward compatibility with data types
no longer supported in the current release of Zen.

Syntax
SET LEGACYTYPESALLOWED = < ON | OFF >

Remarks

A SET LEGACYTYPESALLOWED statement is executed in a SQL session before CREATE
TABLE or ALTER TABLE statements to enable their use of legacy data types supported in earlier
releases of Zen.

The default value is OFF, meaning that these data types are not supported.

For more information, see Legacy Data Types.

Example

In this example, turning on LEGACYTYPESALLOWED before a CREATE TABLE statement
enables the legacy data type to work, then is turned off again after the table is created:

SET LEGACYTYPESALLOWED=ON;
CREATE TABLE notes (c1 INTEGER, c2 NOTE(20));
SET LEGACYTYPESALLOWED=OFF;

Note: If you do not turn off the setting, like all SET commands, it ends with the SQL session.

SQL Grammar in Zen

240 SQL Syntax Reference

SET OWNER
The SET OWNER statement lists owner names for files to be accessed by SQL commands in the
current database session. For more information about this file-level security feature, see Owner
Names.

Syntax
SET OWNER = [']ownername['] [,[']ownername[']] ...

Remarks

In SET OWNER statements, owner names that begin with a nonalphabetic character and ASCII
owner names that contain spaces must be enclosed in single quotation marks. A long owner name
in hexadecimal begins with 0x or 0X, so it always requires single quotation marks.

A SET OWNER statement can list all owner names needed for data files in a session. The
Relational Engine caches the owner names to use as needed in requesting file access from the
MicroKernel Engine.

A SET OWNER statement is effective only for the current connection session. If a user logs out
after issuing SET OWNER, the command must be reissued the next time the user logs in.

Each SET OWNER statement resets the current owner name list for the session. You cannot add
owner names to the list with more statements.

In a database with security turned off, the SET OWNER statement allows full access to any data
file that has an owner name matching an owner name supplied in the statement.

In a database with security turned on, the SET OWNER statement has no effect for users other
than the Master user. If the Master user has not granted itself rights, executing SET OWNER
gives the Master user full access to any data file with one of the owner names provided. For other
users, the Master user can authorize access in either of the following two ways:

• Execute SET OWNER with owner names, followed by GRANT with no owner name.

• Execute GRANT with an owner name.

These two options are illustrated in the following examples.

Examples

In this example, the owner name begins with a numeral, so it has single quotation marks.

SQL Grammar in Zen

SQL Syntax Reference 241

SET OWNER = '1@lphaOm3gA'

============

This example provides a list of owner names used by files to be accessed in the current session.

SET OWNER = 'serverl7 region5', '0x7374726f6e672050617373776f7264212425fe'

Single quotation marks are used for the ASCII string because it includes a space and for the
hexadecimal string because its prefix 0x starts with a numeral.

============

During a a database session, each SET OWNER statement overrides the previous one. In this
example, after the second command runs, the first three owner names are no longer available to
use for file access.

SET OWNER = judyann, krishna1, maxima
SET OWNER = d3ltagamm@, V3rs10nXIII, m@X1mumSp33d

============

This example demonstrates the use of SET OWNER by the Master user in a secure database
where security has been turned on, but no permissions have been granted to users. The data file
named inventory1 has the owner name admin.

To grant itself permissions, the Master user has two options. For the first, you can issue a SET
OWNER followed by a GRANT without an owner name:

SET OWNER = admin
GRANT ALL ON inventory1 TO MASTER

For the second option, the Master user can omit the SET OWNER statement and issue a GRANT
that includes the owner name:

GRANT ALL ON inventory1 admin TO MASTER

Both methods achieve the same result.

See Also

GRANT

REVOKE

SQL Grammar in Zen

242 SQL Syntax Reference

SET PASSWORD
The SET PASSWORD statement provides the following functionality for a secured database:

• The Master user can change the password for the Master user or for another user.

• A normal user (non-Master user) can change his or her logon password to the database.

Syntax
SET PASSWORD [FOR 'user-name'] = password

user-name ::= name of user logged on the database or authorized to log on the database

password ::= password string

Remarks

SET PASSWORD requires that the database have relational security enabled and may be issued at
any time. In contrast, SET SECURITY is issued only when the Master user session is the only
current database connection. See SET SECURITY.

SET PASSWORD may be issued by the Master user or by a normal, non-Master user. The Master
user can change the password for any user authorized to log in to the database. Normal users can
change only their own password. A password change takes effect the next time the user logs.

User Issuing SET
PASSWORD statement

with FOR clause without FOR clause

Master Master can specify a user name of
Master or of any user authorized to

log on the database.1

Password changed for user name.

Password changed for entire
database (that is, changed for the
Master user, which affects the
entire database).

Normal Normal user can specify a user name.
The user must be logged in to the
database.

Password changed only for that user.

Password changed only for the
user issuing the SET
PASSWORD statement. The user
must be logged on the database.

1User-name is a user who can log on to a Zen database. It can differ from operating system user names.
For example, the user name Yogine can log on to the operating system. Security is enabled on database
Demodata, where Yogine is added as user name DeptMgr, which is the user name to log on to
Demodata.

SQL Grammar in Zen

SQL Syntax Reference 243

Password Characteristics

• See Identifier Restrictions in Advanced Operations Guide for the maximum length of a
password and the characters allowed.

• Passwords are case sensitive. If the password begins with a nonalphabetic character, the
password must be enclosed in single quotes.

• The space character may be used in a password provided it is not the first character. If a
password contains a space character, the password must be enclosed by single quotes. As a
general rule, avoid using the space character in a password.

• "Password" is not a reserved word. It may be used as a name for a table or column. However,
if used for a table or column name in a SQL statement, "password" must be enclosed by
double quotation marks because it is a keyword.

• If you want to use the literal "null" as a password, you must enclose the word with single
quotes ('null'). The quoted string prevents confusion with the statement SET SECURITY =
NULL, which disables security on the database.

Examples

The following example shows the Master user enabling security on the database with the
password bluesky. The Master user then grants login privilege to user user45 with the password
tmppword and grants that user SELECT permission to the table person. The Master user then
changes the Master password to reddawn, which changes it for the entire database. Finally, it
changes the user45 password to newuser.

SET SECURITY = bluesky
GRANT LOGIN TO user45:tmppword
GRANT SELECT ON person TO user45
SET PASSWORD = reddawn
SET PASSWORD FOR user45 = newuser

The following example assumes that user45 has logged on to the database with a password
newuser. User45 changes its own password to tomato. User45 then selects all records in the table
person.

SET PASSWORD FOR user45 = tomato
SELECT * FROM person

See Also

ALTER USER

CREATE USER

SQL Grammar in Zen

244 SQL Syntax Reference

GRANT

SET SECURITY

SQL Grammar in Zen

SQL Syntax Reference 245

SET PROCEDURES_CACHE
The SET PROCEDURES_CACHE statement specifies the amount of memory for a SQL session
that the database engine reserves as a cache for stored procedures.

Syntax
SET PROCEDURES_CACHE = megabytes

Remarks

The value of megabytes can be any whole number in the range zero to approximately two billion.
The database engine defaults to 5 MB. Each session can change its amount of cache memory by
issuing this SET statement.

The companion statement to SET PROCEDURES_CACHE is SET CACHED_PROCEDURES.

• If you set both of these SET statements to zero, the database engine does not cache stored
procedures. In addition, the engine removes any existing cache used for stored procedures.
That is, the engine flushes from cache all stored procedures that were cached before you set
both statements to zero.

• If you set only one of the statements to either a zero or a nonzero value, the other statement is
implicitly set to zero. The statement implicitly set to zero is ignored. For example, if you are
interested only in 30 MB as the amount of memory cached and are not concerned with the
number of procedures cached, set PROCEDURES_CACHE to 30. The database engine
implicitly sets CACHED_PROCEDURES to zero, which causes that setting to be ignored.

The following condition applies if you set PROCEDURES_CACHE to a nonzero value. The
database engine removes the least recently used procedures from the cache if the execution of a
procedure allocates memory that exceeds the PROCEDURES_CACHE value.

If a memory cache is used, it retains a compiled version of a stored procedure after the procedure
executes. Typically, caching results in improved performance for subsequent calls to a cached
procedure. Note that excessive memory swapping, or thrashing, can occur depending on the cache
settings and the SQL statements executed by your application. Thrashing can lessen performance.

Registry Setting

In addition to the SET statement, the amount of memory reserved for the cache can be specified
with a registry setting. The registry settings apply to all sessions and provides a convenient way to

SQL Grammar in Zen

246 SQL Syntax Reference

set an initial value. Each session can override the registry setting for that particular session by
using the SET statement.

The registry setting applies to all server platforms where Zen Enterprise Server or Cloud Server is
supported. You must manually modify the registry setting. On Windows, use the registry editor
provided with the operating system. On Linux, you can use the psregedit utility.

If the registry setting is not specified, the database engine automatically defaults to 5 MB.

To specify the amount of cache memory in a registry setting on Windows

1. Locate the following key:

HKEY_LOCAL_MACHINE\SOFTWARE\Actian\Zen\SQL Relational Engine

Note that in most Windows operating systems, the key is under
HKEY_LOCAL_MACHINE\SOFTWARE\Actian\Zen. However, its location below
HKEY_LOCAL_MACHINE\SOFTWARE can vary depending on the operating system.

2. For this key, create a new string valued named ProceduresCache.

3. Set ProceduresCache to the desired amount of memory that you want to cache.

To set the amount of cache memory in the Zen Registry on Linux

1. Locate the following key:

PS_HKEY_CONFIG\SOFTWARE\Actian\Zen\SQL Relational Engine

2. For this key, create a new string valued named ProceduresCache.

3. Set ProceduresCache to the desired amount of memory that you want to cache.

Caching Exclusions

A stored procedure is not cached, regardless of the cache setting(s), for any of the following:

• The stored procedure references a local or a global temporary table. A local temporary table
has a name that begins with the pound sign (#). A global temporary table has a name that
begins with two pound signs (##). See CREATE (temporary) TABLE.

• The stored procedure contains any data definition language (DDL) statements. See Data
Definition Statements.

• The stored procedure contains an EXEC[UTE] statement used to execute a character string, or
an expression that returns a character string. For example: EXEC ('SELECT Student_ID FROM '
+ :myinputvar).

SQL Grammar in Zen

SQL Syntax Reference 247

Examples

The following example sets a cache memory of 2 MB that stores up to 20 stored procedures.

SET CACHED_PROCEDURES = 20
SET PROCEDURES_CACHE = 2

============

The following example sets a cache memory of 1,000 MB that stores up to 500 stored procedures.

SET CACHED_PROCEDURES = 500
SET PROCEDURES_CACHE = 1000

============

The following example specifies that you do not want to cache stored procedures and that any
existing procedures cache will be removed.

SET CACHED_PROCEDURES = 0
SET PROCEDURES_CACHE = 0

============

The following example specifies that you want to set the amount of cache memory to 80 MB and
ignore the number of procedures that may be cached.

SET PROCEDURES_CACHE = 80

(The database engine implicitly sets CACHED_PROCEDURES to zero.)

See Also

CREATE PROCEDURE

SET CACHED_PROCEDURES

SQL Grammar in Zen

248 SQL Syntax Reference

SET ROWCOUNT
You may limit the number of rows returned by all subsequent SELECT statements within the
current session by using the keyword SET ROWCOUNT.

The main difference between SET ROWCOUNT and TOP or LIMIT is that TOP affects only the
current statement, while SET ROWCOUNT affects all statements issued during the current
database session, until the next SET ROWCOUNT or until the session is terminated.

Syntax
SET ROWCOUNT = number

Remarks

If a SELECT statement subject to a SET ROWCOUNT condition contains an ORDER BY
keyword and an index cannot be used to optimize on the ORDER BY clause, Zen generates a
temporary table. The temporary table is populated with the entire query result set. The rows in the
temporary table are ordered as specified by the ORDER BY value and return the ROWCOUNT
number of rows in the ordered result set.

You may turn off the ROWCOUNT feature by setting ROWCOUNT to zero:

SET ROWCOUNT = 0

SET ROWCOUNT is ignored when dynamic cursors are used.

If both SET ROWCOUNT and TOP are applied to a given query, the number of rows returned is
the lower of the two values.

Examples

Also see the examples for TOP or LIMIT.

SET ROWCOUNT = 10;
SELECT * FROM person;
-- returns 10 rows

See Also

TOP or LIMIT

SQL Grammar in Zen

SQL Syntax Reference 249

SET SECURITY
The SET SECURITY statement allows the Master user to enable or disable security for the
database to which Master is logged on.

Syntax
SET SECURITY [USING authentication_type] = < 'password' | NULL >

Remarks

You must be logged on as Master to set security. You can then assign a password by using the SET
SECURITY statement. No password is required for Master to log on to an unsecured database,
but to set security for the database, that Master user must have a password assigned.

SET SECURITY can be issued only when the session for the Master user is the only current
database connection. You can also set security from the Zen Control Center (ZenCC). See To turn
on security using Zen Explorer in Zen User’s Guide.

The authentication type string is either local_db or domain. If the USING clause is not included,
the authentication type is set to local_db.

When the authentication type is domain, execution of SQL scripts related to users returns an error
message that the statement is not supported under domain authentication. Examples of the
unsupported statements include ALTER USER, CREATE USER, DROP USER, GRANT in
relation to users, SET PASSWORD (for non-Master user), and REVOKE.

For password requirements, see Password Characteristics.

User Permissions

Permissions on objects such as tables, views, and stored procedures are retained in the system
tables after SET SECURITY is set to NULL. Consider the following scenario:

• Security for database mydbase is enabled and user Master is logged in.

• Master creates users user1 and user2, and table t1 for database mydbase.

• Master grants User2 SELECT permission on t1.

• Security for mydbase is disabled.

• Table t1 is dropped.

SQL Grammar in Zen

250 SQL Syntax Reference

Even though table t1 no longer exists, permissions for t1 are still retained in the system tables (the
ID for t1 is still in X$Rights). Now consider the following:

• Security for database mydbase is enabled again.

• User1 logs in to the database.

• User1 creates a new table tbl1 for mydbase. It is possible for tbl1 to be assigned the same
object ID that had been assigned to t1. In this particular scenario, the object IDs assigned to t1
and tbl1 are the same.

• The previous permissions for t1 are reinstated for tbl1. That is, user1 has SELECT
permissions on tbl1 even though no permissions to the new table have been explicitly granted.

Note: If you want to delete permissions for an object, you must explicitly revoke them. This
applies to tables, views, and stored procedures because permissions are associated with object IDs
and the database reuses object IDs of deleted objects for new objects.

Examples

The following example enables security for the database and sets the Master password to
"mypasswd".

SET SECURITY = 'mypasswd'

The following example enables domain authentication for the database and sets the Master
password to 123456.

SET SECURITY USING domain = '123456'

============

The following example disables security.

SET SECURITY = NULL

See Also

ALTER USER

CREATE USER

GRANT

REVOKE

SET PASSWORD

SQL Grammar in Zen

SQL Syntax Reference 251

SET TIME ZONE
The SET TIME ZONE keyword allows you to specify a current time offset from Coordinated
Universal Time (UTC) for your locale, overriding the operating system time zone setting where
the database engine is located.

Any SET TIME ZONE statement remains in effect until the end of the current database session,
or until another SET TIME ZONE statement is executed.

Caution! You should always use the default behavior unless you have a specific need to override
the time zone setting in your operating system. If you are using DataExchange replication or your
application has dependencies on the sequential time order of records inserted, use of SET TIME
ZONE to modify your time zone offset is not recommended.

Syntax
SET TIME ZONE < offset | LOCAL >

offset ::= <+|->hh:mm

Valid range of hh is 00–12.

Valid range of mm is 00–59.

Either a plus (+) or a minus (-) sign is required as part of the offset value.

Remarks

Default Behavior – SET TIME ZONE LOCAL is the default behavior, which is the same as not
using the SET TIME ZONE command at all. Under the default behavior, the database engine
establishes its time zone based on the operating system where it is running. For example,
SELECT CURTIME() returns the current local time, while SELECT CURRENT_TIME() returns
the current UTC time, both based on local system time and the time zone setting in the operating
system.

The LOCAL keyword allows you to restore default behavior after specifying a offset value,
without having to terminate and reopen the database session.

Under default behavior, literal time and date values, such as 1996-03-28 and 17:40:46, are
interpreted as current local time and date. In addition, during inserts, time stamp literal values are
interpreted as current local time. Time stamp values are always adjusted and stored internally

SQL Grammar in Zen

252 SQL Syntax Reference

using UTC time, and converted to local time upon retrieval. For more information, see Time
Stamp Values.

Behavior When Offset is Specified – If a valid offset value is specified, then that value is used
instead of the operating system time zone offset to generate values for CURDATE(),
CURTIME(), NOW(), or SYSDATETIME(). For example, if a offset of -02:00 is specified, then
the local time value of CURDATE() is calculated by adding -02:00 to the UTC time returned from
the operating system.

Under this behavior, time and date literals are interpreted as local time, at their face values. Time
stamp literals are interpreted as specifying a time such that if the offset value is subtracted from it,
the result is UTC. Daylight savings is not a consideration, since the offset explicitly takes it into
account. Time stamp values are always stored internally using UTC time.

To convert a given local time value to UTC, you must subtract your time zone offset value from
the local time value. In other words,

UTC time = local time – time zone offset

This table gives example conversions.

If no time zone is specified, or TIME ZONE LOCAL is specified...

CURDATE(), CURTIME(), NOW(),
SYSDATETIME()

Return current local time and date based on
system clock.

CURRENT_DATE(), CURRENT_TIME(),
CURRENT_TIMESTAMP(),
SYSUTCDATETIME()

Return current UTC time and date based on
system clock and operating system locale setting.

If a valid offset value is specified...

CURDATE(), CURTIME(), NOW(),
SYSDATETIME()

These functions return current local time and date
values by adding offset to the current UTC time/
date values.

CURRENT_DATE(), CURRENT_TIME(),
CURRENT_TIMESTAMP(),
SYSUTCDATETIME()

These functions always return current UTC time
and date based on system clock and operating
system locale setting.

Local Time Offset UTC

10:10:15
Austin

US Central Standard Time
-06:00

10:10:15-(-06:00)=16:10:15 UTC

16:10:15
London

Greenwich Mean Time
+00:00

16:10:15-(+00:00)=16:10:15 UTC

22:10:15
Dhaka

+06:00 22:10:15-(+06:00)=16:10:15 UTC

SQL Grammar in Zen

SQL Syntax Reference 253

A Note about Time Stamp Data Types

Because time stamp data is always stored as UTC, and literal time stamp values (including values
stored on disk) are always converted to local time when retrieved, the behavior of NOW() and
CURRENT_TIMESTAMP() values can be confusing. For example, consider the following table,
assuming the database engine is located in Central Standard Time, U.S.

It is important to note that the value displayed by a direct SELECT NOW() is not the same as the
value stored on disk by the syntax INSERT SELECT NOW(). Likewise, note that the display
value of SELECT CURRENT_TIMESTAMP() is not the same value that you will see if you
INSERT the value of CURRENT_TIMESTAMP() then SELECT it, because the literal value
stored in the data file is adjusted when it is retrieved.

Examples

In this example, no SET TIME ZONE statement has been issued yet, and the system where the
database engine is running has its clock set to January 9, 2002, 16:35:03 CST (US). Recall that
CURRENT_TIMESTAMP() and the other CURRENT_ functions always return UTC time and
date based on the system clock and locale settings of the system where the database engine runs.

SELECT CURRENT_TIMESTAMP(), NOW(),
CURRENT_TIME(), CURTIME(),
CURRENT_DATE(), CURDATE()

Results:

2002-01-09 22:35:03.000 2002-01-09 16:35:03.000
22:35:03 16:35:03
01/09/2002 01/09/2002

Note that CST is 6 hours ahead of UTC.

SET TIME ZONE -10:00

Statement Value

SELECT NOW() 2001-10-01 12:05:00.123 displayed.

INSERT INTO t1 (c1) SELECT NOW() 2001-10-01 18:05:00.1234567 stored on disk.

SELECT * from t1 2001-10-01 12:05:00.123 displayed.

SELECT CURRENT_TIMESTAMP() 2001-10-01 18:05:00.123 displayed.

INSERT INTO t2 (c1) SELECT
CURRENT_TIMESTAMP()

2001-10-01 18:05:00.1234567 stored on disk.

SELECT * from t2 2001-10-01 12:05:00.123 displayed.

SQL Grammar in Zen

254 SQL Syntax Reference

Now the same SELECT statement above returns the following:

2002-01-09 22:35:03.000 2002-01-09 12:35:03.000
22:35:03 12:35:03
2002-01-09 2002-01-09

Note that the value of NOW() changed after the SET TIME ZONE statement, but the value of
CURRENT_TIMESTAMP() did not.

============

The following example demonstrates the difference between time stamp values that are stored as
UTC values then converted to local values upon retrieval, and TIME or DATE values that are
stored and retrieved at their face value. Assume that the system clock currently shows January 9,
2002, 16:35:03 CST (U.S.). Also assume that no SET TIME ZONE statement has been issued.

CREATE TABLE t1 (c1 TIMESTAMP, c2 TIMESTAMP, c3 TIME, c4 TIME, c5 DATE, c6 DATE)
INSERT INTO t1 SELECT CURRENT_TIMESTAMP(), NOW(), CURRENT_TIME(), CURTIME(), CURRENT_DATE(),
CURDATE()
SELECT * FROM t1

Results:

c1 c2
----------------------- -----------------------
2002-01-09 16:35:03.000 2002-01-09 16:35:03.000

c3 c4 c5 c6
-------- -------- ---------- ----------
22:35:03 16:35:03 01/09/2002 01/09/2002

Note that NOW() and CURRENT_TIMESTAMP() have different values when displayed on-
screen with SELECT NOW(), CURRENT_TIMESTAMP(), but once the literal values are saved
to disk, UTC time is stored for both values. On retrieval, both values are converted to local time.

By setting the time zone offset to zero, we can view the actual data stored in the file, because it is
adjusted by +00:00 upon retrieval:

SET TIME ZONE +00:00
SELECT * FROM t1

Results:

c1 c2
----------------------- -----------------------
2002-01-09 22:35:03.000 2002-01-09 22:35:03.000

c3 c4 c5 c6
-------- -------- ---------- ----------
22:35:03 16:35:03 01/09/2002 01/09/2002

SQL Grammar in Zen

SQL Syntax Reference 255

============

The following example demonstrates the expected behavior when the local date is different than
the UTC date (for example, UTC is past midnight, but local time is not, or the reverse). Assume
that the system clock currently shows January 9, 2002, 16:35:03 CST (U.S.).

SET TIME ZONE +10:00
SELECT CURRENT_TIMESTAMP(), NOW(),

CURRENT_TIME(), CURTIME(),
CURRENT_DATE(), CURDATE()

Results:

2002-01-09 22:35:03.000 2002-01-10 08:35:03.000
22:35:03 08:35:03
01/09/2002 01/10/2002

INSERT INTO t1 SELECT CURRENT_TIMESTAMP(), NOW(), CURRENT_TIME(), CURTIME(), CURRENT_DATE(),
CURDATE()

SELECT * FROM t1
Results:
c1 c2
----------------------- -----------------------
2002-01-10 08:35:03.000 2002-01-10 08:35:03.000

c3 c4 c5 c6
-------- -------- ---------- ----------
22:59:55 08:59:55 01/09/2002 01/10/2002

As you can see, the UTC time and date returned by CURRENT_DATE() and CURRENT_TIME()
are stored as literal values. Since they are not time stamp values, no adjustment is made to them
when they are retrieved from the database.

See Also

TIMESTAMP data type

Time and Date Functions

SQL Grammar in Zen

256 SQL Syntax Reference

SET TRUEBITCREATE
The SET TRUEBITCREATE statement allows you to specify whether the BIT data type can be
indexed and can map to the LOGICAL transactional data type.

Syntax
SET TRUEBITCREATE = < ON | OFF >

Remarks

The default is on. This means that the BIT data type is 1 bit, cannot be indexed and is assigned a
Zen type code of 16. When of type code 16, BIT has no equivalent transactional data type to
which it maps.

For certain situations, such as compatibility with other DBMS applications, you may want to map
BIT to the LOGICAL data type to be able to index the BIT data type. To do so, turn off
TRUEBITCREATE. This maps BIT to LOGICAL, which is a 1-byte data type of type code 7.

The creation mode remains in effect until it is changed by issuing the statement again, or until the
database connection is disconnected. Because this setting is maintained on a per-connection basis,
separate database connections can maintain different creation modes, even within the same
application. Every connection starts with the setting in default mode, where BITs are created with
a Zen type code of 16.

This feature does not affect existing BITs, only ones created after the set statement is applied.

This setting can be toggled only in a SQL statement. It cannot be set in Zen Control Center. Note
that Table Editor displays the relational data types for columns (so the type is displayed as "BIT").
If TRUEBITCREATE is turned off, then Table Editor allows you to index the BIT column.

Example

The following statement toggles the setting and specifies that new BITs should be created to allow
indexing, map to the LOGICAL transactional data type, and have a type code of 7:

SET TRUEBITCREATE=OFF

SQL Grammar in Zen

SQL Syntax Reference 257

SET TRUENULLCREATE
The SET TRUENULLCREATE statement turns on or off true nulls when you create new tables.

Syntax
SET TRUENULLCREATE = < ON | OFF >

Remarks

This setting first appeared in Pervasive.SQL 2000 (7.5). On is the default, causing tables to be
created with a NULL indicator byte at the beginning of each empty field. If it is set to off by a
SQL statement, tables are created from then on using the legacy NULL from Pervasive.SQL 7
and earlier releases. The legacy null behavior persists until the session is disconnected. In a new
session, the setting is on again.

Since each connection has a TRUENULLCREATE setting, it can differ from others in an
application.

Even though they are not true nulls, legacy nulls behave as nullable, and you can INSERT NULL
into any column type. When you query the value, however, one of the following nonnull binary
equivalents is returned:

• 0 for Binary types

• Empty string for STRING and BLOB types, including legacy types such as LVAR and
LSTRING

Accordingly, you must use these equivalents in WHERE clauses to retrieve specific values.

The following table describes the interaction between default values and nullable columns.

Column Type Default value used if no literal default
value is defined for the column

Default value if literal value is
defined

Nullable NULL As defined

Not NULL Error – "No default value assigned for
column"

As defined

Pre-v7.5 nullable The legacy null for the column As defined

SQL Grammar in Zen

258 SQL Syntax Reference

If a statement attempts to insert an explicit NULL into a NOT NULL column that has a default
value defined, the statement fails with an error. The default value is not used in place of the
attempt.

For any column with a default value defined, that value may be invoked in an INSERT statement
by omitting the column from the insert column list or using the keyword DEFAULT for the insert
value.

If all columns in a table are either nullable or have default values defined, you can insert a record
with all default values by using DEFAULT VALUES as the values clause. If any column is not
nullable and no default is defined, or if you want to specify a column list, you cannot use this type
of clause.

Using DEFAULT VALUES for BLOB, CLOB, or BINARY data types is not currently supported.

Examples

To toggle the setting and create new tables with legacy null support in the current session, use:

SET TRUENULLCREATE=OFF

To return the engine to the default and create tables with true null support in the current session,
use:

SET TRUENULLCREATE=ON

SQL Grammar in Zen

SQL Syntax Reference 259

SIGNAL

Remarks

The SIGNAL statement allows you to signal an exception condition or a completion condition
other than successful completion.

Signalling a SQLSTATE value causes SQLSTATE to be set to a specific value. This value is then
returned to the user, or made available to the calling procedure (through the SQLSTATE value).
This value is available to the application calling the procedure.

You can also specify an error message with the SQLSTATE value.

Note: SIGNAL is available only inside a stored procedure or user-defined function.

Syntax
SIGNAL SQLSTATE_value [, error_message]

SQLSTATE_value ::= user-defined value

error_message ::= user-defined message

Examples

The following example prints the initial SQLSTATE value 00000, then prints "SQLSTATE
exception found" after the signal is raised. The final SQLSTATE value printed is W9001.

CREATE PROCEDURE GenerateSignal();
BEGIN

SIGNAL 'W9001';
END;

CREATE PROCEDURE TestSignal() WITH DEFAULT HANDLER;
BEGIN

PRINT SQLSTATE;
CALL GenerateSignal();
IF SQLSTATE <> '00000' THEN

PRINT 'SQLSTATE exception found';
END IF;
PRINT SQLSTATE;

END;

============

CREATE PROCEDURE GenerateSignalWithErrorMsg();
BEGIN

SIGNAL 'W9001', 'Invalid Syntax';
END;
CALL GenerateSignalWithErrorMsg()

SQL Grammar in Zen

260 SQL Syntax Reference

See Also

CREATE PROCEDURE

SQL Grammar in Zen

SQL Syntax Reference 261

SQLSTATE

Remarks

The SQLSTATE value corresponds to a success, warning, or exception condition. The complete
list of SQLSTATE values defined by ODBC can be found in the Microsoft ODBC documentation.

When a handler executes, the statements within it affect the SQLSTATE value in the same way as
statements in the main body of the compound statement. However, a handler that is intended to
take specific action for a specific condition can optionally leave that condition unaffected, by
reassigning that condition at its conclusion. This does not cause the handler to be invoked again;
that would cause a loop. Instead, Zen treats the exception condition as an unhandled exception
condition, and execution stops.

See Also

CREATE PROCEDURE

SELECT

SIGNAL

SQL Grammar in Zen

262 SQL Syntax Reference

START TRANSACTION
START TRANSACTION signals the start of a logical transaction and must always be paired with
a COMMIT or a ROLLBACK.

Syntax
START TRANSACTION
Sql-statements
COMMIT | ROLLBACK [WORK]

Remarks

START TRANSACTION is supported only within stored procedures. You cannot use START
TRANSACTION within SQL Editor. SQL Editor sets AUTOCOMMIT to on.

Examples

The following example, within a stored procedure, begins a transaction which updates the
Amount_Owed column in the Billing table. This work is committed, while another transaction
updates the Amount_Paid column and sets it to zero. The final COMMIT WORK statement ends
the second transaction.

START TRANSACTION;
UPDATE Billing B
SET Amount_Owed = Amount_Owed - Amount_Paid
WHERE Student_ID IN (SELECT DISTINCT E.Student_ID
FROM Enrolls E, Billing B WHERE E.Student_ID = B.Student_ID);
COMMIT WORK;
START TRANSACTION;

UPDATE Billing B
SET Amount_Paid = 0
WHERE Student_ID IN (SELECT DISTINCT E.Student_ID
FROM Enrolls E, Billing B WHERE E.Student_ID = B.Student_ID);

COMMIT WORK;

See Also

COMMIT

CREATE PROCEDURE

ROLLBACK

SQL Grammar in Zen

SQL Syntax Reference 263

UNION

Remarks

SELECT statements that use UNION or UNION ALL allow you to obtain a single result table
from multiple SELECT queries. UNION queries are suitable for combining similar information
contained in more than one data source.

UNION eliminates duplicate rows. UNION ALL preserves duplicate rows. Using the UNION
ALL option is recommended unless you require duplicate rows to be removed.

With UNION, the Zen database engine orders the entire result set which, for large tables, can take
several minutes. UNION ALL eliminates the need for the sort.

Zen databases do not support LONGVARBINARY columns in UNION statements.
LONGVARCHAR and NLONGVARCHAR are limited to 65500 bytes in UNION statements.
The operator UNION cannot be applied to any SQL statement that references one or more views.

The two query specifications involved in a union must be compatible. Each query must have the
same number of columns and the columns must be of compatible data types.

You may use column names from the first SELECT list in the ORDER BY clause of the SELECT
statement that follows the UNION keyword. Ordinal numbers are also allowed to indicate the
desired columns. For example, the following statements are valid:

SELECT c1, c2, c3 FROM t1 UNION SELECT c4, c5, c6 FROM t2 ORDER BY t1.c1, t1.c2, t1.c3

SELECT c1, c2, c3 FROM t1 UNION SELECT c4, c5, c6 FROM t2 ORDER BY 1, 2, 3
You may also use aliases for the column names:
SELECT c1 x, c2 y, c3 z FROM t1 UNION SELECT c1, c2, c3 FROM t2 ORDER BY x, y, z

SELECT c1 x, c2 y, c3 z FROM t1 a UNION SELECT c1, c2, c3 FROM t1 b ORDER BY a.x, a.y, a.z

Aliases must differ from any table names and column names in the query.

Examples

The following example lists the ID numbers of each student whose last name begins with 'M' or
who has a 4.0 grade point average. The result table does not include duplicate rows.

SELECT Person.ID FROM Person WHERE Last_name LIKE 'M%' UNION SELECT Student.ID FROM Student WHERE
Cumulative_GPA = 4.0

The next example lists the column id in the person table and the faculty table including duplicate
rows.

SELECT person.id FROM person UNION ALL SELECT faculty.id from faculty

SQL Grammar in Zen

264 SQL Syntax Reference

The next example lists the ID numbers of each student whose last name begins with 'M' or who
has a 4.0 grade point average. The result table does not include duplicate rows and orders the
result set by the first column

SELECT Person.ID FROM Person WHERE Last_name LIKE 'M%' UNION SELECT Student.ID FROM Student WHERE
Cumulative_GPA = 4.0 ORDER BY 1

It is common to use the NULL scalar function to allow a UNION select list to have a different
number of entries than the parent select list. To do this, you must use the CONVERT function to
force the NULL to the correct type.

CREATE TABLE t1 (c1 INTEGER, c2 INTEGER)
INSERT INTO t1 VALUES (1,1)
CREATE TABLE t2 (c1 INTEGER)
INSERT INTO t2 VALUES (2)
SELECT c1, c2 FROM t1
UNION SELECT c1, CONVERT(NULL(),sql_integer)FROM t2

See Also

SELECT

SQL Grammar in Zen

SQL Syntax Reference 265

UNIQUE

Remarks

To specify that the index not allow duplicate values, include the UNIQUE keyword. If the column
or columns that make up the index contains duplicate values when you execute the CREATE
INDEX statement with the UNIQUE keyword, Zen returns status code 5 and does not create the
index.

Note: You should not include the UNIQUE keyword in the list of index attributes following the
column name you specify; the preferred syntax is CREATE UNIQUE INDEX.

See Also

ALTER TABLE

CREATE INDEX

CREATE TABLE

SQL Grammar in Zen

266 SQL Syntax Reference

UPDATE
The UPDATE statement allows you to modify column values in a database.

Syntax
UPDATE < table-name | view-name > [alias-name]

SET column-name = < NULL | DEFAULT | expression | subquery-expression > [, column-name = ...]
[FROM table-reference [, table-reference] ...
[WHERE search-condition]

table-name ::= user-defined-name

view-name ::= user-defined-name

alias-name ::= user-defined-name (Alias-name not allowed if FROM clause used. See FROM Clause.)

table-reference ::= { OJ outer-join-definition }
| [db-name.]table-name [[AS] alias-name]
| [db-name.]view-name [[AS] alias-name]
| join-definition
| (join-definition)
| (table-subquery)[AS] alias-name [(column-name [, column-name]...)]

outer-join-definition ::= table-reference outer-join-type JOIN table-reference ON search-condition

outer-join-type ::= LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]

search-condition ::= search-condition AND search-condition
| search-condition OR search-condition
| NOT search-condition
| (search-condition)
| predicate

db-name ::= user-defined-name

view-name ::= user-defined-name

join-definition ::= table-reference [join-type] JOIN table-reference ON search-condition
| table-reference CROSS JOIN table-reference
| outer-join-definition

join-type ::= INNER | LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]

table-subquery ::= query-specification [[UNION [ALL]
query-specification]...]

subquery-expression ::= (query-specification)

Remarks

UPDATE statements, as with DELETE and INSERT, behave in an atomic manner. That is, if an
update of more than one row fails, then all updates of previous rows by the same statement are
rolled back.

SQL Grammar in Zen

SQL Syntax Reference 267

In the SET clause of an UPDATE statement, you may specify a subquery. This feature allows you
to update information in a table based on data in another table or another part of the same table.

You may use the keyword DEFAULT to set the value to the default value defined for the given
column. If no default value is defined, NULL is used if the column is nullable, and if not, an error
is returned. For information about default values and true nulls and legacy nulls from older
releases, see SET TRUENULLCREATE.

The UPDATE statement can update only a single table at a time. UPDATE can relate to other
tables through a subquery in the SET clause. This can be a correlated subquery that depends in
part on the contents of the table being updated, or it can be a noncorrelated subquery that depends
only on another table.

For example, here is a correlated subquery:

UPDATE t1 SET t1.c2 = (SELECT t2.c2 FROM t2 WHERE t2.c1 = t1.c1)

Compared to a noncorrelated subquery:

UPDATE t1 SET t1.c2 = (SELECT SUM(t2.c2) FROM t2 WHERE t2.c1 = 10)

The same logic is used to process pure SELECT statements and subqueries, so the subquery can
consist of any valid SELECT statement. Subqueries follow no special rules.

If SELECT within an UPDATE returns no rows, then the UPDATE inserts NULL. If the given
columns are not nullable, then the UPDATE fails. If SELECT returns more than one row, then
UPDATE fails.

An UPDATE statement does not allow the use of join tables in the statement. Instead, use a
correlated subquery in the SET clause like the one shown in the example above.

For information about true nulls and legacy nulls, see SET TRUENULLCREATE.

Updating Data Longer Than the Maximum Literal String

The maximum literal string supported by Zen is 15,000 bytes. You can handle data longer than
this using direct SQL statements, breaking the update into multiple calls. Start with a statement
like this:

UPDATE table1 SET longfield = '15000 bytes of text' WHERE restriction

Then issue the following statement to add more data:

UPDATE table1 SET longfield = notefield + '15000 more bytes of text' WHERE restriction

SQL Grammar in Zen

268 SQL Syntax Reference

FROM Clause

Some confusion may arise pertaining to the optional FROM clause and references to the table
being updated (referred to as the "update table"). If the update table occurs in the FROM clause,
then one of the occurrences is the same instance of the table being updated.

For example, in the statement UPDATE t1 SET c1 = 1 FROM t1, t2 WHERE t1.c2 = t2.c2, the t1
immediately after UPDATE is the same instance of table t1 as the t1 after FROM. Therefore, the
statement is identical to UPDATE t1 SET c1 = 1 FROM t2 WHERE t1.c2 = t2.c2.

If the update table occurs in the FROM clause multiple times, one occurrence must be identified
as the same instance as the update table. The FROM clause reference that is identified as the same
instance as the update table is the one that does not have a specified alias.

 Therefore, the statement UPDATE t1 SET t1.c1 = 1 FROM t1 a, t1 b WHERE a.c2 = b.c2 is
invalid because both instances of t1 in the FROM clause contain an alias. The following version is
valid: UPDATE t1 SET t1.c1 = 1 FROM t1, t1 b WHERE t1.c2 = b.c2.

The following conditions apply to the FROM clause:

• If the UPDATE statement contains an optional FROM clause, the table reference prior to the
FROM clause cannot have an alias specified. For example, UPDATE t1 a SET a.c1 = 1 FROM
t2 WHERE a.c2 = t2.c2 returns the following error:

SQL_ERROR (-1)
SQLSTATE of "37000"
"Table alias not allowed in UPDATE/DELETE statement with optional FROM."

A valid version of the statement is UPDATE t1 SET t1.c1 = 1 FROM t2 WHERE t1.c2 = t2.c2
or UPDATE t1 SET t1.c1 = 1 FROM t1 a, t2 WHERE a.c2 = t2.c2.

• If more than one reference to the update table appears in the FROM clause, then only one of
the references can have a specified alias. For example, UPDATE t1 SET t1.c1 = 1 FROM t1 a,
t1 b WHERE a.c2 = b.c2 returns the following error:

SQL_ERROR (-1)
SQLSTATE of "37000" and
"The table t1 is ambiguous."

In the erroneous statement, assume that you want table t1 with alias "a" to be the same
instance of the update table. A valid version of the statement would then be UPDATE t1 SET
t1.c1 = 1 FROM t1, t1 b WHERE t1.c2 = b.c2.

• The FROM clause is supported in an UPDATE statement only at the session level. The FROM
clause is not supported if the UPDATE statement occurs within a stored procedure.

SQL Grammar in Zen

SQL Syntax Reference 269

Examples

The following example updates the record in the faculty table and sets salary as 95000 for ID
103657107.

UPDATE Faculty SET salary = 95000.00 WHERE ID = 103657107

============

The following example shows how to use the DEFAULT keyword.

UPDATE t1 SET c2 = DEFAULT WHERE c2 = 'bcd'
UPDATE t1 SET c1 = DEFAULT, c2 = DEFAULT

============

This example changes the credit hours for Economics 305 in the course table from 3 to 4.

UPDATE Course SET Credit_Hours = 4 WHERE Name = 'ECO 305'

============

The following example updates the address for a person in the Person table:

UPDATE Person p
SET p.Street = '123 Lamar',
p.zip = '78758',
p.phone = 5123334444
WHERE p.ID = 131542520

============

Subquery Example A

Two tables are created and rows are inserted. The first table, t5, is updated with a column value
from the second table, t6, in each row where table t5 has the value 2 for column c1. Because there
is more than one row in table t6 containing a value of 3 for column c2, the first UPDATE fails
because more than one row is returned by the subquery. This result occurs even though the result
value is the same in both cases. As shown in the second UPDATE, using the DISTINCT keyword
in the subquery eliminates the duplicate results and allows the statement to succeed.

CREATE TABLE t5 (c1 INT, c2 INT)
CREATE TABLE t6 (c1 INT, c2 INT)
INSERT INTO t5(c1, c2) VALUES (1,3)
INSERT INTO t5(c1, c2) VALUES (2,4)
INSERT INTO t6(c1, c2) VALUES (2,3)
INSERT INTO t6(c1, c2) VALUES (1,2)
INSERT INTO t6(c1, c2) VALUES (3,3)
SELECT * FROM t5

Results:

c1 c2
---------- -----
1 3
2 4

SQL Grammar in Zen

270 SQL Syntax Reference

UPDATE t5 SET t5.c1=(SELECT c2 FROM t6 WHERE c2=3) WHERE t5.c1=2 — Note that the query fails
UPDATE t5 SET t5.c1=(SELECT DISTINCT c2 FROM t6 WHERE c2=3) WHERE t5.c1=2 — Note that the query
succeeds
SELECT * FROM t5

Results:

c1 c2
---------- -----
1 3
3 4

============

Subquery Example B

Two tables are created and a variety of valid syntax examples are demonstrated. Note the cases
where UPDATE fails because the subquery returns more than one row. Also note that UPDATE
succeeds and NULL is inserted if the subquery returns no rows (where NULL values are
allowed).

CREATE TABLE t1 (c1 INT, c2 INT)
CREATE TABLE t2 (c1 INT, c2 INT)
INSERT INTO t1 VALUES (1, 0)
INSERT INTO t1 VALUES (2, 0)
INSERT INTO t1 VALUES (3, 0)
INSERT INTO t2 VALUES (1, 100)
INSERT INTO t2 VALUES (2, 200)
UPDATE t1 SET t1.c2 = (SELECT SUM(t2.c2) FROM t2)
UPDATE t1 SET t1.c2 = 0
UPDATE t1 SET t1.c2 = (SELECT t2.c2 FROM t2 WHERE t2.c1 = t1.c1)
UPDATE t1 SET t1.c2 = @@IDENTITY
UPDATE t1 SET t1.c2 = @@ROWCOUNT
UPDATE t1 SET t1.c2 = (SELECT @@IDENTITY)
UPDATE t1 SET t1.c2 = (SELECT @@ROWCOUNT)
UPDATE t1 SET t1.c2 = (SELECT t2.c2 FROM t2) -- update fails
INSERT INTO t2 VALUES (1, 150)
INSERT INTO t2 VALUES (2, 250)
UPDATE t1 SET t1.c2 = (SELECT t2.c2 FROM t2 WHERE t2.c1 = t1.c1) -- update fails
UPDATE t1 SET t1.c2 = (SELECT t2.c2 FROM t2 WHERE t2.c1 = 5) — Note that the update succeeds, NULL is
inserted for all rows of t1.c2
UPDATE t1 SET t1.c2 = (SELECT SUM(t2.c2) FROM t2 WHERE t2.c1 = t1.c1)

============

The following example creates table t1 and t2 and populates them with data. The UPDATE
statement uses a FROM clause to specify another table from which to get the new value.

DROP table t1
CREATE table t1 (c1 integer, c2 integer)
INSERT INTO t1 VALUES (0, 10)
INSERT INTO t1 VALUES (0, 10)
INSERT INTO t1 VALUES (2, 20)
INSERT INTO t1 VALUES (2, 20)
DROP table t2
CREATE table t2 (c1 integer, c2 integer)
INSERT INTO t2 VALUES (2, 20)
INSERT INTO t2 VALUES (2, 20)
INSERT INTO t2 VALUES (3, 30)

SQL Grammar in Zen

SQL Syntax Reference 271

INSERT INTO t2 VALUES (3, 30)
UPDATE t1 SET t1.c1 = t2.c1 FROM t2 WHERE t1.c2 = t2.c2
SELECT * FROM t1

See Also

ALTER TABLE

CREATE PROCEDURE

CREATE TRIGGER

DEFAULT

GRANT

INSERT

SQL Grammar in Zen

272 SQL Syntax Reference

UPDATE (positioned)
The positioned UPDATE statement updates the current row of a rowset associated with a SQL
cursor.

Syntax
UPDATE [table-name] SET column-name = proc-expr [, column-name = proc-expr]...

WHERE CURRENT OF cursor-name

table-name ::= user-defined-name

cursor-name ::= user-defined-name

Remarks

This statement is allowed in stored procedures, triggers, and at the session level.

Note: Even though positioned UPDATE is allowed at the session level, the DECLARE
CURSOR statement is not. The method to obtain the cursor name of the active result set depends
on the Zen access method your application uses. See the Zen documentation for that access
method.

The table-name may be specified in the positioned UPDATE statement only when used at the
session level. Table-name cannot be specified with a stored procedure or trigger.

Examples

The following sequence of statements provide the setting for the positioned UPDATE statement.
The required statements for a positioned UPDATE are DECLARE CURSOR, OPEN CURSOR,
and FETCH FROM cursorname.

The positioned UPDATE statement in this example updates the name of the course HIS 305 to
HIS 306.

CREATE PROCEDURE UpdateClass();
BEGIN

DECLARE :CourseName CHAR(7);
DECLARE :OldName CHAR(7);
DECLARE c1 CURSOR FOR SELECT name FROM course WHERE name = :CourseName FOR UPDATE;
SET :CourseName = 'HIS 305';
OPEN c1;
FETCH NEXT FROM c1 INTO :OldName;
UPDATE SET name = 'HIS 306' WHERE CURRENT OF c1;

END;

SQL Grammar in Zen

SQL Syntax Reference 273

See Also

CREATE PROCEDURE

CREATE TRIGGER

SQL Grammar in Zen

274 SQL Syntax Reference

USER

Remarks

The USER keyword returns the current user name (such as Master) for each row returned by the
SELECT restriction.

Example

The following examples return the user name from the course table.

SELECT USER FROM course
-- returns 145 instances of Master (the table contains 145 rows)

SELECT DISTINCT USER FROM course
-- returns 1 instance of Master

See Also

SELECT

SET SECURITY

Grammar Element Definitions

SQL Syntax Reference 275

WHILE
You can use a WHILE statement to control flow. It allows statements to be executed repeatedly as
long as the WHILE condition is true. Optionally, you may use the WHILE statement with DO and
END WHILE.

Note: You cannot use a mixed syntax for the WHILE statement. You may use either WHILE
with DO and END WHILE, or only WHILE. If you are using compound statements with a
WHILE condition, you must use BEGIN and END to indicate the beginning and ending of the
statement blocks.

Syntax
[label-name :] WHILE proc-search-condition [DO] [proc-stmt [; proc-stmt]]...
[END WHILE][label-name]

Remarks

A WHILE statement can have a beginning label, in which case it is called a labeled WHILE
statement.

Examples

The following example increments the variable vInteger by 1 until it reaches a value of 10, when
the loop ends.

