Was this helpful?
Performing Data Matching
DataFlow Matching Operators
The DataFlow operator library contains several prebuilt fuzzy matching operators. This topic covers each of those operators and provides details on how to use them.
Covered Matching Operations
Data Matching
DataFlow Matching Operators
The DataFlow matching library provides operators to discover duplicates or links between records. This topic covers each of those operators and provides details on how to use them.
Matching Operators
Using the DiscoverDuplicates Operator to Discover Duplicates
The DiscoverDuplicates operator can be used to discover duplicate records within a single source using fuzzy matching operators.
The first step in a matching operation is to index the input data records into groups for processing by the configured phases of field comparisons, classifiers, and filter. This indexing is useful in potentially reducing the number of records that must be compared. The output of this step in the matching operation is a stream of record pairs that must be compared, classified, and filtered.
Record pair comparisons happen in configured phases. A matching operation may consist of a single phase. Each phase consists of a set of field comparisons, classifiers, and a filter. Field comparisons compare a field from each source using a fuzzy matching comparison operator. Each comparison outputs a field comparison score.
A classifier may be used to classify or aggregate multiple field scores into a single score. A classifier outputs a single value representing the composite score.
A phase may use zero to many classifiers and a classifier can be used to aggregate scores from many classifiers. A filter is the last step of a phase. The filter ensures that record pairs are pushed to the output stream only if they meet the filter criteria.The output of this matching operation is a stream of record pairs that are deemed to be likely matches. Each record pair will contain a record score that determines the strength of the match on the spectrum from zero to one. A score approaching zero is an unlikely match. A score approaching one is a very likely match.
Code Example
This example uses the accounts data set to try and find duplicates using a set of fuzzy matching rules.
Using the DiscoverDuplicates operator in Java
import static com.pervasive.datarush.matching.ClassifierType.WAVG;
import static com.pervasive.datarush.matching.FilterType.GTE;
import static com.pervasive.datarush.matching.Index.PROP_KEYS;
import static java.util.Arrays.asList;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import com.pervasive.datarush.graphs.LogicalGraph;
import com.pervasive.datarush.graphs.LogicalGraphFactory;
import com.pervasive.datarush.io.WriteMode;
import com.pervasive.datarush.matching.Classifier;
import com.pervasive.datarush.matching.Comparison;
import com.pervasive.datarush.matching.ComparisonType;
import com.pervasive.datarush.matching.DiscoverDuplicates;
import com.pervasive.datarush.matching.Filter;
import com.pervasive.datarush.matching.Index;
import com.pervasive.datarush.matching.IndexType;
import com.pervasive.datarush.matching.Phase;
import com.pervasive.datarush.matching.Phase.CleanupMode;
import com.pervasive.datarush.matching.functions.StringEncodings;
import com.pervasive.datarush.operators.io.textfile.ReadDelimitedText;
import com.pervasive.datarush.operators.io.textfile.WriteDelimitedText;
import com.pervasive.datarush.operators.record.DeriveFields;
import com.pervasive.datarush.operators.record.FieldDerivation;
import com.pervasive.datarush.operators.record.RemoveFields;

/**
 * Use the DiscoverDuplicates operator to find possible duplicate accounts
 *
 */
public class DiscoverDuplicateAccounts {
    public static void main(String[] args) {

        // Create an empty logical graph
        LogicalGraph app = LogicalGraphFactory.newLogicalGraph("DiscoverDuplicates");
        
        // Create a delimited text reader for the "accounts0.csv" file
        ReadDelimitedText reader = app.add(new ReadDelimitedText("data/accounts0.csv"));
        reader.setHeader(true);
        
        // Create a new city field to match with using the phonetic form of the city's name
        DeriveFields city = app.add(new DeriveFields(FieldDerivation.derive("city_soundex", StringEncodings.soundex("city"))));
        app.connect(reader.getOutput(), city.getInput());
        
        // Configure the indexing properties for the matcher
        Index index = new Index();
        index.setType(IndexType.BLOCK);
        index.addProperty(PROP_KEYS, new String[] {"zip", "city_soundex"});
        
