Data Loading Guide > Loading Parquet Data > Loading Parquet Data from Cloud Data Storage
Was this helpful?
Loading Parquet Data from Cloud Data Storage
Introduction to Loading Parquet Data
Note:  Before using this method, be sure to read Overview of SQL-Based Data Loading.
You can load Parquet data using the following loading method: Loading Parquet Data from External Tables (SQL).
The cloud object stores that are currently supported are AWS S3, Azure Blob Storage, and Google Cloud.
To use the Actian SQL CLI for issuing SQL commands, see Actian SQL CLI.
Loading Parquet Data from External Tables (SQL)
External tables use Apache Spark underneath to reference and load external data into the Actian warehouse. This in turn has been wrapped in a native Actian Data Platform SQL command to aid ease of use.
Loading Parquet Data from Google Cloud Storage
Shown below is an example of how to load Parquet data stored on Google Cloud storage using external tables.
Example: Loading Parquet Data from Google Cloud Storage
DROP TABLE IF EXISTS pemdata_gs;
CREATE EXTERNAL TABLE pemdata_gs (
    timeperiod VARCHAR(20),
    flow1 VARCHAR(20),
    flow2 VARCHAR(20),
    occupancy1 VARCHAR(20),
    speed1 VARCHAR(20)
) using spark
WITH
    reference='gs://avpemdata/part*.parquet',
    format='parquet';
DROP TABLE IF EXISTS pemdata;
CREATE TABLE pemdata (
    timeperiod TIMESTAMP,
    flow1 VARCHAR(20),
    flow2 VARCHAR(20),
    occupancy1 VARCHAR(20),
    speed1 VARCHAR(20)
);
 
INSERT INTO pemdata SELECT * FROM pemdata_gs;
Loading Parquet Data from Azure Blob Storage
Shown below is an example of how to load Parquet data stored on Azure Blob storage using external tables.
Example: Loading Parquet data from Azure Blob Storage
DROP TABLE IF EXISTS pemdata_adl;
CREATE EXTERNAL TABLE pemdata_adl (
    timeperiod VARCHAR(20),
    flow1 VARCHAR(20),
    flow2 VARCHAR(20),
    occupancy1 VARCHAR(20),
    speed1 VARCHAR(20)
) using spark
WITH
    reference='abfs://parquetdata@mydata.dfs.core.windows.net//part*.parquet',
    format='parquet';
DROP TABLE IF EXISTS pemdata;
CREATE TABLE pemdata (
    timeperiod TIMESTAMP,
    flow1 VACHAR(20),
    flow2 VARCHAR(20),
    occupancy1 VARCHAR(20),
    speed1 VARCHAR(20)
);
 
INSERT INTO pemdata SELECT * FROM pemdata_adl;
Notes:
1. Before doing the insert into or load operation to create the native Actian Data Platform table, it is important that you can view the data in the external table using a SELECT * FROM <external table>.
Typically you will have a mismatched data type or column name, so it is important to narrow down the offending column or columns.
This is achieved by doing SELECT <column1>, <column2> FROM <external table>, and adding more columns as you go.
You can use this method to find the offending column or columns and fix accordingly.
2. This time, instead of doing a CTAS operation we did an insert because we wanted our native Actian Data Platform table to use a timestamp for the timeperiod column.
So, we referenced the column timeperiod as a varchar(20) data type from the external table side and a timestamp datatype from the Actian Data Platform table side.
The insert then handles the mapping appropriately.
Loading Parquet Data from AWS S3 Storage
Shown below is an example of how to load Parquet data stored on AWS S3 storage using external tables.
Example: Loading Parquet Data from AWS S3
DROP TABLE IF EXISTS pemdata_s3;
CREATE EXTERNAL TABLE pemdata_s3 (
    timeperiod VARCHAR(20),
    flow1 VARCHAR(20),
    flow2 VARCHAR(20),
    occupancy1 VARCHAR(20),
    speed1 VARCHAR(20)
) using spark
WITH
    reference='s3a://avpemdata/part*.parquet',
    format='parquet';
DROP TABLE IF EXISTS pemdata;
CREATE TABLE pemdata (
    timeperiod TIMESTAMP,
    flow1 VARCHAR(20),
    flow2 VARCHAR(20),
    occupancy1 VARCHAR(20),
    speed1 VARCHAR(20)
);
 
INSERT INTO pemdata SELECT * FROM pemdata_s3;
 
Last modified date: 10/30/2024