WHILE (:vInteger < 10) DO
SET :vInteger = :vInteger + 1;
END WHILE

See Also

CREATE PROCEDURE

CREATE TRIGGER

Grammar Element Definitions
The following is an alphabetical list of element definitions used in the grammar syntax.

alter-options ::= alter-option-list1 | alter-option-list2

Grammar Element Definitions

276 SQL Syntax Reference

alter-option-list1 ::= alter-option |(alter-option [, alter-option]...)

alter-option ::= ADD [COLUMN] column-definition
| ADD table-constraint-definition
| ALTER [COLUMN] column-definition
| DROP [COLUMN] column-name
| DROP CONSTRAINT constraint-name
| DROP PRIMARY KEY
| MODIFY [COLUMN] column-definition

alter-option-list2 ::= PSQL_MOVE [COLUMN] column-name TO [[PSQL_PHYSICAL] PSQL_POSITION] new-
column-position | RENAME COLUMN column-name TO new-column-name

as-or-semicolon ::= AS | ;

before-or-after ::= BEFORE | AFTER

call-arguments ::= positional-argument [, positional-argument]...

col-constraint ::= NOT NULL
| NOT MODIFIABLE
| UNIQUE
| PRIMARY KEY
| REFERENCES table-name [(column-name)] [referential-actions]

collation-name ::= 'string'

column-constraint ::= [CONSTRAINT constraint-name] col-constraint

column-definition ::= column-name data-type [DEFAULT Expression] [column-constraint [column-
constraint]... [CASE | COLLATE collation-name]

column-name ::= user-defined-name

commit-statement ::= see COMMIT statement

comparison-operator ::= < | > | <= | >= | = | <> | !=

constraint-name ::= user-defined-name

correlation-name ::= user-defined-name

cursor-name ::= user-defined-name

data-type ::= data-type-name [(precision [, scale])]

data-type-name ::= see Zen Supported Data Types

db-name ::= user-defined-name

expression::= expression - expression
| expression + expression
| expression * expression
| expression / expression
| expression & expression
| expression | expression
| expression ^ expression
| (expression)
| -expression
| +expression
| ~expression
| ?
| literal
| scalar-function
| { fn scalar-function }

Grammar Element Definitions

SQL Syntax Reference 277

| USER

literal ::= 'string' | N'string'
| number
| { d 'date-literal' }
| { t 'time-literal' }
| { ts 'timestamp-literal' }

scalar-function :: = See Scalar Functions

expression-or-subquery ::= expression | (query-specification)

fetch-orientation ::= NEXT

group-name ::= user-defined-name

index-definition ::= (index-segment-definition [, index-segment-definition]...)

index-name ::= user-defined-name

index-number ::= user-defined-value -- an integer between 0 and 118

index-segment-definition ::= column-name [ASC | DESC]

ins-upd-del ::= INSERT | UPDATE | DELETE

insert-values ::= values-clause
| query-specification

join-definition ::= table-reference [INNER] JOIN table-reference ON search-condition
| table-reference CROSS JOIN table-reference
| outer-join-definition

label-name ::= user-defined-name

literal ::= 'string' | N'string'
| number
| { d 'date-literal' }
| { t 'time-literal' }
| { ts 'timestamp-literal' }

order-by-expression ::= expression [CASE | COLLATE collation-name] [ASC | DESC]

outer-join-definition ::= table-reference outer-join-type JOIN table-reference ON search-condition

outer-join-type ::= LEFT [OUTER]| RIGHT [OUTER] | FULL [OUTER]

parameter ::= parameter-type-name data-type [DEFAULT proc-expr | = proc-expr]
| SQLSTATE

parameter-type-name ::= parameter-name
| parameter-type parameter-name
| parameter-name parameter-type

parameter-type ::= IN | OUT | INOUT | IN_OUT

parameter-name ::= [:] user-defined-name

password ::= user-defined-name | 'string'

positional-argument ::= expression

precision ::= integer

Grammar Element Definitions

278 SQL Syntax Reference

predicate ::= expression [NOT] BETWEEN expression AND expression
| expression comparison-operator expression-or-subquery
| expression [NOT] IN (query-specification)
| expression [NOT] IN (value [, value]...)
| expression [NOT] LIKE value
| expression IS [NOT] NULL
| expression comparison-operator ANY (query-specification)
| expression comparison-operator ALL (query-specification)
| EXISTS (query-specification)

proc-expr ::= same as normal expression but does not allow IF expression, or scalar functions

proc-search-condition ::= same as search-condition but does not allow expressions with subqueries

proc-stmt ::= [label-name :] BEGIN [ATOMIC] [proc-stmt [; proc-stmt]...] END [label-name]
| CALL procedure-name (proc-expr [, proc-expr]...)
| CLOSE cursor-name
| DECLARE cursor-name CURSOR FOR select-statement [FOR UPDATE | FOR READ ONLY]
| DECLARE variable-name data-type [DEFAULT proc-expr | = proc-expr]
| DELETE WHERE CURRENT OF cursor-name
| delete-statement
| FETCH [fetch-orientation [FROM]] cursor-name [INTO variable-name [, variable-name]]

| IF proc-search-condition THEN proc-stmt [; proc-stmt]... [ELSE proc-stmt [; proc-stmt
]...] END IF

| IF proc-search-condition proc-stmt [ELSE proc-stmt]
| insert-statement
| LEAVE label-name
| [label-name :] LOOP proc-stmt [; proc-stmt]... END LOOP [label-name]
| OPEN cursor-name
| PRINT proc-expr [, 'string']
| RETURN [proc-expr]
| transaction-statement
| select-statement-with-into
| select-statement
| SET variable-name = proc-expr
| SIGNAL [ABORT] sqlstate-value
| START TRANSACTION [tran-name]
| update-statement
| UPDATE SET column-name = proc-expr [, column-name = proc-expr]... WHERE CURRENT OF cursor-
name
| [label-name :] WHILE proc-search-condition DO [proc-stmt [; proc-stmt]]... END WHILE [
label-name]
| [label-name :] WHILE proc-search-condition proc-stmt
| alter-table-statement
| create-index-statement
| create-table-statement
| create-view-statement
| drop-index-statement
| drop-table-statement
| drop-view-statement
| grant-statement
| revoke-statement
| set-statement

procedure-name ::= user-defined-name

public-or-user-group-name ::= PUBLIC | user-group-name

query-specification [[UNION [ALL] query-specification]...

[limit-clause][ORDER BY order-by-expression [, order-by-expression]...] [FOR UPDATE]

query-specification ::= (query-specification)
| SELECT [ALL | DISTINCT] [top-clause] select-list

FROM table-reference [, table-reference]...

Grammar Element Definitions

SQL Syntax Reference 279

[WHERE search-condition]
[GROUP BY expression [, expression]...

[HAVING search-condition]]

referencing-alias ::= OLD [AS] correlation-name [NEW [AS] correlation-name]
| NEW [AS] correlation-name [OLD [AS] correlation-name]

referential-actions ::= referential-update-action [referential-delete-action]
| referential-delete-action [referential-update-action]

referential-update-action ::= ON UPDATE RESTRICT

referential-delete-action ::= ON DELETE CASCADE
| ON DELETE RESTRICT

release-statement ::= see RELEASE statement

result ::= user-defined-name data-type

rollback-statement ::= see ROLLBACK WORK statement

savepoint-name ::= user-defined-name

scalar-function ::= see Scalar Function list

scale ::= integer

search-condition ::= search-condition AND search-condition
| search-condition OR search-condition
| NOT search-condition
| (search-condition)
| predicate

select-item ::= expression [[AS] alias-name] | table-name.*

select-list ::= * | select-item [, select-item]...

set-function ::= AVG ([DISTINCT | ALL] expression)
| COUNT (< * | [DISTINCT | ALL] expression >)
| COUNT_BIG (< * | [DISTINCT | ALL] expression >)
| MAX ([DISTINCT | ALL] expression)
| MIN ([DISTINCT | ALL] expression)
| STDEV ([DISTINCT | ALL] expression)
| STDEVP ([DISTINCT | ALL] expression)
| SUM ([DISTINCT | ALL] expression)
| VAR ([DISTINCT | ALL] expression)
| VARP ([DISTINCT | ALL] expression)

sqlstate-value ::= 'string'

table-constraint-definition ::= [CONSTRAINT constraint-name] table-constraint

table-constraint ::= UNIQUE (column-name [, column-name]...)
| PRIMARY KEY (column-name [, column-name]...)
| FOREIGN KEY (column-name [, column-name])
REFERENCES table-name
[(column-name [, column-name]...)]
[referential-actions]

table-element ::= column-definition
| table-constraint-definition

table-expression ::=
FROM table-reference [, table-reference]...
[WHERE search-condition]

Grammar Element Definitions

280 SQL Syntax Reference

[GROUP BY expression [, expression]...
[HAVING search-condition]

table-name ::= user-defined-name

table-permission ::= ALL
| SELECT [(column-name [, column-name]...)]
| UPDATE [(column-name [, column-name]...)]
| INSERT [(column-name [, column-name]...)]
| DELETE
| ALTER
| REFERENCES

table-reference ::= { OJ outer-join-definition }
| [db-name.]table-name [[AS] alias-name]
| join-definition
| (join-definition)

table-subquery ::= query-specification [[UNION [ALL]
query-specification]...][limit-clause][ORDER BY order-by-expression [, order-by-expression]...]

limit-clause ::= [LIMIT [offset,] row_count | row_count OFFSET offset | ALL [OFFSET offset]]

offset ::= number | ?

row_count ::= number | ?

transaction-statement ::= commit-statement
| rollback-statement
| release-statement

trigger-name ::= user-defined-name

user_and_password ::= user-name [:] password

user-group-name ::= user-name | group-name

user-name ::= user-defined-name

value ::= literal | USER | NULL | ?

value-list ::= (value [, value]...)

values-clause ::= DEFAULT VALUES | VALUES (expression [, expression]...)

variable-name ::= user-defined-name

view-name ::= user-defined-name

SQL Statement List

SqlStatementList is defined as:

SqlStatementList
statement ';' | SqlStatementList ';'
statement ::= statement-label ':' statement

| BEGIN ... END block
| CALL statement
| CLOSE CURSOR statement
| COMMIT statement
| DECLARE CURSOR statement
| DECLARE variable statement
| DELETE statement

Grammar Element Definitions

SQL Syntax Reference 281

| FETCH statement
| IF statement
| INSERT statement
| LEAVE statement
| LOOP statement
| OPEN statement
| PRINT statement
| RELEASE SAVEPOINT statement
| RETURN statement
| ROLLBACK statement
| SAVEPOINT statement
| SELECT statement
| SET statement
| SIGNAL statement
| START TRANSACTION statement
| UPDATE statement
| WHILE statement

Predicate

A predicate is defined as:

expression compare-operator expression
| expression [NOT] BETWEEN expression AND expression
| expression [NOT] LIKE string-literal
| expression IS [NOT] NULL
| NOT predicate
| predicate AND predicate
| predicate OR predicate
| '(' predicate ')'compare-operator ::= '=' | '>=' | '>' | '<=' | '<' | '<>' | '!='
| [NOT] IN value-list

Expression

An expression is defined as:

number
| string-literal
| column-name
| variable-name
| NULL
| CONVERT '(' expression ',' data-type ')'
| '-' expression
| expression '+' expression
| expression '-' expression
| expression '*' expression
| expression '/' expression
| expression '&' expression
| '~' expression
| expression '|' expression
| expression '^' expression
| function-name '(' [expression-list] ')'
| '(' expression')'
| '{' D string-literal '}'
| '{' T string-literal '}'
| '{' TS string-literal '}'
| @:IDENTITY
| @:ROWCOUNT
| @@BIGIDENTITY

Global Variables

282 SQL Syntax Reference

| @@IDENTITY
| @@ROWCOUNT
| @@VERSION

An expression list is defined as:

expression-list ::= expression [, expression ...]

Global Variables
Zen supports the following global variables:

• @@IDENTITY and @@BIGIDENTITY

• @@ROWCOUNT

• @@SESSIONID

• @@SPID

• @@VERSION

Global variables are prefaced with two at signs, @@. All global variables are variables per
connection. Each database connection has its own @@IDENTITY, @@BIGIDENTITY,
@@ROWCOUNT, and @@SPID values. The value of @@VERSION is information about the
version of the engine that executes the statement where it is used.

@@IDENTITY and @@BIGIDENTITY

Either of these variables returns its most recently inserted column value. The value is a signed
integer value. The initial value is NULL.

The variable can refer to only a single column. If the target table includes more than one
IDENTITY column, the value of this variable refers to the IDENTITY column serving as the
table primary key. If no such column exists, then the value of this variable refers to the first
IDENTITY column in the table.

If the most recent insert was to a table without an IDENTITY column, then the value of
@@IDENTITY is set to NULL.

For BIGIDENTITY values, use @@BIGIDENTITY. For SMALLIDENTITY values, use
@@IDENTITY.

Examples

SELECT @@IDENTITY

Global Variables

SQL Syntax Reference 283

Returns NULL if no records have been inserted in the current connection, otherwise returns the
IDENTITY column value of the most recently inserted row.

SELECT * FROM t1 WHERE @@IDENTITY = 12

Returns the most recently inserted row if it has an IDENTITY column value of 12. Otherwise,
returns no rows.

INSERT INTO t1(c2) VALUES (@@IDENTITY)

Inserts the IDENTITY value of the last row inserted into column C2 of the new row.

UPDATE t1 SET t1.c1 = (SELECT @@IDENTITY) WHERE t1.c1 = @@IDENTITY + 10

Updates column C1 with the IDENTITY value of the last row inserted, if the value of C1 is 10
greater than the IDENTITY column value of the last row inserted.

UPDATE t1 SET t1.c1 = (SELECT NULL FROM t2 WHERE t2.c1 = @@IDENTITY)

Updates column C1 with the value NULL if the value of C1 equals the IDENTITY column value
of the last row inserted.

The example below creates a stored procedure and calls it. The procedure sets variable V1 equal
to the sum of the input value and the IDENTITY column value of the last row updated. The
procedure then deletes rows from the table anywhere column C1 equals V1. The procedure then
prints a message stating how many rows were deleted.

CREATE PROCEDURE TEST (IN :P1 INTEGER);
BEGIN

DECLARE :V1 INTERGER;
SET :V1 = :P1 + @@IDENTITY;
DELETE FROM t1 WHERE t1.c1 = :V1;
IF (@@ROWCOUNT = 0) THEN

PRINT 'No row deleted';
ELSE

PRINT CONVERT(@@ROWCOUNT, SQL_CHAR) + ' rows deleted';
END IF;

END;
CALL TEST (@@IDENTITY)

@@ROWCOUNT

This variable returns the number of rows that were affected by the most recent operation in the
current connection. The value is an unsigned integer. The initial value is zero.

The @@ROWCOUNT variable is valid only when used after an INSERT, UPDATE, or DELETE
statement.

Examples

SELECT @@ROWCOUNT

Global Variables

284 SQL Syntax Reference

Returns zero if no records were affected by the previous operation in the current connection,
otherwise returns the number of rows affected by the previous operation.

CREATE TABLE t1 (c1 INTEGER, c2 INTEGER)
INSERT INTO t1 (c1, c2) VALUES (100,200)
INSERT INTO t1(c1, c2) VALUES (300, @@ROWCOUNT)
SELECT @@ROWCOUNT

Results:

1 (in @@ROWCOUNT variable)

In line four, the @@ROWCOUNT variable has the value of 1 because the previous INSERT
operation affected one row.

Also see the example for @@IDENTITY.

@@SESSIONID

This variable returns an eight-byte integer value that identifies the connection to a Zen server
engine, reporting engine, or workgroup engine. The integer is a combination of a time value and
an incremental counter. This variable can be used to identify uniquely each Zen connection.

@@SESSIONID requires a connection to the database engine to return a value. If the connection
to the database engine is lost, the variable cannot return an identifier.

Example

SELECT @@SESSIONID

The example returns an integer identifier such as 26552653137523.

@@SPID

This variable, the server process identifier, returns the identifier integer value of the system thread
for the Zen connection.

If the connection to the database engine is lost, the SPID variable cannot return an identifier.
Instead, the statement returns an error with a SqlState of 08S01.

Example

SELECT @@SPID

The example returns an integer identifier, such as 402.

Other Characteristics

SQL Syntax Reference 285

@@VERSION

SQL statements that use this variable return a value based on the Zen server engine, reporting
engine, or workgroup engine to which the session is connected.

• For a Zen server, the value is the version of the local engine and the bitness, name, and version
of the local operating system.

• For Zen Client Reporting Engine, it is the version of the local reporting engine and the bitness,
name, and version of the local operating system.

• For Zen Client, it is the version of the engine on the remote Zen server to which the client is
connected and the bitness, name, and version of the operating system where the server is
running.

• For Zen Workgroup Engine, the value is the version of the local engine and the bitness, name,
and version of the local operating system.

Example

SELECT @@version

The example returns text information resembling the following:

Actian Zen - 14.10.020.000 (x86_64) Server Engine - Copyright (C) Actian Corporation 2019 on (64-bit)
Windows NT 6.2 7d

Other Characteristics
This topic describes other characteristics of the SQL grammar. It is divided into the following
sections:

• Temporary Files

• Working with NULL Values

• Working with Binary Data

• Creating Indexes

• Comma as Decimal Separator

Temporary Files

When Zen must generate a temporary table in order to process a given query, it creates the file in
a location determined in one of the following ways:

Other Characteristics

286 SQL Syntax Reference

• If you have manually added the string key value
PervasiveEngineOptions\TempFileDirectory to ODBC.INI, Zen uses the path set for
TempFileDirectory. The proper location for both 32- and 64-bit Zen installations on Windows
is the registry location HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI. For
Linux and Raspbian, the ODBC.INI file is located in /usr/local/actianzen/etc.

• If you have set the temporary file directory property for a Zen engine using ZenCC or bcfg,
Zen uses this location. For more information, see Temporary Files in Advanced Operations
Guide.

• If you have not used either of the first two options listed here, then Zen checks for the file
location using the following sequence on Window platforms:

1. The path specified by the TMP environment variable

2. The path specified by the TEMP environment variable

3. The path specified by the USERPROFILE environment variable

4. The Windows directory

For example, if the TMP environment variable is not defined, Zen uses the path specified in
the TEMP environment variable, and so on.

On Linux distributions, Zen uses the current directory for the server process. No attempt is
made to use TMP.

Zen deletes all temporary files used to process a query after the query is finished. If the query is a
SELECT statement, then the temporary files exist as long as the result set is active, meaning until
the result set is freed by the calling application.

When Are Temporary Files Created?

Zen uses three types of temporary files: in-memory, on-disk, and Btrieve (MicroKernel Engine).

In-Memory Temporary File

In-memory temporary files are used for the following circumstances:

• Forward-only cursor

• Number of bytes in the temporary file is less than 250,000.

• SELECT statements with ORDER BY, GROUP BY, or DISTINCT that do not use an index,
that have no BLOB or CLOB in the ORDER BY, GROUP BY, or DISTINCT, and that have
no BLOB or CLOB in selection list with UNION.

Other Characteristics

SQL Syntax Reference 287

On-Disk Temporary File

On-disk temporary files are used for the following circumstances:

• Forward-only cursor

• Number of bytes in the temporary file is greater than 250,000.

• SELECT statements with ORDER BY, GROUP BY, or DISTINCT that do not use an index,
that have no BLOB or CLOB in the ORDER BY, GROUP BY, or DISTINCT, and that have
no BLOB or CLOB in selection list with UNION.

Btrieve Temporary File

Btrieve temporary files are used for the following circumstances:

• Forward-only cursor with BLOB or CLOB in ORDER BY, GROUP BY, or DISTINCT or
with BLOB or CLOB in selection list with UNION

• Dynamic or static cursor with UNION queries or SELECT statements with ORDER BY,
GROUP BY, or DISTINCT that do not use an index.

Zen does not create a Btrieve temporary file for each base table in a static cursor SELECT query.
Instead, each base table is opened by using the MicroKernel to reserve pages in the file as a static
representation of the file. Any change made through a static cursor cannot be seen by that cursor.

Working with NULL Values

Zen interprets a NULL as an unknown value. Thus, if you try to compare two NULL values, they
will compare as not equal.

An expression that evaluates to WHERE NULL=NULL returns FALSE.

Working with Binary Data

Consider the following scenario: you insert the literal value '1' into a BINARY(4) column named
c1, in table t1. Next, you enter the statement, SELECT * FROM t1 WHERE c1='1'.

The engine can retrieve data using the same binary format as was used to input the data. That is,
the SELECT example above works properly and returns the value, 0x01000000, even though
there is no literal match.

Note: The engine always adds a zero ('0') to the front of odd-digit binary values that are inserted.
For example, if you insert the value '010', then the value '0x00100000' is stored in the data file.

Other Characteristics

288 SQL Syntax Reference

Currently, Zen does not support suffix 0x to denote binary constants. Binary constants are a string
of hexadecimal numbers enclosed by single quotation marks.

This behavior is the same as for Microsoft SQL Server.

Creating Indexes

The maximum column size for indexable VARCHAR columns is 254 bytes if the column does not
allow Null values and 253 bytes if the column is nullable.

The maximum column size for CHAR columns is 255 bytes if the column does not allow Null
values and 254 bytes if the column is nullable. The limits are 1024 and 1023 for a 16.0 format file.

The maximum column size for indexable NVARCHAR columns is NVARCHAR(126). This limit
applies to both nullable and not-null columns. The NVARCHAR size is specified in UCS-2
character units.

The maximum column size for NCHAR columns is NCHAR(127). This limit applies to both
nullable and not-null columns. The NCHAR size is specified in UCS-2 character units.

The maximum Btrieve key size is 255 or 1024, depending on the Btrieve file format. When a
column is nullable and indexed a segmented key is created with 1 byte for the null indicator and a
maximum of 254 or 1023 bytes from the column indexed. VARCHAR columns differ from
CHAR columns in that either length byte (Btrieve lstring) or a zero terminating byte (Btrieve
zstring) are reserved, increasing the effective storage by 1 byte. NVARCHAR (Btrieve wzstring)
columns differ from NCHAR columns in that a zero terminating character is reserved, increasing
the effective storage by 2 bytes.

Comma as Decimal Separator

Many locales use a comma to separate whole numbers from fractional numbers within a floating
point numeric field. For example, they would use 1,5 instead of 1.5 to represent the number one-
and-one-half.

Zen supports both the period and the comma as decimal separators. Zen accepts input values
using the period or the comma, based on the regional settings for the operating system. By default,
the database engine displays values using the period.

Note: When the decimal separator is not a period, SQL statements must enclose numbers in
quotes.

Other Characteristics

SQL Syntax Reference 289

For output and display only, the session-level command SET DECIMALSEPARATORCOMMA
can be used to specify output (for example, SELECT results) that uses the comma as the decimal
separator. This command has no effect on data entry or storage.

Client-Server Considerations

Support for the comma as decimal separator is based on the locale setting in the operating system.
Both the client operating system and the server operating system have a locale setting. The
expected behavior varies according to both settings.

• If either the server or client locale setting uses the comma as decimal separator, then Zen
accepts both period-separated values and quoted comma-separated values.

• If neither the server nor the client locale setting uses the comma decimal separator, then Zen
does not accept comma-separated values.

Changing the Locale Setting

Decimal separator information can be retrieved or changed only for a machine running a
Windows operating system. The decimal setting for Linux cannot be configured, and it is set to a
period. If you have a Linux server engine and you want to use a comma as decimal separator, you
must ensure that all your client computers are set to a locale that uses the decimal separator.

To change the regional settings on a Windows operating system, access the settings from the
Control Panel. Stop and restart Zen services after your change to enable the database engine to use
the setting.

Examples

Example A – Server locale uses a comma for decimal separator

Client locale uses a comma as decimal separator:

CREATE TABLE t1 (c1 DECIMAL(10,3), c2 DOUBLE)
INSERT INTO t1 VALUES (10.123, 1.232)
INSERT INTO t1 VALUES ('10,123', '1.232')
SELECT * FROM t1 WHERE c1 = 10.123
SELECT * FROM t1 FROM c1 = '10,123'

The above two SELECT statements, if executed from the client, return:

10.123, 1.232
10.123, 1.232
SET DECIMALSEPARATORCOMMA=ON
SELECT * FROM t1 FROM c1 = '10,123'

Other Characteristics

290 SQL Syntax Reference

The above SELECT statement, if executed from the client after setting the decimal separator,
returns:

10,123, 1,232

Client locale uses period as decimal separator, and these statements are issued from a new
connection (meaning default behavior for SET DECIMALSEPARATORCOMMA):

CREATE TABLE t1 (c1 DECIMAL(10,3), c2 DOUBLE)
INSERT INTO t1 VALUES (10.123, 1.232)
INSERT INTO t1 VALUES ('10,123', '1.232')
SELECT * FROM t1 WHERE c1 = 10.123
SELECT * FROM t1 WHERE c1 = '10,123'

The above two SELECT statements, if executed from the client, return:

10.123, 1.232
10.123, 1.232

Example B – Server locale uses the period for decimal separator

Client locale uses comma as DECIMAL separator:

Same as client using comma in Example A.

Client locale uses period as DECIMAL separator:

CREATE TABLE t1 (c1 DECIMAL(10,3), c2 DOUBLE)
INSERT INTO t1 VALUES (10.123, 1.232)
INSERT INTO t1 VALUES ('10,123', '1,232') -- error in assignment
SELECT * FROM t1 WHERE c1 = 10.123
SELECT * FROM t1 WHERE c1 = '10,123' -- error in assignment

The first SELECT statement above, if executed from the client, returns:

10.123, 1.232
SET DECIMALSEPARATORCOMMA=ON
SELECT * FROM t1 FROM c1 = 10.123

The above SELECT statement, if executed after setting the decimal separator for display, returns:

10,123, 1,232

291

Scalar Functions

Scalar functions are covered in the following topics:

• Bitwise Operators

• Arithmetic Operators

• String Functions

• Numeric Functions

• Time and Date Functions

• System Functions

• Logical Functions

• Conversion Functions

Zen supports scalar functions that may be included in a SQL statement as a primary expression.

Bitwise Operators
Bitwise operators allow you to manipulate the bits of one or more operands. The following are the
types of bitwise operators:

The storage length of the expression is a key factor to be considered while performing a bitwise
operation. The following are the data types supported for bitwise operations:

Operator Meaning

& bitwise AND

~ bitwise NOT

| bitwise OR

^ bitwise exclusive OR

BIT TINYINT SMALLINT

INTEGER BIGINT UTINYINT

USMALLINT UINTEGER UBIGINT

292

The following table gives the descriptions, syntax, values returned, and examples of bitwise
operators. Each bitwise operator can take only numeric values as its operands.

Bitwise
Operator

Description and Syntax Values Returned Example

AND The bitwise AND operator
performs a bitwise logical AND
operation between two
operands. AND compares two
bits and assigns a value equal to
1 to the result only if the values
of both the bits are equal to 1.
Otherwise, the bit in the result
is set to 0.

expression & expression

Expression is any valid
expression containing the
integer data type, which is
transformed into a binary
number for the bitwise
operation.

In a bitwise AND
operation involving
operands of different
integer data types, the
argument of the smaller
data type is converted to
the larger data type or to
the data type that is
immediately larger than
the larger of the two
operands.

If any of the operands
involved in a bitwise
AND operation is signed,
then the resultant value is
also signed.

The & operator can be
used in conjunction with
the IF function to find
out whether a table is a
system table or a user-
defined table.
select Xf$Name,

IF(Xf$Flags & 16 = 16,

'System table','User
table') from X$File

NOT The bitwise NOT operator
inverts the bit values of any
variable and sets the
corresponding bit in the result.

~ expression

Expression is any valid
expression containing the
integer data type, which is
transformed into a binary
number for the bitwise
operation. The tilde (~) cannot
be used as part of a user-
defined name.

The bitwise NOT
operator returns the
reverse of its single
operand of the integer
data type. All ones are
converted to zeros, and
all zeros are converted to
ones.

The following query
performs the
complement operation
on a numeric literal:
SELECT ~12

The result is -13. The
result is negative
because the complement
operator complements
the sign bit also.

293

OR The bitwise OR operator
performs a bitwise logical OR
operation between two
operands. OR compares two
bits and assigns a value equal to
1 to the result if the values of
either or both the bits are equal
to 1. If neither bit in the input
expressions has a value of 1,
the bit in the result is set to 0.
The OR operator can take only
numeric values as its operands.

expression | expression

Expression is any valid
expression containing the
integer data type, which is
transformed into a binary
number for the bitwise
operation.

In a bitwise OR operation
involving operands of
different integer data
types, the argument of the
smaller data type is
converted to the larger
data type or to the data
type that is immediately
larger than the larger of
the two operands.

If any of the operands
involved in a bitwise OR
operation is signed, then
the resultant value will
also be signed.

The following could
obtain a list of foreign
key and primary
constraints:
select B.Xf$Name "Table

name", C.Xe$Name "Column
name",

IF (Xi$Flags & 8192 = 0,
'Primary key', 'Foreign

key') "Key type" from

X$Index A, X$File B,
X$Field C

where (A.Xi$Flags &
(16384 | 8192)) > 0 AND

A.Xi$File = B.Xf$Id AND

A.Xi$Field = C.Xe$Id

OR
(exclusive)

The bitwise exclusive OR
operator performs a bitwise
logical exclusive OR operation
between two operands.
Exclusive OR compares two
bits and assigns a value equal to
0 to the result if the values of
both the bits are either 0 or 1.
Otherwise, this operator sets the
corresponding result bit to 1.

expression ^ expression

Expression is any valid
expression containing the
integer data type, which is
transformed into a binary
number for the bitwise
operation. The circumflex (^)
cannot be used as part of a user-
defined name.

In a bitwise exclusive OR
operation involving
operands of different
integer data types, the
argument of the smaller
data type is converted to
the larger data type or to
the data type that is
immediately larger than
the larger of the two
operands.

If any of the operands
involved in a bitwise
exclusive OR operation is
signed, then the resultant
value is also signed.

The following SQL
query performs the
exclusive OR on two
numeric literals:
SELECT 12 ^ 8

The result is 4.

Bitwise
Operator

Description and Syntax Values Returned Example

294

Truth Table

The following is the truth table for bitwise operations.

Arithmetic Operators

Date Arithmetic

Zen supports adding or subtracting an integer from a date where the integer is the number of days
to add or subtract, and the date is embedded in a vendor string. This is equivalent to executing a
convert on the date.

Zen also supports subtracting one date from another to yield a number of days.

Example
SELECT * FROM person P, Class C WHERE p.Date_Of_Birth < ' 1973-09-05' AND c.Start_date >{d '1995-05-
08'} + 30

String Functions
String functions are used to process and manipulate columns that consist of text information, such
as CHAR, NCHAR, VARCHAR, NVARCHAR, LONGVARCHAR, or NLONGVARCHAR data
types.

The string functions support multiple-byte character strings. (Note, however, that CASE (string)
does not support multiple-byte character strings. The CASE (string) keyword assumes that the
string data is single-byte ASCII. See CASE (string).)

A B A & B A | B A ^ B ~ A

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

295

Arguments denoted as string can be the name of column, a string literal, or the result of another
scalar function. The following table lists string functions in Zen.

Function Description

ASCII (string) Returns a numeric value for the left most character of string.
The value is the position of the character in the database code
page. See also UNICODE function.

BIT_LENGTH (string) Returns the length in bits of string

CHAR (code) Returns a single-character string where the code argument
selects the character from the database code page. The
argument must be an integer value. See also NCHAR function.

CHAR_LENGTH (string) Returns the number of bytes in string. All padding is
significant for CHAR and NCHAR string.

CHAR_LENGTH2 (string) Returns the number of characters in string. All padding is
significant for CHAR and NCHAR string. A value less than
the size of the string may be returned if the data contains
double-byte characters.

CHARACTER_LENGTH
(string)

Same as CHAR_LENGTH.

CONCAT (string1, string2) Returns a string that results from combining string1 and
string2.

ISNUMERIC(string) Returns 1 (TRUE) if the string value can be evaluated as a
numeric value. Otherwise returns 0 (FALSE).

LCASE or LOWER (string) Converts all upper case characters in string to lower case.

LEFT (string, count) Returns the left most count of characters in string. The value
of count is an integer.

LENGTH (string) Returns the number of characters in string. Trailing spaces are
counted in a VARCHAR, NVARCHAR, LONGVARCHAR,
or NLONGVARCHAR string. Trailing NULLs are counted in
a CHAR, NCHAR, LONGVARCHAR, or
NLONGVARCHAR string. The string termination character
is not counted. When ANSI_PADDING = OFF, trailing
NULLs are treated the same as trailing spaces and are not
counted in the length of a CHAR column.

296

LOCATE (string1, string2 [,
start])

Returns the starting position of the first occurrence of string1
within string2. The search within string2 begins at the first
character position unless you specify a starting position (start).
The search begins at the starting position you specify. The first
character position in string2 is 1. The string1 is not found, the
function returns the value zero.

LTRIM (string) Returns the characters of string with leading blanks removed.
All padding is significant for CHAR and NCHAR string.

NCHAR (code) Returns a single-character wide string where the code
argument is a Unicode codepoint value. The argument must be
an integer value. See also CHAR function.

OCTET_LENGTH (string) Returns the length of string in octets (bytes). All padding is
significant for CHAR and NCHAR string.

POSITION (string1, string2) Returns the position of string1 in string2. If string1 does not
exist in string2, a zero is returned.

REPLACE (string1, string2,
string3)

Searches string1 for occurrences of string2 and replaces each
with string3. Returns the result. If no occurrences are found,
string1 is returned.

REPLICATE (string, count) Returns a character string composed of string repeated count
times. The value of count is an integer.

REVERSE(string) Returns a character string with the order of the characters
reversed. Note that leading spaces in any string types are
considered as significant, unlike trailing spaces which are not
considered as significant. See Examples for an example.

RIGHT (string, count) Returns the right most count of characters in string. The value
of count is an integer.

RTRIM (string) Returns the characters of string with trailing blanks removed.
When ANSI_PADDING = OFF, trailing NULLs are treated
the same as trailing spaces and are removed from a CHAR
column value.

SOUNDEX (string) Converts an alpha string to a four character code to find
similar sounding words or names. Returns a four character
(SOUNDEX) code to evaluate the similarity of two strings,
usually a name.

Note: Conforms to the current rule set for the official
implementation of Soundex used by the United States
Government.

Function Description

297

Note: With the exception of CHAR_LENGTH, string functions operate only on strings of up to
65,500 bytes in length. CHAR_LENGTH operates on the full length of strings permitted by the
data type in use.

Queries containing a WHERE clause with scalar functions RTRIM or LEFT can be optimized.
For example, consider the following query:

SELECT * FROM T1, T2 WHERE T1.C1 = LEFT(T2.C1, 2)

In this case, both sides of the predicate are optimized if T1.C1 and T2.C2 are index columns. The
predicate is the complete search condition following the WHERE keyword. Depending on the
size of the tables involved in the join, the optimizer chooses the appropriate table to process first.

LTRIM and RIGHT cannot be optimized if they are contained in a complex expression on either
side of the predicate.

Examples

The following example creates a new table with an integer and a character column. It inserts 4
rows with values for the character column only, then updates the integer column of those rows
with the ASCII character code for each character.

CREATE TABLE numchars(num INTEGER,chr CHAR(1) CASE);
INSERT INTO numchars (chr) VALUES('a');
INSERT INTO numchars (chr) VALUES('b');
INSERT INTO numchars (chr) VALUES('A');
INSERT INTO numchars (chr) VALUES('B');
UPDATE numchars SET num=ASCII(chr);
SELECT * FROM numchars;

SPACE (count) Returns a character string consisting of count spaces.

STUFF (string1, start, length,
string2)

Returns a character string where length characters in string1
beginning at position start have been replaced by string2. The
values of start and length are integers.

SUBSTRING (string1, start,
length)

Returns a character string derived from string1 beginning at
the character position specified by start for length characters.
The start value can be any number. The first position of
string1 is 1. A start value of 0 or a negative number is
considered left of the first position. Length cannot be negative.

UCASE or UPPER (string) Converts all lower case characters in string to upper case.

UNICODE (string) Returns the Unicode codepoint value for the left most
character of string. See also ASCII function.

Function Description

298

Results of SELECT:

num chr
---------- ---
97 a
98 b
65 A
66 B

SELECT num FROM numchars WHERE num=ASCII('a')

Results of SELECT:

num

97

============

The following example concatenates the first and last names in the Person table and results in
"RooseveltBora".

SELECT CONCAT(First_name, Last_name) FROM Person WHERE First_name = 'Roosevelt'

============

The next example changes the case of the first name to lowercase and then to upper case, and
results in "roosevelt", "ROOSEVELT".

SELECT LCASE(First_name),UCASE(First_name) FROM Person WHERE First_name = 'Roosevelt'

============

The following example results in first name trimmed to three characters beginning from left, the
length as 9 and locate results 0. This query results in "Roo", 9, 0

SELECT LEFT(First_name, 3),LENGTH(First_name), LOCATE(First_name, 'a') FROM Person WHERE First_name
= 'Roosevelt'

============

The following example illustrates use of LTRIM and RTRIM functions on strings, results in
"Roosevelt", "Roosevelt", "elt".

SELECT LTRIM(First_name),RTRIM(First_name), RIGHT(First_name,3) FROM Person WHERE First_name =
'Roosevelt'

============

The following examples illustrate use of the SUBSTRING function.

This substring returns up to three characters starting with the second character in the specified
column:

SELECT SUBSTRING(First_name,2, 3) FROM Person WHERE First_name = 'Roosevelt'

299

Results set:

'oos'

This substring returns an empty string because the starting position is beyond the end of the
string:

SELECT substring('ABCDE',10,1);

The following substrings return values as specified:

SELECT substring('ABCDE',0,2); – Returns 'A'

SELECT substring('ABCDE',-5,10); – Returns 'ABCD'

SELECT substring('ABCDE',-1,4); – Returns 'AB'

============

The following example illustrates use of the SOUNDEX function on strings Smith and Smythe.

SELECT SOUNDEX ('Smith'), SOUNDEX ('Smythe')'

Results set:

S530
S530

============

The following example illustrates use of the SOUNDEX function on the Person table finding all
last names that sound like "Kennedy".

SELECT Last_Name FROM Person WHERE SOUNDEX(last_name) = SOUNDEX ('Kennedy')

Results of SELECT:

Last_Name

Kandy
Kenady
Kennedy
Kennedy

============

The following example illustrates use of the REVERSE function.

SELECT REVERSE(dept_name) from COURSE where dept_name = 'Music'

Results set:

cisuM
cisuM
cisuM

300

cisuM
cisuM

5 rows were affected.

Because leading spaces are signficant, the following query returns zero rows:

SELECT * from COURSE WHERE REVERSE(dept_name) = 'cisuM'

This is because dept_name is defined as a CHAR field 20 characters wide. Either of the following
query statements returns the expected results:

SELECT * from COURSE WHERE REVERSE(dept_name) = ' cisuM'

SELECT * from COURSE WHERE LTRIM(REVERSE(dept_name)) = 'cisuM'

Results set:

MUS 101 Hymnology 3 Music
MUS 102 Church 3 Music
MUS 203 Piano 3 Music
MUS 304 Music Theory 3 Music
MUS 405 Recital 3 Music

5 rows were affected.

Numeric Functions
Numeric functions are used to process and manipulate columns that consist of strictly numeric
information, such as decimal and integer values. The following table lists numeric functions in
Zen.

Function Description

ABS (numeric_exp) Returns the absolute (positive) value of numeric_exp.

ACOS (float_exp) Returns the arc cosine of float_exp as an angle, expressed in
radians.

ASIN (float_exp) Returns the arc sine of float_exp as an angle, expressed in radians.

ATAN (float_exp) Returns the arc tangent of float_exp as an angle, expressed in
radians.

ATAN2 (float_exp1, float_exp2) Returns the arc tangent of the x and y coordinates, specified by
float_exp1 and float_exp2, respectively, as an angle, expressed in
radians.

CEILING (numeric_exp) Returns the smallest integer greater than or equal to numeric_exp.

COS (float_exp) Returns the cosine of float_exp, where float_exp is an angle
expressed in radians.

301

COT (float_exp) Returns the cotangent of float_exp, where float_exp is an angle
expressed in radians.

DEGREES (numeric_exp) Returns the number of degrees corresponding to numeric_exp
radians.

EXP (float_exp) Returns the exponential value of float_exp.

FLOOR (numeric_exp) Returns the largest integer less than or equal to numeric_exp.

LOG (float_exp) Returns the natural logarithm of float_exp.

LOG10 (float_exp) Returns the base 10 logarithm of float_exp.

MOD (integer_exp1,
integer_exp2)

Returns the remainder (modulus) of integer_exp1 divided by
integer_exp2.

PI() Returns the constant value Pi as a floating point value.

POWER (numeric_exp,
integer_exp)

Returns the value of numeric_exp to the power of integer_exp.

RADIANS (numeric_exp) Returns the number of radians equivalent to numeric_exp degrees.

RAND (integer_exp) Returns a random floating-point value using integer_exp as the
optional seed value.

ROUND (numeric_exp,
integer_exp)

Returns numeric_exp rounded to integer_exp places right of the
decimal point. If integer_exp is negative, numeric_exp is rounded
to |integer_exp| (absolute value of integer_exp) places to the left of
the decimal point.

SIGN (numeric_exp) Returns an indicator of the sign of numeric_exp. If numeric_exp is
less than zero, -1 is returned. If numeric_exp equals zero, 0 is
returned. If numeric_exp is greater than zero, 1 is returned.

SIN (float_exp) Returns the sine of float_exp, where float_exp is an angle
expressed in radians.

SQRT (float_exp) Returns the square root of float_exp.

TAN (float_exp) Returns the tangent of float_exp, where float_exp is an angle
expressed in radians.

TRUNCATE (numeric_exp,
integer_exp)

Returns numeric_exp truncated to integer_exp places right of the
decimal point. If integer_exp is negative, numeric_exp is truncated
to |integer_exp| (absolute value) places to the left of the decimal
point.

Function Description

302

Examples

The following example lists the modulus of the number and capacity columns in a table named
Room.

SELECT Number, Capacity, MOD(Number, Capacity) FROM Room WHERE Building_Name = 'Faske Building'
and Type = 'Classroom'

============

The following example selects all salaries from a table named Faculty that are evenly divisible by
100.

SELECT Salary FROM Faculty WHERE MOD(Salary, 100) = 0

Time and Date Functions
Time and date functions enable you to generate, process, and manipulate data with time and date
data types. This topic covers the use of these functions.

You may use CURTIME(), CURDATE() and NOW() in INSERT statements to insert the current
local date, time, and time stamp values. For example:

CREATE TABLE table1 (col1 DATE)
INSERT INTO table1 VALUES (CURDATE())

All time and date functions support a SELECT subquery in an INSERT statement, as shown here:

INSERT INTO t1 (c1, c2) SELECT CURRENT_DATE(), CURRENT_TIME()

Some functions, such as CURDATE(), CURTIME(), and NOW(), also support direct insert, as in:

INSERT INTO t1 (c1) VALUES (CURDATE())

For more examples, see Time and Date Function Examples.

The following table lists time and date functions in Zen.

Note: The date and time formats listed here may not match the ones used to display values the
Text and Grid views in ZenCC. The displayed format is fixed by the application.

Function Description

CURDATE() Returns the current local date in the format 'yyyy-mm-dd'. Uses
the local clock date by default. If SET TIME ZONE has been
called, then the value of CURDATE() is determined by
calculating UTC time and date from the system clock and
operating system locale setting, then adding the offset value from
SET TIME ZONE.

303

CURRENT_DATE() Returns the current UTC date in the format 'dd/mm/yyyy'.

CURTIME() Returns the current local time in the format 'hh:mm:ss'. Uses the
local clock time by default. If SET TIME ZONE has been called,
then the value of CURTIME() is determined by calculating UTC
time and date from the system clock and operating system locale
setting, then adding the offset value from SET TIME ZONE.

CURRENT_TIME() Returns the current UTC time in the format 'hh:mm:ss'.

CURRENT_TIMESTAMP() Returns the current UTC date and time in the format 'yyyy-mm-
dd hh:mm:ss.mmm'.

DATEADD(datepart, interval,
date_exp)

Returns a new DATETIME value by adding an interval to a date.
For example, a datepart day, an interval of 11, and a date_exp of
January 26, 2020 returns February 6, 2020. Datepart specifies the
part of the date to which interval is added and must be one of the
following values:

• YEAR

• QUARTER

• MONTH

• DAY

• DAYOFYEAR

• WEEK

• HOUR

• MINUTE

• SECOND

• MILLISECOND

Interval specifies a positive or negative integer value used to
increment datepart. If interval contains a fractional portion, the
fraction part is ignored.

Date_exp is an expression that returns a DATETIME value, a
value that can be implicitly converted to a DATETIME value, or
a character string in a DATE format. See DATETIME.

Function Description

304

DATEDIFF(datepart, start, end) Returns an integer for the difference between the two dates. The
integer is the number of date and time boundaries crossed
between the two dates.

For example, table mytest has two columns,col1 and col2, both
of which are DATETIME. The value in col1 is 2000-01-01
11:11:11.234 and the value in col2 is 2004-09-11 10:10:10.211.
The following SELECT statement returns 56, because that is the
difference in months between col1 and col2:
SELECT DATEDIFF(month, col1, col2) as Month_Difference FROM

mytest

Datepart specifies the part of the date on which to calculate the
difference and must be one of the following values:

• YEAR

• QUARTER

• MONTH

• DAY

• DAYOFYEAR

• WEEK

• HOUR

• MINUTE

• SECOND

• MILLISECOND

Start specifies the beginning date for the difference calculation.
Start is an expression that returns a DATETIME value or a
Unicode character string in a DATE format.

End specifies the ending date for the difference calculation. End
is an expression that returns a DATETIME value or a Unicode
character string in a DATE format.

Start is subtracted from end. An error is returned if the return
value is outside of the range for integer values. See Data Type
Ranges.

Function Description

305

DATEFLOOR(timestamp_exp,
interval_unit)

Returns the time stamp determined by rounding timestamp_exp
down to the nearest boundary of interval_unit. This rounding is
done by setting all time stamp fields to the right of interval_unit
to their minimum values. For example, if interval_unit is day,
then year, month, and day are all retained from the
timestamp_exp and hour, minute and second are set to zero.

Valid values for interval_unit are:

• YEAR

• MONTH

• DAY

• HOUR

• MINUTE

• SECOND

DATEFROMPARTS(year, month,
day)

Returns a date value for the specified year, month, and day.

NULL is returned if any of the parameters are NULL.

DATENAME(datepart, date_exp) Returns an English character string (a VARCHAR) that
represents the datepart of date_exp. For example, a datepart
month returns the name of the month such as January, February,
and so forth. A datepart weekday returns the day of the week
such as Monday, Tuesday, and so forth.

Datepart specifies the part of the date to return and must be one
of the following values:

• YEAR

• QUARTER

• MONTH

• DAY

• DAYOFYEAR

• WEEK

• WEEKDAY

• HOUR

• MINUTE

• SECOND

• MILLISECOND

Date_exp is an expression that returns a DATETIME value, a
value that can be implicitly converted to a DATETIME value, or
a character string in a DATE format. See DATETIME.

Function Description

306

DATEPART(datepart, date_exp) Returns an integer that represents the datepart of date_exp. For
example, a datepart month returns an integer representing the
month (January = 1, December = 12). A datepart weekday
returns an integer representing the day of the week (Sunday = 1,
Saturday = 7).

Datepart is the part of the date to return and must be one of the
following values:

• YEAR

• QUARTER

• MONTH

• DAY

• DAYOFYEAR

• WEEK

• WEEKDAY

• HOUR

• MINUTE

• SECOND

• MILLISECOND

• TZOFFSET

The TZOFFSET value returns a time zone offset in number of
minutes (signed). The DATEPART function with TZOFFSET
works only with SYSDATETIMEOFFSET() and string literals
containing a time zone offset. The time zone offset range is -
14:00 through +14:00. See Time and Date Function Examples.

Date_exp is an expression that returns a DATETIME value, a
value that can be implicitly converted to a DATETIME value, or
a character string in a DATE format. See DATETIME.

 DAY(date_exp) Returns the day of the month for the given date_exp. Identical to
DATEPART(day, date_exp). See DATEPART(datepart,
date_exp).

DAYNAME(date_exp) Returns an English character string containing the name of the
day (for example, Sunday through Saturday) for the day portion
of date_exp.

Date_exp can be a DATE, SQL_TIMESTAMP literal, or a
column containing DATE, DATETIME, or time stamp data.

Function Description

307

DAYOFMONTH(date_exp) Returns the day of the month in date_exp as an integer in the
range of 1 to 31. Date_exp can be a DATE, SQL_TIMESTAMP
literal, or a column containing DATE, DATETIME, or time
stamp data.

DAYOFYEAR(date_exp) Returns the day of the year based on the year field in date_exp as
an integer value in the range of 1-366.

DATETIMEFROMPARTS(year,
month, day, hour, minute, seconds,
milliseconds)

Returns a value constructed from the provided parameters.
NULL is returned if any of the parameters are NULL.

DATETIMEOFFSETFROMPART
S(year, month, day, hour, minute,
seconds, fractions, hour_offset,
minute_offset, scale)

Returns a string value for a date and time using specified
parameters.

If any of the parameters except scale are NULL, then NULL is
returned. If scale is NULL, then an error is returned.

Scale specifies the precision of the fractions value and has a
range from 0 to 7. Fractions depends on scale and has a range
from 0 to 9999999. For example, if scale is 3, then each fraction
represents a millisecond. The number of digits specified for
fractions must be less or equal to the value for scale.

The hour_offset specifies the hour portion of a time zone with a
range from -14 to +14. The minute_offset specifies the minute
portion of a time zone with a range from 0 to 59. Hour_offset and
minute_offset must have the same sign unless hour offset is 0.

The default string literal format for
DATETIMEOFFSETFROMPARTS is YYYY-MM-DD
hh:mm:ss[.nnnnnnn] [{+|-}hh:mm].

Function Description

308

EVERYN(interval_unit,
timestamp_exp, rounding_unit,
bucket_size)

Returns the time stamp determined by rounding timestamp_exp
down to the beginning of the most recent time bucket, assuming
buckets of bucket-size * interval_unit, counting from the
beginning of the most recent rounding_unit.