        // Configure the matching criteria
        List<Comparison> comparisons = new ArrayList<Comparison>();
        comparisons.add(new Comparison("first_name", ComparisonType.LEVENSHTEIN, "fn_score"));
        comparisons.add(new Comparison("last_name", ComparisonType.JARO_WINKLER, "ln_score"));
        comparisons.add(new Comparison("company", ComparisonType.JARO, "company_score"));
        Map<String, Object> cprops = new HashMap<String, Object>();
        cprops.put("q", Integer.valueOf(3));
        cprops.put("maxDistance", Integer.valueOf(5));
        comparisons.add(new Comparison("company", ComparisonType.POSITIONAL_QGRAM, "company_pqg_score", cprops));
        
        // Configure the classifier the phase should use
        Map<String, Object> weights = new HashMap<String, Object>();
        weights.put("weights", new int[] {5, 20, 5, 2});
        Classifier classifier = new Classifier(
                WAVG, 
                new String[] {"fn_score", "ln_score", "company_score", "company_pqg_score"},
                Classifier.DEFAULT_FIELD_NAME,
                weights);
        
        // Configure the filter to determine the minimum match requirement
        Filter filter = new Filter(GTE, Filter.DEFAULT_FIELD_NAME, "minValue", 0.85D);
        
        // Create a new phase for the operator
        Phase phase1 = new Phase(comparisons, classifier, filter, CleanupMode.INTERMEDIATE);
        
        // Initialize the DiscoverDuplicates operator
        DiscoverDuplicates dedup = app.add(new DiscoverDuplicates(index, Arrays.asList(phase1)));
        app.connect(city.getOutput(), dedup.getInput());
        
        // Remove the derived city field from the output
        RemoveFields rmField = app.add(new RemoveFields(asList("zip", "city_soundex")));
        app.connect(dedup.getOutput(), rmField.getInput());
        
        // Create a delimited text writer
        WriteDelimitedText writerLeft = app.add(new WriteDelimitedText("results/dedup-accounts.txt", WriteMode.OVERWRITE));
        writerLeft.setHeader(true);
        writerLeft.setWriteSingleSink(true);
        app.connect(rmField.getOutput(), writerLeft.getInput());
        
        // Compile and run the graph
        app.run();
    }
}
Using the DiscoverDuplicates operator in RushScript
// Create block index on zip code and soundex of city
var index = new Index();
index.setType(IndexType.BLOCK);
index.addProperty('keys', ['zip', 'city_soundex']);

// Create a phase with comparisons, weighted average classifier and a filter
var phase = new Phase();
phase.addComparison('first_name', 'first_name', ComparisonType.LEVENSHTEIN, 'fn_score');
phase.addComparison('last_name', 'last_name', ComparisonType.LEVENSHTEIN, 'ln_score');
phase.addComparison('company', 'company', ComparisonType.JARO, 'company_score', {q:3, maxDistance:5 });
phase.addComparison('company', 'company', ComparisonType.POSITIONAL_QGRAM, 'company_pqg_score');
phase.addClassifier(ClassifierType.WAVG, ['fn_score', 'ln_score', 'company_score', 'company_pqg_score'], Classifier.PROP_WEIGHTS, [5, 20, 5, 2]);
phase.setFilter(FilterType.GTE, Filter.PROPS_MINVALUE, 0.85);