For example, suppose you want to have ten groupings of data
every minute. You would need 6-second buckets for this.
EVERYN(SECOND, '2022-06-15 08:15:22.891', MINUTE, 6)
rounds the given time stamp down to the beginning of the most
recent 6-second bucket, counting from the beginning of the most
recent MINUTE. The most recent minute is '2022-06-15
08:15:00.000', and the fourth 6-second bucket in this minute
begins at '2022-06-15 08:15:18.000', so this is the value returned.
The effect is that all time stamps within this bucket receive this
same result from EVERYN.

Valid values for both interval_unit and rounding_unit:

• YEAR

• MONTH

• DAY

• HOUR

• MINUTE

• SECOND

Note: EVERYN gives useful results only if rounding_unit is a
larger interval than interval_unit.

EXTRACT(extract_field,
extract_source)

Returns the extract_field portion of the extract_source. The
extract_source argument is a date, time, or interval expression.

The following values are permitted for extract_field and are
returned from the target expression:

• YEAR

• MONTH

• DAY

• HOUR

• MINUTE

• SECOND

HOUR(time_exp) Returns the hour as an integer in the rage of 0 to 23. Time_exp
can be a DATE, SQL_TIMESTAMP literal, or a column
containing DATE, DATETIME, or time stamp data.

Function Description

309

MINUTE(time_exp) Returns the minute as an integer in the range 0 to 59. Time_exp
can be a DATE, SQL_TIMESTAMP literal, or a column
containing DATE, DATETIME, or time stamp data.

MONTH(date_exp) Returns the month as an integer in the range of 1 to 12. Date_exp
can be a DATE, SQL_TIMESTAMP literal, or a column
containing DATE, DATETIME, or time stamp data.

MONTHNAME(date_exp) Returns an English character string containing the name of the
month (for example, January through December) for the month
portion of date_exp. Date_exp can be a DATE,
SQL_TIMESTAMP literal, or a column containing DATE,
DATETIME, or time stamp data.

NOW() Returns the current local date and time in the format 'yyyy-mm-
dd hh:mm:ss.mmm'.

Uses the local clock time by default. If SET TIME ZONE has
been called, then the value of NOW() is determined by
calculating UTC time and date from the system clock and
operating system locale setting, then adding the offset value from
SET TIME ZONE.

QUARTER(date_exp) Returns the quarter in date_exp as an integer value in the range of
1- 4, where 1 represents January 1 through March 31. Date_exp
can bebe a DATE, SQL_TIMESTAMP literal, or a column
containing DATE, DATETIME, or time stamp data.

SECOND(time_exp) Returns the second as an integer in the range of 0 to 59. Time_exp
can be a DATE, SQL_TIMESTAMP literal, or a column
containing DATE, DATETIME, or time stamp data.

SYSDATETIME() Returns the current local date and time displayed in the format
'yyyy-mm-dd hh:mm:ss.nnnnnnnnn'.

Uses the local clock time by default. Scale is septaseconds on
Windows 10, nanoseconds on Linux, and microseconds on all
other platforms. Trailing digits not returned are padded with
zeros to 9 places. If SET TIME ZONE has been called, then the
value of SYSDATETIME() is determined by calculating UTC
time and date from the system clock and operating system locale
setting, then adding the offset value from SET TIME ZONE.

Function Description

310

SYSDATETIMEOFFSET() Returns the current date and time along with the hour and minute
offset between the current time zone and UTC of the computer on
which the Zen database engine is running. Daylight saving time
(DST) is accounted for.

The default format returned is YYYY-MM-DD
hh:mm:ss[.nnnnnnnnn] [<+ | ->hh:mm]. A plus sign indicates
that the current time zone is ahead of the UTC. A minus sign
indicates that the current time zone is behind the UTC.

SYSUTCDATETIME() Returns the current local date and time displayed in the format
'yyyy-mm-dd hh:mm:ss.nnnnnnnnn'.

Uses the local clock time by default. Scale is septaseconds on
Windows 10, nanoseconds on Linux, and microseconds on all
other platforms. Trailing digits not returned are padded with
zeros to 9 places. If SET TIME ZONE has been called, then the
value of SYSUTCDATETIME() is determined by calculating
UTC time and date from the system clock and operating system
locale setting.

TIMEFROMPARTS(hour, minute,
seconds, fractions, scale)

Returns a time value constructed from the specified time
parameters.

If any of the parameters except scale are NULL, then NULL is
returned. If scale is NULL, then an error is returned.

Scale specifies the precision of the fractions value and has a
range from 0 to 7. Fractions depends on scale and has a range
from 0 to 9999999. For example, if scale is 3, then each fraction
represents a millisecond. The number of digits specified for
fractions must be less or equal to the value for scale.

The default format for TIMEFROMPARTS is
hh:mm:ss[.nnnnnnn].

TIMESTAMPADD(interval,
integer_exp, timestamp_exp)

Returns the time stamp calculated by adding integer_exp
intervals of type interval to timestamp_exp.

The following values are allowed for interval:

• SQL_TSI_YEAR

• SQL_TSI_QUARTER

• SQL_TSI_MONTH

• SQL_TSI_WEEK

• SQL_TSI_DAY

• SQL_TSI_HOUR

• SQL_TSI_MINUTE

• SQL_TSI_SECOND

Function Description

311

Time and Date Function Examples

The following example illustrates the use of hour.

SELECT c.Name, c.Credit_Hours FROM Course c WHERE c.Name = ANY (SELECT cl.Name FROM Class cl WHERE
c.Name = cl.Name AND c.Credit_Hours >(HOUR (Finish_Time - Start_Time) + 1))

============

The following is an example of minute.

SELECT MINUTE(log) FROM billing

============

The following example illustrates the use of second.

SELECT SECOND(log) FROM billing;
SELECT log FROM billing WHERE SECOND(log) = 31

============

The following example illustrates the use of NOW().

SELECT NOW() - log FROM billing

============

The following is a more complex example that uses month, day, year, hour and minute.

TIMESTAMPDIFF(interval,
timestamp_exp1, timestamp_exp2)

Returns the integer number of intervals of type interval by which
timestamp_exp2 is greater than timestamp_exp1.

The values allowed for interval are the same as for
TIMESTAMPADD.

WEEK(date_exp) Returns the week of the year based on the week field in date_exp
as an integer in the range of 1 to 53. Date_exp can be a DATE,
SQL_TIMESTAMP literal, or a column containing DATE,
DATETIME, or time stamp data.

WEEKDAY(date_exp) Returns the day of the week for the given date_exp, where
1=Sunday and 7=Saturday. Identical to DATEPART(weekday,
date_exp). See DATEPART(datepart, date_exp).

YEAR(date_exp) Returns the year as an integer value. The range depends on the
data source. Date_exp can be a DATE, SQL_TIMESTAMP
literal, or a column containing DATE, DATETIME, or time
stamp data.

Function Description

312

SELECT Name, Section, MONTH(Start_Date), DAY(Start_Date), YEAR(Start_Date), HOUR(Start_Time),
MINUTE(Start_Time) FROM Class

============

The following example illustrates use of CURDATE().

SELECT ID, Name, Section FROM Class WHERE (Start_Date - CURDATE()) <= 2 AND (Start_Date - CURDATE())
>= 0

============

The next example gives the day of the month and day of the week of the start date of class from
the class table.

SELECT DAYOFMONTH(Start_date), DAYOFWEEK(Start_date) FROM Class;

SELECT * FROM person WHERE YEAR(Date_Of_Birth) < 1970

============

The following example illustrates use of DATEPART with the TZoffset parameter.

SELECT DATEPART(TZoffset, SYSDATETIMEOFFSET())

Assuming the statement returns -360, the current time zone is 360 minutes behind UTC.

Assume that SELECT SYSDATETIMEOFFSET() returns 2011-01-24 14:33:08.4650000 -06:00.
Given this, the following query returns -360:

SELECT DATEPART(TZoffset, '2011-01-24 14:33:08.4650000 -06:00')

If the time zone portion is omitted from the string literal, 0 is returned:

SELECT DATEPART(TZoffset, '2011-01-24 14:33:08.4650000')

============

The following example uses DATEFROMPARTS to return a date from the provided values.

SELECT NOW(), DATEFROMPARTS(DATEPART(Year, NOW()), DATEPART(Month, NOW()), DATEPART(Day, NOW()))

Returns: 2013-05-09 14:33:34.835 PM 5/9/2013

============

The following example uses TIMEFROMPARTS to return a time from the provided values.

SELECT NOW(), TIMEFROMPARTS(DATEPART(hour, NOW()), DATEPART(minute, NOW()), DATEPART(second, NOW()),
DATEPART(millisecond, NOW()), 3)

Returns: 2013-05-09 15:04:11.425 PM 15:04:11.425

============

This example uses DATETIMEFROMPARTS to return a time stamp from the provided values.

313

SELECT DATETIMEFROMPARTS(1962, 08, 12, 17, 45, 0, 0)

Returns: 1962-08-12 17:45:00.000 PM

============

The following example uses DATETIMEOFFSETFROMPARTS to return a string display for the
time stamp plus a timezone specification.

SELECT DATETIMEOFFSETFROMPARTS (1962, 08, 12, 17, 45, 0, 0, 5, 0, 0) + ' GMT'

Returns: 1962-08-12 17:45:00 +05:00 GMT

============

The following example uses EVERYN to group records in the Billing table into 6-second buckets
based on the TIMESTAMP Log field.

SELECT COUNT(*) NumOfPayments, AVG(Amount_Paid) AveragePayment , EVERYN(SECOND,Log,MINUTE,6)
TimePeriodStart FROM Billing GROUP BY TimePeriodStart

============

This EVERYN example shows how to specify the rounding unit when the bucket size does not
divide into it evenly. Suppose for example, every recorded value must be assigned to a 7-second
bucket, but you do not want any bucket to cross an HOUR boundary. The following
measurements show a series of value recorded around an HOUR boundary:

Time Stamp EVERYN(SECOND, <time stamp>, HOUR, 7)
2022-06-15 08:59:50.891 2022-06-15 08:59:44.000
2022-06-15 08:59:57.891 2022-06-15 08:59:51.000
2022-06-15 08:59:59.891 2022-06-15 08:59:58.000
2022-06-15 09:00:02.891 2022-06-15 09:00:00.000
2022-06-15 09:00:05.891 2022-06-15 09:00:00.000
2022-06-15 09:00:08.891 2022-06-15 09:00:07.000

Note that the final interval of the HOUR, beginning at 2022-06-15 08:59:58.000, is only 2
seconds long because the next interval must start in the next HOUR, namely 2022-06-15
09:00:00.000.

Functionally, EVERYN allows you to parameterize an expression that otherwise would have to be
constructed from several other functions and repeated values. For example, this expression using
seven function calls:

DATEADD(SECOND,((FLOOR (DATEDIFF(SECOND, DATEFLOOR(ts_val, HOUR), ts_val)/ 8))* 8),
DATEFLOOR(ts_val, HOUR))

can be simplified by calling EVERYN:

EVERYN(SECOND, ts_val , HOUR, 8)

314

System Functions
System functions provide information at a system level.

System Function Examples

The following examples show how to obtain the name of the current user and database:

SELECT USER();
SELECT DATABASE();

============

The following example creates a column of data type UNIQUEIDENTIFIER as the first column
in new table table1. Setting a default value with the NEWID function provides a unique value for
"col1" in each new row within the table.

CREATE TABLE table1 (col1 UNIQUEIDENTIFIER DEFAULT NEWID() NOT NULL, col2 INTEGER);
INSERT INTO table1 (col2) VALUES (1);
INSERT INTO table1 (col2) VALUES (2);
INSERT INTO table1 (col2) VALUES (3);

Logical Functions
Logical functions are used to manipulate data based on certain conditions.

Function Description

DATABASE() Returns the current database name.

NEWID() Creates a unique value for data type uniqueidentifier

USER() Returns the login name of the current user.

Function Description

COALESCE (expression1,
expression2 [, ...])

Returns the first non-null argument, starting from the left in the
expression list.

See also COALESCE for additional details.

IF (predicate, expression1,
expression2)

Returns expression1 if predicate is true. Otherwise returns
expression2.

NULL() Sets a column as NULL values.

315

Logical Function Examples

The COALESCE scalar function takes two or more arguments and returns the first non-null
argument, starting from the left in the expression list.

select COALESCE(10, 'abc' + 'def')

Ten is treated as a SMALLINT and ResultType (SMALLINT, VARCHAR) is SMALLINT.
Hence, the result type is SMALLINT.

The first parameter is 10, which can be converted to result type SMALLINT. Therefore, the return
value of this example is 10.

============

The system scalar functions IF and NULL are SQL extensions.

IF allows you to enter different values depending on whether the condition is true or false. For
example, if you want to display a column with logical values as "True" or "False" instead of a
binary representation, you would use the following SQL statement:

SELECT IF(logicalcol=1, 'True', 'False')

============

The system scalar function NULL allows you to set a column as null values. The syntax is:

NULL()

For example, the following SQL statement inserts a row in the Room table with a NULL value for
Capacity:

INSERT INTO Room VALUES ('Young Building', 222, NULL(), 'Lab')

 IFNULL (exp, value) If exp is NULL, value is returned. If exp is not null, exp is
returned. The possible data type or types of value must be
compatible with the data type of exp.

ISNULL (exp, value) Replaces NULL with the value specified for value. Exp is the
expression to check for NULL. Value is the value returned if exp
is NULL. Exp is returned if it is not NULL. The data type of
value must be compatible with the data type of exp.

NULLIF (exp1, exp2) NULLIF returns exp1 if the two expressions are not equivalent.
If the expressions are equivalent, NULLIF returns a NULL
value.

Function Description

316

============

The following example demonstrates how ISNULL returns a value.

CREATE TABLE t8 (c1 INT, c2 CHAR(10));
INSERT INTO t8 VALUES (100, 'string1');
SELECT c1, c2, ISNULL(c1, 1000), ISNULL(C2, 'a string') from t8;

The SELECT returns 100 and string1 because both c1 and c2 contain a value, not a NULL.

INSERT INTO t8 VALUES (NULL, NULL);
SELECT c1, c2, ISNULL(c1, 1000), ISNULL(C2, 'a string') from t8

The SELECT returns 1000 and a string because both c1 and c2 contain a NULL.

============

The following statements demonstrate the IFNULL and NULLIF scalar functions. You use these
functions when you want to do certain value substitution based on the presence or absence of
NULLs and on equality.

CREATE TABLE Demo (col1 CHAR(3));
INSERT INTO Demo VALUES ('abc');
INSERT INTO Demo VALUES (NULL);
INSERT INTO Demo VALUES ('xyz');

Since the second row contains the NULL value, 'foo' is substituted in its place.

SELECT IFNULL(col1, 'foo') FROM Demo

This results in three rows fetched from one column:

"abc"
"foo"
"xyz"
3 rows fetched from 1 column.

The first row contains 'abc,' which matches the second argument of the following NULLIF call.

SELECT NULLIF(col1, 'abc') FROM Demo

A NULL is returned in its place:

<Null>
<Null>
"xyz"
3 rows fetched from 1 column.

Conversion Functions
Conversion functions convert an expression to a particular data type. The CONVERT function is
best used when converting between a value and its text representation. The CAST function gives
more control over the data type but less control over character formatting. Note that CONVERT
supports only a subset of relational types.

317

CAST converts an expression to a Zen relational data type, provided that the expression can be
converted. CAST can convert binary zeros in a string. For example, CAST(c1 AS BINARY(10)),
where c1 is a character column that contains binary zeros (nulls).

If both input and output are character strings, output from CAST or CONVERT has the same
collation as the input string.

Conversions between CHAR, VARCHAR, or LONGVARCHAR and NCHAR, NVARCHAR, or
NLONGVARCHAR assume that CHAR values are encoded using the database code page.

TRY_CAST and TRY_CONVERT are identical to CAST and CONVERT except for handling of
data values that cannot be converted. For CAST and CONVERT the entire query fails, but for
TRY_CAST and TRY_CONVERT the columns in the query result that fail are filled with nulls.
See Conversion Function Examples for the following list of conversion functions in Zen.

Function Description

CAST (exp AS type)

TRY_CAST (exp AS type)

Converts exp to type, where type may be a data type listed
under Zen Supported Data Types, which includes precision
and scale parameters.

 CONVERT (exp, type [, style])

TRY_CONVERT (exp, type [, style])

Converts exp to the type
indicated, using the
following type arguments:

SQL_BIGINT
SQL_BINARY
SQL_BIT
SQL_CHAR
SQL_DATE
SQL_DECIMAL
SQL_DOUBLE
SQL_FLOAT
SQL_GUID
SQL_INTEGER
SQL_LONGVARBINARY
SQL_LONGVARCHAR
SQL_NUMERIC
SQL_REAL
SQL_SMALLINT
SQL_TIME

SQL_TIMESTAMP
SQL_TINYINT
SQL_VARCHAR

SQL_WCHAR
SQL_WLONGVARCHAR
SQL_WVARCHAR

The CONVERT arguments
use SQL_ as a prefix for the
data type. The Zen relational
data types do not include the
SQL_ prefix. Precision and
scale take default values.

The optional parameter style
applies only to the
DATETIME data type. Use of
the parameter truncates the
milliseconds portion of the
DATETIME data type. A
style value may be either 20
or 120. Both values specify
the canonical format: yyyy-
mm-dd hh:mm:ss. See
Conversion Function
Examples.

318

Conversion Function Examples

The following example casts a DATE to a CHAR.

CREATE TABLE u1(cdata DATE);
INSERT INTO u1 VALUES(curdate());
SELECT CAST(cdate as (CHAR20)) FROM u1;

If the current date were January 1, 2004, the SELECT returns 2004-01-01.

============

The following example converts, respectively, a UBIGINT to a CHAR, and string data to DATE,
TIME, and TIMESTAMP.

SELECT CONVERT(id , SQL_CHAR), CONVERT('1995-06-05', SQL_DATE), CONVERT('10:10:10', SQL_TIME),
CONVERT('1990-10-10 10:10:10', SQL_TIMESTAMP) FROM Faculty

============

The following example converts a string to DATE then adds 31 to DATE.

SELECT Name FROM Class WHERE Start_date > CONVERT ('1995-05-07', SQL_DATE) + 31

============

The following examples show how to cast and convert a UNIQUEIDENTIFIER data type.

CREATE TABLE table1(col1 CHAR(36), col2 UNIQUEIDENTIFIER DEFAULT NEWID());

INSERT INTO table1 (col1) VALUES ('1129619D-772C-AAAB-B221-00FF00FF0099');

SELECT CAST(col1 AS UNIQUEIDENTIFIER) FROM table1;

SELECT CAST(col2 AS LONGVARCHAR) FROM table1;

SELECT CONVERT(col2 , SQL_CHAR) FROM table1;

SELECT CONVERT('1129619D-772C-AAAB-B221-00FF00FF0099' , SQL_GUID) FROM table1;

============

The following examples show how to convert a DATETIME data type with and without the style
parameter.
CREATE TABLE table2(col1 DATETIME);
INSERT INTO table2 (col1) VALUES ('2006-12-25 10:10:10.987');
SELECT CONVERT(col1 , SQL_CHAR, 20) FROM table2;

This returns 2006-12-25 10:10:10.

SELECT CONVERT(col1 , SQL_CHAR, 120) FROM table2

This returns 2006-12-25 10:10:10.

SELECT CONVERT(col1 , SQL_CHAR) FROM table2

This returns 2006-12-25 10:10:10.987.

319

If you want to include the DATETIME milliseconds, omit the style parameter.

Note the following requirements when using the style parameter:

• The type parameter must be SQL_CHAR. Any other data type is ignored.

• The column data type of the expression must be DATETIME.

• The only permissible style values are 20 and 120. Any other value returns an error. The values
20 or 120 specify the canonical format: yyyy-mm-dd hh:mm:ss.

============

The following examples show the different results when using CAST and TRY_CAST. The same
behavior occurs with CONVERT and TRY_CONVERT.

SELECT CAST ('10' AS numeric(10,2)); – Success: returns 10.00
SELECT CAST('test' AS float); – Error: returns Expression evaluation error.
SELECT TRY_CAST ('10' AS numeric(10,2)); – Success: returns 10.00
SELECT TRY_CAST ('test' AS float); – Success: returns NULL

320

321

System Stored Procedures

System stored procedures help you accomplish those administrative and informative tasks not
covered by the Data Definition Language.

Zen System Stored Procedures
System stored procedures have a psp_ prefix. The following table lists the system stored
procedures currently supported in Zen.

Unless otherwise noted, examples for system stored procedures use the Demodata sample
database or refer to Zen system tables.

If you execute a system stored procedure within a database to obtain information from a secured
database, an error occurs. You cannot access information in a secured database from any other
database.

Note: Do not create stored procedures with the psp_ prefix in their name. Any user-created
stored procedure with the same name as a system stored procedure will fail to be executed.

psp_columns

Returns the list of columns and their corresponding information for a specified table, from the
current database or the specified database.

Syntax

call psp_columns(['database_qualifier'],'table_name', ['column_name'])

psp_columns psp_column_attributes psp_column_rights

psp_fkeys psp_groups psp_help_sp

psp_help_trigger psp_help_udf psp_help_view

psp_indexes psp_pkeys psp_procedure_rights

psp_rename psp_stored_procedures psp_tables

psp_table_rights psp_triggers psp_udfs

psp_users psp_view_rights psp_views

322

Arguments

Returned Result Set

Parameter Type Default Value Description

Database_qualifier VARCHAR(20) Current database Name of database from which to
obtain details

table_name VARCHAR(255) (no default value) Name of table whose column
information is required

column_name VARCHAR(255) All columns for the
table

Column name of the table specified

Column Name Data Type Description

TABLE_QUALIFIER VARCHAR (20) Name of the database

TABLE_OWNER VARCHAR (20) Name of the table owner. Table owner is reserved for
future use. It currently returns empty (NULL).

TABLE_NAME VARCHAR(255) Name of the table

COLUMN_NAME VARCHAR(255) Column name of the table

DATA_TYPE SMALLINT Data type code of the column. See Zen Supported Data
Types.

TYPE_NAME VARCHAR (32) Name of the data type of the column corresponding to
DATA_TYPE value

PRECISION INTEGER The precision of the column if the data type is Decimal,
Numeric, and so forth. See Precision and Scale of
Decimal Data Types.

LENGTH INTEGER The length of the column.

SCALE SMALLINT The scale of the column if the data type is Decimal,
Numeric, and so forth.

RADIX SMALLINT Base for numeric data types

NULLABLE SMALLINT Specifies nullability:

1 - NULL allowed

0 - NULL not allowed

REMARKS VARCHAR(255) Remarks field

323

Example

create table tx (c_binary BINARY(10),
c_char CHAR(10),
c_tinyint TINYINT,
c_smallint SMALLINT,
c_int INT,
c_bigint BIGINT,
c_utinyint UTINYINT);

call psp_columns(, 'tx',);

Result Set

============

Assume that you have a database named mydatabase that contains a table named tx.

call psp_columns('mydatabase', 'tx',)

Result Set

============

call psp_columns('mydatabase', 'tx', 'c_binary')

Table_
qualifier

Table_
owner

Table_
name

Column
_name

Data_
type

Type_
name

P L S R N R

'demodata' Null tx C_binary -2 Binary 10 10 Null Null 1 Null

'demodata' Null tx C_char -1 Char 10 10 Null Null 1 Null

'demodata' Null tx C_tinyint -6 Tinyin
t

Null 1 0 10 1 Null

.....

Legend: P = Precision; L = Length; S = Scale; R = Radix; N = Nullable; R = Remarks

Table_
qualifier

Table_
owner

Table_
name

Column_
name

Data_
type

Type_
name

P L S R N R

'wsrde' Null tx C_binary -2 Binary 10 10 Null Null 1 Null

'wsrde' Null tx C_char -1 Char 10 10 Null Null 1 Null

'wsrde' Null tx C_tinyint -6 Tinyint Null 1 0 10 1 Null

.....

Legend: P = Precision; L = Length; S = Scale; R = Radix; N = Nullable; R = Remarks

324

Result Set

Error Conditions

psp_column_attributes

Returns the list of column attributes and the corresponding information from the current database
or the specified database.

Syntax

call psp_column_attributes(['database_qualifier'], ['table_name'], ['column_name'])

Table_
qualifier

Table_
owner

Table_
name

Column_
name

Data_
type

Type_
name

P L S R N R

'wsrde' Null tx C_binary -2 Binary 10 10 Null Null 1 Null

Legend: P = Precision; L = Length; S = Scale; R = Radix; N = Nullable; R = Remarks

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database name
cannot be a blank string.

database_qualifier is an undefined database Unable to open table: X$File

table_name is undefined in the database No error is returned and no results are returned

table_name is null Table name cannot be null

table_name is a blank string Table name cannot be a blank string

column_name is a blank string Column name cannot be a blank string

column_name is undefined in the table No error is returned and no results are returned

325

Arguments

Returned Result Set

Examples

create table tx (c_binary binary (10) default 01,
c_char char (11) default 'thisisatest',
c_tinyint TINYINT,
c_SMALLINT SMALLINT,
c_int INT,
c_bigint BIGINT,
c_utinyint uTINYINT);

call psp_column_attributes(, ,);

Parameter Type Default Value Description

Database_qualifier VARCHAR(20) Current database you
are logged in

Name of the database from which
the details are to be obtained

table_name VARCHAR(255) All tables for the
specified database

Name of the table whose column
information is required

column_name VARCHAR(255) All columns for the
specified table

Column name of the table specified

Column Name Data Type Description

TABLE_QUALIFIER VARCHAR (20) Name of the database

TABLE_OWNER VARCHAR (20) Name of the table owner

TABLE_NAME VARCHAR(255) Name of the table

COLUMN_NAME VARCHAR(255) Column name of the table

ATTRIB_TYPE CHAR(10) "Default" if a default value assigned to the column

"Collate" if the column uses a collating sequence

"L" if the column has a logical positioning

Null or blank for all other types of attributes

ATTRIB_SIZE USMALLINT Size of the column attribute

ATTRIB_VALUE LONGVARCHAR Value of the column attribute

326

Result Set

============

create table tlogicalmv (col1 integer, col2 char(20))
alter table tlogicalmv psql_move col1 to 2
call psp_column_attributes(, 'tlogicalmv' ,)

Result Set

============

call psp_column_attributes(, 'tx', 'c_binary')

Result Set

Table_
qualifier

Table_
owner

Table_
name

Column_
name

Attrib_
Type

Attrib_
Size

Attrib_
Value

'demodata' Null tx C_binary Default 2 01

'demodata' Null tx C_char Default 11 'Thisisatest'

Table_
qualifier

Table_
owner

Table_
name

Column_
name

Attrib_
Type

Attrib_
Size

Attrib_
Value

'demodata' Null tlogicalmv col2 L 1 1

'demodata' Null tlogicalmv col1 L 1 2

Table_
qualifier

Table_
owner

Table_
name

Column_
name

Attrib_
Type

Attrib_
Size

Attrib_
Value

'demodata' Null tx C_binary Default 2 01

327

Error Conditions

psp_column_rights

Returns the list of column rights and corresponding information for the specified table, from the
current database or the specified database.

Note: This system stored procedure returns the list of column rights only if it has been explicitly
specified using the GRANT syntax.

Syntax

call psp_column_rights(['database_qualifier'], 'table_name', ['column_name'], ['user_name'])

Arguments

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database name
cannot be a blank string.

database_qualifier is an undefined database Unable to open table: X$File

table_name is undefined in the database No error is returned and no results are returned

table_name is null Table name cannot be null

table_name is a blank string Table name cannot be a blank string

column_name is a blank string Column name cannot be a blank string

column_name is undefined in the table No error is returned and no results are returned

Parameter Type Default Value Description

Database_qualifier VARCHAR(20) Current database Name of the database from which the
details are to be obtained

table_name VARCHAR(255) (no default value) Name of the table for which rights
have been specified

column_name VARCHAR(255) All columns of the
specified table

Name of the column whose rights are
to be obtained

user_name VARCHAR(255) Current user Name of the user for whom the list of
column rights need to be obtained.
Pattern matching is supported.

328

Returned Result Set

Example

After granting the following permissions on table Dept in the Demodata database, retrieve the
column permissions:

GRANT SELECT(Name, Building_Name) ON Dept TO John;
GRANT UPDATE(Name) ON Dept TO Mary;
GRANT INSERT(Building_Name) ON Dept TO John;
Call psp_column_rights(,'Dept', ,'%');

Result Set

Note: User Master has no explicit column rights defined, so psp_column_rights returns no results
for that user.

Assume that user John is logged on to the database. The following statement prints column
permissions on table Dept table for user John.

Column Name Data Type Description

TABLE_QUALIFIER VARCHAR (20) Name of the database

TABLE_OWNER VARCHAR (20) Name of the owner of the table

USER_NAME (GRANTEE) VARCHAR(255) Name of the user

TABLE_NAME VARCHAR(255) Name of the table

COLUMN_NAME VARCHAR(255) Name of the column for which the different
rights have been granted

RIGHTS VARCHAR(12) One of the following values:

SELECT

UPDATE

INSERT

Table_Qualifier Table_owner User_name Table_name Column_name Rights

Demodata Null John Dept Name SELECT

Demodata Null John Dept Building_name SELECT

Demodata Null John Dept Building_name INSERT

Demodata Null Mary Dept Name UPDATE

329

call psp_column_rights ('demodata', 'Dept', ,)

Result Set

Note: If a user has been granted rights at the table level (for example, GRANT SELECT ON
Dept TO Mary), a call to psp_column_rights returns no rights. The rights were granted to the
table, not to specific columns.

The following statement prints column permissions on table Dept for column Name for the
current user.

call psp_column_rights ('demodata', 'dept', 'name',)

Result Set

The following statement prints column permissions on table Dept for user Mary:

call psp_column_rights('demodata', 'dept', , 'Mary')

Result Set

Error Conditions

Table_Qualifier Table_owner User_name Table_name Column_name Rights

Demodata Null John Dept Building_name INSERT

Demodata Null John Dept Building_name SELECT

Demodata Null John Dept Name SELECT

Table_Qualifier Table_owner User_name Table_name Column_name Rights

Demodata Null John Dept Name SELECT

Table_Qualifier Table_owner User_name Table_name Column_name Rights

Demodata Null Mary Dept Name UPDATE

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database name cannot be a
blank string.

table_name is null Table name cannot be null.

330

psp_fkeys

Returns the foreign key information for the specified table in the current database.

Syntax

call psp_fkeys(['table_qualifier'], 'pkey_table_name', ['fkey_table_name'])

Arguments

Returned Result Set

table_name is a blank string Table name cannot be a blank string.

column_name is a blank string Column name cannot be a blank string.

user_name is a blank string User name cannot be a blank string.

Parameter Type Default Value Description

table_qualifier VARCHAR(20) Current database Name of the database from which
the details are to be obtained

pkey_table_name VARCHAR(255) (no default value) Name of the table whose foreign
key is associated with the primary
key column

fkey_table_name VARCHAR(255) (no default value) Name of the table whose foreign
key information needs to be
obtained

Column Name Data Type Description

PKTABLE_QUALIFIER VARCHAR (20) Database name of the primary key table

PKTABLE_OWNER VARCHAR (20) Name of the owner of the primary key table

PKTABLE_NAME VARCHAR(255) Name of the primary key table

PKCOLUMN_NAME VARCHAR(255) Column name of the primary key column.

KEY_SEQ USMALLINT Key sequence. This column value corresponds
to Xi$Part in X$Index. See X$Index.

FKTABLE_QUALIFIER VARCHAR (20) Database name of the foreign key table

Condition Error Message

331

Example

CREATE TABLE Employee
(
Id INTEGER NOT NULL,
Name VARCHAR(50) NOT NULL,
SupId INTEGER NOT NULL
);
ALTER TABLE Employee

ADD CONSTRAINT EmpPkey
PRIMARY KEY(Id);

ALTER TABLE Employee
ADD CONSTRAINT ForgnKey
FOREIGN KEY(SupId) REFERENCES
Employee(Id) ON DELETE CASCADE;

call psp_fkeys(,'Employee',);

FKTABLE_OWNER VARCHAR (20) Name of the owner of the foreign key table

FKTABLE_NAME VARCHAR(255) Name of the foreign key table

FKCOLUMN_NAME VARCHAR(255) Column name of the foreign key column.

UPDATE_RULE Utinyint Update Rule

DELETE_RULE Utinyint Delete Rule

PK_NAME VARCHAR(255) Name of the primary key

FK_NAME VARCHAR(255) Name of the foreign key

Column Name Data Type Description

332

Result Set

Error Conditions

psp_groups

Returns the list of groups and the corresponding information from the current database or the
specified database.

Syntax

call psp_groups(['database_qualifier'], ['group_name'])

Arguments

PkQ PkO PkT PkCol Seq FkQ FkO FkT FkCol UR DR PK FK

Demo
data

Null Em-
ployee

Id 0 Demo
data

Null Em-
ployee

Supid 1 2 EmpP
key

Forgn
Key

Legend: PkQ = Pkey_table_qualifier; PkO = Pkey_table_owner; PkT = Pktable_name; PkCol =
Pk_column_name; Seq = Key_seq; FkQ = Fktable_qualifier; FkO = Fktable_owner; FkT = Fktable_name;
FkCol = Fkcolumn_name; UR = Update_rule; DR = Delete_rule; Pk = Pk_name; FK = Fk_name

Condition Error Message

table_qualifier is a blank string Table name cannot be a blank string.

pKey_table_name is a blank string Primary key table name cannot be a blank string.

pKey_table_name is null No argument or default value supplied. Argument: 2.

fKey_table_name is a blank string Foreign key table name cannot be a blank string.

Parameter Type Default
Value

Description

Database_qualifier VARCHAR(20) Current
database

Name of the database from which the
details are to be obtained

group_name VARCHAR(255) (no default
value)

Name of the group used to return group
information. Pattern matching is
supported.

333

Returned Result Set

Example

Assume that the Demodata sample database has two groups defined: DevGrp1 and DevGrp2.

call psp_groups(,)

Result Set

============

call psp_groups('Demodata', 'D%')

Result Set

Error Conditions

Column Name Data Type Description

DATABASE_QUALIFIER VARCHAR (20) Name of the database

GROUP_ID USMALLINT Group Id

GROUP_NAME VARCHAR (255) Name of the group

Database_qualifier Group_Id Group_Name

Demodata 1 PUBLIC

Demodata 2 DevGrp1

Demodata 3 DevGrp2

Database_qualifier Group_Id Group_Name

Demodata 2 DevGrp1

Demodata 3 DevGrp2

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database name cannot be a
blank string.

group_name is a blank string Group name cannot be a blank string.

334

psp_help_sp

Returns the definition text of a given stored procedure from the current database or the specified
database.

Syntax

call psp_help_sp('[database_qualifier'], 'procedure_name')

Arguments

Returned Result Set

Example

Assume that the Demodata sample database contains the following stored procedure saved as
"Myproc."

Create procedure Myproc(:a integer, OUT :b integer) as
Begin

Set :a = :a + 10;
Set :b = :a;

End

The following statement prints the definition text for stored procedure "Myproc" in the current
database.

call psp_help_sp(, 'Myproc')

Parameter Type Default
Value

Description

Database_qualifier VARCHAR(20) Current
database

Name of the database from which the
details are to be obtained

procedure_name CHAR(255) (no default
value)

Name of the procedure whose definition
text is required. Pattern matching is not
supported.

Column Name Data Type Description

DATABASE_QUALIFIER VARCHAR (20) Name of the database

SP_TEXT LONGVARCHAR Stored procedure definition text

335

Result Set

============

Assume that a database named "wsrde" contains the following stored procedure saved as
"Myproc1."

Create procedure Myproc1(:a integer) returns (name char(20))
as
Begin

Select name from employee where Id =:a;
End

The following statement prints the definition text for stored procedure "Myproc1" in database
"wsrde."

call psp_help_sp('wsrde', 'Myproc1')

Result Set

Error Conditions

Database_Qualifier SP_TEXT

Demodata Create procedure Myproc(:a integer, OUT :b integer) as

Begin

Set :a = :a + 10;

Set :b = :a;

End

Database_Qualifier SP_TEXT

wsrde Create procedure Myproc1(:a integer) returns (name char(20))
as
Begin

Select name from employee where Id =:a;
End

Condition Error Message

database_qualifier is a blank string or null Please enter a valid database name. Database name
cannot be a blank string

procedure_name is null No argument or default value supplied.

procedure_name is a blank string Procedure name cannot be a blank string.

336

psp_help_trigger

Returns the definition text of a trigger from the current database or the specified database.

Syntax

call psp_help_trigger (['database_qualifier'], 'trigger_name')

Arguments

Returned Result Set

Example

The following statement prints the definition of the 'MyInsert' trigger:

CREATE TABLE A
(
col1 INTEGER,
col2 CHAR(255)
);
CREATE TABLE B
(
col1 INTEGER,
col2 CHAR(255)
);
CREATE TRIGGER MyInsert
AFTER INSERT ON A

FOR EACH ROW
INSERT INTO B VALUES
(NEW.col1, NEW.col2);

call psp_help_trigger(,'MyIns%');

Parameter Type Default
Value

Description

Database_qualifier VARCHAR(20) Current
database

Name of the database from which the
details are to be obtained

trigger_name VARCHAR(255) (no default
value)

Name of the trigger whose definition
text is to be returned. Pattern matching
is supported.

Column Name Data Type Description

DATABASE_QUALIFIER VARCHAR (20) Name of the database

TRIGGER_TEXT LONGVARCHAR Trigger definition text.

337

Result Set

Error Conditions

psp_help_udf

Returns the text of a given user-defined function (UDF) from the current database or the specified
database.

Syntax

call psp_help_udf (['database_qualifier'], 'udf_name')

Database_Qualifier TRIGGER_TEXT

Demodata CREATE TRIGGER MyInsert
AFTER INSERT ON A
FOR EACH ROW

INSERT INTO B VALUES
(NEW.col1, NEW.col2);

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database name cannot be a
blank string

trigger_name is null No argument or default value supplied.

trigger_name is a blank string Trigger name cannot be a blank string.

338

Arguments

Returned Result Set

Example

call psp_help_udf(, 'Myfunction')

Result Set

============

call psp_help_udf('mydbase', 'Get%')

Parameter Type Default
Value

Description

Database_qual VARCHAR(20) Current
database

Name of the database from which the details are
to be obtained

udf_name VARCHAR(255) (no default
value)

Name of the user-defined function whose
function text is required. Pattern matching is
supported.

Column Name Data Type Description

DATABASE_QUALIFIER VARCHAR (20) Name of the database

UDF_TEXT LONGVARCHAR The text of the User Defined Function

Database_Qualifier UDF_TEXT

Demodata Create function Myfunction(:a integer) Returns integer
as
Begin

Return :a * :a;
End

339

Result Set

Error Conditions

psp_help_view

Returns the definition text of a view, from the current database or the specified database.

Syntax

call psp_help_view(['database_qualifier'], 'view_name')

Arguments

Database_Qua
lifier

UDF_TEXT

wsrde CREATE FUNCTION GetSmallest(:A integer, :B Integer)
RETURNS Integer
AS
BEGIN

DECLARE :smallest INTEGER
IF (:A < :B) THEN

SET :smallest = :A;
ELSE

SET :smallest = :B;
END IF;
RETURN :smallest;

END

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database name cannot be
a blank string

udf_name is null No argument or default value supplied.

udf_name is a blank string User-defined function name cannot be a blank string.

Parameter Type Default
Value

Description

Database_qual VARCHAR(20) Current
database

Name of the database from which the details are
to be obtained

view_name VARCHAR(255) (no default
value)

Name of the view whose definition text is
required. Pattern matching is supported.

340

Returned Result Set

Example

Assume that the following view exists for the Demodata sample database:

CREATE VIEW vw_Person (lastn,firstn,phone) AS
SELECT Last_Name, First_Name, Phone
FROM Person;

The following statement returns the definition text for view "vw_Person" in the Demodata
database.

call psp_help_view(,'vw_Person')

or

call psp_help_view(,'vw_%')

Result Set

Error Conditions

psp_indexes

Returns the list of indexes defined for the specified table. For each index, it also lists the index
properties as persisted in the X$Index table.

Column Name Data Type Description

DATABASE_QUALIFIER VARCHAR (20) Name of the database

VIEW_TEXT LONGVARCHAR View definition text.

Database_Qualifier VIEW_TEXT

Demodata SELECT "T1" ."Last_Name" ,"T1" ."First_Name" ,"T1" ."Phone" FROM "Person" "T1"

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database name cannot be
a blank string.

view_name is null No argument or default value supplied.

view_name is a blank string View name cannot be a blank string.

341

Syntax

call psp_indexes(['table_qualifier'], ['table_name'])

Arguments

Returned Result Set

Parameter Type Default
Value

Description

table_qualifier VARCHAR(20) Current
database

Name of the database from which the details are
to be obtained

table_name VARCHAR(255) (no default
value)

Name of the table for whose indexes are to be
obtained. Pattern matching is supported.

Column Name Data Type Description

TABLE_QUALIFIER VARCHAR (20) Name of the database

TABLE_OWNER VARCHAR (20) Name of the owner of the primary key table

TABLE_NAME VARCHAR(255) Name of the primary key table

INDEX_NAME VARCHAR(255) Name of the index

INDEX_TYPE VARCHAR (20) Type of the Index: primary, foreign, or
normal

COLUMN_NAME VARCHAR(255) Name of the column on which index is
defined

ORDINAL_POSITION USMALLINT Ordinal position of the index

DUPLICATES_ALLOWED CHAR(3) Yes, if it is a duplicate index

No, if it is not a duplicate index

UPDATABLE CHAR(3) Yes, if the index is updatable

No, if the index is not updatable

CASE_SENSITIVE CHAR(3) Yes, if the index is case-sensitive

No, if the index is not case-sensitive

ASC_DESC CHAR(1) D, Descending

A, Ascending

342

Example

call psp_indexes(,)

Result Set

============

call psp_indexes('demodata', 'Dep%')

Result Set

NAMED_INDEX CHAR(3) Yes, if it is a named index

No, if it is not a named index

Qual TO TN IN IT CN Opos Dup Up Case A/D NI

Demo
data

Null Billing Student_
Trans

Normal
Index

Student_ ID 0 No Yes No A Yes

Demo
data

Null Billing Student_
Trans

Normal
Index

Transaction_
Number

1 No Yes No A Yes

Demo
data

Null Billing Student_
Trans

Normal
Index

Log 2 No Yes No A Yes

.....

Legend: Qual = Table_qualifier; TO = Table_owner; TN = Table_name; IN = Index_name; IT = Index_type; CN
= Column_name; Opos = Ordinal_position; Dup = Duplicates_allowed; UP = Updatable; Case = Case_sensitive;
A/D = Asc_desc; NI = Named_index

Qual TO TN IN IT CN Opos Dup Up Case A/D NI

Demo
data

Null Dept Building_
Room

Normal
Index

Building
_Name

0 Yes Yes Yes A Yes

Demo
data

Null Dept Building_
Room

Normal
Index

Room_
Number

1 Yes Yes No A Yes

Demo
data

Null Dept Dept_Head Normal
Index

Head_
Of_Dept

0 No Yes No A Yes

Demo
data

Null Dept Dept_Name Normal
Index

Name 0 No Yes Yes A Yes

Column Name Data Type Description

343

Error Conditions

psp_pkeys

Returns the primary key information for the specified table, from the current database or the
database specified.

Syntax

call psp_pkeys(['pkey_table_qualifier']'table_name')

Arguments

Legend: Qual = Table_qualifier; TO = Table_owner; TN = Table_name; IN = Index_name; IT = Index_type; CN
= Column_name; Opos = Ordinal_position; Dup = Duplicates_allowed; UP = Updatable; Case = Case_sensitive;
A/D = Asc_desc; NI = Named_index

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database name cannot be a
blank string.

table_name is a blank string View name cannot be a blank string.

Parameter Type Default
Value

Description

pkey_table_qualifier VARCHAR(20) Current
database

Name of the database from which the
details are to be obtained

table_name VARCHAR(255) (no default
value)

Name of the table whose primary key
information is requested. Pattern matching
is supported

Qual TO TN IN IT CN Opos Dup Up Case A/D NI

344

Returned Result Set

Example

The following statement returns the information about the primary key defined on the 'pkeytest1'
table:

CREATE TABLE pkeytest1
(
col1 int NOT NULL,
col2 int NOT NULL,
col3 VARCHAR(20) NOT NULL,
PRIMARY KEY(col1, col2),
UNIQUE(col3)
);

call psp_pkeys(,'pkeytest1');

Result Set

Column Name Data Type Description

TABLE_QUALIFIER VARCHAR (20) Name of the database

TABLE_OWNER VARCHAR (20) Name of the owner of the primary key table

TABLE_NAME VARCHAR(255) Name of the primary key table

COLUMN_NAME VARCHAR(255) Name of the primary key column

COLUMN_SEQ USMALLINT Sequence of the columns (a segmented index)

PK_NAME VARCHAR(255) Name of the primary key

Table_
qualifier

Table_
owner

Table_
name

Column_
name

Column_
Seq

PK_
name

'demodata' Null Pkeytest1 Col1 0 PK_col1

'demodata' Null Pkeytest1 Col2 1 PK_col1

345

Error Conditions

psp_procedure_rights

Returns the list of procedure rights and corresponding information for the specified stored
procedure, from the current database or the specified database. The stored procedure can be a
trusted or a non-trusted one. See Trusted and Non-Trusted Objects.

Syntax

call psp_procedure_rights(['database_qualifier'], ['procedure_name'], ['user_name'])

Arguments

Returned Result Set

Condition Error Message

pkey_table_qualifier is a blank string Please enter a valid database name. Database name cannot be
a blank string.

table_name is null No argument or default value supplied.

table_name is a blank string Table name cannot be a blank string.

Parameter Type Default
Value

Description

database_qualifier VARCHAR(20) Current
database

Name of the database from which the
details are to be obtained

procedure_name VARCHAR(255) (no default
value)

Name of the procedure for which rights are
specified. Pattern matching is supported.

user_name VARCHAR(255) Current user Name of the user for whom the list of
procedure rights needs to be obtained.
Pattern matching is supported.

Column Name Data Type Description

PROCEDURE_QUALIFIER VARCHAR (20) Name of the database

PROCEDURE_OWNER VARCHAR (20) Name of the owner of the procedure

USER_NAME (GRANTEE) VARCHAR(255) Name of the user

346

Example

Assume that the following permissions exist for the Demodata sample database:

GRANT EXECUTE ON PROCEDURE Dept1_Proc TO John;
GRANT ALTER ON PROCEDURE Dept1_Proc TO Mary;
GRANT ALTER ON PROCEDURE Dept1_Proc TO John;
GRANT EXECUTE ON PROCEDURE Proc2 TO Mary;
GRANT ALTER ON PROCEDURE Proc2 TO Mary;
GRANT ALTER ON PROCEDURE MyProc TO Mary;

The following statement prints the permissions on the "Dept1_Proc" stored procedure for user
"John."

call psp_procedure_rights(,'Dept1_Proc', 'John');

Result Set

The following statement prints the permissions on the "Proc2" stored procedure for user "Mary."

call psp_procedure_rights('demodata', '%Pr%', 'M%')

PROCEDURE_NAME VARCHAR(255) Name of the procedure

RIGHTS VARCHAR(12) One of the following values:

ALTER
EXECUTE

Note that RIGHTS pertains only to
procedures in a database that uses V2
metadata.

Procedure_Qualifier Procedure_owner User_name Procedure_name Rights

Demodata Null John Dept1_Proc ALTER

Demodata Null John Dept1_Proc EXECUTE

Column Name Data Type Description

347

Result Set

Error Conditions

psp_rename

Changes the name of a COLUMN, INDEX, FUNCTION, PROCEDURE, TABLE, TRIGGER or
VIEW in the database to which your machine is currently connected.

Syntax

call psp_rename('object_name','new_name','object_type')

Procedure_Qualifier Procedure_owner User_name Procedure_name Rights

Demodata Null Mary MyProc ALTER

Demodata Null Mary Proc2 ALTER

Demodata Null Mary Proc2 EXECUTE

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database name
cannot be a blank string.

procedure_name is a blank string Procedure name cannot be a blank string.

user_name is a blank string User name cannot be a blank string.

psp_procedure_rights called for a database
with V1 metadata

View and Stored Procedure permissions are not supported
for metadata version 1.

348

Arguments

Example

The following statement renames stored procedure "checkstatus" to "eligibility" in the current
database.

call psp_rename('checkstatus', 'eligibility', 'PROCEDURE')

Error Conditions

All errors returned from psp_rename use status code -5099. See -5099: Error condition pertaining
to a stored procedure in Status Codes and Messages.

psp_stored_procedures

Returns the list of stored procedures and their corresponding information from the current
database or the specified database.

Parameter Type Description

object_name VARCHAR(776) The current name of the column, index, user-defined function,
stored procedure, table, trigger or view.

Object_name must be specified in a particular format
depending on the type of object:

• Column: table_name.column_name.

• Index: table_name.index_name.