// Discover duplicates in the account data
var results = dr.discoverDuplicates(data, {index:index, phases:[phase]});
Properties
The DiscoverDuplicates operator provides the following properties.
Name
Type
Description
index
Index
The pair generation method for determining initial candidate matches.
phases
List<Phase>
The phases of comparison, classifying and filtering used to determine matches.
Ports
The DiscoverDuplicates operator provides a single input port.
Name
Type
Get Method
Description
input
getInput()
The input data to check for duplicates.
The DiscoverDuplicates operator provides a single output port.
Name
Type
Get Method
Description
output
getOutput()
The record pairs that are considered likely matches.
Using the DiscoverLinks Operator to Discover Links
The DiscoverLinks operator uses fuzzy matching operators to discover linked records from two data sources.
The first step in a matching operation is to index the input data records into groups for processing by the configured phases of field comparisons, classifiers, and filter. This indexing is useful in potentially reducing the number of records that must be compared. The output of this step in the matching operation is a stream of record pairs that must be compared, classified, and filtered.
Record pair comparisons happen in configured phases. A matching operation may consist of a single phase. Each phase consists of a set of field comparisons, classifiers, and a filter. Field comparisons compare a field from each source using a fuzzy matching comparison operator. Each comparison outputs a field comparison score. A classifier may be used to classify or aggregate multiple field scores into a single score. A classifier outputs a single value representing the composite score.
A phase may use zero to many classifiers and a classifier can be used to aggregate scores from many classifiers. A filter is the last step of a phase. The filter ensures that record pairs are pushed to the output stream only if they meet the filter criteria.
The output of this matching operation is a stream of record pairs that are deemed to be likely matches. Each record pair will contain a record score that determined the strength of the match on the spectrum from zero to one. A score approaching zero is an unlikely match while a score approaching one is a very likely match.
Code Example
This example tries to use fuzzy matching rules to find links between two account data sets.
Using the DiscoverLinks operator in Java
import static com.pervasive.dataflow.matching.Classifier.PROP_WEIGHTS;
import static com.pervasive.dataflow.matching.ClassifierType.WAVG;
import static com.pervasive.dataflow.matching.ComparisonType.JARO_WINKLER;
import static com.pervasive.dataflow.matching.ComparisonType.SHORTHAND;
import static com.pervasive.dataflow.matching.Filter.PROPS_MINVALUE;
import static com.pervasive.dataflow.matching.FilterType.GTE;
import static com.pervasive.dataflow.matching.Index.PROP_LEFT_KEYS;
import static com.pervasive.dataflow.matching.Index.PROP_RIGHT_KEYS;
import static java.util.Arrays.asList;
import java.util.HashMap;
import java.util.Map;
import com.pervasive.dataflow.functions.Strings;
import com.pervasive.dataflow.graphs.LogicalGraph;
import com.pervasive.dataflow.graphs.LogicalGraphFactory;
import com.pervasive.dataflow.io.WriteMode;
import com.pervasive.dataflow.matching.ComparisonType;
import com.pervasive.dataflow.matching.DiscoverLinks;
import com.pervasive.dataflow.matching.Index;
import com.pervasive.dataflow.matching.IndexType;
import com.pervasive.dataflow.matching.Phase;
import com.pervasive.dataflow.matching.Phase.CleanupMode;
import com.pervasive.dataflow.operators.io.textfile.ReadDelimitedText;
import com.pervasive.dataflow.operators.io.textfile.WriteDelimitedText;
import com.pervasive.dataflow.operators.record.DeriveFields;
import com.pervasive.dataflow.operators.record.FieldDerivation;
import com.pervasive.dataflow.operators.record.RemoveFields;

/**
 * Use the DiscoverLinks operator to find possible account links
 *
 */
public class DiscoverLinkAccounts {
    public static void main(String[] args) {

        // Create an empty logical graph
        LogicalGraph app = LogicalGraphFactory.newLogicalGraph("DiscoverLinks");
        
        // Create a delimited text reader for the left input data set
        ReadDelimitedText readLeft = app.add(new ReadDelimitedText("data/accounts1.csv"));
        readLeft.setHeader(true);
        DeriveFields zipLeft = app.add(new DeriveFields(FieldDerivation.derive("zip", Strings.substr("zip", 0, 5))));
        app.connect(readLeft.getOutput(), zipLeft.getInput());
        
        // Create a delimited text reader for the right input data set
        ReadDelimitedText readRight = app.add(new ReadDelimitedText("data/accounts2.csv"));
        readRight.setHeader(true);
        DeriveFields zipRight = app.add(new DeriveFields(FieldDerivation.derive("zip", Strings.substr("zip", 0, 5))));
        app.connect(readRight.getOutput(), zipRight.getInput());
        
        // Configure the indexing properties for the matcher
        Index index = new Index();
        index.setType(IndexType.BLOCK);
        index.setLeftFieldPattern("left_{0}");
        index.setRightFieldPattern("right_{0}");
        Map<String, Object> props = new HashMap<String, Object>();
        props.put(PROP_LEFT_KEYS, new String[] {"file_id"});
        props.put(PROP_RIGHT_KEYS, new String[] {"file_id"});
        index.setProperties(props);
        
        // Configure phase 1 of the matcher
        Phase phase1 = new Phase(CleanupMode.ALL);
        phase1.addComparison("zip", "zip", ComparisonType.EXACT_MATCH, "zip_score");
        phase1.setFilter(GTE, "zip_score", PROPS_MINVALUE, Double.valueOf(0.5));
        