• Function: function_name

• Procedure: procedure_name

• Table: table_name

• Trigger: table_name.trigger_name

• View: view_name

new_name VARCHAR(776) A user-defined name for the object. The name must conform
to the naming conventions for the type of object. See Naming
Conventions in Zen Programmer’s Guide.

object_type VARCHAR(13) The type of object being renamed. Object_type must be one of
the following: COLUMN, INDEX, FUNCTION,
PROCEDURE, TABLE, TRIGGER or VIEW.

349

Syntax

call psp_stored_procedures(['database_qualifier'], ['procedure_name'], ['procedure_type'])

Arguments

Note: System stored procedures are defined in the internal PERVASIVESYSDB database, which
does not display in Zen Control Center.

Returned Result Set

Parameter Type Default
Value

Description

Database_qualifier VARCHAR(20) Current
database

Name of the database from which the
details are to be obtained

procedure_name VARCHAR(255) (no default
value)

Name of the stored procedure whose
information is required. Pattern
matching is supported.

procedure_type VARCHAR(5) (no default
value)

'SP' returns the stored procedures

'SSP' returns the system stored
procedures (this type is currently not
supported)

Column Name Data Type Description

PROCEDURE_QUALIFIER VARCHAR (20) Name of the database

PROCEDURE _OWNER VARCHAR (20) Name of the owner of the procedure

PROCEDURE _NAME VARCHAR(255) Name of the procedure

PROCEDURE_TYPE VARCHAR(25) Type of procedure. The types are STORED
PROCEDURE or SYSTEM STORED
PROCEDURE.

NUM_INPUT_PARAMS INT Returns null, because SQLPROCEDURES returns
null when executed against Zen DSN

NUM_OUTPUT_PARAMS INT Returns null, because SQLPROCEDURES returns
null when executed against Zen DSN

NUM_RESULT_SETS INT Returns null, since SQLPROCEDURES returns
null when executed against Zen DSN

REMARKS VARCHAR(255) Remarks

350

Example

Assume that the current database mydbase contains two stored procedures: myproc1 and
myproc2. The following statement lists the information about them.

Call psp_stored_procedures(, ,)

Result Set

============

The following statement lists the information about the stored procedures in the
PERVASIVESYSDB internal database.

call psp_stored_procedures('PERVASIVESYSDB', 'psp_u%', 'SP')

Result Set

TRUSTEE INTEGER For V2 metadata, returns 0 for a trusted stored
procedure and -1 for a nontrusted stored
procedure. The TRUSTEE column is empty for
V1 metadata.

Qualifier1 Owner1 Name1 Type1 Num_
input

_params

Num_
output_
params

Num_
result_

sets

Remarks Trustee

mydbase Null Myproc1 Stored
Procedure

Null Null Null Null

mydbase Null Myproc2 Stored
Procedure

Null Null Null Null

1The complete column name includes "procedure_" prepended to this name: Procedure_qualifier,
procedure_owner, and so forth.

Qualifier Owner Name Type Num_
input_
params

Num_
output_
params

Num_
result_

sets

Remarks Trustee

pervasivesystdb Null psp_udfs Stored
Procedure

Null Null Null Null

pervasivesystdb Null psp_users Stored
Procedure

Null Null Null Null

Column Name Data Type Description

351

Error Conditions

psp_tables

Returns a list of tables along with their corresponding information, from the current database or
the specified database.

Syntax

call psp_tables(['database_qualifier'], ['table_name'], ['table_type'])

Arguments

Note: For qualifier, owner, name, and type, the complete column name includes "procedure_" prepended to this name:
Procedure_qualifier, procedure_owner, and so forth.

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database name cannot be a
blank string

table_name is a blank string Table name cannot be a blank string.

procedure_type is a blank string Procedure type cannot be a blank string.

procedure_type is a value other than
SP, SSP, or null

Procedure type can be SP, SSP, or null.

Parameter Type Default
Value

Description

Database_qualifier VARCHAR(20) Current
database

Name of the database from which the
details are to be obtained

table_name VARCHAR(255) (no default
value)

Name of the table whose information
needs to be obtained. Pattern matching is
supported.

Qualifier Owner Name Type Num_
input_
params

Num_
output_
params

Num_
result_

sets

Remarks Trustee

352

Returned Result Set

Example

call psp_tables(,,)

Result Set

table_type VARCHAR(20) (no default
value)

Must be one of the following:

'User table' returns only the user tables

'System table' returns all the system
tables

NULL returns all tables

Column Name Data Type Description

TABLE_QUALIFIER VARCHAR (20) Name of the database

TABLE_OWNER VARCHAR (20) Name of the table owner

TABLE_NAME VARCHAR(255) Name of the table

TABLE_TYPE VARCHAR (15) System table - if the table is a system table

User table - if the table has been created by any
user

REMARKS VARCHAR(255) Remarks

FILE_LOCATION VARCHAR(255) Location where the file is saved

Table_
Qualifier

Table_
owner

Table_
name

Table_
Type

Remarks File_
location

Demodata Null X$file System table Null File.ddf

Demodata Null X$field System table Null Field.ddf

Demodata Null X$Attrib System table Null Attrib.ddf

Demodata Null Billing User table Null Billing.mkd

.....

Parameter Type Default
Value

Description

353

============

call psp_tables(, , 'user table')

Result Set

============

call psp_tables(, , 'system table')

Result Set

Error Conditions

Table_
Qualifier

Table_
owner

Table_
name

Table_
Type

Remarks File_
location

Demodata Null Class User table Null class.mkd

Demodata Null Billing User table Null Billing.mkd

.....

Table_
Qualifier

Table_
owner

Table_
name

Table_
Type

Remarks File_
location

Demodata Null X$file System table Null File.ddf

Demodata Null X$field System table Null Field.ddf

Demodata Null X$Attrib System table Null Attrib.ddf

.....

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database
name cannot be a blank string.

table_name is a blank string Table name cannot be a blank string.

table_type is a blank string Table type cannot be a blank string.

table_type is something other than 'system table,' 'user
table,' or null

Table type can be system table, user table or
null.

354

psp_table_rights

Returns the list of table rights and corresponding information for the specified table, from the
current database or the specified database.

Syntax

call psp_table_rights(['database_qualifier'], ['table_name'], ['user_name'])

Arguments

Returned Result Set

Parameter Type Default
Value

Description

Database_qualifier VARCHAR(20) Current
database

Name of the database from which the
details are to be obtained

table_name VARCHAR(255) All tables Name of the table for which rights have are
specified. Pattern matching is supported.

user_name VARCHAR(255) Current user Name of the user for whom the list of table
rights needs to be obtained. Pattern
matching is supported.

Column Name Data Type Description

TABLE_QUALIFIER VARCHAR (20) Name of the database

TABLE_OWNER VARCHAR (20) Name of the owner of the table

USER_NAME (GRANTEE) VARCHAR(255) Name of the user

TABLE_NAME VARCHAR(255) Name of the table

RIGHTS VARCHAR(12) One of the following values:

SELECT
ALTER
DELETE
INSERT
REFERENCES
SELECT
UPDATE

355

Example

Assume that the following permissions exist for the Demodata sample database.

GRANT SELECT ON Dept TO John;
GRANT ALTER ON Dept TO John;
GRANT DELETE ON Dept TO John;
GRANT SELECT ON Class TO Mary;
GRANT ALTER ON Class TO Mary;

The following statement prints the table permissions on the "Dept" table for user "John" in the
current database (Demodata).

call psp_table_rights(,'Dept', 'John');

Result Set

============

Assume that user "Mary" is logged on the database. The following statement prints the table
permissions on the "Class" table in the Demodata database for the current user (Mary).

call psp_table_rights('demodata', 'cl%',)

Result Set

Table_Qualifier Table_owner User_name Table_name Rights

Demodata Null John Dept ALTER

Demodata Null John Dept DELETE

Demodata Null John Dept SELECT

Table_Qualifier Table_owner User_name Table_name Rights

Demodata Null Mary Class SELECT

Demodata Null Mary Class ALTER

356

Error Conditions

psp_triggers

Returns the list of triggers and their corresponding information from the current database or the
specified database.

Syntax

call psp_triggers(['database_qualifier'], ['table_name'])

Arguments

Returned Result Set

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database name cannot be
a blank string.

table_name is a blank string Table name cannot be a blank string.

user_name is a blank string User name cannot be a blank string.

Parameter Type Default
Value

Description

Database_qualifier VARCHAR(20) Current
database

Name of the database from which the details
are to be obtained

table_name VARCHAR(255) All tables Name of the table for which the trigger is
defined. Pattern matching is supported.

Column Name Data Type Description

TRIGGER_QUALIFIER VARCHAR (20) Name of the database

TRIGGER_OWNER VARCHAR (20) Name of the owner of the Trigger

TABLE_NAME VARCHAR(255) Name of the table for which the trigger is defined.

TRIGGER_NAME VARCHAR(255) Name of the trigger

ISUPDATE UTINYINT Is set if it is an update trigger

ISDELETE UTINYINT Is set if it is an delete trigger

357

Example

Assume that the current database is mydbase. The following statement returns the list of triggers
defined in the database:

CREATE TABLE A
(

col1 INTEGER,
col2 CHAR(255)

) ;

CREATE TABLE B
(

col1 INTEGER,
col2 CHAR(255)

) ;

CREATE TRIGGER Insert
AFTER INSERT ON A

FOR EACH ROW
INSERT INTO B VALUES
(NEW.col1, NEW.col2);

call psp_triggers(,);

Result Set

ISINSERT UTINYINT Is set if it an insert trigger

ISAFTER UTINYINT Is set if the trigger action time is "after"

ISBEFORE UTINYINT Is set if the trigger action time is "before"

REMARKS VARCHAR(255) Remarks

Trigger_
qualifier

Trigger_
owner

Table_
name

Trigger_
name

isupdate isdelete isinsert isafter isbefore Remarks

mydbase Null A Insert 0 0 1 0 0 Null

Column Name Data Type Description

358

Error Conditions

psp_udfs

Returns the list of user-defined functions (UDF) and their corresponding information from the
current database or the specified database.

Syntax

call psp_udfs(['database_qualifier'], ['udf_name'])

Arguments

Returned Result Set

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database name cannot be
a blank string.

table_name is a blank string Table name cannot be a blank string.

Parameter Type Default Value Description

Database_qualifier VARCHAR(20) Current database Name of the database from which the
details are to be obtained

udf_name VARCHAR(255) All user-defined
functions

Name of the udf whose details are
needed. Pattern matching is supported.

Column Name Data Type Description

UDF_QUALIFIER VARCHAR (20) Name of the database

UDF_OWNER VARCHAR (20) Name of the owner of the UDF

UDF _NAME VARCHAR(255) Name of the UDF

UDF_TYPE VARCHAR(25) Type of UDF (always set to 1)

Special UDF types are not currently supported.

NUM_INPUT_PARAMS INT Returns null, because SQLPROCEDURES returns
null when executed against Zen DSN.

NUM_OUTPUT_PARAMS INT Returns 1, because UDFs return only scalar values

359

Example

Assume that the current database mydbase has two user-defined functions: calcinterest and
factorial.

call psp_udfs(,)

Result Set

Error Conditions

psp_users

Returns the list of users and the corresponding information from the current database or the
specified database.

Syntax

call psp_users(['database_qualifier'], ['group_name'], ['user_name'])

NUM_RESULT_SETS INT Returns 0, because UDFs do not return resultsets

REMARKS VARCHAR(255) Remarks

UDF_
qualifier

UDF_
owner

UDF_
name

Udf_
type

Num_
input_
params

Num_
output_
params

Num_
result_

sets

Remarks

mydbase Null CalcInterest 1 Null 1 0 Null

mydbase Null Factorial 1 Null 1 0 Null

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database name cannot be
a blank string.

udf_name is a blank string User-defined function name cannot be a blank string.

Column Name Data Type Description

360

Arguments

Returned Result Set

Example

Assume that current database mydbase has users John, Mary, and Michael, and groups DevGrp
and DevGrp1.

call psp_users(, ,)

Result Set

Parameter Type Default Value Description

database_qualifier VARCHAR(20) Current database Name of the database from which the
details are to be obtained

group_name VARCHAR(255) All groups (if
group_name is null)

Name of the group used to return the
user information. Pattern matching is
supported. If group name is specified
(i.e. if it is not NULL), only users
belonging to the same group will be
returned.

user_name VARCHAR(255) All users (if
user_name is null)

Name of the user. Pattern matching is
supported.

Column Name Data Type Description

DATABASE_QUALIFIER VARCHAR(20) Name of the database

GROUP_ID USMALLINT Group ID of the group to which user belongs

GROUP_NAME VARCHAR(255) Name of the group to which user belongs

USER_ID USMALLINT ID of the user

USER_NAME VARCHAR(255) Name of the user

Database_qualifier Group_Id Group_Name User_Id User_Name

Demodata 1 DevGrp 3 John

Demodata 2 DevGrp1 1 Mary

Demodata 1 DevGrp 4 Michael

361

============

call psp_users(, 'Devgrp',)

Result Set

Error Conditions

psp_view_rights

Returns the list of list of view rights and corresponding information for the specified view, from
the current database or the specified database. The view can be a trusted or a non-trusted one. See
Trusted and Non-Trusted Objects.

Psp_view_rights applies only to a database using V2 metadata.

Syntax

call psp_view_rights(['database_qualifier'], ['view_name'], ['user_name'])

Arguments

Database_qualifier Group_Id Group_Name User_Id User_Name

Demodata 1 DevGrp 3 John

Demodata 2 DevGrp 4 Michael

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database name cannot be
a blank string.

user_name is null User name cannot be a null.

group_name is a blank string Group name cannot be a blank string.

Parameter Type Default Value Description

database_qualifier VARCHAR(20) Current
database

Name of the database from which the
details are to be obtained

view_name VARCHAR(255) All views (if
view_name is
null)

Name of the view for which rights are
specified. Pattern matching is supported.

362

Returned Result Set

Example

Assume that the following permissions exist for the Demodata sample database:

GRANT SELECT ON VIEW vw_Dept TO John;
GRANT ALTER ON VIEW vw_Dept TO John;
GRANT DELETE ON VIEW vw_Dept TO John;
GRANT SELECT ON VIEW vw_Class TO Mary;
GRANT ALTER ON VIEW vw_Class TO Mary;
GRANT SELECT ON VIEW vw_Class TO Prakesh;

The following statement prints the view permissions on the "vw_Dept" view for user "John."

call psp_view_rights(,'vw_Dept', 'John');

Result Set

user_name VARCHAR(255) Current user
(if user_name
is null)

Name of the user for whom the list of view
rights needs to be obtained. Pattern
matching is supported.

Column Name Data Type Description

VIEW_QUALIFIER VARCHAR (20) Name of the database

VIEW_OWNER VARCHAR (20) Name of the owner of the view

USER_NAME (GRANTEE) VARCHAR(255) Name of the user

VIEW_NAME VARCHAR(255) Name of the view

RIGHTS VARCHAR(12) One of the following values:

ALTER
DELETE
INSERT
SELECT
UPDATE

View_Qualifier View_owner User_name View_name Rights

Demodata Null John vw_Dept ALTER

Demodata Null John vw_Dept DELETE

Demodata Null John vw_Dept SELECT

Parameter Type Default Value Description

363

============

Assume that user "Mary" is logged on the database. The following statement prints the view
permissions on all views in the sample database Demodata for the current user (Mary).

call psp_view_rights('demodata', ,)

Result Set

============

The following statement prints the view permissions on the "vw_Class" view for user "Mary."

call psp_view_rights('demodata', 'vw_C%', 'Mary')

Result Set

Error Conditions

View_Qualifier View_owner User_name View_name Rights

Demodata Null Mary vw_Class ALTER

Demodata Null Mary vw_Class SELECT

View_Qualifier View_owner User_name View_name Rights

Demodata Null Mary vw_Class ALTER

Demodata Null Mary vw_Class SELECT

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database
name cannot be a blank string

view_name is a blank string View name cannot be a blank string.

user_name is a blank string User name cannot be a blank string.

psp_procedure_rights called for a database with V1
metadata

View and stored procedure permissions are not
supported for V1 metadata.

364

psp_views

Returns the list of views along with their corresponding information, from the current database or
from the database specified.

Syntax

call psp_views(['database_qualifier'], ['view_name'])

Arguments

Returned Result Set

Example

Assume that the following view exists for a V2 metadata database named Demodata2.

CREATE VIEW vw_Person (lastn,firstn,phone) WITH EXECUTE AS 'Master' AS
SELECT Last_Name, First_Name,Phone FROM Person;

The following statement prints the list of views in the current database, which is Demodata2.

call psp_views(, ,);

Parameter Type Default
Value

Description

Database_qualifier VARCHAR(20) Current
database

Name of the database from which the
details are to be obtained

view_name VARCHAR(255) (no default
value)

Name of the view whose information is
required. Pattern matching is supported.

Column Name Data Type Description

VIEW_QUALIFIER VARCHAR (20) Name of the database

VIEW_OWNER VARCHAR (20) Name of the owner of the view

VIEW_NAME VARCHAR(255) Name of the view

REMARKS VARCHAR(255) Remarks

TRUSTEE INTEGER For V2 metadata, returns 0 for a trusted view and -1 for
a non-trusted view. The TRUSTEE column is empty for
V1 metadata.

365

Result Set

============

The following statement prints the view information for the "vw_Person" view in the Demodata
database.

call psp_views('demodata', 'vw_P%')

Result Set

Error Conditions

View_Qualifier View_Owner View_Name Remarks Trustee

Demodata Null Vw_Person Null 0

View_Qualifier View_Owner View_Name Remarks Trustee

Demodata Null Vw_Person Null

Condition Error Message

database_qualifier is a blank string Please enter a valid database name. Database name cannot be
a blank string

view_name is a blank string Table name cannot be a blank string.

366

367

Performance Optimization Reference

The Zen database engine uses a number of optimizations. The following topics discuss how to
take advantage of these in SQL statements. This technical material is meant for expert SQL users.
For definitions of the terms used, see Terminology.

• Restriction Analysis

• Restriction Optimization

• Push-Down Filters

• Efficient Use of Indexes

• Temporary Table Performance

• Row Prefetch

• Terminology

You will find more information about improving database performance under Performance in
Advanced Operations Guide.

368

Restriction Analysis
This topic explains one method that the database engine uses to analyze and optimize on a
Restriction. For definitions of the technical terms used, see Terminology.

Modified CNF Conversion

During SQL statement execution, the database engine attempts to convert the restriction into
Modified Conjunctive Normal Form (Modified CNF). Conversion to modified CNF is a method
for placing Boolean expressions in a uniform structure to facilitate restriction analysis for possible
query processing optimizations. If the restriction can be converted to modified CNF, the database
engine can methodically and thoroughly analyze the query for possible optimizations that make
efficient use of available Indexes. If the database engine is unable to convert the restriction to
modified CNF, it still analyzes the restriction for possible optimizations. In this case, however, the
database engine is often unable to make use of the available indexes as effectively as it would for
restrictions that either are already in modified CNF or can be converted internally to modified
CNF.

Restrictions that Cannot be Converted

The database engine is unable to convert some restrictions into modified CNF depending on the
contents of the restriction. A restriction is not converted to modified CNF if any of the following
conditions is true:

• The restriction contains a subquery.

• The restriction contains a NOT operator.

• The restriction contains a dynamic parameter (a dynamic parameter is a question mark ("?") in
the SQL statement, which will be prompted for when the statement is executed).

Conditions Under Which Conversion is Avoided

There are some cases in which the database engine may be capable of converting a restriction into
modified CNF but will not do so. The database engine chooses not to convert a restriction to
modified CNF in cases where it has determined that the restriction is more likely to benefit from
optimizations that can be applied to its original form than from optimizations that could be
applied after modified CNF conversion.

A restriction is not converted to modified CNF if either of the following conditions is true:

369

• The restriction is in Disjunctive Normal Form (DNF) and all Predicates involve only the equal
(=), LIKE or IN comparison operators.

For example, the database engine does not convert the following restriction to modified CNF:

(c1 = 1 AND c2 = 1) OR (c1 = 1 AND c2 = 2) OR (c1 = 2)

• The restriction meets all of the following conditions:

• It contains an expression in Disjunctive Normal Form (DNF) that is AND connected to the
rest of the restriction.

• The specified DNF expression contains only Predicates that involve the equal (=), LIKE
or IN comparison operator.

• The predicates in identical positions in each Conjunct in the DNF expression reference the
same column.

For example, a Restriction that contains the following Expression will not be converted to
modified CNF:

(c1 = 1 AND c2 = 1) OR (c1 = 1 AND c2 = 2)

370

Restriction Optimization
This topic provides a detailed description of the primary techniques employed by the database
engine to make use of expressions in a restriction for optimization purposes. The types of
optimizations performed by the database engine are described below in order from the simplest to
the most complex.

A clear understanding of optimization techniques used by the database engine may aid you in
structuring queries to achieve optimal performance from the database engine. In addition, by
understanding how the database engine uses indexes to optimize queries, you can determine how
to construct indexes that provide the best performance for a given set of typical uses.

For the sake of simplicity, the descriptions below initially address expressions that reference
columns from only a single table. Optimizations making use of join conditions, in which
predicates compare columns from two different tables, are described following the single table
optimizations.

For definitions of the technical terms used, see Terminology.

Single Predicate Optimization

The simplest form of Restriction optimization involves the use of a single Predicate. A predicate
can be used for optimization if it meets all of the following conditions:

• The predicate is joined to the rest of the restriction by the AND operator.

• One operand of the predicate consists of a column reference which is a leading segment of an
index and the other operand consists of an expression that does not contain a column reference
(that is, the other operand contains only a literal value or dynamic parameter).

• The comparison operator is one of: <, <=, =, >=, >, LIKE, or IN.

For example, suppose an index exists with the first segment on column c1. The following
predicates can be used for optimization:

c1 = 1
c1 IN (1,2)
c1 > 1

The LIKE operator is optimized only if the second operand starts with a character other than a
wildcard. For example, C2 LIKE 'ABC%' can be optimized, but C2 LIKE '%ABC' will not be.

371

Closed Range Optimization

A Closed Range can be used for optimization if it satisfies all the requirements for Single
Predicate Optimization.

For example, suppose an index exists with the first segment on column c1. The following closed
range can be used for optimization:

c1 >= 1 AND c1 < 10

Modified Disjunct Optimization

A Modified Disjunct can be used for optimization if it satisfies all of the following conditions:

• It is joined to the rest of the Restriction by the AND operator.

• Each Predicate and Closed Range in the disjunct satisfies the requirements for Single
Predicate Optimization and Closed Range Optimization.

• Each predicate or closed range references the same column as the others.

For example, suppose an index exists with the first segment on column c1. The following
modified disjunct can be used for optimization:

c1 = 1 OR (c1 > 5 AND c1 < 10) OR c1 > 20

The following modified disjunct cannot be used for this type of optimization because the same
column is not referenced in all predicates and closed ranges:

c1 = 1 OR (c1 > 5 AND c1 < 10) OR c2 = 1

Conjunct Optimization

A Conjunct can be used for optimization if it satisfies all of the following conditions:

• It is joined to the rest of the restriction by the AND operator.

• Each Predicate in the conjunct satisfies the requirements for Single Predicate Optimization.

• Each predicate optimizes on the leading segments of an index with only one predicate for each
leading segment (that is, there are not two different predicates that use the same set of leading
segments).

• All predicates, except for the predicate referencing the last segment used for optimization, use
the equal (=) comparison operator.

For example, suppose an index exists with the first three segments on columns c1, c2 and c3, in
that order. The following conjunct assignments can be used for optimization:

372

c1 = 1 AND c2 = 1 AND c3 = 1
c1 = 1 AND c2 = 1 AND c3 >= 1
c1 = 1 AND c2 > 1

The order of the predicates does not matter. For example, the following conjunct can be used for
optimization:

c2 = 1 AND c3 = 1 AND c1 = 1

The following conjunct cannot be used for optimization because the second segment of the index
is skipped (there is no reference to column c2):

c1 = 1 AND c3 = 1

In this case, the single predicate, c1 = 1, can still be used for optimization.

Disjunctive Normal Form Optimization

An expression in Disjunctive Normal Form (DNF) can be used for optimization if it satisfies all of
the following conditions:

• It is joined to the rest of the restriction by the AND operator.

• Each conjunct in the expression satisfies the requirements for Conjunct Optimization with the
additional limitation that all the predicates must contain the equal (=) comparison operator.

• All the conjuncts must use the same index and the same number of segments for optimization.

The database engine does not convert restrictions that are originally in DNF into modified CNF,
because it can optimize on DNF.

For example, suppose an index exists with the first three segments on columns c1, c2 and c3, in
that order. The following expression in DNF can be used for optimization:

(c1 = 1 AND c2 = 1 AND c3 = 1) OR (c1 = 1 AND c2 = 1 AND c3 = 2) OR (c1 = 2 AND c2 = 2 AND c3 = 2)

The following expression in DNF cannot be used for optimization because both conjuncts do not
reference the same number of segments:

(c1 = 1 AND c2 = 1 AND c3 = 1) OR (c1 = 1 AND c2 = 2)

Modified Conjunctive Normal Form Optimization

An expression in Modified Conjunctive Normal Form (Modified CNF) can be used for
optimization if it satisfies all of the following conditions:

• It is joined to the rest of the restriction by the AND operator.

373

• Each Modified Disjunct satisfies the requirements for Modified Disjunct Optimization except
that each modified disjunct must reference a different index segment which together make up
the Leading Segments (that is, taking all the disjuncts together, no segments can be skipped).

• All the modified disjuncts except for the one that references the last segment must contain at
least one predicate that contains the equals (=) comparison operator.

Modified CNF optimization is similar to DNF optimization but allows combinations of predicates
involving different comparison operations not supported by DNF optimization.

For example, suppose an index exists with the first three segments on columns c1, c2 and c3, in
that order. The following expression in modified CNF can be used for optimization:

(c1 = 1 OR c1 = 2) AND (c2 = 1 OR (c2 > 2 AND c2 < 5)) AND (c3 > 1)

It may be easier to understand how the database engine uses this expression for optimization by
looking at the equivalent expression in modified DNF:

(c1 = 1 AND c2 = 1 AND c3 > 1) OR (c1 = 1 AND (c2 > 2 AND c2 < 5) AND c3 > 1) OR (c1 = 2 AND c2 = 1
AND c3 > 1) OR (c1 = 2 AND (c2 > 2 AND c2 < 5) AND c3 > 1)

Closing Open-Ended Ranges through Modified CNF Optimization

Two Modified Disjuncts can be combined to form one or more Closed Ranges if the following
conditions are satisfied:

• Both modified disjuncts satisfy the requirements for Modified Disjunct Optimization.

• Both modified disjuncts use the same segment in the same index.

• Both modified disjuncts contain open-ended ranges that can be combined to form one or more
closed ranges.

For example, suppose an index exists with the first segment on column c1. The following
expression in modified CNF can be used for optimization:

(c1 = 1 OR c1 > 2) AND (c1 < 5 OR c1 = 10)

It may be easier to understand how the database engine uses this expression for optimization by
looking at an equivalent expression which is simply a modified disjunct:

c1 = 1 OR (c1 > 2 AND c1 < 5) OR c1 = 10

Single Join Condition Optimization

The simplest form of optimization involving two tables makes use of a single Join Condition.
Single join condition optimization is similar to Single Predicate Optimization. A join condition

374

can be used for optimization if it satisfies the requirements for single predicate optimization. The
table that will be optimized through the use of the join condition will be processed after the other
table referenced in the join condition. The table optimized through the use of the join condition
uses an optimization value retrieved from a row in the other table referenced in the join condition.

For example, suppose an index exists on table t1 with the first segment on column c1. The
following join conditions can be used for optimization:

t1.c1 = t2.c2
t1.c1 > t2.c2

During optimization, a row is retrieved from table t2. From this row, the value of column c2 is
used to optimize on table t1 according to the join condition.

If, instead of an index on t1.c1, there is an index on t2.c2, then t1.c1=t2.c2 could be used to
optimize on table t2. In this case, table t1 would be processed first and the value for t1.c1 would
be used to optimize on table t2 according to the join condition.

In the case that there is an index on t1.c1 as well as an index on t2.c2, the database engine query
optimizer examines the size of both tables as well as the characteristics of the two indexes and
chooses the table to optimize that will provide the best overall query performance.

Conjunct with Join Conditions Optimization

A Conjunct that consists of a mixture of join conditions and other Predicates can be used for
optimization if it satisfies all of the following conditions:

• All the join conditions compare columns from the same two tables.

• The conjunct satisfies the requirements for regular Conjunct Optimization for one of the two
tables.

The table that will be optimized through the use of the conjunct will be processed after the other
table referenced.

For example, suppose an index exists on table t1 with the first three segments on columns c1, c2
and c3, in that order. The following conjuncts can be used for optimization:

t1.c1 = t2.c1 AND t1.c2 = t2.c2 AND t1.c3 = t2.c3
t1.c1 = t2.c1 AND t1.c2 > t2.c2
t1.c1 = t2.c1 AND t1.c2 = 1
t1.c1 = 1 AND t1.c2 = t2.c2

375

Modified Conjunctive Normal Form with Join Conditions
Optimization

An Expression in Modified Conjunctive Normal Form (Modified CNF) that contains join
conditions can be used for optimization if it satisfies all the following conditions:

• It satisfies the conditions for Modified Conjunctive Normal Form Optimization.

• In addition, all disjuncts but the disjunct optimizing on the last portion of the leading segment
being used must contain only a single join condition or a single predicate and at least one of
these is a single join condition.

For example, suppose an index exists on table t1 with the first three segments on columns c1, c2
and c3, in that order. The following expressions in modified CNF can be used for optimization:
(t1.c1 = t2.c1) AND (t1.c2 = t2.c2 OR
(t1.c2 > 2 AND t1.c2 < 5))

(t1.c1 = 1) AND (t1.c2 = t2.c2) AND
(t1.c3 > 2 AND t1.c3 < 5)

Closing Join Condition Open-Ended Ranges through Modified
CNF Optimization

This type of optimization is exactly like Closing Open-Ended Ranges through Modified CNF
Optimization except that the range being closed may be a Join Condition.

For example, suppose an index exists on table t1 with the first two segments on columns c1 and
c2, in that order. The following expressions in modified CNF can be used for optimization:

(t1.c1 > t2.c1) AND (t1.c1 < t2.c2 OR t1.c1 = 10)

(t1.c1 = t2.c1) AND (t1.c2 > t2.c2) AND (t1.c2 < 10 OR t1.c2 = 100)

Multi-Index Modified Disjunct Optimization

A Modified Disjunct can be used for optimization through the use of more than one index if it
satisfies all of the following conditions:

• Is joined to the rest of the restriction by the AND operator.

• Each Predicate and Closed Range in the disjunct satisfies the requirements for Single
Predicate Optimization or Closed Range Optimization, respectively.

• Each predicate or closed range references a column that is the first segment in an index. If all
predicates and closed ranges reference the same column, then this scenario is simply Modified
Disjunct Optimization, as described previously.

376

For example, suppose an index exists with the first segment on column c1 and another index
exists with the first segment on column c2. The following modified disjunct can be used for
optimization:

c1 = 1 OR (c1 > 5 AND c1 < 10) OR c2 = 1

377

Push-Down Filters
Push-down filters are strictly an internal optimization technique. By taking advantage of high
speed filtering capabilities, the database engine can efficiently identify certain rows to be rejected
from the result set depending on characteristics of the restriction. Because rows are rejected from
the result set before they are returned, the database engine has to analyze fewer rows and
completes the operation faster than it would without push-down filters.

The database engine can use an expression or combination of expressions as a push-down filter if
the following conditions are satisfied:

• A Predicate can be used in a push-down filter if it is joined to the rest of the Restriction by the
AND operator.

• A Predicate can be used in a push-down filter if one operand consists of a column reference
and the other operand consists of either a literal value or a dynamic parameter ("?"). Also, the
referenced column must not be of one of the following data types: bit, float, double, real,
longvarchar, longvarbinary, or binary.

• A Predicate can be used in a push-down filter if the comparison operator is one of the
following: <, <=, =, >=, >, or <>.

• A Disjunct can be used in a push-down filter if it is joined to the rest of the restriction by the
AND operator and all the predicates within the disjunct satisfy the requirements for a
predicate to be used in a push-down filter, except for the condition that the predicate must be
joined to the rest of the restriction by an AND operator. Only one disjunct may be included in
the push-down filter.

• A push-down filter may combine a single disjunct with other predicates that satisfy the
requirements for a predicate to be used in a push-down filter.

For definitions of the technical terms used, see Terminology.

378

Efficient Use of Indexes
Indexes can optimize on query characteristics other than the Restriction, such as a DISTINCT or
ORDER BY clause.

For definitions of the technical terms used, see Terminology.

DISTINCT in Aggregate Functions

An index can be used to reduce the number of rows retrieved for queries with a selection list that
consists of an Aggregate Function containing the DISTINCT keyword. To be eligible for this type
of optimization, the expression on which the DISTINCT keyword operates must consist of a
single column reference. Furthermore, the column must be the leading segment of an index.

For example, suppose an index exists on table t1 with the first segment on column c1. The index
can be used to avoid retrieving rows with duplicate values of column c1:

SELECT COUNT(DISTINCT c1) FROM t1 WHERE c2 = 1

DISTINCT Preceding Selection List

An index can be used to reduce the number of rows retrieved for some queries with the
DISTINCT keyword preceding the selection list. To be eligible for this type of optimization, the
selection list must consist only of column references (no complex expressions such as arithmetic
expressions or scalar functions), and the referenced columns must be the leading segments of a
single index.

For example, suppose an index exists on table t1 with the first three segments on columns c1, c2
and c3, in any order. The index can be used to avoid retrieving rows with duplicate values for the
selection list items:

SELECT DISTINCT c1, c2, c3 FROM t1 WHERE c2 = 1

Relaxed Index Segment Order Sensitivity

Whether an index can be used to optimize on an ORDER BY clause depends on the order in
which the columns appear as segments in the index. Specifically, to be eligible for this type of
optimization, the columns in the ORDER BY clause must make up the leading segments of an
index, and the columns must appear in the ORDER BY clause in the same order as they appear as
segments in the index.

379

In contrast, an index can be used to optimize on a DISTINCT preceding a selection list or on a
GROUP BY clause as long as the selection list or GROUP BY clause consists of columns that are
the leading segments of the index. This statement is true regardless of the order in which the
columns appear as segments in the index.

For example, suppose an index exists on table t1 with the first three segments on columns c1, c2
and c3, in any order. The index can be used to optimize on the DISTINCT in the following
queries:

SELECT DISTINCT c1, c2, c3 FROM t1
SELECT DISTINCT c2, c3, c1 FROM t1 WHERE c3 > 1

The index can be used to optimize on the GROUP BY in the following queries:

SELECT c1, c2, c3, count(*) FROM t1 GROUP BY c2, c1, c3
SELECT c2, c3, c1, count(*) FROM t1 GROUP BY c3, c2, c1

For the index to be used to optimize on the ORDER BY, however, the index segments must be in
the order of c2, c1, c3:

SELECT c1, c2, c3 FROM t1 ORDER BY c2, c1, c3

Relaxed Segment Ascending Attribute Sensitivity

Whether an index can be used to optimize on an ORDER BY clause depends on several
conditions.

Specifically, an index can be used for optimization of ORDER BY if all of the following
conditions are satisfied:

• The DESC keyword follows the column in the ORDER BY clause.

• The corresponding index segment is defined as descending.

• The specified column is not nullable.

In addition, an index can be used for optimization of ORDER BY if all of the following converse
conditions are satisfied (note that nullable columns are allowed for ascending ORDER BY):

• The ASC keyword or neither ASC nor DESC follows the column in the ORDER BY
statement.

• The corresponding index segment is defined as ascending.

As well, an index can be used for optimization of ORDER BY if the ascending/descending
attributes of all the involved segments are the exact opposite of each ASC or DESC keyword
specified in the ORDER BY. Again, the segments defined as descending can only be used if the
associated columns are not nullable.

380

Indexes can be used for any of the restriction optimizations, optimization on a DISTINCT, or
optimization on a GROUP BY clause, regardless of the ascending/descending attribute of any of
the segments.

For example, suppose an index exists on table t1 with the first two segments on columns c1 and
c2, in that order, and both segments are ascending. The index can be used to optimize on the
following queries:

SELECT c1, c2, c3 FROM t1 ORDER BY c1, c2
SELECT c1, c2, c3 FROM t1 ORDER BY c1 DESC, c2 DESC
SELECT DISTINCT c1, c2 FROM t1
SELECT DISTINCT c2, c1 FROM t1
SELECT * FROM t1 WHERE c1 = 1

Suppose an index exists on table t1 with the first two segments on columns c1 and c2, in that
order, with the segment on c1 defined as ascending and the segment on c2 defined as descending.
Suppose also that c2 is nullable. The second segment cannot be used to optimize on ORDER BY
because the column is both descending and nullable. The index can be used to optimize on the
following queries:

SELECT c1, c2, c3 FROM t1 ORDER BY c1
SELECT c1, c2, c3 FROM t1 ORDER BY c1 DESC
SELECT DISTINCT c1, c2 FROM t1
SELECT DISTINCT c2, c1 FROM t1
SELECT * FROM t1 WHERE c1 = 1

If column c2 is not nullable, then the index can also be used to optimize on the following queries:

SELECT c1, c2, c3 FROM t1 ORDER BY c1, c2 DESC
SELECT c1, c2, c3 FROM t1 ORDER BY c1 DESC, c2

Search Update Optimization

You may take advantage of search optimization when you update a leading segment index by
using the same index in the WHERE clause for the search. The database engine uses one session
(client ID) for the UPDATE and another session for the search.

The following statements benefit from search optimization.

CREATE TABLE t1 (c1 INT)
CREATE INDEX t1_c1 ON t1(c1)
INSERT INTO t1 VALUES(1)
INSERT INTO t1 VALUES(1)
INSERT INTO t1 VALUES(9)
INSERT INTO t1 VALUES(10)
INSERT INTO t1 VALUES(10)
UPDATE t1 SET c1 = 2 WHERE c1 = 10
UPDATE t1 SET c1 = c1 + 1 WHERE c1 >= 1

381

Temporary Table Performance
Performance improvements have been made to the implementation of temporary sort tables in this
release. To process certain queries, the database engine must generate temporary tables for
internal use. The performance for many of these queries has been improved.

In general, the database engine generates at least one temporary table to process a given query if
any of the following conditions is true:

• The DISTINCT keyword precedes the selection list and the items in the selection list are not
columns that are the leading segments of an index.

For example, a temporary table is generated to process the following query unless an index
exists with columns c1 and c2 as leading segments:

SELECT DISTINCT c1, c2 FROM t1

• A GROUP BY clause is used, and the items in the GROUP BY clause are not columns that are
the leading segments of an index.

For example, a temporary table is generated to process the following query unless an index
exists with columns c1 and c2 as leading segments:

SELECT c1, c2, COUNT(*) FROM t1 GROUP BY c1, c2

• A static cursor is being used.

For example, a temporary table is generated if an application calls the ODBC API
SQLSetStmtOption specifying the SQL_CURSOR_TYPE option and the
SQL_CURSOR_STATIC value prior to creation of the result set.

• The result set includes bookmarks.

For example, if the ODBC API SQLSetStmtOption is called specifying the
SQL_USE_BOOKMARKS option and the SQL_UB_ON value prior to generating the result
set.

• A query contains a non-correlated subquery to the right of the IN or =ANY keywords.

For example:

SELECT c1 FROM t1 WHERE c2 IN (SELECT c2 FROM t2)

382

Row Prefetch
Under certain circumstances, upon execution of a SELECT statement, this release of the database
engine attempts to prefetch to the client the first two rows of the resulting rowset. This prefetch
greatly improves the performance of fetching data from result sets that consist of zero or one row.

Prefetching rows can be a costly waste of time if the result set consists of more than one row and
the first data retrieval operation requests a row other than the first row in the result set, such as the
last row. Therefore, prefetching is limited to a maximum of two rows with the goal of improving
performance for the cases that would benefit most while avoiding cases where prefetching would
not provide significant benefits.

Prefetching occurs only if Array Fetch is enabled in the advanced connection attributes for client
DSNs (see Advanced Connection Attributes in ODBC Guide). Array fetching is similar to
prefetching except that an array fetch does not occur until the first explicit data retrieval operation
is performed. This difference exists because the first explicit data retrieval operation may provide
enough information to allow the database engine to extrapolate how the rest of the result set will
be retrieved. For example, if the first data retrieval operation is a call to the ODBC API
SQLFetch, then the database engine can assume with complete certainty that the entire result set
will be retrieved one record at a time in the forward direction only. This assumption can be made
because, according to the ODBC specification, a SQLFetch entails that the rest of the result set
will be retrieved via SQLFetch as well. On the other hand, if a SQLExtendedFetch call is made,
and the row set size is greater than one, then the client assumes that the developer-specified
rowset size is optimal, and it does not override that setting with the array fetch.

Prefetching occurs only when all of the following conditions are satisfied:

• Array fetch is enabled.

• The result set does not include large variable length data. For example, the selection list does
not contain a column of type LONGVARCHAR or LONGVARBINARY.

• The result set does not include bookmarks.

For example, prefetching does not occur if the ODBC API SQLSetStmtOption is called prior
to generating the result set, specifying the SQL_USE_BOOKMARKS option and the
SQL_UB_ON value.

• A cursor with read-only concurrency is being used.

For example, prefetching does not occur if the ODBC API SQLSetStmtOption is called,
specifying the SQL_CONCURRENCY option and any value other than
SQL_CONCUR_READ_ONLY, prior to generating the result set. By default, concurrency is
read-only.

383

Terminology
This topic provides definitions and examples to help you understand the complex technical
material presented here.

Aggregate Function

An aggregate function uses a group of values in the SELECT or HAVING clause of a query to
produce a single value. Aggregate functions include: COUNT, AVG, SUM, STDEV, MAX, MIN,
and DISTINCT.

Closed Range

A closed range is a pair of Open-Ended Ranges joined by an AND operator. Both open-ended
ranges must reference the same column and one must contain the < or <= comparison operator
and the other must contain the >= or > comparison operator. A BETWEEN clause also defines a
closed range.

For example, the following expressions are closed ranges:

c1 > 1 AND c1 <= 10
c1 BETWEEN 1 AND 10

Conjunct

A conjunct is an expression in which two or more Predicates are joined by AND operators. For
example, the following Restrictions are conjuncts:

c1=2 AND c2<5
c1>2 AND c1<5 AND c2= 'abc'

Conjunctive Normal Form (CNF)

An Expression is in Conjunctive Normal Form if it contains two or more Disjuncts joined by
AND operators. For example, the following expressions are in CNF:

c1 = 2 AND c2 < 5
(c1 = 2 OR c1 = 5) AND (c2 < 5 OR c2 > 20) AND (c3 = 'abc' OR c3 = 'efg')

384

Disjunct

A disjunct is an Expression in which two or more Predicates are joined by OR operators. For
example, the following expressions are disjuncts:

c1 = 2 OR c2 = 5
c1 = 2 OR c1 > 5 OR c2 = 'abc'

Disjunctive Normal Form (DNF)

An Expression is in disjunctive normal form if it contains two or more Conjuncts joined by OR
operators. For example, the following expressions are in DNF:

c1 = 2 OR c2 < 5
(c1 = 2 AND c2 = 5) OR (c2 > 5 AND c2 < 10) OR c3 = 'abc'

Expression

An expression consists of any Boolean algebra allowed in a Restriction. An entire restriction or
any part of the restriction that includes at least one or more complete Predicates is an expression.

Index

An index is a construct associated with one or more columns in a table that allows the database
engine to perform efficient searches and sorts. The database engine can make use of indexes to
improve search performance by reading only specific rows that will satisfy the search conditions
rather than by examining all the rows in the table. The database engine can make use of indexes to
retrieve rows in the order specified by a SQL query rather than having to use inefficient
techniques to order the rows after retrieving them.

Join Condition

A join condition is a Predicate that compares a column in one table to a column in another table
using any of the comparison operators: <, <=, =, >=, >.

For example, the following predicates are join conditions:

t1.c1 = t2.c1
t1.c1 > t2.c2

385

Leading Segments

A group of index segments are leading segments if they consist of the first n columns in an Index,
where n is any number up to and including the total number of segments in the index. For
example, if an index is defined with segments on columns c1, c2, and c4, then c1 is a leading
segment, c1 and c2 together are leading segments, and all three together are leading segments. c2
alone is not a leading segment, because the segment c1 precedes c2 and is excluded. Columns c1
and c4 together are not leading segments, because c2 precedes c4 and is excluded.

Modified Conjunctive Normal Form (Modified CNF)

An Expression in Modified Conjunctive Normal Form is like an expression in Conjunctive
Normal Form (CNF) except that each Disjunct may contain Closed Ranges as well as Predicates.

For example, the following expressions are in Modified CNF:

c1 = 2 AND c2 < 5
(c1 = 2 OR (c1 > 4 AND c1 < 6) OR c1 = 10) AND (c2 = 1 OR c3 = 'efg')

Modified Disjunct

A modified disjunct is like a Disjunct except that it may contain Closed Ranges as well as
Predicates.

For example, the following expressions are modified disjuncts:

c1 = 2 OR (c1 > 4 AND c1 < 5)
(c1 = 2 OR (c1 > 4 AND c1 < 5)) OR c2 = 'abc'

Open-Ended Range

An open-ended range is a predicate that contains any of the following comparison operators: <,
<=, >= or >. Furthermore, one of the predicate operands must consist entirely of a single column
and the other operand must consist entirely of either a single column from another table or a
literal.

For example, the following expressions are open-ended ranges:

c1 > 1
c1 <= 10
t1.c1 > t2.c1

386

Predicate

A predicate is a Boolean expression that does not include any AND or OR Boolean operators
(with the exception of a BETWEEN predicate).

For example, the following expressions are predicates:

(c1 = 1)
(c1 LIKE 'abc')
(c1 BETWEEN 1 AND 2)

The following examples are not predicates:

(c1 > 1 AND c1 < 5)
(c1 = 1 OR c1 = 2)

Restriction

A restriction is defined as the entire WHERE clause of a SQL query.

387

System Catalog Functions

System catalog functions for retrieving metadata are covered in the following topics:

• Zen System Catalog Functions

• dbo.fSQLColumns

• dbo.fSQLForeignKeys

• dbo.fSQLPrimaryKeys

• dbo.fSQLProcedures

• dbo.fSQLProcedureColumns

• dbo.fSQLSpecialColumns

• dbo.fSQLStatistics

• dbo.fSQLTables

• dbo.fSQLDBTableStat

• String Search Patterns

Zen System Catalog Functions
System catalog functions allow you to obtain database metadata from the data dictionary files,
also known as the catalog. The system catalog functions can be used only in a FROM clause.

Zen can also return metadata by calling appropriate catalog APIs or by using system stored
procedures (see System Stored Procedures). These two methods, however, do not store the
metadata in a view that can be joined or unioned with other tables. To provide JOIN and UNION
capability with other tables, the system catalog functions are required.

Note that some access methods, such as ADO.NET, require system catalog functions for entity
support so that JOIN and UNION capabilities are available.

A temporary view schema for each system catalog function is created during the prepare phase
and data is stored in the view by calling a corresponding catalog API during the execute phase.

388

The following table lists the available system catalog functions.

Return Status

Each system catalog function returns one of the following status values depending on execution
results:

• SQL_SUCCESS

• SQL_SUCCESS_WITH_INFO

• SQL_STILL_EXECUTING

• SQL_ERROR

• SQL_INVALID_HANDLE

Zen Function1 Returns

dbo.fSQLColumns The list of columns and their corresponding information for a specified
table, from the current database or the specified database

dbo.fSQLForeignKeys The foreign key information for the specified table in the current
database

dbo.fSQLPrimaryKeys The primary key information for the specified table, from the current
database or the database specified

dbo.fSQLProcedures The names of stored procedures in the current database or the specified
database

dbo.fSQLProcedureCo
lumns

The list of input and output parameters and the columns that make up the
result set for the specified procedure

dbo.fSQLSpecialColu
mns

Information about the optimal set of columns that uniquely identifies a
row in a specified table, or the columns that are automatically updated
when any value in the row is updated by a transaction.

dbo.fSQLStatistics Statistics about a single table and the list of indexes associated with the
table, from the current database or the specified database

dbo.fSQLTables A list of tables along with their corresponding information, from the
current database or the specified database

1 Because the Zen catalog functions are based on ODBC, you may want to refer to ODBC
documentation for additional information. The content presented here provides enough information
to understand and use Zen catalog functions without exhaustive technical detail.

389

Summary

The system catalog functions have the following characteristics:

• They return metadata.

• They work in the same manner as views.

• They can be referenced only in the FROM clause of a SELECT statement.

• The parameters can be only in the form of constants or dynamic parameters.

Note: Most popular SQL editors do not use statement delimiters to execute multiple statements.
However, SQL Editor in ZenCC requires them. If you wish to execute the examples in other
environments, you may need to remove the pound sign or semicolon separators.

dbo.fSQLColumns
This function returns the list of column names in a specified table.

Syntax
dbo.fSQLColumns <'database_qualifier' | null>, <'table_name' | null>, <'column_name' | null>)

390

Arguments

Returned Result Set

Parameter Type Default
Value

Description

database_qualifier VARCHAR Current
database

Name of the database from which the details
are to be obtained.

table_name VARCHAR (no default
value)

Name of the table whose column information
is required

column_name VARCHAR All columns
for the
specified
table

Column name of the table specified.

Column Name Data Type Description

TABLE_QUALIFIER VARCHAR Name of the database. NULL if not applicable to the
database.

TABLE_OWNER VARCHAR Schema name of the table. NULL if not applicable to the
database.

TABLE_NAME VARCHAR
not NULL

Name of the table.

COLUMN_NAME VARCHAR Column name of the table or an empty string for a column
that does not have a name.

DATA_TYPE SMALLINT
not NULL

SQL data type of the column. See Supported Data Types in
ODBC Guide.

TYPE_NAME VARCHAR Name of the data type of the column corresponding to
DATA_TYPE value

PRECISION INTEGER The precision of the column if the data type is Decimal,
Numeric, and so forth. See Precision and Scale of Decimal
Data Types. If DATA_TYPE is CHAR or VARCHAR, then
this column contains the maximum length in characters of the
column. For date time data types, this is the total number of
characters required to display the value when it is converted
to characters. For numeric data types, this is either the total
number of digits or the total number of bits allowed in the
column, according to the RADIX column.

391

LENGTH INTEGER The length in bytes of data transferred on a SQLGetData,
SQLFetch, or SQLFetchScroll operation if
SQL_C_DEFAULT is specified.

For numeric data, this size may differ from the size of the data
stored in the database. This value might differ from
COLUMN_SIZE column for character data.

SCALE SMALLINT The total number of significant digits to the right of the
decimal point. For TIME, TIMESTAMP, and TIMESTAMP2,
this column contains the number of digits in the fractional
seconds component.

For the other data types, this is the decimal digits of the
column in the database. See Precision and Scale of Decimal
Data Types.

RADIX SMALLINT Base for numeric data types

For numeric data types, either 10 or 2.

• 10 – the values in COLUMN_SIZE and
DECIMAL_DIGITS give the number of decimal digits
allowed for the column.

• 2 – the values in COLUMN_SIZE and
DECIMAL_DIGITS give the number of bits allowed in
the column.

NULL is returned for data types where RADIX is not
applicable.

NULLABLE SMALLINT Indicates whether the procedure column accepts a NULL
value:

• 0 = NO_NULLS – the procedure column does not accept
NULL values.

• 1 = NULLABLE – the procedure column accepts NULL
values.

• 2 = NULLABLE_UNKNOWN – it is not known if the
procedure column accepts NULL values.

REMARKS VARCHAR Remarks field

Column Name Data Type Description

392

COLUMN_DEF VARCHAR The default value of the column.

If NULL was specified as the default value, this column is the
word NULL, not enclosed in quotation marks. If the default
value cannot be represented without truncation, this column
contains TRUNCATED, with no enclosing single quotation
marks. If no default value was specified, this column is
NULL.

SQL_DATA_TYPE SMALLINT
not NULL

Value of the SQL data type as it appears in the
SQL_DESC_TYPE field of the descriptor. This column is the
same as the TYPE_NAME column, except for data types
AUTOTIMESTAMP, DATE, DATETIME, TIME,
TIMESTAMP, and TIMESTAMP2.

For those data types, the SQL_DATA_TYPE field in the
result set returns the following: SQL_DATE for DATE,
SQL_TIME for TIME, and SQL_TIMESTAMP for
AUTOTIMESTAMP, DATETIME, TIMESTAMP, and
TIMESTAMP2.

SQL_DATETIME_SUB SMALLINT Subtype code for AUTOTIMESTAMP, DATE, DATETIME,
TIME, TIMESTAMP, and TIMESTAMP2. For other data
types, this column returns a NULL.

• 1 = for DATE (SQL_CODE_DATE)

• 2 = for TIME (SQL_CODE_TIME)

• 3 = for AUTOTIMESTAMP, DATETIME, TIMESTAMP,
and TIMESTAMP2 (SQL_CODE_TIMESTAMP)

CHAR_OCTET_
LENGTH

INTEGER Maximum length in bytes of a character or binary data type
column. For all other data types, this column returns a NULL.

ORDINAL_POSITION INTEGER
not NULL

For input and output parameters, the ordinal position of the
parameter in the procedure definition (in increasing parameter
order, starting at 1).

For a return value (if any), 0 is returned. For result-set
columns, the ordinal position of the column in the result set,
with the first column in the result set being number 1.

 IS_NULLABLE VARCHAR "NO" if the column does not include NULLs.

"YES" if the column includes NULLs.

This column returns a zero-length string if nullability is
unknown. The value returned for this column differs from the
value returned for the NULLABLE column.

Column Name Data Type Description

393

Example

This example returns information for all columns in the Room table in the default Demodata
sample database.

SELECT * FROM dbo.fSQLColumns ('Demodata', 'room', null);

Result Set (abbreviated for space considerations):

COLUMN_NAME DATA_TYPE LENGTH ORDINAL_POSITION
============== ========= ====== ================
Building_Name 1 25 1
Number 4 4 2
Capacity 5 2 3
Type 1 20 4
4 rows were affected.

dbo.fSQLForeignKeys
This functions returns the foreign key information for the specified table in the current database.
Dbo.fSQLForeignKeys can return a list of foreign keys as a result set for either of the following:

• The specified table (columns in the specified table that refer to primary keys in other tables)

• Other tables that refer to the primary key in the specified table

Syntax
dbo.fSQLForeignKeys (<'table_qualifier' | null>, 'pkey_table_name' | null>, <'fkey_table_name' |
null>)

Arguments

Parameter Type Default
Value

Description

table_qualifier VARCHAR Current
database

Name of the database from which the details
are to be obtained.

pkey_table_name VARCHAR (no default
value)

Name of the table whose foreign key is
associated with the primary key column.
Pattern matching is supported (see String
Search Patterns).

394

fkey_table_name VARCHAR (no default
value)

Name of the table whose foreign key
information needs to be obtained. Pattern
matching is supported (see String Search
Patterns).

Parameter Type Default
Value

Description

395

Returned Result Set

Column Name Data Type Description

PKTABLE_QUALIFIER VARCHAR Database name of the primary key table. NULL if not
applicable to the database.

PKTABLE_OWNER VARCHAR Name of the owner of the primary key table. NULL if
not applicable to the database.

PKTABLE_NAME VARCHAR
not NULL

Name of the primary key table

PKCOLUMN_NAME VARCHAR
not NULL

Column name of the primary key column. An empty
string is returned for a column that does not have a
name.

FKTABLE_QUALIFIER VARCHAR Database name of the foreign key table. NULL if not
applicable to the database.

FKTABLE_OWNER VARCHAR Name of the owner of the foreign key table. NULL if
not applicable to the database.

FKTABLE_NAME VARCHAR
not NULL

Name of the foreign key table.

FKCOLUMN_NAME VARCHAR
not NULL

Column name of the foreign key column. An empty
string is returned for a column that does not have a
name.

KEY_SEQ SMALLINT Column sequence number in key (starting with 1). The
value of this column corresponds to Xi$Part in
X$Index. See X$Index.

UPDATE_RULE SMALLINT Action to be applied to the foreign key when the SQL
operation is UPDATE. Can have one of the following
values:

• 0 = CASCADE

• 1 = RESTRICT

DELETE_RULE SMALLINT Action to be applied to the foreign key when the SQL
operation is DELETE. Can have one of the following
values:

• 0 = CASCADE

• 1 = RESTRICT

FK_NAME VARCHAR Name of the foreign key. NULL if not applicable to the
database.

396

Example

This example creates three tables in the Demodata sample database. Primary keys and foreign
keys are assigned to the tables. The dbo.fSQLForeignKeys function references the two primary
key tables using a string search pattern. See also String Search Patterns.

CREATE TABLE primarykey1 (pk1col1 INT, pk1col2 INT, pk1col3 INT, pk1col4 INT, PRIMARY KEY (pk1col1,
pk1col2));
ALTER TABLE primarykey1 ADD FOREIGN KEY (pk1col3, pk1col4) REFERENCES primarykey1 ON DELETE CASCADE;

CREATE TABLE primarykey2 (pk2col1 INT, pk2col2 INT, pk2col3 INT, pk2col4 INT, PRIMARY KEY (pk2col1,
pk2col2));
ALTER TABLE primarykey2 ADD FOREIGN KEY (pk2col3, pk2col4) REFERENCES primarykey2 ON DELETE CASCADE;

CREATE TABLE foreignkey1 (fkcol1 INT, fkcol2 INT, fkcol3 INT, fkcol4 INT);
ALTER TABLE foreignkey1 ADD FOREIGN KEY (fkcol1, fkcol2) REFERENCES PRIMARYKEY1;
ALTER TABLE foreignkey1 ADD FOREIGN KEY (fkcol3, fkcol4) REFERENCES PRIMARYKEY2;

SELECT * FROM dbo.fSQLForeignKeys ('Demodata', 'primarykey%', 'foreignkey1');

Result Set (abbreviated for space considerations):

FKCOLUMN_NAME DELETE_RULE FK_NAME PK_NAME
============= =========== ========== ==========
fkcol1 1 FK_0fkcol1 PK_pk1col1
fkcol2 1 FK_0fkcol1 PK_pk1col1
fkcol3 1 FK_0fkcol3 PK_pk2col1
fkcol4 1 FK_0fkcol3 PK_pk2col1

4 rows were affected.

dbo.fSQLPrimaryKeys
This function returns as a result set the column names that make up the primary key for a table.
Dbo.fSQLPrimaryKeys does not support returning primary keys from multiple tables in a single
call.

PK_NAME VARCHAR Name of the primary key. NULL if not applicable to the
database.

DEFERRABILITY SMALLINT One of the following values:

• 5 = INITIALLY_DEFERRED

• 6 = INITIALLY_IMMEDIATE

• 7 = NOT_DEFERRABLE

Column Name Data Type Description

397

Syntax
dbo.fSQLPrimaryKeys (<'pkey_table_qualifier' | null>, <'table_name' | null>)

Arguments

Returned Result Set

Example

This example creates two tables in the Demodata sample database. Primary keys and foreign keys
are assigned to the tables. The dbo.fSQLPrimaryKeys function references the two tables using a
string search pattern. See also String Search Patterns.

CREATE TABLE tblprimarykey3 (tblpk3col1 INT, tblpk3col2 INT, tblpk3col3 INT, tblpk3col4 INT, PRIMARY
KEY (tblpk3col1, tblpk3col2));

Parameter Type Default
Value

Description

pkey_table_qualifier VARCHAR Current
database

Name of the database from which the details
are to be obtained.

table_name VARCHAR (no default
value)

Name of the table whose primary key
information is requested. Pattern matching is
supported (see String Search Patterns).

Column Name Data Type Description

TABLE_QUALIFIER VARCHAR Name of the database. NULL if not applicable to the
database.

TABLE_OWNER VARCHAR Name of the owner of the primary key table. NULL if not
applicable to the database.

TABLE_NAME VARCHAR
not NULL

Name of the primary key table

COLUMN_NAME VARCHAR
not NULL

Name of the primary key column. An empty string is
returned for a column that does not have a name.

COLUMN_SEQ SMALLINT
not NULL

Column sequence number in key (starting with 1).

PK_NAME VARCHAR Name of the primary key. NULL if not applicable to the
database.

398

ALTER TABLE tblprimarykey3 ADD FOREIGN KEY (tblpk3col3, tblpk3col4) REFERENCES tblprimarykey3 ON
DELETE CASCADE;

CREATE TABLE tblprimarykey4 (tblpk4col1 INT, tblpk4col2 INT, tblpk4col3 INT, tblpk4col4 INT, PRIMARY
KEY (tblpk4col1, tblpk4col2));
ALTER TABLE tblprimarykey4 ADD FOREIGN KEY (tblpk4col3, tblpk4col4) REFERENCES tblprimarykey4 ON
DELETE CASCADE;

SELECT * FROM dbo.fsqlprimarykeys('Demodata', 'tbl%');

Result Set (abbreviated for space considerations):

TABLE_NAME COLUMN_NAME KEY_SEQ PK_NAME
============== =========== ======= =============
tblprimarykey3 tblpk3col1 1 PK_tblpk3col1
tblprimarykey3 tblpk3col2 2 PK_tblpk3col1
tblprimarykey4 tblpk4col1 1 PK_tblpk4col1
tblprimarykey4 tblpk4col2 2 PK_tblpk4col1

4 rows were affected.

dbo.fSQLProcedures
This function returns as a result set the names of stored procedures and user-defined functions in
the current database or the specified database. See also CREATE PROCEDURE and CREATE
FUNCTION.

Syntax
dbo.fSQLProcedures (<'database_qualifier' | null>, <'procedure_name' | null>)

Arguments

Note: System stored procedures are defined in the internal PERVASIVESYSDB database, which
Zen Control Center does not display.

Parameter Type Default
Value

Description

database_qualifier VARCHAR Current
database

Name of the database from which the details
are to be obtained.

procedure_name VARCHAR (no default
value)

Name of the stored procedure whose
information is required.

399

Returned Result Set

Example

By default, the Demodata database does not contain any stored procedures or user-defined
functions. To provide output for the dbo.fSQLProcedures function (and for
dbo.fSQLProcedureColumns), you can create the following stored procedures and user-defined
function. They can all be called provided the required tables and parameter bindings are present.
However, the point for this example is to include them as database objects rather than demonstrate
their execution.

See also CREATE PROCEDURE and CREATE FUNCTION.

CREATE PROCEDURE curs1 (IN :Arg1 CHAR(4), IN :Arg2 INTEGER) AS BEGIN
DECLARE :alpha char(10) DEFAULT 'BA';
DECLARE :beta INTEGER DEFAULT 100;
DECLARE degdel CURSOR FOR
SELECT degree, cost_per_credit FROM tuition WHERE Degree = :Arg1 AND cost_per_credit = :arg2

Column Name Data Type Description

PROCEDURE_QUALIFIER VARCHAR Name of the database in which the procedure was
created. NULL if not applicable to the database.

PROCEDURE_OWNER VARCHAR Procedure schema identifier. NULL if not applicable
to the database.

PROCEDURE_NAME VARCHAR
not NULL

Procedure identifier

NUM_INPUT_PARAMS none Reserved for future use. Do not use for your
application.

NUM_OUTPUT_PARAMS none Reserved for future use. Do not use for your
application.

NUM_RESULT_SETS none Reserved for future use. Do not use for your
application.

REMARKS VARCHAR The description of the procedure

PROCEDURE_TYPE SMALLINT Defines the procedure type:

• 0 = PT_UNKNOWN—it cannot be determined
whether the procedure returns a value.

• 1 = PT_PROCEDURE—the returned object is a
procedure and does not have a return value.

• 2 = PT_FUNCTION—the returned object is a
function and has a return value.

400

FOR UPDATE;
OPEN degdel;
FETCH NEXT FROM degdel INTO :alpha, :beta
DELETE WHERE CURRENT OF degdel;
CLOSE degdel ;
END

CREATE PROCEDURE EnrollStudent2 (IN :Stud_id INTEGER, IN
:Class_Id INTEGER);
BEGIN

INSERT INTO Enrolls VALUES (:Stud_id, :Class_Id, 0.0);
END

CREATE PROCEDURE AInsert
(IN :AGUID BINARY(16),
IN :APeriod INT,
IN :BBal UTINYINT,
IN :BDr DECIMAL(23,9),
IN :BCr DECIMAL(23,9),
IN :BNet DECIMAL(23,9),
IN :HTrx UTINYINT,
IN :PDr DECIMAL(23,9),
IN :PCr DECIMAL(23,9),
IN :PNet DECIMAL(23,9))
AS BEGIN

INSERT INTO "ASum" ("AID", "APeriod", "IBal", "BDr", "BCr", "BNet", "HTrx", "PDr", "PCr", "PNet")
VALUES (:AGUID,:APeriod,:BBal,:BDr,:BCr,:BNet,:HTrx, :PDr,:PCr,:PNet);

END

CREATE PROCEDURE AR (OUT :BIID SMALLINT, IN :BName CHAR(30))
AS BEGIN

SELECT MAX(BID) + 1 INTO :BIID FROM Br;
INSERT INTO Br (BID, FName) VALUES (:BIID, :BName);

END

CREATE FUNCTION CalInterest (IN :principle FLOAT,
IN :period REAL, IN :rate DOUBLE)
RETURNS DOUBLE
AS BEGIN

DECLARE :interest DOUBLE;
SET :interest = ((:principle * :period * :rate) /
100);
RETURN (:interest);

END;

SELECT * FROM dbo.fSQLProcedures ('Demodata', null);

Result Set (abbreviated for space considerations):

PROCEDURE_QUALIFIER PROCEDURE_NAME PROCEDURE_TYPE
=================== ================= ==============
Demodata curs1 1
Demodata Enrollstudent2 1
Demodata AInsert 1
Demodata AR 1
Demodata CalInterest 2

5 rows were affected.

401

dbo.fSQLProcedureColumns
This function returns the list of input and output parameters and the columns that make up the
result set for the specified stored procedure or user-defined function. See also CREATE
PROCEDURE and CREATE FUNCTION.

Syntax
dbo.fSQLProcedureColumns (<'database_qualifier' | null>, <'procedure_name' | null>,
<'procedure_column_name' | null>)

Arguments

Note: System stored procedures are defined in the internal PERVASIVESYSDB database, which
does not display in Zen Control Center.

Parameter Type Default
Value

Description

database_qualifier VARCHAR Current
database

Name of the database from which the
details are to be obtained.

procedure_name VARCHAR (no default
value)

Name of the stored procedure whose
information is required.

procedure_column_name VARCHAR (no default
value)

Name of the column in the procedure.

402

Returned Result Set

Column Name Data Type Description

PROCEDURE_QUALIFIER VARCHAR Name of the database in which the procedure was
created. NULL if not applicable to the database.

PROCEDURE_OWNER VARCHAR Procedure schema identifier. NULL if not applicable
to the database.

PROCEDURE_NAME VARCHAR
not NULL

Procedure identifier

COLUMN_TYPE SMALLINT
not NULL

Defines the procedure column as a parameter or a
result set column:

• 0 = PARAM_TYPE_UNKNOWN—procedure
column is a parameter whose type is unknown.

• 1 = PARAM_INPUT—procedure column is an
input parameter.

• 2 = PARAM_INPUT_OUTPUT—procedure
column is an input/output parameter.

• 3 = RESULT_COL—procedure column is a result
set column.

• 4 = PARAM_OUTPUT—procedure column is an
output parameter.

• 5 = RETURN_VALUE—procedure column is the
return value of the procedure.

DATA_TYPE SMALLINT
not NULL

SQL data type. See also Supported Data Types in
ODBC Guide.

TYPE_NAME VARCHAR
not NULL

Relational data type name. See also Zen Supported
Data Types.

PRECISION INTEGER Size of the procedure column in the database. NULL
is returned for data types where column size is not
applicable. See also Precision and Scale of Decimal
Data Types.

LENGTH INTEGER Length in bytes of data transferred on a SQLGetData
or SQLFetch operation if SQL_C_DEFAULT is
specified. For numeric data, this size may be different
than the size of the data stored in the database. See
also Zen Supported Data Types.

403

SCALE SMALLINT Number of decimal digits of the procedure column in
the database. NULL is returned for data types where
decimal digits is not applicable. See also Precision
and Scale of Decimal Data Types.

RADIX SMALLINT For numeric data types, either 10 or 2.

• 10—the values in COLUMN_SIZE and
DECIMAL_DIGITS give the number of decimal
digits allowed for the column.

• 2—the values in COLUMN_SIZE and
DECIMAL_DIGITS give the number of bits
allowed in the column.

NULL is returned for data types where RADIX is not
applicable.

NULLABLE SMALLINT
not NULL

Indicates whether the procedure column accepts a
NULL value:

• 0 = NO_NULLS—the procedure column does not
accept NULL values.

• 1 = NULLABLE—the procedure column accepts
NULL values.

• 2 = NULLABLE_UNKNOWN—it is not known
if the procedure column accepts NULL values.

REMARKS VARCHAR The description of the procedure column

COLUMN_DEF VARCHAR The default value of the column.

If NULL was specified as the default value, this
column is the word NULL, not enclosed in quotation
marks. If the default value cannot be represented
without truncation, this column contains
TRUNCATED, with no enclosing single quotation
marks. If no default value was specified, this column
is NULL.

Column Name Data Type Description

404

SQL_DATA_TYPE SMALLINT
not NULL

Value of the SQL data type as it appears in the
SQL_DESC_TYPE field of the descriptor. This
column is the same as the TYPE_NAME column,
except for data types AUTOTIMESTAMP, DATE,
DATETIME, TIME, TIMESTAMP, and
TIMESTAMP2.

For those data types, the SQL_DATA_TYPE field in
the result set returns the following: SQL_DATE for
DATE, SQL_TIME for TIME, and
SQL_TIMESTAMP for AUTOTIMESTAMP,
DATETIME, TIMESTAMP, and TIMESTAMP2.

SQL_DATETIME_SUB SMALLINT Subtype code for AUTOTIMESTAMP, DATE,
DATETIME, TIME, TIMESTAMP, and
TIMESTAMP2. For other data types, this column
returns a NULL.

• 1 = for DATE (SQL_CODE_DATE)

• 2 = for TIME (SQL_CODE_TIME)

• 3 = for AUTOTIMESTAMP, DATETIME,
TIMESTAMP, and TIMESTAMP2
(SQL_CODE_TIMESTAMP)

CHAR_OCTET_LENGTH INTEGER Maximum length in bytes of a character or binary
data type column. For all other data types, this
column returns a NULL.

ORDINAL_POSITION INTEGER
not NULL

For input and output parameters, the ordinal position
of the parameter in the procedure definition (in
increasing parameter order, starting at 1).

For a return value (if any), 0 is returned. For result-
set columns, the ordinal position of the column in the
result set, with the first column in the result set being
number 1.

 IS_NULLABLE VARCHAR "NO" if the column does not include NULLs.

"YES" if the column includes NULLs.

This column returns a zero-length string if nullability
is unknown. The value returned for this column
differs from the value returned for the NULLABLE
column.

Column Name Data Type Description

405

Example

By default, the Demodata sample database does not contain any stored procedures or user-defined
functions. To provide output for the dbo.fSQLProcedureColumns function, you can create the
stored procedures and user-defined function provided in the example for dbo.fSQLProcedures.
This example assumes that Demodata contains the stored procedures curs1, Enrollstudent2,
AInsert, and AR, and the user-defined function CalInterest.

The following statement returns information for all columns in all stored procedures and user-
defined functions in the Demodata sample database:

SELECT * FROM dbo.fsqlprocedurecolumns ('Demodata', null, null)

Result Set (abbreviated for space considerations):

PROCEDURE_NAME COLUMN_NAME COLUMN_TYPE DATA_TYPE
============== =========== =========== =========
AInsert :AGUID 1 -2
AInsert :APeriod 1 4
AInsert :BBal 1 -6
AInsert :BCr 1 3
AInsert :BDr 1 3
AInsert :BNet 1 3
AInsert :HTrx 1 -6
AInsert :PCr 1 3
AInsert :PDr 1 3
AInsert :PNet 1 3
AR :BIID 4 5
AR :BName 1 1
CalInterest :period 1 7
CalInterest :principle 1 8
CalInterest :rate 1 8
CalInterest :RETURN_VALUE 5 8
curs1 :Arg1 1 1
curs1 :Arg2 1 4
Enrollstudent2 :Class_Id 1 4
Enrollstudent2 :Stud_id 1 4

20 rows were affected.

dbo.fSQLSpecialColumns
For a specified table, this function retrieves column information for the optimal set of columns
that uniquely identifies a row in the table and columns that are automatically updated when any
value in the row is updated by a transaction.

Syntax
dbo.fSQLSpecialColumns (<'database_qualifier' | null>, <'table_name' | null>, <'nullable' | null>)

406

Arguments

Returned Result Set

Parameter Type Default
Value

Description

database_qualifier VARCHAR Current
database

Name of the database from which the details
are to be obtained

table_name VARCHAR (no default
value)

Name of the table whose column information is
required

nullable SMALLINT (no default
value)

Determines whether to return special columns
that can have a NULL value. Must be one of
the following:

• 0 = NO_NULLS—exclude special columns
that can have NULL values.

• 1 = NULLABLE—return special columns
even if they can have NULL values.

Column Name Data Type Description

SCOPE SMALLINT Scope of the rowid. Contains one of the following values:

• 0 = SCOPE_CURROW

• 1 = SCOPE_TRANSACTION

• 2 = SCOPE_SESSION

NULL is returned when IdentifierType is SQL_ROWVER.

COLUMN_NAME VARCHAR
not NULL

Name of the column. An empty string is returned for a column
that does not have a name.

DATA_TYPE SMALLINT
not NULL

SQL data type. See also Supported Data Types in ODBC
Guide.

PRECISION INTEGER Size of the procedure column in the database. See also
Precision and Scale of Decimal Data Types.

LENGTH INTEGER Length in bytes of data transferred on a SQLGetData or
SQLFetch operation if SQL_C_DEFAULT is specified. For
numeric data, this size may differ from that of the data stored
in the database. See also Zen Supported Data Types.

407

Example

This example creates a table with two columns that uniquely identify a row and are automatically
updated when a transaction updates any value in the row.

CREATE TABLE t2 (c1 IDENTITY, c2 INTEGER, c3 SMALLINT NOT NULL, c4 TIMESTAMP NOT NULL)
ALTER TABLE t2 ADD PRIMARY KEY (c1, c4);

SELECT * FROM dbo.fSQLSpecialColumns ('Demodata' ,'t2' , 'null')

Result Set (abbreviated for space considerations):

COLUMN_NAME DATA_TYPE TYPE_NAME PRECISION LENGTH
=========== ========= ========= ========= ======
c1 4 INTEGER 4 4
c4 11 DATETIME 16 16

2 rows were affected.

dbo.fSQLStatistics
This function returns as a result set a list of statistics about a table and the indexes associated with
the table.

Syntax
dbo.fSQLStatistics (<'database_qualifier' | null>, <'table_name' | null>, <'unique' | null>)

SCALE SMALLINT Number of decimal digits of the procedure column in the
database. NULL is returned for data types where decimal
digits is not applicable. See also Precision and Scale of
Decimal Data Types.

PSEUDO_COLUMN SMALLINT Indicates whether the column is a pseudo-column.

• 0 = PC_UNKNOWN

Zen does not support pseudo-columns.

Column Name Data Type Description

408

Arguments

Returned Result Set

Parameter Type Default
Value

Description

database_qualifier VARCHAR Current
database

Name of the database from which the details are
to be obtained

table_name VARCHAR (no default
value)

Name of the table whose column information is
required. Pattern matching is supported (see
String Search Patterns).

unique SMALLIN
T

(no default
value)

Type of index:

0 = INDEX_UNIQUE

1 = INDEX_ALL

Column Name Data Type Description

TABLE_QUALIFIER VARCHAR Name of the database containing the table to which the
statistic or index applies. NULL if not applicable to the
database.

TABLE_OWNER VARCHAR Schema name of the table to which the statistic or index
applies. NULL if not applicable to the database.

TABLE_NAME VARCHAR
not NULL

Name of the table to which the statistic or index applies

NON_UNIQUE SMALLINT Indicates whether the index does not allow duplicate values:

• 0 = FALSE if the index values must be unique.

• 1 = TRUE if the index values can be nonunique.

NULL is returned if TYPE is TABLE_STAT.

INDEX_QUALIFIER VARCHAR The identifier that is used to qualify the index name doing a
DROP INDEX. NULL is returned if an index qualifier is not
supported by the database or if TYPE is TABLE_STAT.

INDEX_NAME VARCHAR Index name. NULL is returned if TYPE is TABLE_STAT.

TYPE SMALLINT
not NULL

Type of information being returned:

• 0 = TABLE_STAT

• 3 = INDEX_OTHER

409

Example

This example returns statistics about all indexes for all tables that begin with the letter c in the
default Demodata sample database. NULLs are excluded from INDEX_NAME. See also String
Search Patterns.

SELECT * FROM dbo.fSQLStatistics ('Demodata', 'c%', 1) WHERE INDEX_NAME IS NOT NULL

Result Set (abbreviated for space considerations):

TABLE_NAME INDEX_NAME COLUMN_NAME

SEQ_IN_INDEX SMALLINT Column sequence number in index (starting with 1). NULL
is returned if TYPE is TABLE_STAT.

COLUMN_NAME VARCHAR Column name. If the column is based on an expression, such
as PERSONID + NAME, the expression is returned. Iff the
expression cannot be determined, an empty string is returned.

NULL is returned if TYPE is TABLE_STAT.

COLLATION CHAR Sort sequence for the column:

A = ascending

D = descending

NULL is returned if column sort sequence is not supported
by the database or if TYPE is TABLE_STAT.

CARDINALITY INTEGER Cardinality of table or index.

Number of rows in table if TYPE is TABLE_STAT. Number
of unique values in the index if TYPE is not TABLE_STAT

NULL is returned if the value is not available from the
database.

PAGES INTEGER Number of pages used to store the index or table.

Number of pages for the table if TYPE is TABLE_STAT.
Number of pages for the index if TYPE is not TABLE_STAT

NULL is returned if the value is not available from the
database or if not applicable to the database.

FILTER_CONDITION VARCHAR If the index is a filtered index, this is the filter condition,
such as CLASSID > 150. If the filter condition cannot be
determined, this is an empty string.

NULL if the index is not a filtered index, it cannot be
determined whether the index is a filtered index, or TYPE is
TABLE_STAT.

Column Name Data Type Description

410

========== ================ ====================
Class UK_ID ID
Class Class_Name Name
Class Class_Name Section
Class Class_seg_Faculty Faculty_ID
Class Class_seg_Faculty Start_Date
Class Class_seg_Faculty Start_Time
Class Building_Room Building_Name
Class Building_Room Room_Number
Class Building_Room Start_Date
Class Building_Room Start_Time
Course Course_Name Name
Course DeptName Dept_Name

12 rows were affected.

dbo.fSQLTables
The function returns the list of table, catalog, or schema names, and table types, stored in a
database.

Syntax
dbo.fSQLTables (<'database_qualifier' | null>, <'table_name' | null>, <['type' | null>)

Arguments

Parameter Type Default
Value

Description

database_qualifier VARCHAR Current
database

Name of the database from which the details are
to be obtained

table_name VARCHAR (no default
value)

Name of the table whose information needs to be
obtained.

type VARCHAR (no default
value)

Must be one of the following:

• TABLE returns only the user tables

• SYSTEM TABLE returns all the system tables

• VIEW returns only views

• NULL returns all tables

411

Returned Result Set

Example

This example returns a list of the user tables and system tables in the default Demodata sample
database.

SELECT * FROM dbo.fSQLTables ('Demodata', null, null)

Result Set (abbreviated for space considerations):

TABLE_NAME TABLE_TYPE
============= ==============
X$File SYSTEM TABLE
X$Field SYSTEM TABLE
X$Index SYSTEM TABLE
X$View SYSTEM TABLE
X$Proc SYSTEM TABLE
X$Relate SYSTEM TABLE
X$Trigger SYSTEM TABLE
X$Attrib SYSTEM TABLE
X$Occurs SYSTEM TABLE
X$Variant SYSTEM TABLE
Billing TABLE
Class TABLE
Course TABLE
Dept TABLE
Enrolls TABLE
Faculty TABLE
Person TABLE
Room TABLE
Student TABLE
Tuition TABLE
X$User SYSTEM TABLE
X$Rights SYSTEM TABLE

22 rows were affected.

Column Name Data Type Description

TABLE_QUALIFIER VARCHAR Name of the database. NULL if not applicable to the database.

TABLE_OWNER VARCHAR Name of the table owner. NULL if not applicable to the
database.

TABLE_NAME VARCHAR Name of the table

TABLE_TYPE VARCHAR One of the following:

• TABLE

• VIEW

• SYSTEM TABLE

REMARKS VARCHAR A description of the table.

412

dbo.fSQLDBTableStat
This function returns as a result set the basic information, including the details returned by a
Btrieve Stat (15) operation, about a table or file in the current database.

Syntax
dbo.fSQLDBTableStat ('table_name')

Argument

Returned Result Set

Parameter Type Default
Value

Description

table_name VARCHAR (no default
value)

Name of the table in the current database for which
to obtain information.

Column Name Data Type Description

Table Name VARCHAR Name of the table.

Table Location VARCHAR Full path name of the data file for the table.

Dictionary Path VARCHAR Dictionary path of the database.

File Version VARCHAR Btrieve version of the file in hexadecimal, such as "13.0" for
version 13.

Record Length SMALLINT Fixed record length for the file, as returned by Stat (15).

Page Size SMALLINT Page size for the file, as returned by Stat (15).

Number of Records BIGINT Number of records in the file, as returned by Stat (15).

Number of Indexes SMALLINT Number of indexes, as returned by Stat (15).

Unused LinkedDup
Ptr

SMALLINT Number of unused duplicate pointers, as returned by Stat (15).

Unused PreAlloc
Pages

SMALLINT Number of unused empty pages in the file, as returned by Stat
(15).

Variable Len Records VARCHAR YES or NO indicating whether the file contains variable length
records.

413

For further information on these fields, see the Create (14) and Stat (15) in Btrieve API Guide.

Example

This example returns information for a table in the default Demodata sample database.

SELECT * FROM dbo.fSQLDBTableStat ('student')

Result Set (reformatted for space considerations):

Table Name Student
Table Location C:\PROGRAMDATA\ACTIAN\ZEN\DEMODATA\Student.mkd
Dictionary Path C:\PROGRAMDATA\ACTIAN\ZEN\DEMODATA
File Version 9.5
Record Length 76
Page Size 4096
Number of Records 1288
Number of Indexes 2
Unused LinkedDup Ptr 0
Unused PreAlloc Pages 0
Variable Len Records NO
Blank Truncation NO
Record Compression NO
Page Compression NO
Key Only File NO
Index Balancing NO
Freespace Threshold 0%
Uses ACS NO
System Data YES
Used LinkedDup Ptr 0

Blank Truncation VARCHAR YES or NO indicating whether variable length records use
blank truncation.

Record Compression VARCHAR YES or NO indicating Btrieve data compression.

Page Compression VARCHAR YES or NO indicating Btrieve page compression.

Key Only File VARCHAR YES or NO indicating whether the file is a key-only file.

Index Balancing VARCHAR YES or NO indicating Btrieve index balancing.

Freespace Threshold VARCHAR Percentage indicating what the free space threshold is, if any.

Uses ACS VARCHAR YES or NO indicating whether the file uses an alternate
collating sequence.

System Data VARCHAR YES or NO indicating whether the file has system data keys
enabled.

Used LinkedDup Ptr SMALLINT Number of keys using linked duplicates.

Column Name Data Type Description

414

String Search Patterns
The following system catalog functions support string search patterns:

• dbo.fSQLForeignKeys

• dbo.fSQLPrimaryKeys

• dbo.fSQLStatistics

Two wildcard characters can be used in a search pattern:

• Percent sign (%) represents any sequence of n characters.

• Underscore (_) represents a single character.

Examples

The following table lists examples of using string search patterns.

Example Statement Returns

SELECT * FROM dbo.fSQLStatistics (null, '%', 0) All tables with a unique index in current
database

SELECT * FROM dbo.fSQLStatistics (null, 't%', 1) All tables starting with 't' and an index in
current database

SELECT * FROM dbo.fSQLPrimaryKeys (null, '%') All tables with a primary key in current
database

SELECT * FROM dbo.fSQLPrimaryKeys (null, 't%') All tables starting with 't' and a primary
key in current database

SELECT * FROM dbo.fSQLForeignKeys (null, '%' , '%') All tables with a primary key and
corresponding foreign key tables in
current database

415

A. Data Types

This appendix describes the data types and data type mappings offered by Zen through the
MicroKernel and relational engines.

• Zen Supported Data Types

• Notes on Data Types

• Legacy Data Types

• Btrieve Key Data Types

• Non-Key Data Types

Zen Supported Data Types
The following table maps the transactional and relational data types supported by Zen. It is useful
for developers of SQL applications that access data in Btrieve data files.

Transactional Type
(Size)

Relational Type Metadata
Type Code

Value

Size
(bytes)

Create/Add

Parameters1
Data
Type
Notes

AUTOINCREMENT(2) SMALLIDENTITY 15 2

AUTOINCREMENT(4) IDENTITY 15 4

AUTOINCREMENT(8) BIGIDENTITY 15 8

AUTOTIMESTAMP AUTOTIMESTAMP 32 8 11

BFLOAT(4) BFLOAT4 9 4 not null 4

BFLOAT(8) BFLOAT8 9 8 not null 4

BLOB LONGVARBINARY 21 n/a2 not null 2, 3, 6

BLOB(2) NLONGVARCHAR 21 n/a2 not null
case

insensitive

7

CLOB LONGVARCHAR 21 n/a2 not null
case

insensitive

5, 6

CURRENCY CURRENCY 19 8 not null

416

DATE DATE 3 4 not null

None DATETIME 30 8 not null 10

DECIMAL DECIMAL 5 1 - 64 precision
scale

not null

FLOAT(4) REAL 2 4 not null

FLOAT(8) DOUBLE 2 8 not null

GUID UNIQUEIDENTIFIER 27 16 not null

INTEGER(1) TINYINT 1 1 not null

INTEGER(2) SMALLINT 1 2 not null

INTEGER(4) INTEGER 1 4 not null

INTEGER(8) BIGINT 1 8 not null

MONEY DECIMAL 6 1 - 64 precision
scale

not null

NUMERIC NUMERIC 8 1 - 37 precision
scale

not null

4

NUMERICSA NUMERICSA 18 1 - 37 precision
scale

not null

4

NUMERICSLB NUMERICSLB 28 1 - 37 precision
scale

not null

4

NUMERICSLS NUMERICSLS 29 1 - 37 precision
scale

not null

4

NUMERICSTB NUMERICSTB 31 1 - 37 precision
scale

not null

4

Transactional Type
(Size)

Relational Type Metadata
Type Code

Value

Size
(bytes)

Create/Add

Parameters1
Data
Type
Notes

417

NUMERICSTS NUMERICSTS 17 1 - 37 precision
scale

not null

4

STRING BINARY 0 1 -
8,000

size
not null

case
insensitive

2, 3

STRING CHAR 0 1 -
8,000

size
not null

case
insensitive

1

TIME TIME 4 4 not null

TIMESTAMP TIMESTAMP 20 8 not null

TIMESTAMP2 TIMESTAMP2 34 8 not null 11

UNSIGNED(1) BINARY UTINYINT 14 1 not null

UNSIGNED(2) BINARY USMALLINT 14 2 not null

UNSIGNED(4) BINARY UINTEGER 14 4 not null

UNSIGNED(8) BINARY UBIGINT 14 8 not null

WSTRING NCHAR 25 2 -
8,000

size 1 - 4,000
not null

case
insensitive

12, 13

WZSTRING NVARCHAR 26 2 -
8,000

size 1 - 4,000
not null

case
insensitive

12, 14

ZSTRING VARCHAR 11 1 -
8,000

size
not null

case
insensitive

5

none BIT 16 1 bit 6, 8

LOGICAL(1) BIT 7 1 bit 9

LOGICAL(2) SMALLINT 1 2 not null

Transactional Type
(Size)

Relational Type Metadata
Type Code

Value

Size
(bytes)

Create/Add

Parameters1
Data
Type
Notes

418

Data Type Ranges

The following table lists the value ranges for the Zen data types and their increments where
appropriate.

1 The required parameters are precision and size. The optional parameters are case insensitive, not null,
and scale.
2 "n/a" stands for "not applicable"

Data Type Notes

1. Padded with spaces

2. Flag set in FIELD.DDF to tell SQL to use binary. See also COLUMNMAP Flags in Distributed
Tuning Interface Guide and Column Flags in Distributed Tuning Objects Guide.

3. Padded with binary zeros

4. Cannot be used as variable or in stored procedures

5. Not padded

6. Cannot be indexed

7. Flag set in FIELD.DDF to tell SQL to use NLONGVARCHAR. See also COLUMNMAP Flags in
Distributed Tuning Interface Guide and Column Flags in Distributed Tuning Objects Guide.

8. TRUEBITCREATE must be set to on (the default).

9. TRUEBITCREATE must be set to off.

10. Type code 30 is not a MicroKernel Engine code. It is the identifier for DATETIME within the
Relational Engine metadata.

11. Sorts like UBIGINT.

12. For Unicode types, the column size represents the number of 2-byte UCS-2 units.

13. Padded with Unicode spaces (2 bytes)

14. Padded with Unicode NUL characters (2 bytes, binary zero)

Relational Data Type Valid Value Range

AUTOTIMESTAMP 1970-01-01 00:00:00.000000000 to 2554-07-21 23:34:33.709551615

Initializing with zero causes the insert or the next update to use the current
time and date.

BFLOAT4 -1.70141172e+38 – +1.70141173e+38

Smallest value by which you can increment or decrement a BFLOAT4 is
2.938736e-39

Transactional Type
(Size)

Relational Type Metadata
Type Code

Value

Size
(bytes)

Create/Add

Parameters1
Data
Type
Notes

419

BFLOAT8 -1.70141173e+38 – +1.70141173e+38

Smallest value by which you can increment or decrement a BFLOAT8 is
2.93873588e-39.

BIGIDENTITY -9223372036854775808 – +9223372036854775807

BIGINT -9223372036854775808 – +9223372036854775807

BINARY Range not applicable

BIT Range not applicable

CHAR Range not applicable

CURRENCY -922337203685477.5808 – +922337203685477.5807

DATE 01-01-0001 to 12-31-9999

Note: 00-00-0000 is not a valid value. If you have legacy data that contains a
00-00-0000 value of type DATE, you can query it by using "is null" in the
query.

DATETIME 1753-01-01 00:00:00.000 to 9999-12-31 23:59:59.999, to an accuracy of 1
millisecond

DECIMAL Depends on the length and number of decimal places

DOUBLE -1.7976931348623157e+308 – +1.7976931348623157e+308

The smallest value by which to increment or decrement a DOUBLE is
2.2250738585072014e-308.

FLOAT -1.7976931348623157E+308 – +1.7976931348623157E+308

Smallest value by which you can increment or decrement a FLOAT is
2.2250738585072014e-308.

IDENTITY -2147483648 – +2147483647

INTEGER -2147483648 – +2147483647

LOGICAL Range not applicable

LONGVARBINARY Range not applicable

LONGVARCHAR Range not applicable

MONEY -99999999999999999.99 – +99999999999999999.99

NCHAR Range not applicable

NLONGVARCHAR Range not applicable

Relational Data Type Valid Value Range

420

NUMERIC Based on length and number of decimal places. See Precision and Scale of
Decimal Data Types.

NUMERICSA Based on length and number of decimal places. See Precision and Scale of
Decimal Data Types.

NUMERICSLB Based on length and number of decimal places. See Precision and Scale of
Decimal Data Types.

NUMERICSLS Based on length and number of decimal places. See Precision and Scale of
Decimal Data Types.

NUMERICSTB Based on length and number of decimal places. See Precision and Scale of
Decimal Data Types.

NUMERICSTS Based on length and number of decimal places. See Precision and Scale of
Decimal Data Types.

NVARCHAR Range not applicable

REAL -3.4028234E+38 – +3.4028234e+38

Smallest value by which you can increment or decrement a REAL value is
1.4E-45.

SMALLIDENTITY -32768 – +32767

SMALLINT -32768 – +32767

TIME 00:00:00 – 23:59:59

TIMESTAMP 0001-01-01 00:00:00.0000000 – 9999-12-31 23:59:59.9999999 UTC

Scale can vary. See Scale of Time Stamp Data Types and Returned Function
Values.

TIMESTAMP2 1970-01-01 00:00:00.000000000 – 2554-07-21 23:34:33.709551615 UTC

Scale can vary. See Scale of Time Stamp Data Types and Returned Function
Values.

TINYINT -128 – +127

UBIGINT 0 – 18446744073709551615

UINTEGER 0 – 4294967295

UNIQUEIDENTIFIER Range not applicable

USMALLINT 0 – 65535

UTINYINT 0 – 255

Relational Data Type Valid Value Range

421

Operator Precedence

Expressions may have multiple operators, which are performed in order of precedence. Zen uses
the following order, with level 1 highest and level 9 lowest. A higher operator is evaluated before
a lower one.

1. + (positive), - (negative), ~ (bitwise NOT)

2. * (multiply), / (divide), % (modulo)

3. + (add), (+ concatenate), - (subtract), & (bitwise AND)

4. =, >, <, >=, <=, <>, != (these comparison operators mean the following, respectively:
equals, greater than, less than, greater than equal to, less than equal to, not equal, not equal)

5. ^ (bitwise Exclusive OR), | (bitwise OR)

6. NOT

7. AND

8. ALL, ANY, BETWEEN, IN, LIKE, OR, SOME

9. = (assignment)

In an expression, operators with equal precedence are evaluated left to right. For example, in SET
:Counter = 12 / 4 * 7, the division is evaluated before the multiplication to return a result of 21.

Parentheses

You can use parentheses to override the precedence of operators in an expression. Everything
within the parentheses is evaluated first to yield a value that is then used by an operator outside of
the parentheses. For example, in the following statement, the division operator would ordinarily
be evaluated before the addition operator. The result would be 12 (that is, 8 + 4). However, the
addition is performed first because of the parentheses, so the procedure returns a result of 4.

SET :Counter = 32 / (4 + 4)

If an expression has nested parentheses, the deepest nested expression is evaluated first, followed
by the next deepest, and so on. For example, in the following statement, the addition is performed
first, then the multiplication, then the subtraction, and finally the division. The result is a value of 5.

VARCHAR Range not applicable

Relational Data Type Valid Value Range

422

SET :Counter = 100 / (40 - (2 * (5 + 5)));

Data Type Precedence

Data type precedence determines the result when two expressions of different types are combined
by an operator. The data type with lower precedence is converted to the data type with higher
precedence.

Note: Operations on incompatible data types return errors, such as adding an INTEGER to a
CHAR.

Numeric Data Types

Relational numeric data types use the following precedence:

1. DOUBLE, FLOAT, BFLOAT8 (highest)

2. REAL, BFLOAT4

3. DECIMAL, NUMERIC, NUMERICSA, NUMERICSTS

4. NUMERICSLS, NUMERICSTB, NUMERICSLB

5. CURRENCY, MONEY

6. BIGINT, UBIGINT, BIGIDENTITY

7. INTEGER, UINTEGER, IDENTITY

8. SMALLINT, USMALLINT, SMALLIDENTITY

9. TINYINT, UTINYINT

10. BIT (lowest)

Character Data Types

Relational character data types use the following precedence:

1. NLONGVARCHAR

2. NCHAR, NVARCHAR

3. LONGVARCHAR

4. CHAR, VARCHAR

423

If you concatenate an NCHAR or NVARCHAR with a NLONGVARCHAR, the result is an
NLONGVARCHAR.

If you concatenate an NCHAR with a LONGVARCHAR, the result is an NLONGVARCHAR.

If you concatenate a CHAR or VARCHAR with a LONGVARCHAR, the result is a
LONGVARCHAR.

If you concatenate a CHAR with a VARCHAR, the result is the type of the first data type in the
concatenation, moving left to right. For example, if c1 is a CHAR and c2 is a VARCHAR, the
result of (c1 + c2) is a CHAR. The result of (c2 + c1) is a VARCHAR.

Data Types with No Precedence

The BINARY, LONGVARBINARY, and UNIQUEIDENTIFIER data types have no precedence
because operations to combine them are not allowed.

No date and time data type may be combined with any other date and time data type.

Precision and Scale of Decimal Data Types

Precision is the number of digits in a number. Scale is the number of digits to the right of the
decimal point in a number. The number 909.777 has a precision of 6 and a scale of 3, for instance.

The maximum precision of NUMERIC, NUMERICSA, and DECIMAL data types is 64. The
maximum precision of NUMERICSTS and NUMERICSLS is 63 because it reserves one byte for
the plus or minus sign.

Precision and scale are fixed for all numeric data types except DECIMAL. An arithmetic
operation on two expressions of the same data type results in the same data type, with the
precision and scale for that type. If the operation involves expressions with different data types,
the precedence rules determine the data type of the result. The result has the precision and scale
defined for its data type.

The result is a DECIMAL for operations under the following conditions:

• Both expressions are DECIMAL.

• One expression is DECIMAL and the other is a data type with a precedence lower than
DECIMAL.

424

The following table defines how precision and scale are derived when the result of an operation is
of data type DECIMAL. Exp stands for expression, s stands for scale, and p stands for precision.

For example, if you add or subtract two fields defined as DECIMAL(8,2) and DECIMAL(7,4),
the resulting field is DECIMAL(11,4).

Scale of Time Stamp Data Types and Returned Function Values

In time stamp data types, scale is the number of digits to the right of the decimal point in the
fractional second part of the time stamp. For instance, 2019-12-31 23:59:59.782 has a scale of 3,
or milliseconds.

Starting in Zen 14.10, you can choose the scale for the TIMESTAMP and TIMESTAMP2 data
types. For example, the following SQL script creates a table with four columns, the first two using
TIMESTAMP and TIMESTAMP2 with default scale, and the second two setting the scale to one
decimal point:

create table times
(ts timestamp default sysdatetime(),
ts2 timestamp2 default sysdatetime(),
ts_1 timestamp(1) default sysdatetime()
ts2_1 timestamp2(1) default sysdatetime());

insert into times default values;
select * from times;

The SELECT statement returns the following row:

 ts ts2 ts-1 ts2-1
======================= ============================= ===================== =====================
2019-12-10 10:25:39.555 2019-12-10 10:25:39.555080200 2019-12-10 10:25:39.5 2019-12-10 10:25:39.5

Note that shortening the scale does not round fractional seconds.