        // Configure phase 2 of the matcher
        Phase phase2 = new Phase(CleanupMode.INTERMEDIATE);
        phase2.addComparison("first_name", "first_name", JARO_WINKLER, "jw_fname");
        phase2.addComparison("last_name", "last_name", JARO_WINKLER, "jw_lname");
        phase2.addClassifier(WAVG, new String[] {"jw_fname", "jw_lname"}, "name_score");
        
        phase2.addComparison("company", "company", JARO_WINKLER, "jw_co");
        phase2.addComparison("company", "company", SHORTHAND, "sh_co");
        phase2.addClassifier(WAVG, new String[] {"jw_co", "sh_co"}, "company_score", PROP_WEIGHTS, new int[] {43, 57});
        
        phase2.addComparison("street", "street", JARO_WINKLER, "jw_st");
        phase2.addComparison("street", "street", SHORTHAND, "sh_st");
        phase2.addClassifier(WAVG, new String[] {"jw_st", "sh_st"}, "street_score", PROP_WEIGHTS, new int[] {43, 57});
        
        phase2.addComparison("city", "city", JARO_WINKLER, "city_score");
        
        phase2.addClassifier(
                WAVG, 
                new String[] {"name_score", "company_score", "street_score", "city_score"}, 
                PROP_WEIGHTS, 
                new int[] {20, 25, 25, 30});
        phase2.setFilter(GTE, PROPS_MINVALUE, 0.7);
        
        // Initialize the DiscoverLinks operator
        DiscoverLinks link = app.add(new DiscoverLinks(index, asList(phase1, phase2)));
        app.connect(zipLeft.getOutput(), link.getLeft());
        app.connect(zipRight.getOutput(), link.getRight());
        
        // Remove the file_id field from the output
        RemoveFields rmField = app.add(new RemoveFields(asList("file_id")));
        app.connect(link.getOutput(), rmField.getInput());
        
        // Create a delimited text writer
        WriteDelimitedText writer = app.add(new WriteDelimitedText("results/link-accounts.txt", WriteMode.OVERWRITE));
        writer.setHeader(true);
        writer.setWriteSingleSink(true);
        app.connect(rmField.getOutput(), writer.getInput());
        
        // Compile and run the graph
        app.run();
    }
}
Using the DiscoverLinks operator in RushScript
// Create block index on zip code and soundex of city
var index = new Index();
index.setType(IndexType.BLOCK);
index.addProperty('leftKeys', ['zip', 'city_soundex']);
index.addProperty('rightKeys', ['zip', 'city_soundex']);

// Create a phase with comparisons, weighted average classifier and a filter
var phase = new Phase();
phase.addComparison('first_name', 'first_name', ComparisonType.LEVENSHTEIN, 'fn_score');
phase.addComparison('last_name', 'last_name', ComparisonType.LEVENSHTEIN, 'ln_score');
phase.addComparison('company', 'company', ComparisonType.JARO, 'company_score', {q:3, maxDistance:5 });
phase.addComparison('company', 'company', ComparisonType.POSITIONAL_QGRAM, 'company_pqg_score');
phase.addClassifier(ClassifierType.WAVG, ['fn_score', 'ln_score', 'company_score', 'company_pqg_score'], Classifier.PROP_WEIGHTS, [5, 20, 5, 2]);
phase.setFilter(FilterType.GTE, Filter.PROPS_MINVALUE, 0.85);