Operation Precision Scale

Addition (exp1 + exp2) max(s1, s2) + max(p1 - s1, p2 - s2) +1 max(s1, s2)

Subtraction (exp1 - exp2) max(s1, s2) + max(p1 - s1, p2 - s2) +1 max(s1, s2)

Multiplication (exp1 * exp2) p1 + p2 + 1 s1 + s2

Division (exp1 / exp2) p1 - s1 + s2 + max(6, s1 + p2 +1) max(6, s1 + p2 +1)

UNION (exp1 UNION exp2) max(s1, s2) + max(p1 - s1, p2 - s2) +1 max(s1, s2)

425

The following table lists Zen data types that support date and time stamps with scale.

The following table lists Zen scalar functions that return date and time stamp values with scale.

If the time stamp returned by a function has smaller scale than the data type of the column to
which it is written, then trailing decimal places are filled with zeros. For example, the value 2019-
12-10 14:23:46.292000000 is returned by CURRENT_TIMESTAMP() in a TIMESTAMP2
column.

Truncation

If your application runs against different SQL DBMS products, you may encounter the following
issues pertaining to truncation.

In certain situations, some SQL DBMS products prevent insertion of data because of truncation,
while Zen allows the insertion of that same data. Additionally, reporting of
SQL_SUCCESS_WITH_INFO and the information being truncated differs in Zen from some
SQL DMBS products in certain scenarios based on when the message is reported.

Data Type Format with Default Scale Scale

AUTOTIMESTAMP yyyy-mm-dd hh:mm:ss.nnnnnnnnn (nanoseconds) 9

DATETIME yyyy-mm-dd hh:mm:ss.nnn (milliseconds) 3

TIMESTAMP yyyy-mm-dd hh:mm:ss.nnn (milliseconds) 3

TIMESTAMP(n) yyyy-mm-dd hh:mm:ss.nnnnnnn (none up to
septaseconds)

0–7

TIMESTAMP2 yyyy-mm-dd hh:mm:ss.nnnnnnnnn (nanoseconds) 9

TIMESTAMP2(n) yyyy-mm-dd hh:mm:ss.nnnnnnnnn (none up to
nanoseconds)

0–9

Function Format Scale

CURRENT_TIMESTAMP() yyyy-mm-dd hh:mm:ss.nnn (milliseconds) 3

NOW() yyyy-mm-dd hh:mm:ss.nnn (milliseconds) 3

SYSDATETIME() yyyy-mm-dd hh:mm:ss.nnnnnnnnn (nanoseconds) 9

SYSUTCDATETIME() yyyy-mm-dd hh:mm:ss.nnnnnnnnn (nanoseconds) 9

426

Numeric string data and true numeric data are always truncated by Zen, whereas other SQL
DBMS products round the data. For example, if you have a numeric string or true numeric value
of 123.457 and you insert it into a 6-byte string column or precision 2 numeric column, Zen
always inserts 123.45. Other DBMS products, by comparison, may insert a value of 123.46.

Notes on Data Types
This topic covers various behaviors and key information regarding the available data types.

CHAR, NCHAR, VARCHAR, NVARCHAR, LONGVARCHAR, and
NLONGVARCHAR
• CHAR and NCHAR columns are padded with trailing blanks. These blanks are not counted in

comparison operations (LIKE and =). However, in the LIKE case, if a space is explicitly
entered in the query (like 'abc %'), then the space before the wild card is counted. In this
example you are looking for 'abc<space><any other character>'.

• The CHAR types store characters using the database code page, that is, using one or more
bytes per character. The NCHAR types store characters as UCS-2 two-byte values.

• VARCHAR, NVARCHAR, LONGVARCHAR, and NLONGVARCHAR values are not
padded with trailing blanks. The significant data is terminated with a NULL character.

• Trailing blanks are significant in VARCHAR and NVARCHAR comparison operations. For
example, c1 = 'Test ' does not find rows where c1 is a VARCHAR type containing the value
'Test'.

See also Limitations on LONGVARCHAR, NLONGVARCHAR and LONGVARBINARY.

BINARY and LONGVARBINARY
• BINARY columns are padded with trailing zeros.

• LONGVARBINARY columns are not padded with trailing blanks.

• The database engine does not compare LONGVARBINARY columns. The database engine
does compare fixed-length BINARY data.

Zen supports multiple LONGVARCHAR and LONGVARBINARY columns per table. The data is
stored according to the offset in the variable length portion of the record. The variable length
portion of data can vary from the column order of the data depending on how the data is
manipulated. Consider the following example:

427

CREATE TABLE BlobDataTest
(
Nbr UINT, // Fixed record (Type 14)
Clob1 LONGVARCHAR, // Fixed record (Type 21)
Clob2 LONGVARCHAR, // Fixed record (Type 21)
Blob1 LONGVARBINARY, // Fixed record (Type 21)
)

On disk, the physical record would normally look like this:

[Fixed Data (Nbr, Clob1header, Clob2header, Blob1header)][ClobData1][ClobData2][BlobData1]

Now alter column Nbr to a LONGVARCHAR column:

ALTER TABLE BlobDataTest ALTER Nbr LONGVARCHAR

On disk, the physical record now looks like this:

[Fixed Data (Nbrheader, Clob1header, Clob2header, Blob1header)][ClobData1][ClobData2][BlobData1]
[NbrClobData]

As you can see, the variable length portion of the data is not in the column order for the existing
data.

For newly inserted records, however, the variable length portion of the data is in the column order
for the existing data. This assumes that all columns have data assigned (the columns are not
NULL).

[Fixed Data (Nbrheader, Clob1header, Clob2header, Blob1header)][NbrClobData][ClobData1][ClobData2]
[BlobData1]

See also Limitations on LONGVARCHAR, NLONGVARCHAR and LONGVARBINARY.

Limitations on LONGVARCHAR, NLONGVARCHAR and
LONGVARBINARY

The following limitations apply to the LONGVARCHAR and LONGVARBINARY data types:

• The LIKE predicate operates on the first 65500 bytes of the column data.

• All other predicates operate on the first 256 bytes of the column data.

• SELECT statements with GROUP BY, DISTINCT, and ORDER BY return all the data but
only order on the first 256 bytes of the column data.

• Though the maximum amount of data that can be inserted into a LONGVARCHAR/
LONGVARBINARY column is 2GB, using a literal in an INSERT statement reduces this
amount to 15000 bytes. You can insert more than 15000 bytes by using a parameterized insert.

• The maximum number of bytes returned in a single call by Zen for a LONGVARCHAR,
NLONGVARCHAR or LONGVARBINARY columns depends on the access method used by

428

the application. In most cases, the limit is 65500 bytes. For more information, see the
documentation for your specific development environment.

DATETIME

The DATETIME data type represents a date and time value. This type is stored internally as two
4-byte integers. The first four bytes store the number of days before or after the base date of
January 1, 1900. The other four bytes store the time of day, represented as the number of
milliseconds after midnight.

The DATETIME data type can be indexed. The accuracy of DATETIME is 1 millisecond.

DATETIME is a relational data type only. No corresponding Btrieve data type is available.

Format of DATETIME

The format for DATETIME is YYYY-MM-DD HH:MM:SS.mmm. If you need to truncate the
millisecond portion, the CONVERT function offers parameter to do so. The following table gives
the data components and their range of values for DATETIME.

Compatibility of Date and Time Data Types

If you need to perform addition or subtraction involving date and time data types, we recommend
using the scalar functions TIMESTAMPADD(), DATEADD(), TIMESTAMPDIFF(), and
DATEDIFF(). The use of these functions is required if your expression includes the newer
AUTOTIMESTAMP and TIMESTAMP2 data types. Other data types can in some cases be used
directly in expressions with operators. For example, the following statements are valid:

SELECT "Start_Date" + 5 FROM "Class"
SELECT "Finish_Time" – "Start_Time" FROM "Class"

Component Valid Values

Year (YYYY) 1753 to 9999

Month (MM) 01 to 12

Day (DD) 01 to 31

Hour (HH) 00 to 23

Minute (MM) 00 to 59

Second (SS) 00 to 59

Millisecond (mmm) 000 to 999

429

SELECT current_timestamp() – "Log" FROM "Billing"

Some queries may return "incompatible types" or "error in expression" messages if you try to add
or subtract values that are not compatible, or if the result would not be valid. For example, the
following statements return such errors:

SELECT "Start_Date" + 5.0 FROM "Class"
SELECT "Start_Time" + "Finish_Time" FROM "Class"
SELECT current_timestamp() + "Log" FROM "Billing"

The CONVERT and CAST functions can be used with DATE, DATETIME, TIME, and
TIMESTAMP in the ways shown in the following tables.

Note: The CONVERT function contains an optional parameter that allows you to truncate the
milliseconds portion of DATETIME. See the Convert function under Conversion Functions.

CONVERT From Permitted Resultant Data Type (to)

AUTOTIMESTAMP SQL_CHAR, SQL_DATE, SQL_TIME, SQL_TIMESTAMP,
SQL_VARCHAR

DATE SQL_CHAR, SQL_DATE, SQL_TIMESTAMP, SQL_VARCHAR

DATETIME Any of the supported CONVERT data types except for GUID, BINARY,
and LONGVARBINARY. The type parameter for CONVERT requires a
prefix of "SQL_." See CONVERT (exp, type [, style]).

TIME SQL_CHAR, SQL_TIME, SQL_TIMESTAMP, SQL_VARCHAR

TIMESTAMP SQL_CHAR, SQL_DATE, SQL_TIME, SQL_TIMESTAMP,
SQL_VARCHAR

TIMESTAMP2 SQL_CHAR, SQL_DATE, SQL_TIME, SQL_TIMESTAMP,
SQL_VARCHAR

VARCHAR SQL_CHAR, SQL_DATE, SQL_TIME, SQL_TIMESTAMP,
SQL_VARCHAR

CAST From Permitted Resultant Data Type (to)

AUTOTIMESTAMP DATE, DATETIME, TIME, TIMESTAMP, TIMESTAMP2, VARCHAR

DATE DATE, DATETIME, TIMESTAMP, VARCHAR

DATETIME Any of the relational data types

TIME TIME, DATETIME, TIMESTAMP, TIMESTAMP2, VARCHAR

TIMESTAMP DATE, DATETIME, TIME, TIMESTAMP, TIMESTAMP2, VARCHAR

430

UNIQUEIDENTIFIER

The UNIQUEIDENTIFIER data type is a 16-byte binary value known as a globally unique
identifier (GUID). A GUID is useful when a row must be unique among other rows.

UNIQUEIDENTIFIER requires a file format of 9.5 or higher.

You can initialize a column or local variable of UNIQUEIDENTIFIER the following ways:

• By using the NEWID() scalar function. See NEWID().

• By providing a quoted string in the form 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' in which
each x is a hexadecimal digit in the range 0-9 or A-F. For example, '1129619D-772C-AAAB-
B221-00FF00FF0099' is a valid UNIQUEIDENTIFIER value.

If you provide a quoted string, all 32 digits are required. The database engine does not pad a
partial string.

You may use only the following comparison operators with UNIQUEIDENTIFIER values:

Note that ordering is not implemented by comparing the bit patterns of the two values.

TIMESTAMP2 DATE, DATETIME, TIME, TIMESTAMP, TIMESTAMP2, VARCHAR

VARCHAR DATE, DATETIME, TIME, TIMESTAMP, TIMESTAMP2

Operator Meaning

= Equals

<> or != Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

IS NULL The value is NULL.

IS NOT NULL The value is not NULL.

CAST From Permitted Resultant Data Type (to)

431

Declaring Variables

You may declare variables of the UNIQUEIDENTIFIER data type and set the variable value with
the SET statement.

DECLARE :Cust_ID UNIQUEIDENTIFIER DEFAULT NEWID()
DECLARE :ISO_ID uniqueidentifier
SET :ISO_ID = '1129619D-772C-AAAB-B221-00FF00FF0099'

Converting UNIQUEIDENTIFIER to Another Data Type

The UNIQUEIDENTIFER can be converted with the CAST or CONVERT scalar functions to
any of the following data types:

• CHAR

• LONGVARCHAR

• VARCHAR

For conversion examples, see Conversion Functions.

Representation of Infinity

When Zen is required by an application to represent infinity, it can do so in either a 4-byte (C float
type) or 8-byte (C double type) form, and in either a hexadecimal or character representation, as
shown in the following table.

Value Float
Hexadecimal

Float
Character

Double Hexadecimal Double
Character

Maximum Positive 0x7FEFFFFFFFFFFFFF

Maximum Negative 0xFFEFFFFFFFFFFFFF

Infinity Positive 0x7F800000 1E999 0x7FF0000000000000 1E999

Infinity Negative 0xFF800000 -1E999 0xFFF0000000000000 -1E999

432

Legacy Data Types
Some older (legacy) data types are not supported in the current release of Zen. The following
table shows the new data type to use in place of the legacy data type.

Existing databases that use these data types are supported and function correctly. To support these
data types in a new database, execute a SET LEGACYTYPESALLOWED=ON statement before
a CREATE TABLE or ALTER TABLE statement. Afterward, execute a SET
LEGACYTYPESALLOWED=OFF statement or let the SET statement expire with the SQL
session. For more information, see SET LEGACYTYPESALLOWED.

Btrieve Key Data Types
This topic discusses the Btrieve data types that can be indexed (key types). Internally, the
MicroKernel compares string keys on a byte-by-byte basis, from left to right. By default, the
MicroKernel sorts string keys according to their ASCII value. You may, however, define string
keys to be case insensitive or to use an alternate collating sequence (ACS).

The MicroKernel compares unsigned binary keys one word at a time. It compares these keys from
right to left because the Intel 8086 family of processors reverses the high and low bytes in an
integer.

If a particular data type is available in more than one size (for example, both 4- and 8-byte
FLOAT values are allowed), the Key Length parameter (used in the creation of a new key) defines
the size that will be expected for all values of that particular key. Any attempt to define a key
using a key length that is not allowed results in a status 29 (Invalid Key Length).

Legacy Type Type Code Replaced by Type Code

LOGICAL(1) 7 BIT 16

LOGICAL(2) 7 SMALLINT 14

LSTRING 10 VARCHAR 11

LVAR 13 LONGVARCHAR 21

NOTE 12 LONGVARCHAR 21

433

The following table lists the key types and their associated codes. Following the table is a
discussion of the internal storage formats for each key type.

AUTOINCREMENT

The AUTOINCREMENT key type is a signed Intel integer that can be either 2, 4, or 8 bytes long.
Internally, autoincrement keys are stored in Intel binary integer format, with the high-order and
low-order bytes reversed within a word. The MicroKernel sorts autoincrement keys by their
absolute (positive) values, comparing the values stored in different records a word at a time from
right to left. Autoincrement keys may be used to automatically assign the next highest value when
a record is inserted into a file. Because the values are sorted by absolute value, the number of
possible records is roughly half what you would expect given that the data type is signed.

Values that have been deleted from the file are not reused automatically. If you indicate that you
want the database engine to assign the next value by entering a zero (0) value in an insert or
update, the database simply finds the highest number, adds 1, and inserts the resulting value.

Data Type Type
Code

Data Type Type
Code

AUTOINCREMENT 15 NUMERIC 8

AUTOTIMESTAMP 32 NUMERICSA 18

BFLOAT 9 NUMERICSLB 28

STRING 0 NUMERICSLS 29

CURRENCY 19 NUMERICSTB 31

DATE 3 NUMERICSTS 17

DECIMAL 5 TIME 4

FLOAT 2 TIMESTAMP 20

GUID 27 TIMESTAMP2 34

INTEGER 1 UNSIGNED BINARY 14

LOGICAL 7 WSTRING 25

LSTRING 10 WZSTRING 26

MONEY 6 ZSTRING 11

434

You can initialize the value of a field in all or some records to zero and later add an index of type
AUTOINCREMENT. This feature allows you to prepare for an autoincrement key without
actually building the index until it is needed.

When you add the index, the MicroKernel changes the zero values in each field appropriately,
beginning its numbering with a value equal to the greatest value currently defined in the field,
plus one. If nonzero values exist in the field, the MicroKernel does not alter them. However, the
MicroKernel returns an error status code if nonzero duplicate values exist in the field.

The MicroKernel maintains the highest previously used autoincrement value associated with each
open file containing an autoincrement key. This value is established and increments only when an
INSERT operation occurs for a record with ASCII zeros in the autoincrement field. The value is
used by all clients so that concurrent changes can take place, taking advantage of key page
concurrency.

The next autoincrement value for a file is raised whenever any INSERT occurs that uses the
previous autoincrement value. This happens whether or not the INSERT is in a transaction or the
change is committed.

However, this value may be lowered during an INSERT if all of the following are true:

• The highest autoincrement value found in the key is lower than the next autoincrement value
for the file.

• No other client has a pending transaction affecting the page that contains the highest
autoincrement value.

• The key page containing the highest autoincrement value is not already pending by the client
doing the INSERT.

In other words, only the first INSERT within a transaction can lower the next available
autoincrement value. After that, the next available autoincrement value simply keeps
incrementing.

An example helps clarify how an autoincrement value may be lowered. Assume an autoincrement
file exists with records 1, 2, 3, and 4. The next available autoincrement value is 5.

Client1 begins a transaction and inserts two new records, raising the next available autoincrement
value to 7. (Client1 gets values 5 and 6). Client2 begins a transaction and also inserts two new
records. This raises the next available autoincrement value to 9. (Client 2 gets values 7 and 8).

Client1 the deletes records 4, 5, and 6. The next autoincrement value remains the same, since it is
adjusted only on INSERT. Client1 then commits. The committed version of the file now contains
records 1, 2, and 3.

435

For Client2, the file contains records 1, 2, 3, 7, and 8 (7 and 8 are not yet committed). Client2 then
inserts another record, which becomes record 9. The next available autoincrement value is raised
to 10. Client2 deletes records 3, 7, 8, and 9. For Client2, the file now contains only the committed
records 1 and 2.

Next Client2 inserts another record, which becomes record 10. The next available autoincrement
value is raised to 11. The next autoincrement value is not lowered to 3 since the page containing
the change has other changes pending on it.

Client2 then aborts the transaction. The committed version of the file now contains records 1, 2,
and 3, but the next available autoincrement value is still 11.

If either client inserts another record, whether or not in a transaction, the next available
autoincrement value is lowered to 4. This occurs because all of the conditions required for
lowering the value are true.

If a resulting autoincrement value is out of range, a Status Code 5 results. The database engine
does not attempt to "wrap" the values and start again from zero. You may, however, insert unused
values directly if you know of gaps in the autoincrement sequence where a previously inserted
value has been deleted.

Restrictions

The following restrictions apply to keys of type AUTOINCREMENT:

• The key must be defined as unique.

• The key cannot be segmented. However, an autoincrement key can be included as an integer
segment of another key, as long as the autoincrement key has been defined as a separate,
single key first, and the autoincrement key number is lower than the segmented key number.

• The key cannot overlap another key.

• All keys must be ascending.

The MicroKernel treats autoincrement key values as follows when you insert records into a file:

• If you specify a value of binary 0 for the autoincrement key, the MicroKernel assigns a value
to the key based on the following criteria:

• If you are inserting the first record in the file, the MicroKernel assigns the value of 1 to the
autoincrement key.

• If records already exist in the file, the MicroKernel assigns the key a value that is one
number higher than the highest existing absolute value in the file.

436

• If you specify a positive, nonzero value for the autoincrement key, the MicroKernel inserts the
record into the file and uses the specified value as the key value. If a record containing that
value already exists in the file, the MicroKernel returns an error status code and does not
insert the record.

AUTOTIMESTAMP

The AUTOTIMESTAMP key type is an 8-byte unsigned integer for tracking time in nanoseconds
based on the Unix epoch. A value of zero prompts the database engine to replace it automatically
with the current time when a new record is inserted or the first time an existing record is updated.
A nonzero value is allowed and is interpreted as a number of nanoseconds since 1970 UTC.

This key type is available starting in Zen v14 for file formats 9.5 and 13.0. Older database engines
that attempt to open a file that has a record that uses this type will return status code 30 for an
unrecognized Microkernel file.

The range of AUTOTIMESTAMP values is 1970-01-01 00:00:00.000000000 to 2554-07-21
23:34:33.709551615.

Current Linux and Android system clocks provide true nanosecond resolution. On Windows, the

highest resolution is septaseconds (10-7 second). When an AUTOTIMESTAMP key is written on
systems that do not support nanosecond resolution, the value is padded with zeros. Accordingly,
inserts or updates on these systems without nanosecond resolution can result in duplicate values.
However, if the index is set to be unique and the database engine detects a match with the most
recent previously generated time stamp, then it adds 1 nanosecond. Duplication can also result
from a manually inserted time stamp value or from the resetting of the system clock. In both of
these cases, Insert (2) or Update (3) fails with status code 5.

Inserts and Updates Using AUTOTIMESTAMP

Insert (2) and Update (3) operations handle a zero value for an AUTOTIMESTAMP key by
retrieving the current time stamp from the system clock on the database engine server. The engine
then uses this value in the current record for every AUTOTIMESTAMP key that contains a zero.

For Insert Extended (40), the engine retrieves a new time stamp value for each specified record in
the operation. If the AUTOTIMESTAMP key is unique, the engine avoids time stamp duplication
among the records by incrementing the generated value by 1 nanosecond if it matches a
previously generated time stamp within the operation. As with Insert (2), the time stamp
generated for each record is used for all AUTOTIMESTAMP keys in that record.

When an Update Chunk (53) operation attempts to write to the fixed portion of a record that
includes an AUTOTIMESTAMP key, the engine does not retrieve a new time stamp. Instead, the

437

provided key value is accepted as is and placed in the record. Therefore, using an Update Chunk
operation with a zero value to update an AUTOTIMESTAMP key results in storing the zero value
in the record, which is then interpreted as 1970 UTC. If you wish to update the key with an
automatically generated time stamp, use the Update (3) operation to update the fixed portion of a
record.

Restrictions

The following restrictions apply when you create a key of type AUTOTIMESTAMP:

• The NOCASE flag cannot be applied to the key.

• NULL_KEY and MANUAL_KEY are not allowed, since the time stamp cannot be excluded
from the index.

Usage in Function Executor and Maintenance Tools

The use of AUTOTIMESTAMP keys in Function Executor or the Maintenance tool is similar to
AUTOINCREMENT keys. For the files that use them, the key type is listed as Atstamp, which
also appears in the output of butil <filename> -stat and is used for the key type in the
description file for a butil -create command.

BFLOAT

The BFLOAT key type is a single or double-precision real number. A single-precision real
number is stored with a 23-bit mantissa, an 8-bit exponent biased by 128, and a sign bit. The
internal layout for a 4-byte float is as follows:

The representation of a double-precision real number is the same as that for a single-precision real
number, except that the mantissa is 55 bits instead of 23 bits. The least significant 32 bits are
stored in bytes 0 through 3.

The BFLOAT type is commonly used in legacy BASIC applications. Microsoft refers to this data
type as MBF (Microsoft Binary Format), and no longer supports this type in the Visual Basic
environment. New database definitions should use FLOAT rather than BFLOAT.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

8-bit exponent

Sign

23-bit mantissa

438

STRING

The STRING key type is a sequence of characters ordered from left to right. Each character is
represented in ASCII format in a single byte, except when the MicroKernel is determining
whether a key value is null. STRING data is expected to be padded with blanks to the full size of
the key.

CURRENCY

The CURRENCY key type represents an 8-byte signed quantity, sorted and stored in Intel binary
integer format. Therefore, its internal representation is the same as an 8-byte INTEGER data type.
The CURRENCY data type has an implied four digit scale of decimal places, which represents
the fractional component of the currency data value.

DATE

The DATE key type is stored internally as a 4-byte value. The day and the month are each stored
in 1-byte binary format. The year is a 2-byte binary number that represents the entire year value.
The MicroKernel places the day into the first byte, the month into the second byte, and the year
into a two-byte word following the month.

An example of C structure used for date fields would be:

TYPE dateField {
char day;
char month;
integer year;
}

The year portion of a date field is expected to be set to the integer representation of the entire year.
For example, 2,001 for the year 2001.

439

DECIMAL

The DECIMAL key type is stored internally as a packed decimal number with two decimal digits
per byte. The internal representation for an n-byte DECIMAL field is as follows:

The decimal point for DECIMAL is implied. No decimal point is stored in the DECIMAL field.
Your application is responsible for tracking the location of the decimal point for the value in a
DECIMAL field. All values for a DECIMAL key type must have the same number of decimal
places for the database engine to collate the key correctly. The DECIMAL type is commonly used
in COBOL applications.

An eight-byte decimal can hold 15 digits plus the sign. A ten-byte decimal can hold 19 digits plus
the sign. The decimal value is expected to be left-padded with zeros.

The sign nibble is either 0xF or 0xC for positive numbers and 0xD for negative numbers. By
default, the Relational Engine and the SDK access methods that use it always write 0xF as the
positive sign nibble for a DECIMAL. They can interpret both 0xF and 0xC as being positive on a
read operation.

A setting in the registry (Windows Registry and Zen Registry) controls what the database engine
uses for the positive sign nibble for a DECIMAL. If you need to change the default positive sign
nibble to 0xC, edit the registry as explained below.

Windows

In Registry Editor, change the value of CommonCOBOLDecimalSign to yes for the following
key:

HKEY_LOCAL_MACHINE\SOFTWARE\Actian\Zen\SQL Relational Engine

In most Windows systems, the key is under
HKEY_LOCAL_MACHINE\SOFTWARE\Actian\Zen. However, its location below
HKEY_LOCAL_MACHINE\SOFTWARE can vary depending on the operating system.

Caution! Editing the registry is an advanced procedure. If done improperly, the editing could
cause your operating system not to boot. If necessary, obtain the services of a qualified technician
to perform the editing. Actian Corporation does not accept responsibility for a damaged registry.

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

byte 0 byte 1 byte n-1

digit
2n-1

sign
nibble

digit
1

digit
2

digit
3

digit
4

. . .

. . .

. . .

440

Linux

For Linux 32-bit operating systems, run the psregedit utility as follows:

./psregedit -set -key PS_HKEY_CONFIG/SOFTWARE/Actian/Zen/"SQL Relational Engine" -value
"CommonCOBOLDecimalSign" -type PS_REG_STR "YES"

For Linux 64-bit operating systems, run the psregedit utility as follows:

./psregedit -set -key PS_HKEY_CONFIG_64/SOFTWARE/Actian/Zen/"SQL Relational Engine" -value
"CommonCOBOLDecimalSign" -type PS_REG_STR "YES"

See also psregedit in Zen User’s Guide.

FLOAT

Caution! Precision beyond that supported by the C-language definitions for the FLOAT (4-byte)
or DOUBLE (8-byte) data type will be lost. If you require precision to many decimal points,
consider using the DECIMAL type.

The FLOAT key type is consistent with the IEEE standard for single and double-precision real
numbers. The internal format for a 4-byte FLOAT consists of a 23-bit mantissa, an 8-bit exponent
biased by 127, and a sign bit, as follows:

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

8-bit exponent

Sign

23-bit mantissa

441

A FLOAT key with 8 bytes has a 52-bit mantissa, an 11-bit exponent biased by 1023, and a sign
bit. The internal format is as follows:

GUID

The GUID key type is a 16-byte number that is stored internally as a 16-byte binary value. Its
extended data type value is 27.

GUIDs are commonly used as globally unique identifiers. The corresponding data type for the
Relational Engine is UNIQUEIDENTIFIER.

Note that GUID requires a file format of 9.5 or higher.

GUID Keys

The sort order for the bytes composing the GUID are compared in the following sequence: 10, 11,
12, 13, 14, 15, 8, 9, 6, 7, 4, 5, 0, 1, 2, 3.

The key segment length for a GUID must be 16 bytes. See Key Specification Block in Btrieve API
Guide.

INTEGER

The INTEGER key type is a signed whole number and can contain any number of digits.
Internally, INTEGER fields are stored in Intel binary integer format, with the high-order and low-
order bytes reversed within a word. The MicroKernel evaluates the key from right to left. The

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

32-bit mantissa

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

11-bit exponent

Sign

20-bit mantissa

bytes 3-0:

bytes 7-4:

442

sign must be stored in the high bit of the rightmost byte. The INTEGER type is supported by most
development environments.

LOGICAL

The LOGICAL key type is stored as a 1 or 2-byte value. The MicroKernel collates LOGICAL key
types as strings. Doing so allows your application to determine the stored values that represent
true or false.

LSTRING

The LSTRING key type has the same characteristics as a regular STRING type, except that the
first byte of the string contains the binary representation of the string length. The LSTRING key
type is limited to a maximum size of 255 bytes. The length stored in byte 0 of an LSTRING key
determines the number of significant bytes. The database engine ignores any values beyond the
specified length of the string when sorting or searching for values. The LSTRING type is
commonly used in legacy Pascal applications.

MONEY

The MONEY key type has the same internal representation as the DECIMAL type, with an
implied two decimal places.

NUMERIC

Each digit of a NUMERIC key type occupies one byte. NUMERIC values are stored as ASCII
strings right-aligned with leading zeros. The rightmost byte includes an embedded sign with an
EBCDIC value. By default, the sign value for positive NUMERIC data types is an unsigned
numeric number.

Length in
Bytes

Value Ranges

1 0 – 255

2 -32768 – 32767

4 -2147483648 – 2147483647

8 -9223372036854775808 –
9223372036854775807

443

Optionally, you may specify that you want to shift the value of the sign for positive NUMERIC
data types. The following table compares the sign values in the default (unshifted) and shifted
states.

Enabling the Shifted Format

You must manually specify a setting on the machine running the Zen database engine to enable
the shifted format. The setting DBCobolNumeric must be set to yes. The rest of this topic
summarizes use of this setting on Windows 32-bit about Linux platforms.

Windows 32-Bit

Using the Registry Editor, add the DBCobolNumeric setting as a string value to the following
key:

HKEY_LOCAL_MACHINE\SOFTWARE\Actian\Zen\Database Names

Set the string value for DBCobolNumeric to yes.

In most Windows systems, the key is HKEY_LOCAL_MACHINE\SOFTWARE\Actian\Zen, but
its location under HKEY_LOCAL_MACHINE\SOFTWARE varies depending on the operating
system.

Digit Default (unshifted) Sign
Value

Shifted Sign Value

Positive Negative Positive Negative

1 1 J A J

2 2 K B K

3 3 L C L

4 4 M D M

5 5 N E N

6 6 O F O

7 7 P G P

8 8 Q H Q

9 9 R I R

0 0 } { }

444

Caution! If the Windows registry is edited improperly, Windows may be unable to start. Only a
trained IT person should do the editing. Actian Corporation does not accept responsibility for a
damaged Windows registry.

Stop and restart the database engine or the engine services.

Linux

Add the DBCobolNumeric setting to bti.ini below the [Database Names] entry:

[Database Names]
DBCobolNumeric=yes

By default, bti.ini is located in the /usr/local/actianzen/etc directory.

Stop and restart the database engine.

Consistent Sign Values for Positive NUMERIC Data

You may already have positive NUMERIC data with the sign value in the default (unshifted)
format. If you set DBCobolNumeric to yes and continue adding data to the same table, mixed
formats result. Leaving your data with mixed formats for the sign value is not recommended.

To correct or prevent a condition of mixed formats, use the UPDATE statement to update
NUMERIC columns to themselves. For example, suppose that table t1 contains column c1 that is
a NUMERIC data type. After you set DBCobolNumeric to yes, update c1 as follows: UPDATE
TABLE t1 SET c1 = c1.

NUMERICSA

The NUMERICSA key type (sometimes called NUMERIC SIGNED ASCII) is a COBOL data
type identical to NUMERIC, except that the embedded sign has an ASCII instead of an EBCDIC
value.

Digit Default Sign Value

Positive Negative

1 1 or Q q

2 2 or R r

3 3 or S s

4 4 or T t

445

NUMERICSLB

The NUMERICSLB key type (sometimes called SIGN LEADING with COBOL compiler option
-dcb) is a COBOL data type that has values resembling those of the NUMERIC data type.
NUMERICSLB values are stored as ASCII strings and right justified with leading zeros.

NUMERICSLS

The NUMERICSLS key type (sometimes called SIGN LEADING SEPARATE) is a COBOL data
type that has values resembling those of the NUMERIC data type. NUMERICSLS values are

5 5 or U u

6 6 or V v

7 7 or W w

8 8 or X x

9 9 or Y y

0 0 or P p

Digit Default Sign Value

Positive Negative

1 1 A

2 2 B

3 3 C

4 4 D

5 5 E

6 6 F

7 7 G

8 8 H

9 9 I

0 0 @

Digit Default Sign Value

Positive Negative

446

stored as ASCII strings and left justified with leading zeros. However, the leftmost byte of a
NUMERICSLS string is either "+" (ASCII 0x2B) or "-" (ASCII 0x2D). This differs from
NUMERIC values that embed the sign in the rightmost byte along with the value of that byte.

NUMERICSTB

The NUMERICSTB key type (sometimes called SIGN TRAILING with COBOL compiler option
-dcb) is a COBOL data type that has values resembling those of the NUMERIC data type.
NUMERICSTB values are stored as ASCII strings and right justified with leading zeros.

NUMERICSTS

The NUMERICSTS key type (sometimes called SIGN TRAILING SEPARATE) is a COBOL
data type that has values resembling those of the NUMERIC data type. NUMERICSTS values are
stored as ASCII strings and right justified with leading zeros. However, the rightmost byte of a
NUMERICSTS string is either "+" (ASCII 0x2B) or "-" (ASCII 0x2D). This differs from
NUMERIC values that embed the sign in the rightmost byte along with the value of that byte.

TIME

The TIME key type is stored internally as a 4-byte value. Hundredths of a second, second, minute,
and hour values are each stored in 1-byte binary format. The MicroKernel places the hundredths

Digit Default Sign Value

Positive Negative

1 1 A

2 2 B

3 3 C

4 4 D

5 5 E

6 6 F

7 7 G

8 8 H

9 9 I

0 0 @

447

of a second value in the first byte, followed respectively by the second, minute, and hour values.
The data format is hh:mm:ss.nn. Supported values range from 00:00:00.00 to 23:59:59.99.

TIMESTAMP

The TIMESTAMP key type represents a time and date value. In SQL applications, use this data
type to stamp a record with the current time and date of the last update to the record.
TIMESTAMP values are stored in 8-byte unsigned values representing septaseconds (10^-7
second) since January 1, 0001 in a Gregorian calendar, Coordinated Universal Time (UTC).
Supported values range from 0001-01-01 00:00:00.0000000 to 9999-12-31 23:59:59.9999999.

Unlike AUTOTIMESTAMP, a value of zero is not automatically replaced with the current time
when a new record is inserted or the first time an existing record is updated.

Note: According to the ODBC standard, scalar functions such as CURRENT_TIMESTAMP() or
NOW() ignore the portion of the data type that represents fractional seconds. It is important to
note that when these functions are used, Zen does not ignore fractional seconds and displays three
digits for milliseconds.

TIMESTAMP supports time and data values made up of the following components: year, month,
day, hour, minute, second, and millisecond. The following table indicates the range of valid values
for each of these components.

YEAR 0001 to 9999

MONTH 01 to 12

DAY 01 to 31, constrained by the value of MONTH and YEAR in the Gregorian
calendar.

HOUR 00 to 23

MINUTE 00 to 59

SECOND 00 to 59

MILLISECOND 000 to 999. Default setting. Scale can be set to a value of 0 to 7 (septaseconds).

448

Each TIMESTAMP value contains a complete date and time value with the maximum scale
supported by the local operating system, filled if needed with trailing zeros. When this value is
returned, it uses the scale set for the time stamp. For example, the value is returned in
milliseconds when the scale is 3 and microseconds when it is 6.

For more information about scale for date and time data types, see Scale of Time Stamp Data
Types and Returned Function Values.

You provide the value of a TIMESTAMP in local time and the Relational Engine converts it to
Coordinated Universal Time (UTC) before storing it in a record. When you request a
TIMESTAMP value, the Relational Engine returns it converted back to local time.

Caution! It is critical that you correctly set time zone information on the computer where the
database engine runs. If you move across time zones or change time zone information, the
returned data will change when it is converted from UTC to local time. The local time and UTC
conversions occur in the Relational Engine using the time zone information where the Relational
Engine is running. The time zone information for sessions that are in time zones different from the
Relational Engine engine are not used in the local time and UTC conversions.

Because time stamp data is converted to UTC before it is stored, the TIMESTAMP type is
inappropriate for use with local time and local date data that reference events external to the
database itself, particularly in time zones where seasonal time changes take place, such as
Daylight Savings Time in the United States.

For example, assume it is October 15, and you enter a time stamp value to track an appointment
on November 15 at 10 a.m. Assume you are in the U. S. Central Time Zone. When the Relational
Engine stores the value, it converts it to UTC using current local time information (UTC-5 hours
for CDT). So it stores the hour value 15. Assume, on November 1, you check the time of your
appointment. Your computer is now in Standard Time, because of the switch that occurred in
October, so the conversion is (UTC-6 hours). When you extract the appointment time, it will
show 9 a.m. local time (15 UTC - 6 CST), which is not the correct appointment time.

The same type of issue will occur if a database engine is moved from one time zone to another.

Because the Relational Engine does not convert DATE and TIME values to UTC, you should
almost always use DATE and TIME columns to record external data. The only reason to use a
TIMESTAMP column is a need for the specific ability to determine the sequential time order of
records entered into the database.

Usage in Function Executor and Maintenance Tools

The use of TIMESTAMP keys in Function Executor or the Maintenance tools is similar to
AUTOINCREMENT keys. For the files that use them, the key type is listed as Tstamp, which also

449

appears in the output of butil <filename> -stat and is used for the key type in the description
file for a butil -create command.

TIMESTAMP2

The TIMESTAMP2 key type tracks time in nanoseconds based on the Unix epoch. In SQL
applications, use this data type to stamp a record with the current time and date of the last update
to the record. Values are stored in 8-byte unsigned values representing nanoseconds (10^-9
second) since January 1, 1970 in a Gregorian calendar, Coordinated Universal Time (UTC).
Supported values range from 1970-01-01 00:00:00.000000000 to 2554-07-21
23:34:33.709551615.

Unlike AUTOTIMESTAMP, a value of zero is not automatically replaced with the current time
when a new record is inserted or the first time an existing record is updated.

This key type is available starting in Zen v14 SP1 for file formats 9.5 and 13.0. Older database
engines that attempt to open a file that has a record that uses this type will return status code 30
for an unrecognized Microkernel file.

Note: According to the ODBC standard, scalar functions such as CURRENT_TIMESTAMP() or
NOW() ignore the portion of the data type that represents fractional seconds. It is important to
note that when these functions are used, Zen does not ignore fractional seconds and displays nine
digits for nanoseconds.

TIMESTAMP2 supports time and data values made up of the following components: year, month,
day, hour, minute, second, and nanosecond. The following table indicates the range of valid
values for each of these components.

YEAR 1970 to 2554

MONTH 01 to 12

DAY 01 to 31, constrained by the value of MONTH and YEAR in the Gregorian
calendar.

HOUR 00 to 23

MINUTE 00 to 59

SECOND 00 to 59

NANOSEC
OND

000000000 to 999999999. Default setting.

450

Each TIMESTAMP2 value contains a complete date and time value with the maximum scale
supported by the local operating system, filled if needed with trailing zeros. When this value is
returned, it uses the scale set for the time stamp. For example, the value is returned in
milliseconds when the scale is 3 and microseconds when it is 6.

For more information about scale for date and time data types, see Scale of Time Stamp Data
Types and Returned Function Values.

You provide the value of a TIMESTAMP2 in local time and the Relational Engine converts it to
Coordinated Universal Time (UTC) before storing it in a record. When you request a
TIMESTAMP2 value, the Relational Engine returns it converted back to local time.

Caution! It is critical that you correctly set time zone information on the computer where the
database engine runs. If you move across time zones or change time zone information, the
returned data will change when it is converted from UTC to local time. The local time and UTC
conversions occur in the Relational Engine using the time zone information where the Relational
Engine is running. The time zone information for sessions that are in time zones different from the
Relational Engine engine are not used in the local time and UTC conversions.

Because time stamp data is converted to UTC before it is stored, the TIMESTAMP2 type is
inappropriate for use with local time and local date data that reference events external to the
database itself, particularly in time zones where seasonal time changes take place (such as
Daylight Savings Time in the United States).

For example, assume it is October 15, and you enter a time stamp value to track an appointment
on November 15 at 10 a.m. Assume you are in the U. S. Central Time Zone. When the Relational
Engine stores the value, it converts it to UTC using current local time information (UTC-5 hours
for CDT). So it stores the hour value 15. Assume, on November 1, you check the time of your
appointment. Your computer is now in Standard Time, because of the switch that occurred in
October, so the conversion is (UTC-6 hours). When you extract the appointment time, it will
show 9 a.m. local time (15 UTC - 6 CST), which is not the correct appointment time.

The same type of issue will occur if a database engine is moved from one time zone to another.

Because the Relational Engine does not convert DATE and TIME values to UTC, you should
almost always use DATE and TIME columns to record external data. The only reason to use a
TIMESTAMP2 column is a need for the specific ability to determine the sequential time order of
records entered into the database.

Usage in Function Executor and Maintenance Tools

The use of TIMESTAMP2 keys in Function Executor or the Maintenance tools is similar to
AUTOINCREMENT keys. For the files that use them, the key type is listed as TS2, which also

451

appears in the output of butil <filename> -stat and is used for the key type in the description
file for a butil -create command.

UNSIGNED BINARY

UNSIGNED BINARY keys can be any number of bytes up to the maximum key length of 255.
UNSIGNED keys are compared byte-for-byte from the most significant byte to the least
significant byte. The first byte of the key is the least significant byte. The last byte of the key is
the most significant.

The database engine sorts UNSIGNED BINARY keys as unsigned INTEGER keys. The
differences are that an INTEGER has a sign bit, while an UNSIGNED BINARY type does not,
and an UNSIGNED BINARY key can be longer than 4 bytes.

WSTRING

WSTRING is a Unicode string that is not null-terminated. The length of the string is determined
by the field length.

WZSTRING

WZSTRING is a Unicode string that is double null-terminated. The length of this string is
determined by the position of the Unicode NULL (two null bytes) within the field. This
corresponds to the ZSTRING type supported in Btrieve.

ZSTRING

The ZSTRING key type corresponds to a C string. It has the same characteristics as a regular
string type except that a ZSTRING type is terminated by a binary 0. The MicroKernel ignores any
values beyond the first binary 0 it encounters in the ZSTRING, except when the MicroKernel is
determining whether a key value is null.

The maximum length of a ZSTRING type is 255 bytes, including the null terminator character. If
used as a key for a nullable column, only the first 254 bytes of the string are used in the key. This
minor limitation occurs because the key is limited to 255 bytes total length, and one byte is
occupied by the null indicator for the column, leaving only 254 bytes for the key value.

452

Non-Key Data Types
This topic discusses the internal storage formats of data types that cannot be indexed (used as
Btrieve keys).

BLOB

The Binary Large Object (BLOB) type provides support for binary data fields up to 2 GB in size.
This type consists of 2 parts:

• an 8-byte header in the fixed-length portion of the record. The header contains a 4-byte integer
that identifies the offset to the beginning of the data in the variable-length portion of the
record, and a 4-byte integer that specifies the size of the data.

• the binary data itself is stored within the variable-length portion of the record. The size of all
BLOB and CLOB fields must sum to 2 GB or less, because the offset pointer into the variable-
length portion of the record is limited to 2 GB maximum offset. To store the maximum BLOB
size of 2 GB, you may have only 1 BLOB or CLOB field defined in the record.

For additional information, see BINARY and LONGVARBINARY and Limitations on
LONGVARCHAR, NLONGVARCHAR and LONGVARBINARY.

CLOB

The Character Large Object (CLOB) type provides support for character data fields up to 2 GB in
size. This type consists of 2 parts:

• An 8-byte header in the fixed-length portion of the record. The header contains a 4-byte
integer that identifies the offset to the beginning of the data in the variable-length portion of
the record, and a 4-byte integer that specifies the size of the data in bytes.

• The character data itself is stored within the variable-length portion of the record. The size of
all BLOB and CLOB fields must sum to 2 GB or less, because the offset pointer into the
variable-length portion of the record is limited to 2 GB maximum offset. To store the
maximum BLOB size of 2 GB, you may have only 1 BLOB or CLOB field defined in the
record.

For additional information, see CHAR, NCHAR, VARCHAR, NVARCHAR, LONGVARCHAR,
and NLONGVARCHAR and Limitations on LONGVARCHAR, NLONGVARCHAR and
LONGVARBINARY.

453

B. SQL Reserved Words

Reserved words are SQL keywords and other symbols that have special meanings when they are
processed by the Relational Engine. Reserved words are not recommended for use as database,
table, column, variable or other object names. If a reserved word is used as an object name, it
must be enclosed in double-quotes to notify the Relational Engine that the word is not being used
as a keyword in the given context.

You can avoid having to worry about reserved words by always enclosing user-defined object
names in double-quotes.

This appendix contains the following topic:

• Reserved Words

• Words to Avoid

Reserved Words
Each of the symbols or words listed below has a special meaning when processed by the
Relational Engine unless it is delimited by double quotation marks. Using one of these words as a
table or object name without the quotation marks will cause an error.

See also the next topic, Words to Avoid.

454

Symbols

A

B

C

D

; : @

ABORT ACCELERATED ADD

AFTER ALL ALTER

AND ANSI_PADDING ANY

AS ASC ATOMIC

AVG

BEFORE BEGIN BETWEEN

BORDER BY

CALL CACHED_PROCEDURES CASCADE

CASE CAST CHECK

CLOSE COALESCE COLLATE

COLUMN COMMIT COMMITTED

CONSTRAINT CONVERT COUNT

CREATE CREATESP CREATETAB

CREATEVIEW CROSS CS

CURDATE CURRENT CURSOR

CURTIME

DATA_PATH DATABASE DATETIMEMILLISECONDS

DBO DBSEC_AUTHENTICATION DBSEC_AUTHORIZATION

455

DCOMPRESS DDF DECIMALSEPARATORCOMMA

DECLARE DEFAULT DEFAULTCOLLATE

DELETE DENY DESC

DIAGNOSTICS DICTIONARY DICTIONARY_PATH

DISTINCT DO DROP

DSN

456

E

F

G

H

I

J
JOIN

K
KEY

EACH ELSE ENCODING

END ENFORCED EX

EXCLUSIVE EXEC EXECUTE

EXISTING EXISTS EXPR

FETCH FILES FN

FOR FOREIGN FROM

FULL FUNCTION

GLOBAL_QRYPLAN GRANT GROUP

HANDLER HAVING

IF IN INDEX

INNER INOUT INSERT

INTEGRITY INTERNAL INTO

IS ISOLATION

457

L

M

N

O

P

LEAVE LEFT LEGACYOWNERNAME

LEVEL LIKE LIMIT

LINKDUP LOGIN LOOP

MAX MIN MODE

MODIFIABLE MODIFY

NEW NEXT NO

NO_REFERENTIAL_INTEGRITY NORMAL NOT

NOW NULL

OF OFF OFFSET

OLD ON ONLY

OPEN OPTINNERJOIN OR

ORDER OUT OUTER

OVER OWNER

PAGESIZE PARTIAL PARTITION

PASSWORD PCOMPRESS PRECEDING

PRED PRIMARY PRINT

PROCEDURE PROCEDURES_CACHE PSQL_MOVE

PSQL_PHYSICAL PSQL_POSITION PUBLIC

458

Q

R

S

T

U

QRYPLAN QRYPLANOUTPUT

READ REFERENCES REFERENCING

RELATIONAL RELEASE RENAME

REPEAT REPEATABLE REPLACE

RESTRICT RETURN RETURNS

REUSE_DDF REVERSE REVOKE

RIGHT ROLLBACK ROW

ROWS ROWCOUNT ROWCOUNT2

SAVEPOINT SECURITY SELECT

SERIALIZABLE SESSIONID SET

SIGNAL SIZE SPID

SQLSTATE SSP_EXPR SSP_PRED

START STDEV SUM

SVBEGIN SVEND

T TABLE THEN

TO TOP TRANSACTION

TRIGGER TRIGGERSTAMPMISC TRUEBITCREATE

TRUENULLCREATE TRY_CAST TS

UNBOUNDED UNCOMMITTED UNION

459

V

W

Words to Avoid
The following table lists keywords from the SQL-92 and SQL-99 ANSI standards, as well as
additional keywords recognized by Zen. We recommend you avoid using these words as names
for tables, columns, or other objects unless you enclose them in double quotation marks. Actian
Corporation reserves the right to add support for any of these keywords as well as any future
ANSI SQL keywords in future releases, which would then cause them to be included in this list.

If you use double quotation marks to delimit all table, column, and user-defined object names,
then you do not need to worry about possible future conflicts with reserved words.

See also the topic Reserved Words.

UNIQUE UNIQUEIDENTIFIER UNTIL

UPDATE USER USING

V1_METADATA V2_METADATA VALUES

VIEW

WHEN WHERE WHILE

WITH WORK WRITE

ABSOLUTE ACTION ADD

ALL ALLOCATE ALTER

AND ANY ARE

AS ASC ASSERTION

AT AUTHORIZATION AVG

BEGIN BETWEEN BIGIDENTITY

BIT BIT_LENGTH BOTH

BY CASCADE CASCADED

CASE CAST CATALOG

CHAR CHARACTER CHAR_LENGTH

CHARACTER_LENGTH CHECK CLOSE

460

COALESCE COLLATE COLLATION

COLUMN COMMIT CONNECT

CONNECTION CONSTRAINT CONSTRAINTS

CONTINUE CONVERT CORRESPONDING

COUNT CREATE CROSS

CURRENT CURRENT_DATE CURRENT_TIME

CURRENT_TIMESTAMP CURRENT_USER CURSOR

DATE DAY DEALLOCATE

DEC DECIMAL DECLARE

DEFAULT DEFERRABLE DEFERRED

DELETE DESC DESCRIBE

DESCRIPTOR DIAGNOSTICS DISCONNECT

DISTINCT DOMAIN DOUBLE

DROP ELSE END

END-EXEC ESCAPE EXCEPT

EXCEPTION EXEC EXECUTE

EXISTS EXTERNAL EXTRACT

FALSE FETCH FIRST

FLOAT FOR FOREIGN

FOUND FROM FULL

FUNCTION GET GLOBAL

GO GOTO GRANT

GROUP HAVING HOUR

IDENTITY IMMEDIATE IN

INDICATOR INITIALLY INNER

INPUT INSENSITIVE INSERT

INT INTEGER INTERSECT

INTERVAL INTO IS

ISOLATION JOIN KEY

LANGUAGE LAST LEADING

LEFT LEVEL LIKE

LIMIT LOCAL LOWER

MASK MATCH MAX

MIN MINUTE MODULE

MONTH NAMES NATIONAL

461

NATURAL NCHAR NEXT

NO NOT NLONGVARCHAR

NULL NULLIF NUMERIC

NVARCHAR OCTET_LENGTH OF

OFFSET ON ONLY

OPEN OPTION OR

ORDER OUTER OUTPUT

OVERLAPS PAD PARTIAL

PASSWORD POSITION PRECISION

PREPARE PRESERVE PRIMARY

PRIOR PRIVILEGES PROCEDURE

PUBLIC READ REAL

REFERENCES RELATIVE RESTRICT

REVERSE REVOKE RIGHT

ROLLBACK ROWS SCHEMA

SCROLL SECOND SECTION

SELECT SESSION SESSION_USER

SET SIZE SMALLIDENTITY

SMALLINT SOME SPACE

SQL SQLCODE SQLERROR

SQLSTATE STDEV SUBSTRING

SUM SYSDATETIME SYSUTCDATETIME

SYSTEM_USER TABLE TEMPORARY

THEN TIME TIMESTAMP

TIMESTAMP2 TIMEZONE_HOUR TIMEZONE_MINUTE

TO TRAILING TRANSACTION

TRANSLATE TRANSLATION TRIM

TRUE TRY_CAST UNION

UNIQUE UNKNOWN UPDATE

UPPER USAGE USER

USING VALUE VALUES

VARCHAR VARYING VIEW

WHEN WHENEVER WHERE

WITH WORK WRITE

YEAR ZONE

462

463

C. System Tables

The following topics cover Zen system tables:

• Overview

• System Tables Structure

Overview
The information used by Zen and its components is stored in special tables called system tables.

Caution! Do not attempt to modify system tables with DELETE, UPDATE, or INSERT
statements, or user-defined triggers. System tables should never be altered directly.

Do not write your applications to query system tables directly. Some columns in system tables
may not be documented. Your application can retrieve information stored in system tables by
using any of the following methods:

• System Stored Procedures

• Transact-SQL statements and functions

• Functions provided in the Zen APIs

The Zen APIs are documented in the developer documentation. The development components are
designed to remain compatible with the database engine from release to release. The format of the
system tables depends on the internal architecture of the database engine, which may change from
release to release. Applications that directly access undocumented columns of system tables may
have to be changed if the internal architecture of Zen changes.

The following list of system tables gives the names of associated files and identifies system table
contents, including whether a dictionary file uses V1 or V2 metadata naming.

Note: Some data in the system tables cannot be displayed. User passwords, for example, are
displayed in their encrypted form.

System
Table

Dictionary File Contents

V11 V22

X$Attrib ATTRIB.DDF PVATTRIB.DDF Column attributes definitions.

464

Zen creates all of the system tables when you create a database.

Two other system tables that you may encounter are VARIANT.DDF and OCCURS.DDF (for a
V1 database) and PVVARIANT.DDF and PVOCCURS.DDF (for a V2 database).These two
system files are used for COBOL support and do not require any direct intervention by a user.
Future versions of the utilities for COBOL may implement a different architecture, in which case
these system tables may no longer be required. See also SQL Access for COBOL Applications.

System Tables Structure
This topic discusses the structure of the system tables:

• V1 Metadata System Tables

• V2 Metadata System Tables

X$Depend DEPEND.DDF PVDEPEND.DDF Trigger dependencies such as tables,
views, and procedures

X$Field FIELD.DDF PVFIELD.DDF Column and named index definitions.

X$File FILE.DDF PVFILE.DDF Names and locations of the tables in
your database.

X$Index INDEX.DDF PVINDEX.DDF Index definitions.

X$Proc PROC.DDF PVPROC.DDF Stored procedure definitions.

X$Relate RELATE.DDF PVRELATE.DDF Referential integrity (RI) information.

X$Rights RIGHTS.DDF PVRIGHTS.DDF User and group access rights definitions.

X$Trigger TRIGGER.DDF PVTRIG.DDF Trigger information.

X$User USER.DDF PVUSER.DDF User names, group names, and
passwords.

X$View VIEW.DDF PVVIEW.DDF View definitions.

1Applies to version 1 (V1) metadata. See Zen Metadata.
2Applies to version 2 (V2) metadata. See Zen Metadata.

System
Table

Dictionary File Contents

V11 V22

465

V1 Metadata System Tables

X$Attrib

The X$Attrib system table is associated with the file ATTRIB.DDF. X$Attrib contains
information about the column attributes of each column in the database. There is an entry for each
column attribute you define. The structure of X$Attrib for V1 metadata is described in the
following table.

When you define multiple attributes for a single column, the X$Attrib system table contains
multiple entries for that column ID—one for each attribute you define. If you do not define
column attributes for a particular column, that column has no entry in the X$Attrib table. The text
in the Xa$Attrs column appears exactly as you define it with Zen. One index is defined for the
X$Attrib table, as explained in the preceding table:

Column
Name

Type Size Case
Insensitive

Description

Xa$Id USMALLINT 2 not
applicable

Corresponds to Xe$Id in X$Field.

Xa$Type CHAR 1 No D (default)

L (logical positioning)

O (column collation)

C (character); H (heading); M (mask); R

(range); or V (value)1

Xa$ASize USMALLINT 2 not
applicable

Length of text in Xa$Attrs.

Xa$Attrs LONGVARCHAR
(NOTE)

<=2048 not
applicable

Text that defines the column attribute.

1Attribute type C, H, M, R and V are legacy validation types valid only in a Pervasive.SQL 7 or Scalable
SQL environment. Zen releases newer than Pervasive.SQL 7 use only the D (default), L (logical
positioning), and O (column collation) attributes.

Index
Number

Segment
Number

Column Name Duplicates Case Insensitive Segmented

0 0 Xa$Id No not applicable Yes

0 1 Xa$Type No No No

466

X$Depend

The X$Depend system table is associated with the file DEPEND.DDF. X$Depend contains
information about trigger dependencies such as tables, views, and procedures. The structure of
X$Depend is as follows:

Two indexes are defined for the X$Depend table as follows:

Index Number corresponds to the value stored in the Xi$Number column in the X$Index system
table. Segment Number corresponds to the value stored in the Xi$Part column in the X$Index
system table.

Column Name Type Size Case
Insensitive

Description

Xd$Trigger CHAR 30 Yes Name of trigger. It corresponds to
Xt$Name in X$Trigger.

Xd$DependType UNSIGNED 1 not
applicable

1 for Table, 2 for View, 3 for Procedure.

Xd$DependName CHAR 30 Yes Name of dependency with which the
trigger is associated. It corresponds to
either Xf$Name in X$File, Xv$Name in
X$View, or Xp$Name in X$Proc.

Index
Number

Segment
Number

Column Name Duplicate
s

Case
Insensitive

Segment
ed

0 0 Xd$Trigger No Yes Yes

0 1 Xd$DependType No not applicable Yes

0 2 Xd$DependName No Yes No

1 0 Xd$DependType Yes not applicable Yes

1 1 Xd$DependName Yes Yes No

467

X$Field

The X$Field system table is associated with the file FIELD.DDF. X$Field contains information
about all the columns and named indexes defined in the database. The structure of X$Field is as
follows:

Column
Name

Type Size Case
Insensitive

Description

Xe$Id USMALLINT 2 not
applicable

Internal ID assigned by Zen, unique for
each field in the database

Xe$File USMALLINT 2 not
applicable

ID of table to which this column or
named index belongs. It corresponds to
Xf$Id in X$File.

Xe$Name CHAR 20 Yes Column name or index name

Xe$DataType UTINYINT 1 not
applicable

Control field:
0 through 26: column data type
227: constraint name
255: index name

Xe$Offset USMALLINT 2 not
applicable

Column offset in table. Index number if
named index. Offsets are zero-relative.

Index Number corresponds to the value
stored in the Xi$Number column in the
X$Index system table.

Xe$Size USMALLINT 2 not
applicable

Column size, representing the internal
storage, in bytes, required for the field.

Size does not include the NULL byte for
TRUE NULL fields.

Xe$Dec UTINYINT 1 not
applicable

Column decimal place (for DECIMAL,
NUMERIC, NUMERICSA,
NUMERICSTS, MONEY, or
CURRENCY types). Relative bit
positions for contiguous bit columns.
Fractional seconds for
AUTOTIMESTAMP, TIMESTAMP, and
TIMESTAMP2 data types.

468

Column Xe$File corresponds to column Xf$Id in the X$File system table and is the link between
the tables and the columns they contain. For example, the following query returns all field
definitions in order for the Billing table:

SELECT "X$Field".*
FROM X$File,X$Field
WHERE Xf$Id=Xe$File AND Xf$Name = 'Billing' AND Xe$DataType <= 26

ORDER BY Xe$Offset

The integer values in column Xe$DataType are codes that represent the Zen data types. See Zen
Supported Data Types for the codes.

Xe$Flags USMALLINT 2 not
applicable

Flags word.

Bit 0 is the case flag for string data types.

If bit 0 = 1, the field is case insensitive.

If bit 2 = 1, the field allows null values.

Bit 3 of Xe$flag is used to differentiate a
Pervasive.SQL v7 1-byte TINYINT
(B_TYPE_INTEGER unsigned) from
Relational Engine's 1-byte TINYINT
(B_TYPE_INTEGER, but signed).

If bit 3 = 1 and Xe$datatype = 1 and
Xe$size =1, then it means that TINYINT
column is created by the Relational
Engine and is a signed 1-byte TINYINT.

If bit 3 = 0 and Xe$datatype = 1 and
xe$size = 1 then it means that TINYINT
column is created by the legacy SQL
engine and is an unsigned 1-byte
TINYINT.

If bit 11 = 1, the field is interpreted as a
wide character NLONGVARCHAR field
rather than a character
LONGVARCHAR field.

If bit 12 = 1, the field is interpreted as
BINARY.

If bit 13 = 1, the field is interpreted as
DECIMAL with even-digit precision.

Column
Name

Type Size Case
Insensitive

Description

469

Five indexes are defined for the X$Field table as follows:

X$File

The X$File system table is associated with the file FILE.DDF. For each table defined in the
database, X$File contains the table name, the location of the associated table, and a unique
internal ID number that Zen assigns. The structure of X$File is as follows:

Index
Number

Segment
Number

Column Name Duplicates Case Insensitive Segmented

0 0 Xe$Id No not applicable No

1 0 Xe$File Yes not applicable No

2 0 Xe$Name Yes Yes No

3 0 Xe$File No not applicable Yes

3 1 Xe$Name No Yes No

4 0 Xe$File Yes not applicable Yes

4 1 Xe$Offset Yes not applicable Yes

4 2 Xe$Dec Yes not applicable No

Column
Name

Type Size Case
Insensitive

Description

Xf$Id USMALLINT 2 not
applicable

Internal ID assigned by Zen

Xf$Name CHAR 20 Yes Table name

Xf$Loc CHAR 64 No File location (path name)

Xf$Flags UTINYINT 1 not
applicable

File flags. If bit 4=1, the file is a
dictionary file. If bit 4=0, the file is
user-defined. If bit 6=1, the table
supports true nullable columns.

Xf$Reserved CHAR 10 No Reserved

470

Two indexes are defined for the X$File table.

X$Index

The X$Index system table is associated with the file INDEX.DDF. X$Index contains information
about all the indexes defined on the tables in the database. The structure of X$Index is as follows:

The Xi$File column corresponds to the Xf$Id column in the X$File system table. The Xi$Field
column corresponds to the Xe$Id column in the X$Field system table. Thus, an index segment
entry is linked to a file and to a field.

The Xi$Flags column contains integer values that define the index attributes. The following table
describes how Zen interprets each bit position when the bit has the binary value of 1. Bit position
0 is the rightmost bit in the integer.

Index
Number

Segment
Number

Column
Name

Duplicates Case Insensitive Segmented

0 0 Xf$Id No not applicable No

1 0 Xf$Name No Yes No

Column
Name

Type Size Case
Insensitive

Description

Xi$File USMALLINT 2 not
applicable

Unique ID of the table to which the
index belongs. It corresponds to Xf$Id
in X$File.

Xi$Field USMALLINT 2 not
applicable

Unique ID of the index column. It
corresponds to Xe$Id in X$Field.

Xi$Number USMALLINT 2 not
applicable

Index number (range 0 – 119).

Xi$Part USMALLINT 2 not
applicable

Segment number (range 0 – 119).

Xi$Flags USMALLINT 2 not
applicable

Index attribute flags.

Bit
Position

Decimal
Equivalent

Description

0 1 Index allows duplicates.

471

The value in the Xi$Flags column for a particular index is the sum of the decimal values that
correspond to the index attributes. Three indexes are defined for the X$Index table as follows:

Index Number corresponds to the value stored in the Xi$Number column in the X$Index system
table. Index numbering starts at zero. Segment Number corresponds to the value stored in the
Xi$Part column in the X$Index system table.

1 2 Index is modifiable.

2 4 Indicates an alternate collating sequence.

3 8 Null values are not indexed (refers to Btrieve NULLs, not SQL true
NULLS).

4 16 Another segment is concatenated to this one in the index.

5 32 Index is case-insensitive.

6 64 Index is collated in descending order.

7 128 Index is a named index if bit 0 is 0. If bit 0 is 1 and bit 7 is 1, the index
uses the repeating duplicates key method. If bit 0 is 1 and bit 7 is 0, the
index uses the linked duplicates key method. See also LINKDUP. For a
detailed discussion of linked duplicates method and repeating duplicates
method, see Methods for Handling Duplicate Keys in Advanced
Operations Guide.

8 256 Index is a Btrieve extended key type.

9 512 Index is partial.

13 8192 Index is a foreign key.

14 16384 Index is a primary key referenced by some foreign key.

Index
Number

Segment
Number

Column
Name

Duplicates Case Insensitive Segmented

0 0 Xi$File Yes not applicable No

1 0 Xi$Field Yes not applicable No

2 0 Xi$File No not applicable Yes

2 1 Xi$Number No not applicable Yes

2 2 Xi$Part No not applicable No

Bit
Position

Decimal
Equivalent

Description

472

To see the information about the index segments defined for the Billing table, for example, issue
the following query:

SELECT Xe$Name,Xe$Offset, "X$Index".*
FROM X$File,X$Index,X$Field
WHERE Xf$Id=Xi$File and Xi$Field=Xe$Id and Xf$Name = 'Billing'

ORDER BY Xi$Number,Xi$Part

X$Proc

The X$Proc system table is associated with the file PROC.DDF. X$Proc contains the compiled
structure information for every stored procedure defined. The structure of X$Proc is as follows:

One index is defined for the X$Proc table as follows:

A single stored procedure may be stored in multiple entries in X$Proc, linked by Xp$Name.

X$Relate

The X$Relate system table is associated with the file RELATE.DDF. X$Relate contains
information about the referential integrity (RI) constraints defined on the database. X$Relate is
automatically created when the first foreign key is created and a relationship is defined.

Column
Name

Type Size Case
Insensitive

Description

Xp$Name CHAR 30 Yes Stored procedure name.

Xp$Ver UTINYINT 1 not
applicable

Version ID. This is reserved for future
use.

Xp$Id USMALLINT 2 not
applicable

0-based Sequence Number.

Xp$Flags UTINYINT 1 not
applicable

1 for stored statement, 2 for stored
procedure or 3 for external procedure.

Xp$Misc LONGVARCHAR
(LVAR)

<=990 not
applicable

Internal representation of stored
procedure.

Index
Number

Segment
Number

Column Name Duplicates Case Insensitive Segmented

0 0 Xp$Name No Yes Yes

0 1 Xp$Id No not applicable No

473

The structure of X$Relate is as follows:

Five indexes are defined for the X$Relate table as follows:

Column Name Type Size Case
Insensitive

Description

Xr$PId USMALLINT 2 not applicable Primary table ID.

Xr$Index USMALLINT 2 not applicable Index number of primary key in
primary table.

Xr$FId USMALLINT 2 not applicable Dependent table ID.

Xr$FIndex USMALLINT 2 not applicable Index number of foreign key in
dependent table.

Xr$Name CHAR 20 Yes Foreign key name.

Xr$UpdateRule UTINYINT 1 not applicable 1 for restrict.

Xr$DeleteRule UTINYINT 1 not applicable 1 for restrict, 2 for cascade.

Xr$Reserved CHAR 30 No Reserved.

Index
Number

Segment
Number

Column Name Duplicates Case Insensitive Segmented

0 0 Xr$PId Yes not applicable No

1 0 Xr$FId Yes not applicable No

2 0 Xr$Name No Yes No

3 0 Xr$Pld No not applicable Yes

3 1 Xr$Name No Yes No

4 0 Xr$Fld No not applicable Yes

4 1 Xr$Name No Yes No

474

X$Rights

The X$Rights system table is associated with the file RIGHTS.DDF. X$Rights contains access
rights information for each user. Zen uses this table only when you enable the security option. The
structure of X$Rights is as follows:

The Xr$User column corresponds to the Xu$Id column in the X$User table. The Xr$Table
column corresponds to the Xf$Id column in the X$File table. The Xr$Column column
corresponds to the Xe$Id column in the X$Field table.

Note: For any row in the system table that describes table rights, the value for Xr$Column is
null.

The Xr$Rights column contains integer values whose rightmost 8 bits define the user access
rights. The following table describes how Zen interprets the value. Values from this table may be
combined into a single Xr$Rights value.

A decimal equivalent of 0 implies no rights.

Column
Name

Type Size Case
Insensitive

Description

Xr$User USMALLINT 2 not applicable User ID

Xr$Table USMALLINT 2 not applicable Table ID

Xr$Column USMALLINT 2 not applicable Column ID

Xr$Rights UTINYINT 1 not applicable Table or column rights flag

Hex Value Decimal
Equivalent

Description

1 1 Reorganization in progress.

0x90 144 References rights to table.

0xA0 160 Alter Table rights.

0x40 64 Select rights to table or column.

0x82 130 Update rights to table or column.

0x84 132 Insert rights to table or column.

0x88 136 Delete rights to table or column.

475

The value in the Xr$Rights column for a particular user is the bit-wise intersection of the hex
values corresponding to the access rights that apply to the user. It is not the sum of the decimal
values.

For example, the value in Xr$Rights for a user with all rights assigned would be represented as
follows:

144 | 160 | 64 | 130 | 132 | 136 = 254

Three indexes are defined for the X$Rights table as follows:

X$Trigger

The X$Trigger system table is associated with the file TRIGGER.DDF. X$Trigger contains
information about the triggers defined for the database. The structure of X$Trigger is as follows :

Index
Number

Segment
Number

Column Name Duplicates Case Insensitive Segmented

0 0 Xr$User Yes not applicable No

1 0 Xr$User No not applicable Yes

1 1 Xr$Table No not applicable Yes

1 2 Xr$Column No not applicable No

2 0 Xr$Table Yes not applicable Yes

2 1 Xr$Column Yes not applicable No

Column Name Type Size Case
Insensitive

Description

Xt$Name CHAR 30 Yes Trigger name.

Xt$Version USMALLINT 2 not applicable Trigger version. A 4 indicates
Scalable SQL v4.

Xt$File USMALLINT 2 not applicable File on which trigger is
defined. Corresponds to
Xf$Id in X$File.

Xt$Event UNSIGNED 1 not applicable 0 for INSERT, 1 for
DELETE, 2 for UPDATE.

Xt$ActionTime UTINYINT 1 not applicable 0 for BEFORE, 1 for
AFTER.

476

A trigger that is long enough may require multiple entries in Trigger.DDF. Each entry has the
same trigger name in the Xt$Name field, and is used in the order specified by the Xt$Sequence
field.

Three indexes are defined for the X$Trigger table as follows:

The trigger may be stored in more than one entry in X$Trigger, linked by Xt$Name and ordered
by Xt$Sequence.

Xt$ForEach UTINYINT 1 not applicable 0 for ROW (default), 1 for
STATEMENT.

Xt$Order USMALLINT 2 not applicable Order of execution of trigger.

Xt$Sequence USMALLINT 2 not applicable 0-based sequence number.

Xt$Misc LONGVARCHAR
(LVAR)

<=4054 not applicable Internal representation of
trigger.

Index
Number

Segment
Number

Column Name Duplicates Case Insensitive Segmented

0 0 Xt$Name No Yes Yes

0 1 Xt$Sequence No not applicable No

1 0 Xt$File No not applicable Yes

1 1 Xt$Name No Yes Yes

1 2 Xt$Sequence No not applicable No

2 0 Xt$File Yes not applicable Yes

2 1 Xt$Event Yes not applicable Yes

2 2 Xt$ActionTime Yes not applicable Yes

2 3 Xt$ForEach Yes not applicable Yes

2 4 Xt$Order Yes not applicable Yes

2 5 Xt$Sequence Yes not applicable No

Column Name Type Size Case
Insensitive

Description

477

X$User

The X$User system table is associated with the file USER.DDF. X$User contains the name and
password of each user and the name of each user group. Zen uses this table only when you enable
the security option. The following table shows the structure of X$User.

Note: For any row in the X$User system table that describes a group, the column value for
Xu$Password is NULL.

The Xu$Flags column contains integer values whose rightmost 8 bits define the user or group
attributes. The following table describes how Zen interprets each bit position when the bit has the
binary value of 1. Bit position 0 is the rightmost bit in the integer.

The value in the Xu$Flags column for a particular user or group is the sum of the decimal values
corresponding to the attributes that apply to the user or group.

Column Name Type Size Case
Insensitive

Description

Xu$Id USMALLINT 2 not applicable Internal ID assigned to the user or
group.

Xu$Name CHAR 30 Yes User or group name.

Xu$Password CHAR 9 No User password (encrypted)

Xu$Flags USMALLINT 2 not applicable User or group flags.

Bit Position Decimal Equivalent Description

0 1 Reserved.

1 2 Reserved.

2 4 Reserved.

3 8 Reserved.

4 16 Reserved.

5 32 Reserved.

6 64 Name is a group name.

7 128 User or group has the right to define tables in the
dictionary.

478

Two indexes are defined for the X$User table, as shown in the following table.

X$View

The X$View system table is associated with the file VIEW.DDF. X$View contains view
definitions, including information about joined tables and the restriction conditions that define
views. You can query the X$View table to retrieve the names of the views that are defined in the
dictionary.

The first column of the X$View table contains the view name. The second and third columns
describe the information found in the LVAR column, Xv$Misc. The structure of X$View is as
follows:

Two indexes are defined for the X$View table as follows:

Index
Number

Segment
Number

Column Name Duplicates Case Insensitive Segmented

0 0 Xu$Id Yes not applicable No

1 0 Xu$Name No Yes No

Column Name Type Size Case
Insensitive

Description

Xv$Name CHAR 20 Yes View name.

Xv$Ver UTINYINT 1 not applicable Version ID. This is reserved for
future use.

Xv$Id UTINYINT 1 not applicable Sequence number.

Xv$Misc LONGVARCHAR
(LVAR)

<=2000 not applicable Zen internal definitions.

Index
Number

Segment
Number

Column Name Duplicates Case Insensitive Segmented

0 0 Xv$Name Yes Yes No

1 0 Xv$Name No Yes Yes

1 1 Xv$Ver No not applicable Yes

1 2 Xv$Id No not applicable No

479

A single view may be stored in multiple X$View entries, linked by Xv$Name and ordered by
Xv$Id.

V2 Metadata System Tables

X$Attrib

The X$Attrib system table is associated with the file PVATTRIB.DDF. X$Attrib contains
information about the column attributes of each column in the database. There is an entry for each
column attribute you define. The following table shows the structure of X$Attrib.

When you define multiple attributes for a single column, the X$Attrib system table contains
multiple entries for that column ID—one for each attribute you define. If you do not define
column attributes for a particular column, that column has no entry in the X$Attrib table. The text
in the Xa$Attrs column appears exactly as you define it with Zen. One index is defined for the
X$Attrib table as shown in the next table.

Column Name Type Size Case
Insensitive

Description

Xa$Id UINTEGER 4 not applicable Corresponds to Xe$Id in
X$Field

Xa$Type CHAR 4 No D (default)

L (logical positioning)

O (column collation)

Xa$ASize USMALLINT 2 Not applicable Length of text in Xa$Attrs

Xa$Attrs LONGVARCHAR
(NOTE)

32,763 not applicable Text that defines the column
attribute

Index
Number

Segment
Number

Column Name Duplicates Case Insensitive Segmented

0 0 Xa$Id No not applicable Yes

0 1 Xa$Type No No No

480

X$Depend

The X$Depend system table is associated with the file PVDEPEND.DDF. X$Depend contains
information about trigger dependencies for such objects as tables, views, and procedures. The
structure of X$Depend for V2 metadata is as follows:

Two indexes are defined for the X$Depend table for V2 metadata as follows:

X$Field

The X$Field system table is associated with the file PVFIELD.DDF. X$Field contains
information about all the columns and named indexes defined in the database. The structure of
X$Field for V2 metadata is as follows:

Column Name Type Size Case
Insensitive

Description

Xd$Trigger CHAR 128 Yes Name of trigger. It corresponds to
Xt$Name in X$Trigger.

Xd$DependType UTINYINT 1 not applicable 1 for Table, 2 for View, 3 for
Procedure.

Xd$DependName CHAR 128 Yes Name of dependency with which the
trigger is associated. It corresponds
to either Xf$Name in X$File,
Xv$Name in X$View, or Xp$Name
in X$Proc.

Index
Number

Segment
Number

Column Name Duplicates Case
Insensitive

Segmented

0 0 Xd$Trigger No Yes Yes

0 1 Xd$DependType No not applicable No

1 0 Xd$DependType Yes not applicable Yes

1 1 Xd$DependName Yes Yes No

Column
Name

Type Size Case
Insensitive

Description

Xe$Id UINTEGER 4 not
applicable

Internal ID assigned by Zen, unique for
each field in the database.

481

Xe$File UINTEGER 4 not
applicable

ID of table to which this column or
named index belongs. It corresponds to
Xf$Id in X$File.

Xe$Name CHAR 128 Yes Column name or index name.

Xe$Datatype UTINYINT 1 not
applicable

0 through 26: column data type
227: constraint name
255: index name

Xe$Offset UINTEGER 4 not
applicable

Column offset in table. Index number if
named index. Offsets are zero-relative.

Index Number corresponds to the value
stored in the Xi$Number column in the
X$Index system table.

Xe$Size UINTEGER 4 not
applicable

Column size, representing the internal
storage, in bytes, required for the field.

Xe$Dec USMALLINT 2 not
applicable

Column decimal place (for DECIMAL,
NUMERIC, NUMERICSA,
NUMERICSTS, MONEY, or
CURRENCY types). Relative bit
positions for contiguous bit columns.
Fractional seconds for
AUTOTIMESTAMP, TIMESTAMP, and
TIMESTAMP2 data types.

Column
Name

Type Size Case
Insensitive

Description

482

Column Xe$File corresponds to column Xf$Id in the X$File system table and is the link between
the tables and the columns they contain. For example, the following query returns all field
definitions in order for the Billing table:

SELECT "X$Field".*
FROM X$File,X$Field
WHERE Xf$Id=Xe$File AND Xf$Name = 'Billing' AND Xe$DataType <= 26

ORDER BY Xe$Offset

The integer values in column Xe$DataType are codes that represent the Zen data types. See Zen
Supported Data Types for the codes.

Xe$Flags UINTEGER 4 not
applicable

Flags word.

Bit 0 is the case flag for string data types.

If bit 0 = 1, the field is case insensitive.

If bit 2 = 1, the field allows null values.

Bit 3 of Xe$flag is used to differentiate a
Pervasive.SQL v7 1-byte TINYINT
(B_TYPE_INTEGER unsigned) from
Relational Engine's 1-byte TINYINT
(B_TYPE_INTEGER, but signed).

If bit 3 = 1 and Xe$datatype = 1 and
Xe$size =1, then it means that TINYINT
column is created by the Relational
Engine and is a signed 1-byte TINYINT.

If bit 3 = 0 and Xe$datatype = 1 and
xe$size = 1 then it means that TINYINT
column is created by the legacy SQL
engine and is an unsigned 1-byte
TINYINT.

If bit 11 = 1, the field is interpreted as a
wide character NLONGVARCHAR field
rather than a character
LONGVARCHAR field.

If bit 12 = 1, the field is interpreted as
BINARY.

If bit 13 = 1, the field is interpreted as
DECIMAL with even-byte precision.

Column
Name

Type Size Case
Insensitive

Description

483

Five indexes are defined for the X$Field table, as shown in the following table.

X$File

The X$File system table is associated with the file PVFILE.DDF. For each table defined in the
database, X$File contains the table name, the location of the associated table, and a unique
internal ID number that Zen assigns. The structure of X$File for V2 metadata is shown in the
following table.

Index
Number

Segment
Number

Column Name Duplicates Case Insensitive Segmented

0 0 Xe$Id No not applicable No

1 0 Xe$File Yes not applicable No

2 0 Xe$Name Yes Yes No

3 0 Xe$File No not applicable Yes

3 1 Xe$Name No Yes No

4 0 Xe$File Yes not applicable Yes

4 1 Xe$Offset Yes not applicable Yes

4 2 Xe$Dec Yes not applicable No

Column Name Type Size Case
Insensitive

Description

Xf$Id UINTEGER 4 not applicable Internal ID assigned by Zen

Xf$Name CHAR 128 Yes Table name

Xf$Loc CHAR 250 No File location (path name)

Xf$Flags UINTEGER 4 not applicable File flags. If bit 4=1, the file is a
dictionary file. If bit 4=0, the file is user-
defined. If bit 6=1, the table supports
true nullable columns.

Xf$Reserved CHAR 16 No Reserved

484

Two indexes are defined for the X$File table for V2 metadata.

X$Index

The X$Index system table is associated with the file PVINDEX.DDF. X$Index contains
information about all the indexes defined on the tables in the database. The structure of X$Index
for V2 metadata is as follows:

The Xi$File column corresponds to the Xf$Id column in the X$File system table. The Xi$Field
column corresponds to the Xe$Id column in the X$Field system table. Thus, an index segment
entry is linked to a file and to a field.

Index
Number

Segment
Number

Column
Name

Duplicates Case Insensitive Segmented

0 0 Xf$Id No not applicable No

1 0 Xf$Name No Yes No

Column Name Type Size Case
Insensitive

Description

Xi$File UINTEGER 4 not applicable Unique ID of the table to which the
index belongs. It corresponds to
Xf$Id in X$File.

Xi$Field UINTEGER 4 not applicable Unique ID of the index column. It
corresponds to Xe$Id in X$Field.

Xi$Number UINTEGER 4 not applicable Index number (range 0 – 119).

Xi$Part UINTEGER 4 not applicable Segment number (range 0 – 119).

Xi$Flags UINTEGER 4 not applicable Index attribute flags.

485

The Xi$Flags column contains integer values that define the index attributes. The following table
describes how Zen interprets each bit position when the bit has the binary value of 1. Bit position
0 is the rightmost bit in the integer.

Bit
Position

Decimal
Equivalent

Description

0 1 Index allows duplicates.

1 2 Index is modifiable.

2 4 Indicates an alternate collating sequence.

3 8 Null values are not indexed (refers to Btrieve legacy nulls, not SQL
true NULLs).

4 16 Another segment is concatenated to this one in the index.

5 32 Index is case-insensitive.

6 64 Index is collated in descending order.

7 128 Index is a named index if bit 0 is 0. If bit 0 is 1 and bit 7 is 1, the
index uses the repeating duplicates key method. If bit 0 is 1 and bit 7
is 0, the index uses the linked duplicates key method. See also
LINKDUP. For a detailed discussion of linked duplicates method and
repeating duplicates method, see Methods for Handling Duplicate
Keys in Advanced Operations Guide.

8 256 Index is a Btrieve extended key type.

13 8,192 Index is a foreign key.

14 16,384 Index is a primary key referenced by some foreign key.

486

The value in the Xi$Flags column for a particular index is the sum of the decimal values that
correspond to the index attributes. Three indexes are defined for the X$Index table for V1
metadata as follows:

Index Number corresponds to the value stored in the Xi$Number column in the X$Index system
table. Index numbering start at zero. Segment Number corresponds to the value stored in the
Xi$Part column in the X$Index system table.

To see the information about the index segments defined for the Billing table, for example, issue
the following query:

SELECT Xe$Name,Xe$Offset, "X$Index".*
FROM X$File,X$Index,X$Field
WHERE Xf$Id=Xi$File and Xi$Field=Xe$Id and Xf$Name = 'Billing'

ORDER BY Xi$Number,Xi$Part

X$Proc

The X$Proc system table is associated with the file PVPROC.DDF. X$Proc contains the compiled
structure information for every stored procedure defined. The structure of X$Proc for V1
metadata is as follows:

Index
Number

Segment
Number

Column
Name

Duplicates Case Insensitive Segmented

0 0 Xi$File Yes not applicable No

1 0 Xi$Field Yes not applicable No

2 0 Xi$File No not applicable Yes

2 1 Xi$Number No not applicable Yes

2 2 Xi$Part No not applicable No

Column
Name

Type Size Case
Insensitive

Description

Xp$Name CHAR 128 Yes Stored procedure name

Xp$Ver UTINYINT 1 not applicable Version ID. This is reserved for
future use.

Xp$Id UINTEGER 4 not applicable Internal ID assigned by Zen

Xp$Flags UINTEGER 4 not applicable 1 for stored statement, 2 for stored
procedure or 3 for external
procedure

487

Four indexes are defined for the X$Proc table in V2 metadata as follows:

X$Relate

The X$Relate system table is associated with the file PVRELATE.DDF. X$Relate contains
information about the referential integrity (RI) constraints defined on the database. X$Relate is

Xp$Trustee INTEGER 4 not applicable 0 for a trusted stored procedure
and -1 for a non-trusted stored
procedure. See Trusted and Non-
Trusted Objects.

Xp$Sequence USMALLINT 2 not applicable A sequence number. A procedure
that exceeds 32,765 bytes requires
multiple entries in PVPROC.DDF
to handle the overflow. Each entry
has the same procedure name in
the Xp$Name field and is assigned
a sequence number. The
Xp$Sequence field is used to
correctly order the multiple
entries.

The sequence starts at zero (the
first sequence number is zero).

Xp$Misc LONGVARCHAR
(LVAR)

32,765 not applicable Internal representation of stored
procedure

Index
Number

Segment
Number

Column Name Duplicates Case Insensitive Segmented

0 0 Xp$Name Yes Yes No

1 0 Xp$Name No Yes Yes

1 1 Xp$Ver No not applicable Yes

1 2 Xp$Sequence No not applicable No

2 0 Xp$Id Yes not applicable No

3 0 Xp$Id No not applicable Yes

3 1 Xp$sequence No not applicable No

Column
Name

Type Size Case
Insensitive

Description

488

automatically created when the first foreign key is created, since this results in a relationship
being defined.

The structure of X$Relate for V2 metadata is as follows:

Five indexes are defined for the X$Relate table for V2 metadata as follows:

Column Name Type Size Case
Insensitive

Description

Xr$PId UINTEGER 4 not applicable Primary table ID.

Xr$Index UINTEGER 4 not applicable Index number of primary key in
primary table.

Xr$FId UINTEGER 4 not applicable Dependent table ID.

Xr$FIndex UINTEGER 4 not applicable Index number of foreign key in
dependent table.

Xr$Name CHAR 128 Yes Foreign key name.

Xr$UpdateRule UTINYINT 1 not applicable 1 for restrict.

Xr$DeleteRule UTINYINT 1 not applicable 1 for restrict, 2 for cascade.

Xr$Reserved CHAR 250 No Reserved.

Index
Number

Segment
Number

Column
Name

Duplicates Modifiable Case
Insensitive

Segmented

0 0 Xr$PId Yes No not applicable No

1 0 Xr$FId Yes No not applicable No

2 0 Xr$Name No No Yes No

3 0 Xr$Pld No Yes not applicable Yes

3 1 Xr$Name No Yes Yes No

4 0 Xr$Fld No Yes not applicable Yes

4 1 Xr$Name No Yes Yes No

489

X$Rights

The X$Rights system table is associated with the file PVRIGHTS.DDF. X$Rights contains access
rights information for each user. Zen uses this table only when you enable the security option. The
structure of X$Rights for V2 metadata is as follows:

The Xr$User column corresponds to the Xu$Id column in the X$User table. The Xr$Object
column corresponds to one of the following:

• Xf$Id column in the X$File table

• Xv$Id column in X$Views table

• Xp$Id column in X$Proc table.

The Xr$Column column corresponds to the Xe$Id column in the X$Field table.

Note: For any row in the system table that describes table rights, view rights, or stored procedure
rights, the value for Xr$Column is null.

Column
Name

Type Size Case
Insensitive

Description

Xr$User UINTEGER 4 not
applicable

User ID

Xr$Object UINTEGER 4 not
applicable

Table identification corresponding to
Xf$Id, view identification corresponding
to Xv$Id or stored procedure
identification corresponding to Xp$Id

Xr$Type UINTEGER 4 not
applicable

1 for Tables, 3 for Procedures and 4 for
Views

Xr$Column UINTEGER 4 not
applicable

Column ID

Xr$Rights UINTEGER 4 not
applicable

Rights flag for table, column, views or
stored procedures

490

The Xr$Rights column contains integer values whose rightmost 8 bits define the user access
rights. The following table describes how Zen interprets the value. Values from this table may be
combined into a single Xr$Rights for V2 metadata value.

A decimal equivalent of 0 implies no rights.

The value in the Xr$Rights column for a particular user is the bit-wise intersection of the hex
values corresponding to the access rights that apply to the user. It is not the sum of the decimal
values.

For example, the value in Xr$Rights for a user with all rights assigned is represented as follows:

144 | 160 | 64 | 130 | 132 | 136 = 254

The value in Xr$Rights for a user with all rights assigned for a view is represented as follows:

64 | 130 | 132 | 136 = 206

The value in Xr$Rights for a user with all rights assigned for a stored procedure is represented as
follows:

192 = 192

Three indexes are defined for the X$Rights table for V2 metadata as follows:

Hex Value Decimal
Equivalent

Description

1 1 Object owner right

0x90 144 References rights to table

0xA0 160 Alter table rights

0x40 64 Select rights to view, table or column

0x82 130 Update rights to view, table or column

0x84 132 Insert rights to view, table or column

0x88 136 Delete rights to table or column

0xC0 192 Execute and call rights to a stored procedure

Index
Number

Segment
Number

Column Name Duplicates Case Insensitive Segmented

0 0 Xr$User Yes not applicable No

491

X$Trigger

The X$Trigger system table is associated with the file PVTRIG.DDF. X$Trigger contains
information about the triggers defined for the database. The structure of X$Trigger for V2
metadata is as follows:

1 0 Xr$User No not applicable Yes

1 1 Xr$Object No not applicable Yes

1 2 Xr$Type No not applicable Yes

1 3 Xr$Column No not applicable No

2 0 Xr$Object Yes not applicable Yes

2 1 Xr$Type Yes not applicable Yes

2 2 Xr$Column Yes not applicable No

Column Name Type Size Case
Insensitive

Description

Xt$Name CHAR 128 Yes Trigger name.

Xt$Version UTINYINT 1 not applicable Trigger version. A 4 indicates
Scalable SQL v4.

Xt$File UINTEGER 4 not applicable File on which trigger is defined.
Corresponds to Xf$Id in X$File.

Xt$Event UTINYINT 1 not applicable 0 for INSERT, 1 for DELETE, 2 for
UPDATE.

Xt$ActionTime UTINYINT 1 not applicable 0 for BEFORE, 1 for AFTER.

Xt$ForEach UTINYINT 1 not applicable 0 for ROW (default), 1 for
STATEMENT.

Xt$Order USMALLINT 2 not applicable Order of execution of trigger.

Index
Number

Segment
Number

Column Name Duplicates Case Insensitive Segmented

492

Xt$Sequence USMALLINT 2 not applicable A sequence number. A trigger that
exceeds 4,054 bytes requires
multiple entries in PVTRIG.DDF to
handle the overflow. Each entry has
the same procedure name in the
Xt$Name field and is assigned a
sequence number. The Xt$Sequence
field is used to correctly order the
multiple entries.

The sequence starts at zero (the first
sequence number is zero).

Xt$Misc LONGVARCH
AR
(LVAR)

4,054 not applicable Internal representation of trigger.

Column Name Type Size Case
Insensitive

Description

493

Three indexes are defined for the X$Trigger table for V2 metadata.

X$User

The X$User system table is associated with the file PVUSER.DDF. X$User contains the name
and password of each user and the name of each user group. Zen uses this table only when you
enable the security option. The structure of X$User is as follows:

Note: For any row in the X$User system table that describes a group, the column value for
Xu$Password is NULL.

Index
Number

Segment
Number

Column Name Duplicates Case Insensitive Segmented

0 0 Xt$Name No Yes Yes

0 1 Xt$Sequence No not applicable No

1 0 Xt$Name No Yes Yes

1 1 Xt$File No not applicable Yes

1 2 Xt$Sequence No not applicable No

2 0 Xt$File Yes not applicable Yes

2 1 Xt$Event Yes not applicable Yes

2 2 Xt$ActionTime Yes not applicable Yes

2 3 Xt$ForEach Yes not applicable Yes

2 4 Xt$Order Yes not applicable Yes

2 5 Xt$Sequence Yes not applicable No

Column Name Type Size Case
Insensitive

Description

Xu$Id UINTEGER 4 not applicable Internal ID assigned to the user or
group.

Xu$Name CHAR 128 Yes User or group name.

Xu$Password CHAR 153 No User password (encrypted)

Xu$Flags UINTEGER 4 not applicable User or group flags.

494

The Xu$Flags column contains integer values whose rightmost 8 bits define the user or group
attributes. The following table describes how Zen interprets each bit position when the bit has the
binary value of 1. Bit position 0 is the rightmost bit in the integer.

The value in the Xu$Flags column for a particular user or group is the sum of the decimal values
corresponding to the attributes that apply to the user or group.

Two indexes are defined for the X$User table for V2 metadata as follows:

X$View

The X$View system table is associated with the file PVVIEW.DDF. X$View contains view
definitions, including information about joined tables and the restriction conditions that define
views. You can query the X$View table to retrieve the names of the views that are defined in the
dictionary.

Bit
Position

Decimal
Equivalent

Description

0 1 Reserved.

1 2 Reserved.

2 4 Reserved.

3 8 Reserved.

4 16 Reserved.

5 32 Reserved.

6 64 Name is a group name.

7 128 User or group has the right to define tables in the dictionary

8 256 User or group has the right to define view in the dictionary

9 512 User or group has the right to define stored procedures in the
dictionary

Index
Number

Segment
Number

Column
Name

Duplicates Case
Insensitive

Segmented

0 0 Xu$Id Yes not applicable No

1 0 Xu$Name No Yes No

495

The first column of the X$View table contains the view name. The second and third columns
describe the information found in the LVAR column, Xv$Misc. The structure of X$View for V2
metadata is as follows:

Three indexes are defined for the X$View table for V2 metadata as follows:

Column
Name

Type Size Case
Insensitive

Description

Xv$Name CHAR 128 Yes View name

Xv$Version UTINYINT 1 not applicable Version ID. Reserved for future
use.

Xv$Id UINTEGER 4 not applicable Internal ID assigned by Zen

Xv$Trustee INTEGER 4 not applicable 0 for a trusted view and -1 for a
non-trusted view. See Trusted and
Non-Trusted Objects.

Xv$Sequence USMALLINT 2 not applicable A sequence number. A view that
exceeds 32,765bytes requires
multiple entries in PVVIEW.DDF
to handle the overflow. Each entry
has the same view name in the
Xv$Name field and is assigned a
sequence number. The
Xv$Sequence field is used to
correctly order the multiple entries.

The sequence starts at zero (the
first sequence number is zero).

Xv$Misc LONGVARCHAR
(LVAR)

32,765 not applicable Zen internal definitions.

Index
Number

Segment
Number

Column Name Duplicates Case Insensitive Segmented

0 0 Xv$Name Yes Yes No

1 0 Xv$Name No Yes Yes

1 1 Xv$Version No not applicable Yes

1 2 Xv$Sequence No not applicable No

2 0 Xv$Id Yes not applicable No

3 0 Xv$Id No not applicable Yes

496

3 1 Xv$Sequence No not applicable No

Index
Number

Segment
Number

Column Name Duplicates Case Insensitive Segmented

497

D. SQL Access for COBOL Applications

This appendix includes the following sections:

• Overview of Zen Support for COBOL

• Components

• Using SQL Access

• Example of How to Execute a Sample XML File

Overview of Zen Support for COBOL
The Zen Relational Engine includes support for COBOL OCCURS clauses, partial REDEFINES,
and variable record layouts.

A partial REDEFINES clause identifies a portion of the data within a record (such as a 05 level
within a 01 level). A variable record layout is also referred to as a REDEFINES because the entire
record is being redefined. To avoid confusion with terminology, this topic refers to partial
REDEFINES and to variable record layouts.

You do not need to change your COBOL application to take advantage of the SQL access.

You enable SQL access by describing the handling of data in your application to the Zen
Relational Engine. In developer terms, you define the metadata to the Relational Engine.

Note that this topic applies only to COBOL applications that include OCCURS, partial
REDEFINES, or variable record layouts.

Restrictions

The following restrictions currently apply to providing SQL access for COBOL applications.

• OCCURS cannot be nested within OCCURS.

• OCCURS cannot be nested within partial REDEFINES.

• Partial REDEFINES cannot be nested within partial REDEFINES.

• Partial REDEFINES cannot be nested within OCCURS.

• Only one index can be defined for an OCCURS. Additional indexes cannot be defined for the
items within the OCCURS.

498

• The only data types supported are those defined for the MicroKernel and Relational engines.
The data types are described in the XML control file by using only the transactional data
types. See cobolschemaexec.xsd in the table under Components for a discussion of the XML
control file. For a discussion of data types, see Zen Supported Data Types.

SQL Statements

The following table lists the use of SQL statements with data tables created from OCCURS,
partial REDEFINES, or variable record layouts.

Statement Use with OCCURs and
partial REDEFINES

Use with Variable
Record Layouts

Notes

ALTER TABLE No No

CREATE INDEX No No

CREATE INDEX IN
DICTIONARY

No Yes

CREATE TRIGGER No No

DELETE No Yes

DROP TABLE Yes Yes A DROP TABLE statement
removes all of the entries
from the system tables. The
data file itself is not deleted
or modified. Also, when you
drop a main table, a message
informs you to drop any
dependent tables if any are
detected. A dependent table
depends on a main table and
results from conditions such
as an OCCURS that
contains an index or from
partial REDEFINES. Once
you drop the dependent
tables, you can drop the
main table.

INSERT INTO No No

499

Components
Zen installs the following components to provide SQL access for COBOL applications.

UPDATE Yes Yes An UPDATE statement
cannot update a column on
which a table filter has been
defined. A table filter is a
logical expression
associated with a table.
Table filters are defined as
part of your metadata in the
XML files.

All other SQL
statements listed in
SQL Engine
Reference.

Yes Yes See SQL Grammar in Zen.