// Discover links in the account data
var results = dr.discoverLinks(splitData.output, splitData.rejects, {index:index, phases:[phase]});
Properties
The DiscoverLinks operator provides the following properties.
Name
Type
Description
index
Index
The pair generation method for determining initial candidate matches.
phases
List<Phase>
The phases of comparison, classifying and filtering used to determine matches.
Ports
The DiscoverLinks operator provides the following input ports.
Name
Type
Get Method
Description
leftInput
getLeft()
The left side input data for the operation.
rightInput
getRight()
The right side input data for the operation.
The DiscoverLinks operator provides a single output port.
Name
Type
Get Method
Description
output
getOutput()
The record pairs that are considered likely matches.
Data Clustering
DataFlow Cluster Operators
The DataFlow matching library provides operators for clustering the results of duplicate or linkage discovery. This section covers each of those operators and provides details on how to use them.
Clustering Operators
Using the ClusterDuplicates Operator to Cluster Duplicates
The ClusterDuplicates operator transforms record pairs into clusters of like records, where the two sides of the pair are from the same source. The output of the DiscoverDuplicates operator is a stream of record pairs.
Each pair of records has passed the given qualifications for being a potential match. This operator takes the record pair input and finds clusters of records that are alike. For example, a row contains records A and B, another contains records B and C. This operator will create a cluster for records A, B, and C; generate a unique cluster identifier for the grouping; and output a row for records A, B, and C with the generated cluster identifier.
A cluster may contain any number of records. Note that the original record pairings are lost, as are the scores.
Code Example
The following code fragment demonstrates how to set up the ClusterDuplicates operator and use it within a simple dataflow.
Using the ClusterDuplicates operator in Java
// Create an empty logical graph
LogicalGraph graph = LogicalGraphFactory.newLogicalGraph();

// Create a delimited text reader for the "dedup-accounts.csv" file
ReadDelimitedText reader = graph.add(new ReadDelimitedText("data/dedup-accounts.csv"));
reader.setHeader(true);

// Create a ClusterDuplicates operator and set the id field
ClusterDuplicates cluster = graph.add(new ClusterDuplicates());
cluster.setDataIdField("id");

// Create a delimited text writer for the results
WriteDelimitedText writer = graph.add(new WriteDelimitedText("results/cluster-accounts.csv", WriteMode.OVERWRITE));
writer.setHeader(true);
writer.setWriteSingleSink(true);

// Connect the graph
graph.connect(reader.getOutput(), cluster.getInput());
graph.connect(cluster.getOutput(), writer.getInput());

// Compile and run the graph
graph.run();
Using the ClusterDuplicates operator in RushScript
var results = dr.clusterDuplicates(data, {dataIdField:"id"});
Properties
The ClusterDuplicates operator provides the following properties.
Name
Type
Description
dataIdField
String
The name of the field uniquely identifying records in the original source. This name is the one used in the original record data producing the pairs, not the formatted name used in the input pair data.
Ports
The ClusterDuplicates operator provides a single input port.
Name
Type
Get Method
Description
input
getInput()
The input data for the clustering operation.
The ClusterDuplicates operator provides a single output port.
Name
Type
Get Method
Description
output
getOutput()
The output from the clustering operation.
Using the ClusterLinks Operator to Cluster Links
The ClusterLinks operator transforms record pairs into clusters of like records. The output of the DiscoverLinks operator is a stream of record pairs. Each pair of records has passed the given qualifications for being a potential match.
This operator takes the record pair input and finds clusters of records that are alike. For example, a row contains records A and B, another contains records B and C. This operator will create a cluster for records A, B, and C; generate a unique cluster identifier for the grouping; and output a row for records A, B, and C with the generated cluster identifier.
A cluster may contain any number of records. Note that the original record pairings are lost as are the scores.
Code Example
The following code fragment demonstrates how to set up the ClusterLinks operator and use it within a simple dataflow.
Using the ClusterLinks operator in Java
// Create an empty logical graph
LogicalGraph graph = LogicalGraphFactory.newLogicalGraph();

// Create a delimited text reader for the "link-accounts.csv" file
ReadDelimitedText reader = graph.add(new ReadDelimitedText("data/link-accounts.csv"));
reader.setHeader(true);

// Create a ClusterLinks operator and set the id field and field patterns
ClusterLinks cluster = graph.add(new ClusterLinks());
cluster.setDataIdField("id");
cluster.setLeftFieldPattern("left_{0}");
cluster.setRightFieldPattern("right_{0}");

// Create a delimited text writer for the results
WriteDelimitedText writer = graph.add(new WriteDelimitedText("results/cluster-accounts.csv", WriteMode.OVERWRITE));
writer.setHeader(true);
writer.setWriteSingleSink(true);

// Connect the graph
graph.connect(reader.getOutput(), cluster.getInput());
graph.connect(cluster.getOutput(), writer.getInput());

// Compile and run the graph
graph.run();
Using the ClusterLinks operator in RushScript
var results = dr.clusterLinks(data, {dataIdField:"id", leftFieldPattern:"left_{0}", rightFieldPattern:"right_{0}"});
Properties
The ClusterLinks operator provides the following properties.
Name
Type
Description
dataIdField
String
The name of the field uniquely identifying records on both sides of the pairs. This is a convenience mechanism for when both sides use the same name, as is the case with the output from DiscoverDuplicates. This name is the one used in the original record data producing the pairs, not the formatted name used in the input pair data.
leftFieldPattern
String
The naming pattern used for fields from the left side record. This will be used to determine the actual name of the left hand ID field.
leftDataIdField
String
The name of the field uniquely identifying records on the left side of the pairs. This name will also be used to identify cluster members in the output. This name is the one used in the original record data producing the pairs, not the formatted name used in the input pair data.
rightFieldPattern
String
The naming pattern used for fields from the right side record. This will be used to determine the actual name of the right hand ID field.
rightDataIdField
String
The name of the field uniquely identifying records on the right side of the pairs. This name is the one used in the original record data producing the pairs, not the formatted name used in the input pair data.
Ports
The ClusterLinks operator provides a single input port.
Name
Type
Get Method
Description
input
getInput()
The input data for the clustering operation.
The ClusterLinks operator provides a single output port.
Name
Type
Get Method
Description
output
getOutput()
The output data from the clustering operation.
Match Analysis
DataFlow Match Analysis
The DataFlow matching library provides operators to analyze data for approximate matching. This topic covers each of those operators and provides details on how to use them.
Match Analysis Operators
Using the AnalyzeDuplicateKeys Operator to Analyze Duplicates
The AnalyzeDuplicateKeys operator can provide an analysis of the quality of a set of blocking keys over data to be deduplicated. As each record in a given block must be compared to every other record in the block during deduplication, the smaller the block sizes, the better the performance.
The AnalyzeDuplicateKeys operator will output the results from its key analysis to the console.
Code Examples
The following code fragment demonstrates how to initialize the AnalyzeDuplicateKeys operator.
Using the AnalyzeDuplicateKeys operator in Java
AnalyzeDuplicateKeys analyzer = graph.add(new AnalyzeDuplicateKeys());
analyzer.setBlockingKeys(Arrays.asList("keyField1", "keyField2"));

graph.connect(reader.getOutput(), analyzer.getInput());
Using the AnalyzeDuplicateKeys operator in RushScript
var results = dr.analyzeDuplicateKeys(data, {blockingKeys:["keyField1", "keyField2"]});
Properties
The AnalyzeDuplicateKeys operator provides one property.
Name
Type
Description
keys
List<String>
The fields to use for key blocking.
Ports
The AnalyzeDuplicateKeys operator provides a single input port.
Name
Type
Get Method
Description
input
getInput()
The input data to analyze.
Using the AnalyzeLinkKeys Operator to Analyze Links
The AnalyzeLinkKeys operator can provide an analysis of the quality of a set of blocking keys over two data sets to be linked. As each record in a given block on the left must be compared to every other record in the same block on the right during linking, the smaller the block sizes, the better the performance.
The AnalyzeLinkKeys operator will output the results of its key analysis to the console.
Code Examples
The following code fragment demonstrates how to initialize the AnalyzeLinkKeys operator.
Using the AnalyzeLinkKeys operator in Java
AnalyzeLinkKeys analyzer = graph.add(new AnalyzeLinkKeys());
analyzer.setLeftBlockingKeys(Arrays.asList("keyField1"));
analyzer.setRightBlockingKeys(Arrays.asList("keyField1"));

graph.connect(leftReader.getOutput(), analyzer.getLeft());
graph.connect(rightReader.getOutput(), analyzer.getRight());
Using the AnalyzeLinkKeys operator in RushScript
var results = dr.analyzeLinkKeys(data1, data2, {leftBlockingKeys:["keyField1"], rightBlockingKeys:["keyField1"]});
Properties
The AnalyzeLinkKeys operator provides the following properties.
Name
Type
Description
leftKeys
List<String>
The fields to use for key blocking for data on the left.
rightKeys
List<String>
The fields to use for key blocking for data on the right.
Ports
The AnalyzeLinkKeys operator provides the following input ports.
Name
Type
Get Method
Description
left
getLeft()
The input data to analyze for the left side.
right
getRight()
The input data to analyze for the right side.
Last modified date: 12/09/2024