Component Purpose Location1

w3cobolschemaexec100.dll 32-bit library of routines used
by Schema Executor

Windows server:
file_path\Zen\bin\

w64cobolschemaexec.dll 64-bit library of routines used
by Schema Executor

Windows server:
file_path\Zen\bin\

Linux:
libpsqlcobolschemaexec100.so

32-bit and 64-bit library of
routines used by Schema
Executor

Linux server: /usr/local/
actianzen/lib

cobolschemexecmsgrb.dll Message resource bundle used
by 32-bit library of routines

Windows server:
file_path\Zen\bin\

w64cobolschemaexecmsgrb.dll Message resource bundle used
by 64-bit library of routines

Windows server:
file_path\Zen\bin\

Linux:
libpsqlcobolschemaexecmsgrb.so

Message resource bundle used
by 32-bit and 64-bit library of
routines

Linux server: /usr/local/
actianzen/lib

Statement Use with OCCURs and
partial REDEFINES

Use with Variable
Record Layouts

Notes

500

cobolschemaexec.xsd Control file (document type
definition) used by Schema
Executor when processing
XML files

Windows server:
file_path\Zen\schemas

Linux server:
/user/local/actianzen/
schemas/

cobolschemaexec.log Default logging file for
messages produced by Schema
Executor when processing of
XML files

Window server:
file_path\Zen\logs

Linux server:
/usr/local/actianzen/logs/

cobolschemaexec.exe Utility that populates the
system tables used by the
Relational Engine to interpret
the ISAM data as normalized
SQL tables.

Also referred to as Schema
Executor.

file_path\Zen\bin\

cobolschemaexec Utility that populates the
system tables used by the
Relational Engine to interpret
the ISAM data as normalized
SQL tables.

Also referred to as Schema
Executor.

Linux installation:
/usr/local/actianzen/bin/

SampleMainTable.xml Sample XML template that
defines data for a simple table.

See also Example of How to
Execute a Sample XML File.

Windows server and client:
file_path\Zen\samples\cobol
schemaexec

Linux installation:
/usr/local/actianzen/samples/
cobolschemaexec

SampleMainWithOccurs.xml Sample XML template used to
define data that contains
OCCURS constructs.

See also Example of How to
Execute a Sample XML File.

Windows server and client:
file_path\Zen\samples\cobol
schemaexec

Linux installation:
/usr/local/actianzen/samples/
cobolschemaexec

Component Purpose Location1

501

Using SQL Access
Complete the following tasks to take advantage of SQL access:

1. Manually edit the appropriate XML template to describe the data layout.

2. Copy the data files specified in the XML templates to the database folder.

3. Execute the utility to populate the system tables used by the Relational Engine (use the XML
to create normalized data).

4. Optionally, if you are a COBOL applications developer, ensure that you deploy any new
system tables created by Schema Executor.

Step 1: Modify the Sample XML Templates

Zen includes sample XML templates that you use to define the layout of data as required by your
COBOL application. See the table under Components. In developer terms, you describe your
metadata in the XML files.

SampleMainWithRedefines.xml Sample XML template used to
define data that contains
REDEFINES constructs.

See also Example of How to
Execute a Sample XML File.

Windows server and client:
file_path\Zen\samples\cobol
schemaexec

Linux installation:
/usr/local/actianzen/samples/
cobolschemaexec

SampleVariantRecord.xml XML template used to define
data that contains variable
record layouts.

See also Example of How to
Execute a Sample XML File.

Windows server and client:
file_path\Zen\samples\cobol
schemaexec

Linux installation:
/usr/local/actianzen/samples/
cobolschemaexec

A log file on a Windows or Linux
client is optional and may be
specified when Schema Executor is
run.

See Schema Executor
Command Format

Same as current directory if
no path is specified.
Otherwise, location depends
on user-supplied path.

1For default locations of Zen files, see Where are the files installed? in Getting Started with Zen.

Component Purpose Location1

502

To Modify an XML Template

1. Open the XML template in a text editor.

2. Modify the XML as described in the file comments.

3. Save the modified template with a path and file name of your choosing.

Step 2: Copy the Data File Specified in the XML Template

Copy the data files specified in the XML file to the data file location of the database before you
run Schema Executor. The database is the one to which you need to add the tables.

For example, you want to add a table (specified in the XML as mytable.mkd) to a database test
that has its data files under c:\data\test. Copy the data file mytable.mkd to c:\data\test before you
run Schema Executor.

Step 3: Run the Schema Executor Utility

Zen includes a command line utility called the Schema Executor, also referred to as SchemaExec.

Schema Executor performs the following actions:

• Parses the XML files that you manually edited.

• Populates existing system tables that the Relational Engine uses to interpret the data as
normalized SQL tables (a database created with Zen contains all of the required system tables
to support SQL access)

• Creates additional system tables and populates them if you run the utility against a database
created with a version of Zen prior to the current version.

To Process an XML File with Schema Executor

See also Example of How to Execute a Sample XML File.

1. Access a command prompt at the operating system.

2. Execute Schema Executor at the command line (see the table under Components for where
this executable is installed by default).

Provide the required options, XMLfilename and databasename, and any desired optional
options. See Schema Executor Command Format.

503

If errors occur during the processing of the XML content, review the errors reported in the
Schema Executor log file. See Log Messages. Execute the utility with the corrected XML
until no errors result from the processing.

Schema Executor Command Format

cobolschemaexec XMLfilename databasename [-s servername] [-u login_id] [-p password] [-i
svr_loginid] [-c svr_password] [-l log_file] [-h | -?]

The following table shows options for the schema executor utility.

Option Meaning

XMLfilename The file name of the XML schema that defines the layout of the data. Required
option. See Step 1: Modify the Sample XML Templates.

databasename The name of the Zen database accessed by your application. Required option. If
the database specified does not exist, the utility prompts for a path and file name.

See also Creating a New Database with Schema Executor.

-s servername The name or IP address of the server running the Zen database engine. You may
use "localhost" as the name if running SchemaExec on the same machine as the
database engine. If servername is not specified, the local machine is assumed to be
the server.

-u login_id The user name required to access a secure database. See Zen Security in Advanced
Operations Guide for a discussion of the Zen security models.

-p password The password required to access a secure database. See Zen Security in Advanced
Operations Guide for a discussion of the Zen security models.

-i svr_loginid The login name required to access the operating system on a remote machine. This
option is required if SchemaExec is processing an XML file located on a remote
server.

-c svr_password The password required to access the operating system on a remote machine. This
option is required if SchemaExec is processing an XML file located on a remote
server.

-l log_file Log file to use for messages produced during processing of the XML file.

If you execute SchemaExec on a machine running the Zen database engine, a
default log is created automatically. You do not need to use the -l log_file option.
The default log is named cobolschemaexec.log.

If you execute SchemaExec on a client machine (a machine not running the Zen
database engine), you can specify a log file for the client machine.

See Log Messages.

-h or -? Display command usage. Ignore all other options.

504

Note: The required options XMLfilename and databasename are positional and must appear in
that order.

Example Usage

The following examples illustrate usage of Schema Executor.

For default locations of Zen files, see Where are the files installed? in Getting Started with Zen.

• Database already exists (with server running on local host):

cobolschemaexec file_path\Zen\samples\cobolschemaexec\test.xml demodata\

• Database does not exist (with server running on local host):

cobolschemaexec file_path\Zen\samples\cobolschemaexec\test.xml mytest

The utility prompts as follows:

CB103 : Could not connect to mytest
Do you want to create database (y/n) ?

If you press y, the utility prompts for a database path:

Please enter the Database Path:

Provide an existing path or the utility returns an error. Ensure that the database file (for example, a
.MKD file) being used in the XML file is available in the path.

• Database exists on a remote server:

cobolschemaexec file_path\Zen\samples\cobolschemaexec\test.xml demodata -s TestMachine -i
testuser -c testuser

This example assumes that a user testuser (with password "testuser") exists on the remote
machine (TestMachine) with administrative privileges, and that the database file being used in the
XML file is available in the data file directory of the database on the remote machine.

• Database does not exist on a remote server:

cobolschemaexec file_path\Zen\samples\cobolschemaexec\test.xml mytest -s RemoteMachine -i
testuser -c testuser

This example assumes that a user testuser (with password "testuser") exists on the remote
machine (TestMachine) with administrative privileges.

The utility prompts as follows:

CB103 : Could not connect to mytest
Do you want to create database (y/n) ?

If you press y, the utility prompts for a database path:

Please enter the Database Path:

505

Provide an existing path or the utility returns an error. Ensure that the database file (for example, a
.MKD file) being used in the XML file is available in the path.

Creating a New Database with Schema Executor

If the utility option databasename specifies a database that does not exist, Schema Executor
prompts you whether to create a new database. If you specify "yes," the utility prompts for a
location of the new database. The location (path and folder name) must already exist for Schema
Executor to create the database.

Note that Schema Executor also expects to find the data files for databasename in the default
folder. The utility informs you if it finds no data files. Manually copy the data files to the default
folder and run Schema Executor again to process the XML.

Log Messages

This section lists the codes that may appear in a log file after processing an XML file with
Schema Executor.

The success code is CB100 : Schemaexec completed successfully.

The following table lists the error codes.

Error Code Description

CB001 Unknown error

CB002 Property name attribute missing

CB003 Both MAINTABLE and VARIANTRECORDTABLES not supported

CB004 Occurs Table Name specified is invalid.

CB005 Occurs Count specified is invalid.

CB006 Occurs Mapping Index specified is invalid.

CB007 TableName - Duplicate table name

CB008 FieldName - Duplicate field name

CB009 IndexName - Duplicate index name

CB010 TableName parameter is not specified.

CB012 Identifier contains invalid characters.

CB013 Offset has to be a nonnegative integer.

506

CB014 Identifier length cannot exceed 20 characters.

CB016 Precision has to be greater than zero.

CB017 Invalid precision specified for FieldName

CB018 Scale cannot be greater than precision for FieldName.

CB019 Log and XML file names must be different.

CB022 TableFilter cannot have more than 255 characters.

CB023 FieldName is not a field of TableName.

CB024 TableFilters should be defined for all REDEFINES Table or for NONE.

CB025 Incorrect Parent Element

CB028 Identifier name identifiername should start with an alphabetic character.

CB029 Identifier name identifiername cannot be a keyword.

CB050 DataFile doesn't exist at DatabasePath.

CB051 OCCURS/REDEFINES length must be a nonnegative integer.

CB052 Length of Btrievefilename cannot exceed 64 characters.

CB057 No index specified for ParentTableName

CB099 Parser error

CB100 Schemaexec finished successfully.

CB101 Invalid value for command line argument argument

CB102 Value for Password cannot be specified without Login.

CB103 Could not connect to DatabaseName

CB105 Could not create database DatabaseName in the dictionary path Databasepath

CB106 Could not create the specified DSN

CB108 Could not close the database databasename

CB109 Could not read data from XML file

CB110 Could not drop the database

Error Code Description

507

Step 4: Optionally, Deploy the System Tables

If you are a COBOL applications developer, ensure that you deploy all of the system tables with
your application. Such deployment is nothing new and is mentioned only because you may have
additional system tables. For example, Schema Executor creates additional system tables and
populates them if you run the utility against a database created with a version of Zen prior to the
current version. Therefore, you may have a few additional system tables (DDF files) to deploy.

Example of How to Execute a Sample XML File
The sample XML and data files are provided under file_path\Zen\samples\cobolschemaexec. For
default locations of Zen files, see Where are the files installed? in Getting Started with Zen.

To execute the XML file SampleMainTable.xml using Schema Executor perform the following
steps.

1. Copy maintbl.mkd to the data file folder of the database to which you wish to connect.

For example, suppose that a database named test exists with a data file location of c:\data\test.
Copy maintbl.mkd to c:\data\test.

2. Open a command prompt at the Zen\bin\ directory.

3. Execute the following command at a DOS prompt:

cobolschemaexec file_path\Zen\samples\cobolschemaexec\samplemaintable.xml test

4. On successful execution of Schema Executor, the table maintbl (as specified in the XML file)
is created in the test database.

5. You man now perform SQL operations on table maintbl using ZenCC.

Additional Notes

This section provides notes pertaining to SELECT statements and table filters.

SELECT Statements

A SELECT query on an OCCURS table returns the following:

• Columns of the OCCURS table

• Column of the main table that comprises the mapping index

• OCCURS counter that indicates the number of occurrences of the OCCURS clause

508

For example, if you perform the query SELECT * FROM FIELD for the tables created by the
execution of Schema Executor on the sample XML file:

file_path\Zen\samples\cobolschemaexec\ SampleMainWithOccurs.xml

Then the utility returns columns Id, OccursCounter, Field_1, Field_2, and Field_3.

A SELECT query on a REDEFINES table returns all of the columns of the parent table and the
columns of the REDEFINES table.

For example, if you perform the query SELECT * FROM Redefined_group for the tables created
by the execution of Schema Executor on the sample XML file

file_path\Zen\samples\ cobolschemaexec\SampleMainWithRedefines.xml

then the utility returns columns Id, Account_Num, Category, Redef_Struct_Num (all columns of
the parent table), and Redefined_field_1 (column of the REDEFINES table).

Table Filters

A table filter is a filter condition for a particular table. In the sample XML files it is referred to as
TABLEFILTER.

• A TABLEFILTER may have an expression with left and right operands, both being column
names. For example, Cust_Num = My_Cust_Num, where both Cust_Num and
My_Cust_Num are column names.

Insert a space between the operands and the operator.

• If a constant value is used in the expression for a TABLEFILTER, the value must be specified
within single quotes.

Example: Cust_Num = '100' (where Cust_Num is the column name)

• Use the following XML entities when specifying a TABLEFILTER in an XML file.

XML Entity Used For

< less than (<)

> greater than (>)

& ampersand (&) (AND)

" double quotes (")

' single quotes (')

509

Examples of Valid TABLEFILTER Usage

Cust_Num = '100' (equivalent to Cust_Num = 100)

Cust_Num < '100' (equivalent to Cust_Num < 100)

Cust_Num > '100' (equivalent to Cust_Num > 100)

Cust_Num <> '100' (equivalent to Cust_Num <> 100)

'a' = Category | Account_Num <= 'a123' (equivalent to 'a'=category OR account_num <= 'a123')

'a' = Category & Account_Num = 'a123' (equivalent to 'a' = category AND account_num = 'a123')

Cust_Num = My_cust_Num (where both the operands are column names)

510

511

E. Query Plan Viewer

Perhaps the most complex aspect of SQL performance is query optimization. The database engine
performs query optimization automatically, but the query structure itself can affect the overall
performance and how the engine optimizes.

Nearly all queries can be written more than one way and yet return the same result set. For
example, consider the simple query SELECT * FROM table1. Assume that table1 has five columns
named col1, col2, and so forth. You could write the query as SELECT col1, col2, col3, col4,
col5 FROM table1 to give the same result set.

Visually comparing these two queries, SELECT * appears much simpler than listing each column
by name. However, listing each column by name in the query delivers a very slight performance
boost. The reason is that with SELECT *, the asterisk symbol must be parsed into the column
names. Such parsing is not needed when the query itself has already performed that task.

The best way to improve performance is to minimize the time required to run queries against the
database. This topic cannot discuss every possible query optimization because queries can be
quite complex and vary tremendously in structure.

You can use Query Plan Viewer to determine how to optimize your queries. Query Plan Viewer is
a graphical utility for viewing query plans selected by the database engine. A query plan can be
viewed for a SELECT, INSERT, UPDATE, or DELETE statement. Query Plan Viewer is
compatible with wide character data.

Note: It may be helpful to use Query Plan Viewer together with SQL Query Logging.

Query Plan Settings
Two SQL statements let you control whether you want to create a query plan and what name to
give the plan. Both statements apply only to the SQL session.

You can execute the following statements in Zen Control Center or from any utility that can send
SQL statements to the Zen database engine.

SQL Statement Discussion

SET QRYPLAN=<on | off> Instructs the database engine to create a query plan for use with
Query Plan Viewer, or not.

512

See also Examining Query Plans and Evaluating Query Performance.

Graphical User Interface
Query Plan Viewer contains two windows: the Query Viewer and the Plan Viewer.

Query Viewer

The Query Viewer displays the SQL query. Only one query plan can be viewed at a time but
multiple plans can be opened concurrently. The Query Viewer also contains menu commands to

SET QRYPLANOUTPUT=<NULL |
file_name>

Sets the location and name of the query plan file. NULL
specifies not to create a query plan file. A single query plan file
can contain plans resulting from multiple queries. For your
reference, the query plan file contains the code page identifier
of the encoding used for each query. Regardless which database
encoding a query used, Query Plan Viewer correctly displays
wide character data.

By default, Query Plan Viewer looks for the file name extension
.qpf. You may use whatever file name extension you want, or
omit one.

Example: You want to create a query plan named select_salary
and store the query plan file in a directory named mydirectory
on drive D off of the root:

SET QRYPLANOUTPUT='d:\mydirectory\select_salary.qpf'

The database engine creates the query plan output file, so the
path must be a location on the machine where the database
engine is running. The path should not reference client-side
locations or client drive mappings.

SQL Statement Discussion

513

open a query plan file, to navigate to the desired query plan when two or more plans are open
concurrently, and to export a query plan.

The Query Viewer can be resized as necessary. It includes a vertical scrollbar for ease in viewing
the SQL query.

The Query Viewer window uses a font suitable for wide character data. Query Plan Viewer checks
the system fonts available and chooses the first available one of the following:

• Consolas

• Lucida Console

• Andale Mono

• Courier New

Plan Viewer

The Plan Viewer contains a graphical representation of the query plan in a tree form with nodes
that represent different components of the query.

The Plan Viewer can be resized as necessary. It includes vertical and horizontal scrollbars for
viewing the query plan tree in different sizes. It contains menu commands and keyboard shortcuts
to resize the tree and to zoom in and out.

The Query Viewer displays different types of nodes depending on the query. Each node represents
a step in the query execution. For example, nodes can represent selection from a base table,
joining of results from two tables into a single result set, calculating an aggregate value,
determining group break occurrences, and combining group results into a single result set.

Nodes

The following table documents types of nodes.

Node Symbol Node Meaning

Represents data coming from a table in the database. The name displayed
under the rectangle is the name of the table. If present, the name shown under
the table indicates the index used to retrieve data from the table. An asterisk to
the right of the index name indicates that the index contains unique values.

514

Represents a row selection operation. The word in parentheses can be either
"Normal" or "Range:"

• A Normal filter is applied after the row is returned from the downstream
node.

• A Range filter appears only directly above a base table. The Range filter
causes a restricted record retrieval from the table based on an index value.

Performs a distinct operation. This node normally appears at the top or close to
the top of the plan tree. Eliminates duplicates from the result set before
returning rows from the query.

Detects group breaks based on a GROUP BY clause.

Works with Group Break node to assist in correctly accumulating aggregates
for SELECT and HAVING clauses.

Performs a JOIN between two nodes. The value in parentheses indicates the
type of JOIN performed:

• "Outer" indicates left for right outer join without any indexes.

• "OuterRange" indicates left or right outer join using an index.

• "Normal" indicates a Cartesian join.

• "Range" indicates an inner join using an index.

Performs aggregate value accumulation. This node is used for MIN, MAX,
AVG, COUNT, SUM, and STDEV, and for these aggregates when the
DISTINCT clause is used with them. The word inside the node indicates the
type of aggregate being accumulated.

When an aggregate is accumulated in conjunction with a GROUP BY clause,
the aggregate nodes appear between the group break and group nodes.

Handles accumulating aggregates when no GROUP BY clause is present.

Node Symbol Node Meaning

515

Note: If you change the aspect ratio of the Plan Viewer while resizing it, the aspect ratio of the
node symbols change accordingly. Consequently, they do not always look identical to the
examples in the table.

Node Details

If you double-click the following query plan nodes, a pop-up window appears, showing more
detailed information:

• Table

• Filter

• Subquery

• Ordered temporary table

Double-clicking the other nodes provides no detailed information for them. When you mouse
over a node with additional available details, the cursor changes to a hand.

Handles data retrieval from a single subquery of the main query. This node
never appears when you view the root query plan, only when you view a
subquery.

Handles creation of temporary tables and data retrieval from temporary tables.
References to the base table under this node are changed to reference columns
of the temporary table.

Processes the UNION and UNION ALL operations. Cycles through the
underlying query execution plans to retrieve data for the UNION result set.
The Plan Viewer displays unions with the first query as the root query, the
second query as Subquery 1, and so forth.

Node Symbol Node Meaning

516

The following table explains the type of detailed information displayed for nodes.

The Plan Viewer also contains menu commands to view the plan at different zoom levels and to
display subqueries, if any.

Query Plan Viewer Tasks
This section discusses the following tasks:

• To create a query plan

• To start Query Plan Viewer

• To view a query plan

Node Type Detailed Information

Table • Name of table

• Total rows in table

• Estimated number of rows to be read

• Range information. Range information is used only when the base table is on
the right side of a JOIN and the retrieval of data from the table can be
optimized through the use of an index. Range information includes:

• Column or columns retrieved

• Value used to initiate range retrieval (the value normally comes from another
table and column) and the value to terminate retrieval

• Initial operations to perform, such as greater than (GT), greater than or equal
to (GE), less than (LT), and so forth

• Method of comparison to determine when to stop (GT, GE, and so forth)

Filter (Normal) Text representation of conditions used to evaluate row. If present, wide character
data is displayed correctly.

Filter (Range) • Information about index used

• How filter is reducing set of rows returned

• Type of first read from table (GT, GE, and so forth)

• Condition that must evaluate to TRUE to stop reading more records (GT, GE,
and so forth)

Subquery Type of subquery and optimizations being performed for subquery

Ordered temp table • List of columns included in the temporary table

• Column indication of whether column is used to order rows of the temporary
table (a key) or is a value to pass up the tree

517

• To export a query plan to an XML file

• To adjust the display size of a query plan in the Plan Viewer

• To scroll through a query plan in the Plan Viewer

• To reload a changed query plan

• To view details of a query plan node

• To view a subquery on a query plan

To create a query plan

1. Execute SET QRYPLAN = on to turn on the creation of a query plan.

2. Execute the SET QRYPLANOUTPUT statement and specify the location and name of the
query plan file.

See Query Plan Settings.

3. Execute a SQL SELECT, INSERT, UPDATE, or DELETE statement (which creates its
corresponding query plan).

4. Execute SET QRYPLAN = off to turn off the creation of query plans.

To start Query Plan Viewer

1. Do one of the following actions:

• In Zen Control Center, click Tools > Query Plan Viewer.

• Execute the file w3sqlqpv.exe located in the Zen\bin directory.

To view a query plan

1. In the Query Viewer, click File > Open.

2. Navigate to the location of the desired query plan file, then select the file and click Open.

The title bar of the Query Viewer informs you how many query plans are open and which plan
you are viewing.

3. If you have more than one query plan open, use the View menu commands to navigate among
the plans:

• First or Ctrl+F. Displays the earliest loaded query plan.

• Last or Ctrl+L. Displays the latest loaded query plan.

518

• Next or Ctrl+N. Displays the next latest query plan.

• Prev(ious) or Ctrl+P. Displays the next earliest query plan.

• Goto or Ctrl+G. Displays the query plan based on the ordinal number of the loaded plans.

To export a query plan to an XML file

1. In the Query Viewer, select File > Export XML.

2. Navigate to the location of the desired query plan XML file, select the file then click Open.

Note: You can specify the name of a new XML file in the same dialog box.

Tip... The Export XML menu item is enabled only if the query plan is loaded into the viewer.

The following table explains the schema of an XML file derived from a SQL query.

Element and Attributes Explanation Parent Element Child Elements

<QPF filename=filename>

filename: path and name of
QPF file

QPF file on which XML file
is based, one per XML file

Header Information <Query>

<Query number=number>

number: query number
displayed in Query Plan
Viewer. First is 1, second is
2, and so forth.

Query in the <QPF> file, at
least one per XML file

<QPF> <SQL>

<TreeRoot>

<SQL> SQL statement used to
generate plan.

If your SQL scripts declare a
Unicode character string
literal prefixed with an
uppercase N, the prefix
appears in the <SQL>
element. See also child
<Properties> for <Filter>.

<Query>

519

<TreeRoot name=name>

name: Root Query or
Subquery X

Indicates root query or
subquery

<Query> All Node
Elements:

<Join>

<Filter>

<Base>

<Distinct>

<Set>

<FCalc>

<Group>

<GroupBreak>

<OrderedTempT
able>

<Union>

<Subquery>

Node Elements Each is a node in the query
plan tree (a part of the SQL
statement)

<TreeRoot> or the
<Child>,
<LeftChild>, or
<RightChild> of
another node element

<Join> <TreeRoot> <Text>

<Properties>

<LeftChild>

<RightChild>

<Filter> If your SQL scripts declare a
Unicode character string
literal prefixed with an
uppercase N, the prefix does
not appear in the
<Properties> child element.
See also <SQL>.

<TreeRoot> <Text>

<Properties>

<Child>

<Base> Represents a leaf in diagram
tree

<TreeRoot> <Text>

<Properties>

<Distinct> <TreeRoot> <Properties>

<Child>

Element and Attributes Explanation Parent Element Child Elements

520

<Set> <TreeRoot> <Text>

<Properties>

<SetString>

<Child>

<FCalc> <TreeRoot> <Properties>

<LeftChild>

<RightChild>

<Group> <TreeRoot> <Properties>

<Child>

<GroupBreak> <TreeRoot> <Properties>

<Child>

<OrderedTempTable> <TreeRoot> <Properties>

<Child>

<Union> <TreeRoot> <Properties>

<Child>

<Subquery> <TreeRoot> <Properties>

<Child>

Node Element Children Varies. Provide additional
information about node or
link to child of node tag.

Varies

<Text> <Join>

<Filter>

<Set>

Optionally, <Base>

<Properties> All node elements

<SetString> <Set>

Element and Attributes Explanation Parent Element Child Elements

521

To adjust the display size of a query plan in the Plan Viewer

Click View then a desired sizing command:

• Autofit. Sizes the query plan so that the entire plan is viewable in the Plan Viewer. The
view resizes if you resize the window. Autofit is the default when you view a query plan.

• 100%, 50%, or 25%. Sizes the query plan to the specified percentage.

• Percent. Sizes the query plan to the percent you specify.

• Zoom In (-) or Zoom Out (+). Enlarges the size of the query plan (zoom in) or reduces
the size of the query plan (zoom out). You can zoom between 5% and 500%.

To scroll through a query plan in the Plan Viewer

Click View then a desired scroll command:

• Scroll Right or Right Arrow. Scrolls toward the right side of the pane.

• Scroll Left or Left Arrow. Scrolls toward the left side of the pane.

• Scroll Up or Up Arrow. Scrolls toward the top of the pane.

• Scroll Down or Down Arrow. Scrolls toward the bottom of the pane.

To reload a changed query plan

In the Query Viewer, click File > Refresh to reread the currently loaded query plan file.

<Child> <Filter>

<Distinct>

<Set>

<Group>

<GroupBreak>

<OrderedTempTable
>

<Union>

<Subquery>

<LeftChild > <Join>

<FCalc>

<RightChild> <Join>

optionally, <FCalc>

Element and Attributes Explanation Parent Element Child Elements

522

To view details of a query plan node

In the Plan Viewer, double-click one of the following nodes:

• Table

• Filter

• Subquery

• Ordered temporary table

See Node Details.

To view a subquery on a query plan

In the Plan Viewer, click Subquery then the number of the subquery (the first subquery in the
main query corresponds to Subquery 1, the second subquery corresponds to Subquery 2 and
so forth). A query plan can contain any number of subqueries, or none. All subqueries for a
query plan appear on the Subquery menu. When you select a subquery, its name appears in
parentheses in the Plan Viewer title.

Examining Query Plans and Evaluating Query
Performance
Query Plan Viewer is particularly useful in the development stage of a project for you to test your
queries and see how the database engine executes them. You can prepare each of your queries,
generate a query plan file and then examine each plan. Based on the information for each query,
you can add or remove indexes and then see the affect of the changes. You can also modify the
queries to see if a change in the syntax of the statement affects its performance.

Creating Example Query Plans for Comparison

As an example, you can demonstrate the use of Query Plan Viewer using the following steps and
a few tables from the Demodata database sample database provided with Zen.

For comparison, you will delete an index from the Enrolls table, execute a query and create a
query plan file, add the index back to Enrolls, then execute the query again and create a
comparison query plan file.

1. In Zen Control Center (ZenCC), execute the SQL statements to turn on the creation of a query
plan and specify the following name of the query plan file: example1.qpf. See Query Plan
Settings.

523

2. In ZenCC, execute the following query for the Demodata database:

DROP INDEX Enrolls.ClassID

Since Demodata is optimized when installed, you need to drop the index from the Class_ID
column of the Enrolls table.

3. In ZenCC, execute the following query for the Demodata database:

SELECT Student.ID, Class.Name, Course.Credit_Hours FROM Student, Enrolls, Class, Course WHERE
Student.ID = Enrolls.Student_Id AND Enrolls.Class_ID = Class.ID AND Class.Name = Course.Name

This query retrieves all enrolled students, the classes in which they are enrolled, and the credit
hours for each course.

4. In ZenCC, specify the following name of the query plan file: example2.qpf. See Query Plan
Settings.

5. In ZenCC, execute the following query for the Demodata database:

CREATE INDEX ClassID ON Enrolls(Class_ID)

6. In ZenCC, execute the following query for the Demodata database:

SELECT Student.ID, Class.Name, Course.Credit_Hours FROM Student, Enrolls, Class, Course WHERE
Student.ID = Enrolls.Student_Id AND Enrolls.Class_ID = Class.ID AND Class.Name = Course.Name

Notice that the query runs faster.

Viewing the Example Query Plans

In Query Plan Viewer, use File > Open to open example1.qpf(). You should see something like
the following:

524

For comparison, open example2.qpf in Query Plan Viewer. You should see something like the
following:

525

Note the following about this plan:

• Records are scanned from the Class table.

• Records are retrieved from the Course table based on the Class.Name value using the
Course.Course_Name index.

• Records are retrieved from the Enrolls table based on the Class.ID value scanning through the
Enrolls table.

• Records are retrieved from the Student table based on the Enrolls.Student_Id using the
Student.ID index.

• The selection of data from Enrolls uses the newly created index ClassID.

In a similar manner to this example, you can compare your own queries to determine which
syntax and structure is right for your needs.

526

	Contents
	About This Document
	Who Should Read This Manual
	For More Information

	SQL Overview
	Working with SQL in Zen
	Data Definition Statements
	Creating, Modifying, and Deleting Tables
	Creating and Deleting Views
	Creating and Deleting Indexes
	Creating and Deleting Triggers
	Creating and Deleting Stored Procedures
	Creating and Deleting User-Defined Functions (UDF)

	Data Manipulation Statements
	Retrieving Data
	Modifying Data
	Creating and Deleting Views
	Executing Stored Procedures
	Executing System Stored Procedures
	Executing Triggers

	Data Control Statements
	Enabling and Disabling Security
	Creating and Deleting Users and Groups
	Granting and Revoking Rights

	Zen Metadata
	Comparison of Metadata Versions

	Relational Engine Limits
	Fully Qualified Object Names
	Delimited Identifiers in SQL Statements
	Examples

	SQL Syntax Reference
	Literal Values
	String Values
	Examples
	Number Values
	Date Values
	Examples
	Time Values
	Examples
	Time Stamp Values
	Examples

	SQL Grammar in Zen
	ADD
	Remarks
	See Also

	ALL
	Remarks
	Examples
	See Also

	ALTER (rename)
	Syntax
	Remarks
	Examples
	See Also

	ALTER GROUP
	Syntax
	Remarks
	Examples
	See Also

	ALTER TABLE
	Syntax
	Remarks
	IN DICTIONARY
	USING
	WITH REPLACE
	MODIFY COLUMN and ALTER COLUMN
	PSQL_MOVE
	RENAME COLUMN
	ON DELETE CASCADE
	Examples
	See Also

	ALTER USER
	Syntax
	Remarks
	Examples
	See Also

	ANY
	Remarks
	Examples
	See Also

	AS
	Remarks
	Examples
	See Also

	BEGIN [ATOMIC]
	Remarks
	Example
	See Also

	CALL
	Remarks
	Examples
	See Also

	CASCADE
	Remarks
	See Also

	CASE (expression)
	Syntax
	Arguments
	Remarks
	Examples
	See Also

	CASE (string)
	Remarks
	Examples
	See Also

	CLOSE
	Syntax
	Remarks
	Examples
	See Also

	COALESCE
	Syntax
	Returned Value Types
	Restrictions
	COALESCE Supported Combination Types and Result Data Types
	Examples

	COMMIT
	Syntax
	Examples
	See Also

	CREATE DATABASE
	Syntax
	Remarks
	Database Name and IF NOT EXISTS Clause
	Dictionary Path
	Data Path
	Referential Integrity
	BOUND
	Dictionary Files
	Security
	Metadata Version
	Encoding
	Valid Code Page Names and Numbers

	Examples
	See Also

	CREATE FUNCTION
	Syntax
	Remarks
	Restrictions
	Limits
	Supported Scalar Input Parameters and Returned Data Types
	Examples
	Invoking a Scalar User-Defined Function
	Limits
	Examples of User-Defined Functions
	See Also

	CREATE GROUP
	Syntax
	Remarks
	Examples
	See Also

	CREATE INDEX
	Syntax
	Remarks
	Index Segments
	UNIQUE
	PARTIAL
	Limitations of PARTIAL

	Examples
	NOT MODIFIABLE
	USING
	IN DICTIONARY
	Examples
	See Also

	CREATE PROCEDURE
	Syntax
	Remarks
	Trusted and Non-Trusted Stored Procedures
	Memory Caching
	Caching Exclusions

	Data Type Restrictions
	Limits
	Examples
	Using Stored Procedures
	General Stored Procedure Engine Limitations
	Limits to SQL Variables and Parameters
	Limits to Cursors
	Limits when using Long Data
	See Also

	CREATE TABLE
	Syntax
	Remarks
	Limitations on Record Size
	Example of Limitation on Record Size

	Delete Rule
	Update Rule
	IN DICTIONARY
	USING
	WITH REPLACE
	DCOMPRESS
	PCOMPRESS
	PAGESIZE
	LINKDUP
	Examples
	See Also

	CREATE (temporary) TABLE
	Syntax
	Remarks
	Compatibility with Previous Releases
	TEMPDB Database
	Table Names of Local Temporary Tables
	Transactions
	SELECT INTO
	Restrictions on SELECT INTO
	Caching of Stored Procedures
	Examples of Temporary Tables
	See Also

	CREATE TRIGGER
	Syntax
	Remarks
	Examples
	See Also

	CREATE USER
	Syntax
	Remarks
	Examples
	See Also

	CREATE VIEW
	Syntax
	Remarks
	ORDER BY
	Trusted and Non-Trusted Views
	Examples of Trusted and Non-Trusted Views
	See Also

	DECLARE
	Remarks
	Examples
	See Also

	DECLARE CURSOR
	Syntax
	Remarks
	Examples
	See Also

	DEFAULT
	Syntax
	Remarks
	Restrictions on Identity Data Types
	Scalar Functions and Simple Expressions as Default Column Values
	Using DEFAULT with ALTER TABLE

	Examples
	See Also

	DELETE (positioned)
	Syntax
	Remarks
	Examples
	See Also

	DELETE
	Syntax
	Remarks
	FROM Clause
	Examples

	DISTINCT
	Examples
	See Also

	DROP DATABASE
	Syntax
	Remarks
	Secured Databases
	DELETE FILES
	Examples
	See Also

	DROP FUNCTION
	Syntax
	Remarks
	Examples
	See Also

	DROP GROUP
	Syntax
	Remarks
	Examples
	See Also

	DROP INDEX
	Syntax
	Remarks
	Partial Indexes
	Examples
	See Also

	DROP PROCEDURE
	Syntax
	Remarks
	Examples
	See Also

	DROP TABLE
	Syntax
	Remarks
	Examples
	See Also

	DROP TRIGGER
	Syntax
	Remarks
	Examples
	See Also

	DROP USER
	Syntax
	Remarks
	Examples
	See Also

	DROP VIEW
	Syntax
	Remarks
	Examples
	See Also

	END
	Remarks

	EXECUTE
	Syntax
	Remarks
	Examples
	See Also

	EXISTS
	Syntax
	Remarks
	Examples
	See Also

	FETCH
	Syntax
	Remarks
	Examples
	See Also

	FOREIGN KEY
	Remarks
	Examples
	See Also

	GRANT
	Syntax
	Remarks
	GRANT LOGIN TO
	Constraints on Permissions
	By Object Type
	ALL Keyword

	GRANT and Data Security
	Granting Privileges to Users and Groups
	Granting Access Using Owner Names

	Permissions on Views and Stored Procedures
	Trusted and Non-Trusted Objects

	Examples
	See Also

	GROUP BY
	See Also

	HAVING
	Examples
	See Also

	IF
	Syntax
	Remarks
	Examples
	See Also

	IN
	Remarks
	Examples
	See Also

	INSERT
	Syntax
	Remarks
	INSERT ON DUPLICATE KEY UPDATE
	Inserting Data Longer Than the Maximum Literal String
	Examples
	Examples for INSERT
	Examples for INSERT ON DUPLICATE KEY UPDATE
	Errors When Using DEFAULT
	See Also

	JOIN
	Syntax
	LEFT OUTER
	Vendor Strings

	Examples
	Emp Table
	Dept Table
	Addr Table
	Loc Table
	Algorithm

	See Also

	LAG
	Syntax
	Examples

	LEAVE
	Remarks
	Examples
	See Also

	LIKE, ILIKE, and Using ESCAPE
	Syntax
	Remarks
	ESCAPE with Unicode
	Examples of LIKE
	Examples of ILIKE
	Example of LIKE or ILIKE with ESCAPE
	See Also

	LOOP
	Remarks
	Examples
	See Also

	NOT
	Remarks
	Examples
	See Also

	OPEN
	Syntax
	Remarks
	Examples
	See Also

	PARTIAL
	Remarks
	See Also

	PRIMARY KEY
	Remarks
	Examples
	See Also

	PRINT
	Remarks
	Examples
	See Also

	PUBLIC
	Remarks
	Examples
	See Also

	RELEASE SAVEPOINT
	Syntax
	Remarks
	Examples
	See Also

	RESTRICT
	Remarks
	See Also

	REVOKE
	Syntax
	Examples
	See Also

	ROLLBACK
	Syntax
	Remarks
	Examples
	See Also

	SAVEPOINT
	Syntax
	Remarks
	Examples
	See Also

	SELECT
	Syntax
	Remarks
	FOR UPDATE
	Constraints
	GROUP BY
	SQL Windowing Functions
	Limitations
	Considerations
	Dynamic Parameters
	Aliases
	SUM and DECIMAL Precision
	Subqueries
	Subquery Optimization
	UNION in Subquery
	Table Subqueries
	Using Table Hints
	Table Hint Restrictions
	Accessing System Data v2

	Examples
	FOR UPDATE
	Approximate Numeric Literal
	Between Predicate
	Correlation Name
	Exact Numeric Literal
	In Predicate
	Set Functions
	Date Literal
	Time Literal
	Time Stamp Literal
	String Literal
	Date Arithmetic
	IF
	Multidatabase Join
	Left Outer Join
	Right Outer Join
	Cartesian Join
	Queries with Sys$create and Sys$update
	DISTINCT in Aggregate Functions
	TOP or LIMIT
	Cursor Types and TOP or LIMIT
	TOP or LIMIT Examples
	Table Hint Examples

	See Also

	SELECT (with INTO)
	Syntax
	Remarks
	Examples
	See Also

	SET
	Syntax
	Remarks
	Examples
	See Also

	SET ANSI_PADDING
	Syntax
	Remarks
	Restrictions
	Examples
	See Also

	SET CACHED_PROCEDURES
	Syntax
	Remarks
	Registry Setting
	Caching Exclusions

	Examples
	See Also

	SET DECIMALSEPARATORCOMMA
	Syntax
	Remarks
	Examples
	See Also

	SET DEFAULTCOLLATE
	Syntax
	Remarks
	Using ACS Files
	Using ISR Table Names

	ACS, ISR, and ICU Examples
	See Also

	SET LEGACYTYPESALLOWED
	Syntax
	Remarks
	Example

	SET OWNER
	Syntax
	Remarks
	Examples
	See Also

	SET PASSWORD
	Syntax
	Remarks
	Password Characteristics

	Examples
	See Also

	SET PROCEDURES_CACHE
	Syntax
	Remarks
	Registry Setting
	Caching Exclusions

	Examples
	See Also

	SET ROWCOUNT
	Syntax
	Remarks
	Examples
	See Also

	SET SECURITY
	Syntax
	Remarks
	User Permissions

	Examples
	See Also

	SET TIME ZONE
	Syntax
	Remarks
	A Note about Time Stamp Data Types

	Examples
	See Also

	SET TRUEBITCREATE
	Syntax
	Remarks
	Example

	SET TRUENULLCREATE
	Syntax
	Remarks
	Examples

	SIGNAL
	Remarks
	Syntax
	Examples
	See Also

	SQLSTATE
	Remarks
	See Also

	START TRANSACTION
	Syntax
	Remarks
	Examples
	See Also

	UNION
	Remarks
	Examples
	See Also

	UNIQUE
	Remarks
	See Also

	UPDATE
	Syntax
	Remarks
	Updating Data Longer Than the Maximum Literal String
	FROM Clause

	Examples
	See Also

	UPDATE (positioned)
	Syntax
	Remarks
	Examples
	See Also

	USER
	Remarks
	Example
	See Also

	WHILE
	Syntax
	Remarks
	Examples
	See Also

	Grammar Element Definitions
	SQL Statement List
	Predicate
	Expression

	Global Variables
	@@IDENTITY and @@BIGIDENTITY
	Examples
	@@ROWCOUNT
	Examples
	@@SESSIONID
	Example
	@@SPID
	Example
	@@VERSION
	Example

	Other Characteristics
	Temporary Files
	When Are Temporary Files Created?
	In-Memory Temporary File
	On-Disk Temporary File
	Btrieve Temporary File

	Working with NULL Values
	Working with Binary Data
	Creating Indexes
	Comma as Decimal Separator
	Client-Server Considerations
	Changing the Locale Setting

	Examples
	Example A – Server locale uses a comma for decimal separator
	Example B – Server locale uses the period for decimal separator

	Scalar Functions
	Bitwise Operators
	Truth Table

	Arithmetic Operators
	Date Arithmetic
	Example

	String Functions
	Examples

	Numeric Functions
	Examples

	Time and Date Functions
	Time and Date Function Examples

	System Functions
	System Function Examples

	Logical Functions
	Logical Function Examples

	Conversion Functions
	Conversion Function Examples

	System Stored Procedures
	Zen System Stored Procedures
	psp_columns
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Result Set
	Error Conditions

	psp_column_attributes
	Syntax
	Arguments
	Returned Result Set
	Examples
	Result Set
	Result Set
	Result Set
	Error Conditions

	psp_column_rights
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Result Set
	Result Set
	Error Conditions

	psp_fkeys
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Error Conditions

	psp_groups
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Error Conditions

	psp_help_sp
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Error Conditions

	psp_help_trigger
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Error Conditions

	psp_help_udf
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Error Conditions

	psp_help_view
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Error Conditions

	psp_indexes
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Error Conditions

	psp_pkeys
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Error Conditions

	psp_procedure_rights
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Error Conditions

	psp_rename
	Syntax
	Arguments
	Example
	Error Conditions

	psp_stored_procedures
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Error Conditions

	psp_tables
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Result Set
	Error Conditions

	psp_table_rights
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Error Conditions

	psp_triggers
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Error Conditions

	psp_udfs
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Error Conditions

	psp_users
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Error Conditions

	psp_view_rights
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Result Set
	Error Conditions

	psp_views
	Syntax
	Arguments
	Returned Result Set
	Example
	Result Set
	Result Set
	Error Conditions

	Performance Optimization Reference
	Restriction Analysis
	Modified CNF Conversion
	Restrictions that Cannot be Converted
	Conditions Under Which Conversion is Avoided

	Restriction Optimization
	Single Predicate Optimization
	Closed Range Optimization
	Modified Disjunct Optimization
	Conjunct Optimization
	Disjunctive Normal Form Optimization
	Modified Conjunctive Normal Form Optimization
	Closing Open-Ended Ranges through Modified CNF Optimization
	Single Join Condition Optimization
	Conjunct with Join Conditions Optimization
	Modified Conjunctive Normal Form with Join Conditions Optimization
	Closing Join Condition Open-Ended Ranges through Modified CNF Optimization
	Multi-Index Modified Disjunct Optimization

	Push-Down Filters
	Efficient Use of Indexes
	DISTINCT in Aggregate Functions
	DISTINCT Preceding Selection List
	Relaxed Index Segment Order Sensitivity
	Relaxed Segment Ascending Attribute Sensitivity
	Search Update Optimization

	Temporary Table Performance
	Row Prefetch
	Terminology
	Aggregate Function
	Closed Range
	Conjunct
	Conjunctive Normal Form (CNF)
	Disjunct
	Disjunctive Normal Form (DNF)
	Expression
	Index
	Join Condition
	Leading Segments
	Modified Conjunctive Normal Form (Modified CNF)
	Modified Disjunct
	Open-Ended Range
	Predicate
	Restriction

	System Catalog Functions
	Zen System Catalog Functions
	Return Status
	Summary

	dbo.fSQLColumns
	Syntax
	Arguments
	Returned Result Set
	Example

	dbo.fSQLForeignKeys
	Syntax
	Arguments
	Returned Result Set
	Example

	dbo.fSQLPrimaryKeys
	Syntax
	Arguments
	Returned Result Set
	Example

	dbo.fSQLProcedures
	Syntax
	Arguments
	Returned Result Set
	Example

	dbo.fSQLProcedureColumns
	Syntax
	Arguments
	Returned Result Set
	Example

	dbo.fSQLSpecialColumns
	Syntax
	Arguments
	Returned Result Set
	Example

	dbo.fSQLStatistics
	Syntax
	Arguments
	Returned Result Set
	Example

	dbo.fSQLTables
	Syntax
	Arguments
	Returned Result Set
	Example

	dbo.fSQLDBTableStat
	Syntax
	Argument
	Returned Result Set
	Example

	String Search Patterns
	Examples

	A. Data Types
	Zen Supported Data Types
	Data Type Ranges
	Operator Precedence
	Parentheses

	Data Type Precedence
	Numeric Data Types
	Character Data Types
	Data Types with No Precedence

	Precision and Scale of Decimal Data Types
	Scale of Time Stamp Data Types and Returned Function Values
	Truncation

	Notes on Data Types
	CHAR, NCHAR, VARCHAR, NVARCHAR, LONGVARCHAR, and NLONGVARCHAR
	BINARY and LONGVARBINARY
	Limitations on LONGVARCHAR, NLONGVARCHAR and LONGVARBINARY
	DATETIME
	Format of DATETIME
	Compatibility of Date and Time Data Types

	UNIQUEIDENTIFIER
	Declaring Variables
	Converting UNIQUEIDENTIFIER to Another Data Type

	Representation of Infinity

	Legacy Data Types
	Btrieve Key Data Types
	AUTOINCREMENT
	Restrictions

	AUTOTIMESTAMP
	Inserts and Updates Using AUTOTIMESTAMP
	Restrictions
	Usage in Function Executor and Maintenance Tools

	BFLOAT
	STRING
	CURRENCY
	DATE
	DECIMAL
	Windows
	Linux

	FLOAT
	GUID
	GUID Keys

	INTEGER
	LOGICAL
	LSTRING
	MONEY
	NUMERIC
	Enabling the Shifted Format
	Windows 32-Bit
	Linux
	Consistent Sign Values for Positive NUMERIC Data

	NUMERICSA
	NUMERICSLB
	NUMERICSLS
	NUMERICSTB
	NUMERICSTS
	TIME
	TIMESTAMP
	Usage in Function Executor and Maintenance Tools

	TIMESTAMP2
	Usage in Function Executor and Maintenance Tools

	UNSIGNED BINARY
	WSTRING
	WZSTRING
	ZSTRING

	Non-Key Data Types
	BLOB
	CLOB

	B. SQL Reserved Words
	Reserved Words
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Words to Avoid

	C. System Tables
	Overview
	System Tables Structure
	V1 Metadata System Tables
	X$Attrib
	X$Depend
	X$Field
	X$File
	X$Index
	X$Proc
	X$Relate
	X$Rights
	X$Trigger
	X$User
	X$View

	V2 Metadata System Tables
	X$Attrib
	X$Depend
	X$Field
	X$File
	X$Index
	X$Proc
	X$Relate
	X$Rights
	X$Trigger
	X$User
	X$View

	D. SQL Access for COBOL Applications
	Overview of Zen Support for COBOL
	Restrictions
	SQL Statements

	Components
	Using SQL Access
	Step 1: Modify the Sample XML Templates
	Step 2: Copy the Data File Specified in the XML Template
	Step 3: Run the Schema Executor Utility
	Schema Executor Command Format
	Example Usage
	Creating a New Database with Schema Executor
	Log Messages

	Step 4: Optionally, Deploy the System Tables

	Example of How to Execute a Sample XML File
	Additional Notes
	SELECT Statements
	Table Filters
	Examples of Valid TABLEFILTER Usage

	E. Query Plan Viewer
	Query Plan Settings
	Graphical User Interface
	Query Viewer
	Plan Viewer
	Nodes
	Node Details

	Query Plan Viewer Tasks
	Examining Query Plans and Evaluating Query Performance
	Creating Example Query Plans for Comparison
	Viewing the Example Query Plans

